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Infinitely Divisible Representations of Lie Algebras 

R. F. STREATER 

In two previous papers [1, 2], we studied a special class of group representa- 
tions, those called infinitely divisible. These are associated with infinitely divisible 
random variables, at least if the group is abelian [3]. In the non-abelian case, the 
theory was developed to provide representations of the current algebras of quan- 
tum field theory [4, 5]. More recently, interesting results have been obtained using 
the methods of probability theory [6]. 

In this paper we study cyclic representations of Lie algebras, with an analogous 
property, also called infinite divisibility. We obtain some results, which are the 
infinitesimal analogues of corresponding theorems for Lie groups, obtained in 
[2] and [5]. 

1. Cyclic Representations of Lie Algebras 

Let fq be a finite dimensional real Lie algebra; by a cyclic representation of 
we shall mean a triple (Jr,, co, re), where Y is a Hilbert space with scalar product 

( , ), co a unit vector in ~ and re a homomorphism from ~ to unbounded anti- 
symmetric operators on S ,  such that co is in the common domain D of each r~(A), 
AsN;  D is invariant under each z(A), and consists of the linear span of those 
vectors obtained from co by applying rc (f~). 

The assumptions in this definition are not quite those obtained from a cyclic 
group representation by differentiation. First, our very strong domain assumptions 
would be true only in special cases; on the other hand, the Lie algebra definition 
is more general, in that it allows for local as well as global group representations. 

If (Jr, co, re) is a cyclic representation of ~, the expressions (co, re (A0... rt(A=)co> 
for Ayf~,  j =  1, 2 . . . .  , n, are well defined, and will be called the moments of (co, re) 
and denoted by (Ai . . .  An). The problem, to find a representation of a Lie group G 
whose Lie algebra is N, when the moments are given, is the non-commutative 
generalization of the moment problem. 

The cumulants of (o), re) are defined inductively as follows; they are the ana- 
logues of the truncated functions in a quantum field theory (see, for example, [7]), 
and will be denoted (Ai . . .  An)r. 

Let I be a partition of(1 . . . . .  n) into p parts; 

I =  (i t . . . . .  il)(ih+i, ..., i , j . . .  (iz,_l+i, ... , ilp ). 

In each part, the integers are written in their natural order, We define (A>r = ( A )  
for all Aef#, and 

(AI"" An) -- (Ai"" Zn)T -Jr Z (All"'" aill)T"" (Ailp t + l " "  Ailp)Z" 
I 

It is clear that the cumulants determine the moments, and conversely, 
5* 



68 R.F. Streater: 

We shall say that two cyclic representations ( ~ ,  00 1, nl) and (s (702, re2) of 
a Lie algebra N are equivalent if there is a unitary map V: ~ ~ s such that 
V00 1=co2, and Vnl=n2 V. Equivalent representations will be treated as the 
same; in particular, the representations (S,  00, ~) and (of, e i~ co, re) will be identified. 

Let us define a *-operation on ~ by A*= ~-A for all Ae(r Let ~ = ~ ( ~ )  be 
the polynomial algebra over the vector space ~, with complex scalars, including 
polynomials of degree zero, that is, scalars. The involution * is defined in ~ by 
the requirement that (AB)* =B* A*, (e A)* =6  A* etc. Let cd be the commutator 
ideal of ~, that is, the smallest 2 sided ideal containing all polynomials of the form 
A B -  BA - [A, B], where [A, BJ is Lie multiplication. We see that cd = cd*, and so 
the quotient algebra g = N/cg inherits the *-structure. g(~) is called the enveloping 
algebra of (r 

Since any cyclic representation (X, co, n) of (4 leads to a representation of g, 
it also defines a representation of ~ in • (which vanishes on cg), with the same 
cyclic vector 00. Conversely, any *-representation of ~ with cyclic vector co and 
common invariant domain D, that vanishes on cd, defines a cyclic representation 
of g (and thus of ~) by passing to the quotient. 

An element p of ~ is said to be positive if p = q* q for some polynomial q. A 
linear map W: ~ I E  is said to be positive if W(p)>O for all positive p, it is said 
to be normalized if W(1)= 1, and hermitian if W(p) = W(p*). Note that hermiticity 
follows from positivity. A linear functional will be called a form. 

We can now state our preliminary theorem. 

Theorem 1. i) I f  (X, 00, n) is a cyclic representation of a Lie algebra fs then there 
exists a unique positive normalized form on ~(~),  p -+ W(p) say, such that 

(00, rc(Ax). . .u(A,)00)=W(A1.. .A,)  for Ai~N. 

This form vanishes on cal. 

ii) Two cyclic representations lead to the same form if and only if they are 
equivalent. 

iii) Given a positive normalized form W on ~ vanishing on (d, there exists a 
cyclic representation (X, 00, re) such that 

(00, ~(AO... ~(A.) 00) = W(A1... A.) 

for all sets of n elements A1 . . . .  , A,  in ~, and all n. 

The proof of this theorem follows exactly the same pattern as the Wightman 
reconstruction theorem in quantum field theory [8], and is omitted. 

Let #~ denote the subalgebra of N of elements without constant term. 

Theorem 2. Given a cyclic representation (Jl, 00, z~) of (s there exists a unique 
form W T On ~1(~) such that WT(A1... A,)= (A1,..  An)T. Moreover, W T vanishes on 
cg. Conversely, if a form W r is hermitian, or vanishes on c~, the form W obtained 
from it has the same property. 

Proof. It is obvious from the definition that A~, . . . , A , - + ( A t . . . A , ) r  is a 
multilinear map from (~ •  • ~ to ~, and so possesses a unique extension, by 
linearity, to a form on ~ ,  

To show that WT vanishes on c~, it suffices to show that it vanishes on any 
element of ~ of the form A1... A j ( A B - B A  - C) BI.. .  B k, where C =  [A, B]; for, 
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any element of cd is a finite sum of these. Since Wr(AB)= W(AB)-  W(A) W(B), 
we see that Wr ( A B - B A -  C)= W ( A B - B A -  C)= 0. Thus the above statement is 
certainly true if j = k = 0. Suppose, then, as inductive hypothesis, that Wr vanishes 
on all elements of the form A1... A s ( A B -  BA - C) B~... Bk,, for j '  + k' < j + k, j'__< j, 
k '<  k. Then, from the definition 

W T (A~... Aj ( A B - B A  - C) B1... Bk) = (A1... Aj ( A B -  BA - C) Bl... Bk) 

-{Z wd...)... Z' Z" wd...)} 

where ~ is the sum over all partitions of A1... Aj ABB1... B k, ~ '  the sum over all 
partitions of AI.. .A;BAB~...  Bk, and ~ "  is the sum over all partitions of A~... 
A; CBI... B k. Now, W vanishes on cd, s o  ( A 1 . . .  A ; ( A B - B A -  C) B~... Bk} =0. If 
in a term in the sum ~,  A and B are in the same part of the partition, there is a 
corresponding partition in ~ '  and in ~" ,  which may be combined to give a term 
of the form Wv(... )... W ~ ( . . . ( A B - B A -  C)...)... Wv(...). By induction, this van- 
ishes. This exhausts the partitions in ~" .  For the remaining partitions in ~,  those 
in which A and B are in different parts, there is a corresponding partition in ~ ' ,  
which cancels (there is no corresponding partition in ~ "  in this case). Therefore 
Wv vanishes o n  A 1 . . .  A i ( A B - B A - C ) B ~  ... Bk, and the induction hypothesis is 
proved for j + k + 2. The converse is proved in a similar way. 

This proves Theorem 2. 
Theorem 2 is a simple version of the well known fact in quantum field theory, 

that the truncated Wightman functions satisfy local commutativity. 

2. Infinitely Divisible Representations 

If (4((1, col, rq) and (:f2, (~o2, 7g2) are cyclic representations of Lie algebras N1, 
and N2, we define the tensor product rc a | Tg 2 to be the representation of (ql @ N2, 
acting in ~ | X2; if AlS~l  and A 2 ~ 2 ,  it is given by 

((7~ 1 | O A2))(go1 | cp2 ) = u~ (A 0 go 1 | go2 + (~1 | ~2 (A2) (D2 

on product vectors, and by linearity elsewhere. The cyclic vector of n~ | ~2 is 
taken to be ~01 | ~0 s, and the domain, that generated from (2) 1 | (D 2 by applying 
ul| With this definition, the tensor product is a cyclic representation of 
ffl | ff2. Similarly, one defines the tensor product of any finite number of cyclic 
representations. It is well known that the associativity law 

(( ol |  o2) |  o3, |  | | ( 02 | | | .3)) 
holds. 

The algebra ~ @ f f  possesses a subalgebra isomorphic to if, namely the 
diagonal subalgebra ~, of elements of the form A@A with A~(r The restriction 
of a tensor product representation u 1 @ ~2 of ~ | ~ to the subalgebra #, acting 
on the Hilbert space generated from c~ 1 | c~ 2 by applying u~ | z:2(A, A), is a 
cyclic representation of ft. This is often again called the tensor product of 7~ 1 and 
To2, but to avoid confusion, we shall call it the product ~ x ~2. 

For abelian Lie algebras, the product of two representations corresponds to 
forming the convolution of the associated measures, at least when the moment 
problem has a unique solution. 
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Theorem 3. The cumulants of nl | nz | 1 7 4  nn are the sums of those of hi, 
n2, ..., nN. In symbols, if A ) ~ j ,  i= 10 ..., n for each j =  1, ..., N, 

N N N 
if 0)= | 0)j 7r= | nj, and Ai= | A}, i= l . . . .  , n, we have 

1 j = l  j = l  

N 
(co, n(Ai)..,  rc(A') 0))T = ~ (0)j, nj(A}) ... nj(Ay) 0)j>T. 

j = l  

Proof. It is sufficient to prove it for N-- 2; the general case then follows imme- 
diately. 

We proceed by induction on the order n of the cumulant. Since the first 
cumulant is the first moment, and these add, the inductive hypothesis is true for 
n = 1. Suppose it is true for the cumulants of order n - 1. Then, writing A~ = n (A~, 0) 
and i i A2 = n(0 , A2) , i =  1 . . . .  , n :  

(co, n(A1)...n(A,)0))=<0),(AI+Aa2)(A2 + 2 , A2)...(Aa + A~) 0)5 

= <0), Ai...A~ co> + <0), A~. . .A~ 0)> 

<0), A 2 . . .A~" co) + F, <0), i, i~ i,+, A1 ...A1 0)) 
J="'"'~') (1) K= (h + l...in) 

JuK=(1 ..... n) 

= (0)1,  7Cl(AIL.-u~ (A~) 0)1) + (0)2, n2 (A~)... n2 (A~) 0)2) 

+ E (0)1,  7Cl (A~I) '" -7~l(A~') 'Ai'+ q 0)1><0)2,~2t 2 ,." .=2(&~ 0):>- 
J , K  

Here, the sum is over all partitions of (1, ..., n) into two non-empty parts J, K; 
and the divisions (J, K) and (K, J) are regarded as distinct, and both enter. 

We write the moments in terms of cumulants. Let (J~)=(Ji, . . . ,  Jj) be an 
arbitrary partition of J, and (Ka)= (K1,. . . ,  Kk) an arbitrary partition of K. Let 

w~'(J~) = <0)~, ,~ (AI')...,~ (A~ ~o) 0)~>~, 

W~ (K,) = <0)~, ~ (AiO... ~ (A~ ~ 0)~>~, 

where J~=(Jt,-..,Jp~) and K~=(ki, . . . ,kq~); a = l , . . . , j ;  f l = l , . . . , k .  Let I =  
(/1, ..., I3+~) be an arbitrary partition of (1, . . . ,  n) into j + k  parts. Then from (1) 

<co, n(A1)...n(A') 0)) = (0)1, zq (A~)...nl (A~) e)l)r 

+ ~, WT~(I~)...WT~(I~+k)+(0)2,n2(A~)...~z2(A'2)0)2)T + 2 W2(I~)"'WTZ(Ij+k) 
I I 

j + k > l  j + k > I  

+ ~ <0)1, Tel (A]')... 7 h (A~') 0)~5 r (0)2, n2 (A~ +')... zc 2 (A~") 0) 2 )T (2) 
J , K  

+ ~ Z w#(J,).., w#(@ w~ (1,;1)... w?, (lq). 
J, K (J~) 

(K~) 

The 4 sums in (2) may be written 

Z E (W~.(I~)+ WTZ(I~))(WTX(Iz)+ W~-(I2))...(WT~(Ij+k)+ W~'(I3+k)), 
j + k  I=(I~ ..... l j+k)  



Infinitely Divisible Representat ions of Lie Algebras 71 

where the sum is over all proper partitions. By the inductive hypothesis, WT~(I~)+ 
W 2 (I~) can be replaced by (co, zc (Ail)... rc(A %) co)T (where I s = (i 1 . . . . .  ipo,)) = W T (I7) 
say. Thus (2) becomes 

(co, ~(A1)...~(A n) co) =(col, ~(AI)... ~I(A~) co~)r 

+ (o)2, re2 (Ai).. .  ~2 (A~2) co2)r + ~ Wr(IO... WT(Ip)" 
I = (II...lp) 

Comparing with the definition of W T, we see that the inductive hypothesis is true 
f o r  n. 

This proves Theorem 3. 

Definition. If a Lie algebra (g is isomorphic to a direct sum (g~ |  @(gn, then 
we shall say a cyclic representation (~C, co, re) of (g is factorizable relative to the 
direct sum if there exist representations ( ~ ,  COl, ~i) of (gi such that 

N 

(co, ~)= | (co~, ~). 
i = l  

We shall say a cyclic representation of a Lie algebra is divisible if it is (equivalent 
to) the product of two non-trivial others. 

Definition. A cyclic representation (5C, co, re) of a Lie algebra (g is infinitely 
divisible if, for any positive integer m, there exists a cyclic representation of (g, 
denoted re~m, such that (co, lr) is equivalent to (co |  | co, rc/m • ~/m • zc/m) 
(m factors). 

Theorem 4. A cyclic representation is oo-divisible if and only if, for any integer m, 
its cumulants divided by m, are the cumulants of some cyclic representation. 

Proof (i). Suppose rc is og-divisible; then, for a given m, there exists a cyclic 
representation rc/m, such that rc ~ rc/m x ... • ~/m. Applying Theorem 3, restricted 
to the diagonal subalgebra of (g @... | (g, we see that the cumulants of ~r are rn 
times those of ~z/m. 

(ii) Conversely, if the cumulants of rc are m times those of ~1, say, then 
rc I • .-. x 7r 1 (m factors) has the same cumulants as 7r. By Theorem 1, (ii), they are 
equivalent, showing rc to be oo-divisible. 

Corollary 1. The product of a finite number of oQ-divisible representations is 
oe-divisib le. 

Corollary 2. We may replace the integer m in the statement of Theorem 4 by any 
rational number. For, if m=p/q,  the product of q copies of zc/p gives the desired 
representation. 

Exponential Spaces and Representations 

If ~(  is a Hilbert space, the symmetric tensor product | is the subspace 
of ~ | | 5 (  spanned by vectors of the form 

1 
- -  s q)7(1) ~ )  " " " | @~'(m) 

where S,, is the symmetric group on m indices. If X carries a representation rc 
of(g, then | ~$( is invariant under |  re. The symmetric Fock space over S is the 
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orthogonal direct sum exp Jr, given by 

exp X = ~2 @ S | | o~)s @-. . |  |  |  

It can be shown (see for example, [9]) that vectors of the form 

e~= 1@ ~o | Iqh q~)| | I~0 . . . .  ,q~) |  

with q~ ~ Jr, span e x~. Obviously 

(e ~, e 0 ) = e<~ o, ~> 

If (S, co, re) is a cyclic representation of N with co not necessarily normalized, we 
define (e*, ~2, e ~) to the representation in e*, generated from the (normalized) 
cyclic vector P=exp(-�89 2) e ~' by applying 

exp ~(A)=O@rt(A)@rc(A)|174 

as A runs over ~. 

Remark. This is the differential of an analogous concept defined for Lie 
groups [2]. Note that in this paper, exp is not related to the exponential map 
from a Lie algebra to a Lie group. 

Theorem 5. The cumulants of e ~ are the moments of re. 

Proof. Let exp rt(A)=5(A). Then if Aic,ff, j =  t . . . .  , n, we have 

~c(A1)... ~c(A~) f~ = exp ( -~  I1~oll 2) ~rc(A~)... ~z (A~)o~ 
( (3) 

where/~ is any partition of (1, ..., n) into r parts (including cases where some of 
the parts are empty), and parts written in different orders are counted as distinct. 
The nth moment of ~, (~, ~c(A1)... $(An)f2), is then the sum over r, of the scalar 

a 1 
product of (3) with the vector exp( 1 I lcoll )7 -~f  co |  | co (r factors). Each of 

v -  
the different orders in which the parts of a partition I, can be written, contributes 
the same term of this scalar product. The partition consisting of r -  1 empty sets 
and the set (1 . . . . .  n), can be written in r different orders. The partition with r - 2  
empty sets and two non-empty sets, can be written in r ( r -1 )  different orders, 
and so on. Thus their respective contributions are multiplied by r, r ( r -1) ,  and 
so on. If we write W(I) for (co, rr(Ai,)... ~(Ai)co}, where I=(il ,  ..., ij), we get 

/e_~,,~l,~ 1 . .~(A, )P}  ~ - . I  co | "'" | co, ~(A,). 

1 
= r~- ' e-II o, II ~ {r (co, ~t(A1)... rc(A,) co> IIcoll 2<,-~) 

+ r ( r -  1) ~ W(I1) W(12)Ilcoll 2<~-2) 
I1,12 

+ . . . +  

2i- r t ~ W(]~l),,, W(Ir) } 
I1,,,., lr 
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(if r > n, series breaks off when a term is zero). Hence, by summing over r 

(Q, ~(A1)... ~ ( A n )  Q)  = (co, rc (A1)... zc (A,) co) + ~ W(I1)... W(Ij). 
I = (11...lj) 

Since <f2, ~(A) s = <s ~c(A) s = <co, rt(A) co), we have by induction 

(s ;~(A1)... ~c(A,) f2)T = <CO, x(A1)... To(An) c o ) .  

This proves Theorem 5. 

Corollary. Any exponential representation of a Lie algebra ~f is oo-divisible. 

For, if ((2, ~) is the exponential of (co, ~), and co'= co/V ~ ,  then the moments of 
(co, u) are m times those of (co', re). Hence the cumulants of (s ~) are m times those 
of (e-~H~/ll2e~~ by the theorem, and so (f2,~) is oo-divisible by Theo- 
rem 4, (ii). 

Remark. By Gfirdings theorem [10] there exist cyclic representations of any 
Lie algebra; so the corollary ensures that the set of oo-divisible representations is 
non-empty. We shall see that, in general, not all oo-divisible representations are 
of the form exp re. 

3. Current Algebras 

Infinitely divisible representations of Lie groups and algebras arise in the 
study of the canonical and current commutation relations of quantum field 
theory [2]. If we choose a basis A1... Ae in the Lie algebra N (where d is its dimen- 

d 
sion) an element A = ~ c~j Aj may be given coordinates (cq . . . .  , ~e)elR e. The 

j=l 
Euclidean norm on IR a defines a topology for ~r and a Borel structure independent 
of the choice of basis (A), so that ~ becomes a topological vector space. Let 
(X, ~ /a )  be a measure space, with measurable sets 5 ~ and measure/a. We may 
consider the vector space of bounded measurable maps_A: X ~ ~, denoted ~I(X, N) 
or ~ ' ,  and furnish it with the natural Lie bracket structure: 

[& _13] (x) = [_A(x), 13(x)].  

With this definition, JC(X, N) becomes an infinite dimensional Lie algebra, called 
a current algebra. We denote by ~r the subalgebra of maps A which take the 
value 0 except on a set of finite/a-measure. We note that ~/~ contains a subset of 
maps of the form x ~ f ( x )  A for A~N, where f is a suitable function, known as a 
test function. An element of J /  of this form is known as a "field (or current) 
smeared with test function f "  and is written A(f)  or S A(x) f(x) d/a. 

Naturally, we identify elements of J /  or J//0 that differ only on a set of 
/a-measure zero. We have in mind the special case where X = IR~ and d/a = d ~ x, 
with v = 3 the most frequent case. 

The problem of finding representations of J//o (X, N), where (X,/a) = (IR ~, d ~ x) 
and N = s u2 or s ua, is of some interest in physics [11]. The technique of continuous 
tensor products leads to representations of a special type, namely, those such that 
the cumulants are given by 

(_A1..._A,)T= j (_AI(x)..._A~(X))T d ~ x, (4) 
IR v 
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where <A1... An> T a r e  the cumulants of some representation ~c of N, so that the 
integrand is defined for each x elR". We note that the cumulants of re, being 
multilinear on (r x ... x ~ (n factors) are continuous and so measurable functions 
on ~ x ... x N. The integrand in (4) is therefore a bounded measurable function 
of compact support, and so the right hand side has a meaning. We shall now see 
that, in order for the left hand side of (4) to be, in fact, cumulants of some cyclic 
representation o f / g o ,  z~ cannot be chosen to be any old thing, but must be 
oo-divisible. More exactly: 

Theorem6. Let <'">T define a form on ~1((r and define <AI...An> T by (4). 
Then the necessary and sufficient condition that <_A1... An> T be the cumulants of 
some possible representation of/go ( IRv, N), is that <...>r are the cumulants of some 
oo-divisible representation of ~. 

Proof. (i) Suppose the moments <_A1..._A,> obtained from the cumulants (4) 
define a positive form on ~(/go),  vanishing on cg(/go), the commutator  ideal. 
Then in particular, these moments define a positive form on the subalgebra 
generated by _A = A(f )  as A runs over ~ and f is some fixed function. By choosing f 
to be a characteristic function of a set of finite measure, the sub-Lie algebra 
generated by {A(f),Ae(~} is isomorphic to ~, so that <Al(f) . . .A,( f)>r = 
S f " ( x ) d " x  <A1... A,>r are the cumulants of some representation ~I of ~. If the 
support o f f  has volume 1, (4) leads to 

<As(f) . . .  Ao(f) >T = <A1 ... A,>T. 

Hence <A~... A,>T are the cumulants of the representation r~or of ~r By choosing 
f l  so that its support has volume 1/m, (4) leads to 

< A l ( f l ) . . .  A,(fl)>T =1~ <A1.. .  An>T. 
m 

Hence 1 <A1... A,>T are the cumulants of nil. Hence, by Theorem 4(ii), z V is 
m 

oo-divisible. 

(ii) Conversely, suppose n is D-divisible, and define a functional on #~ (/go) 
by (4). 

Let us topologize/go by means of a norm. We choose a basis in N, and para- 
metrize 

A = ~ c d A  i by (al,...,c~ d) EIR d. 
j = l  

Then an element _A o f /go  becomes a bounded measurable function a: ]P,* ~ IR e, 
which is zero outside a set of finite measure. Define a scalar product o n / g o  

<_&, A~> =~ d"x y, ~{(x) 4(x) (5) 
J 

and the corresponding norm. Although the scalar product depends on the 
choice of basis (A j), the topology it defines clearly does not. With this definition, 
the cumulants defined by (4) are each separately continuous in variables of 
/go x ... x / go .  Let p be an arbitrary positive element of ~(/go)- Then p has a 
maximum degree N, and involves only a finite number of cumulants. It therefore 
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suffices to prove positivity for the polynomials constructed out of some dense 
subalgebra JV of J{o. 

Denote by X the subalgebra o f / r  consisting of piecewise constant maps 
over a finite number of cubes K in IR ~ with rational numbers as boundaries: 

K = {x ~ 1R~/r= =< x, < s=, ~ = 1 . . . . .  v; r=, s~ rational}. 

Then the completion of X in the norm given by (5) consists (in this coordinate 
system) of L2 vector-valued functions IR"--+ IR d, and this certainly includes J#0. 
Any positive element pEN(W)  involves a finite number of elements from ~,, and 
each element of X defines a finite number of rational boundaries x, = r~, x~ = s~. 
The set of all these (r~, s~) coming from a given p divides the a-axis of 1R ~ into a 
finite number of intervals, and doing this for all ~ = 1, ..., v divides IR ~ up into a 
finite number of disjoint cubes (Ka)2<=a each with a rational volume V2, such that 
each of the elements of X involved in p is constant on each Va and zero outside 
Q) V2. We note that the functions, I R ~  fr that are constant inside one V~, and 

zero outside, form a subalgebra fr of rig0 isomorphic to f~. Moreover, f~2 com- 
mutes with fr if 2 ~= 2'. Therefore the set of maps, constant on each V2 and zero 

A ~.=A 

outside U Va, form a sub-Lie algebra ~A isomorphic to | ff~. This isomorphism 
4=1 4=1 

is given by _A ~ A(xO@...  @_A(XA) where x~ is chosen in V~. In order to show that 
a form is positive on the given element p E ~ ( X ) ,  it is sufficient to show more, 
that it is positive on ~(~a) .  

Looking at (4) for an dement  of , ~a  X . "  X .~A, we get 

( A-I,..-AnST= 2 ~ Mx (~AI(X2)..,~An(X2))T-~- Y, V2 <~AI(Xj.)..._An(x2)) T 
2 vz 2 

where xzeVa is any fixed point. Now, since ( . . . } r  on the right hand side are 
assumed to be possible cumulants of an c~-divisible representation of fr and 
each V~ is rational, V~ ( . . .  }T is also a possible cumulant for some representation 
~;. say, of f~. Thus 

(_A~ ... _A,) r = ~ (co~, nz (A~) ... To2 (A, a) o~2> T (6) 

for_Aje | fr But the r. h. s. of(6) is the cumulant of the representation ~z~ |  | 
2 

of | fr by Theorem 3. Therefore the left hand side is the cumulant of a possible 
2 

representation (the same one !) of @ f~a, so the moments it defines are positive 
on 5a(fcA), and in particular on p. 

Since p was any element of ~ ( X ) ,  (4) is positive on ~ ( X )  and by continuity, 
on ~ ( ~ o ) .  

This proves Theorem 6(ii), as the moments obviously vanish on the com- 
mutator ideal. 

Corollary. A representation (X, co, re) is m-divisible only if its cumulants, 
divided by any positive number, are the cumulants of some cyclic representation. 

For, we need only replace m in the proof6(i) by any positive number. 
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Remark. The representations encountered here have been called "ultra-local";  
see [14]. 

Theorem 7. (i) I f  (X,  co, re) is ~-divisible, then its cumulants define a positive 
form on #1 ((r 

(ii) Given a positive form Wr on ~1((r vanishing on cg((~), then there exists a 
representation (X, co, 7c) of  ~ such that the given Vr are its cumulants; moreover, 
(~ ,  co, 7c) is oc-divisible. 

Proof (i). 1 (At . . .  Ak ) T are the cumulants of a representation whose moments 
m 

we shall denote by (At . . .  Ak) ~"~. Then 

1 (At . . .  A k ) T + ~  - - ~  (Ail. . .  Ai,I)T... (Ah,_,+l.. .  A%)T = (At . . .  Ak) ('). 
m i m 

Hence ( A  t.. .  Ak)T=limcom(A 1 ... Ak) ~'). The right hand side is a positive form 
on #t  (,~r 

Proof (ii). Let W T be a positive form on #1(~). This furnishes # i ,  regarded as 
a vector space, with a positive semi-definite sesqui-linear form. Let K be the 
Hilbert space obtained by separating and completing #1 (~) in the usual way. Let 
p ~ r (p) denote the canonical map from #1 into K. 

Let now A1,. . . ,  An be any n elements of ~. We are going to define a cor- 
responding vector T (At ... A,)e K. 

We use the symbol IP1, ..., Pk) to denote 

1 
~. T(P~(t))| "" |174 Kk)s 

"~ESk 

where P1, ..., Pk are elements of ~ .  If I t . . . . .  I k are k disjoint subsets of 1, 2, ..., n 
then 

lit . . . . .  Ik) denotes I(A~I...A~g,) . . . . .  (A~. . .A~, ) )e ( |  

where I~=(i~, ..., i;~), e =  1, 2 . . . .  , k. 

Clearly, I I1, ..., Ik) is multi-linear in the variables A~I... that enter. 

Now let k < n  be chosen, and let I be a partition of (1 . . . .  , n) into p parts, 
I t , . . . ,  I e, where p >  k. Let Ck = (ca . . . .  , Ck)c (1 . . . .  , p )be  any selection of k indices 
from (1, ..., p). Then we define 

p I Ck 
I=  (11 ..... lp) a6Ck 

and put ~ = 0, k > n. Then 
oo  

7t(At, ..., A,)= @ %cexp  K.  (7) 
k = 0  

Again, T is obviously multi-linear, and so depends only on the product At. . .  A, 
in #a. We define T(1) to be ~2, the Fock vacuum ofexp K;  that is, a vector generat- 
ing the one-dimensional space ([; = K ~ Then 7/has a unique extension by linearity 
to a map T:  # --* exp K. 
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Now define a positive semi-definite sesqui-linear form on N by 

W(q', q) = (T(q'), kU(q)) q', q e~.  

We now prove that W(q', q)= W(q'* q), where W(q) is the moment function 
defined from the given WT. Clearly, it suffices to prove this for the special case 
where q and q' are simple products of elements of ft. Ifq' = A'I... A',, and q = A1... A,, 
we find 

Z Z Z lq iV[ wT(I ) 
k p,p' I = ( I i  ..... Ip) C~,Ck ct'r adgCk 

I ' =  (Ii ..... I~') a'~(1 ..... p') ~ ( 1  ..... p) 

yeSk 

The right-hand side is a sum of products of cumulants corresponding to partitions 
of A*/, ..., A*', A 1 . . . .  , A,. Here, k is the number of parts containing both dashed 
and undashed indices, and runs from 1 to n; p - k  and p ' - k  are the numbers of 
parts with respectively undashed and dashed indices only; I ,  and I'p, are any 
partitions with p and p' parts; C~ and Ck are any 2 choices of k indices; ~ and ~' 
are the remaining indices; and 7 is any permutation of the remaining indices. 
This is a precise enumeration of the possible partitions of A*,', ..., A~*, A~, ..., A,. 
Therefore, 

(T(q') ,  T(q))  = W(q'* q). 

It follows that the moments are positive semi-definite on ~. 
If now the cumulants vanish on c~, then so do the moments (Theorem 2). 

Hence, by Theorem 1, W defines a cyclic representation n of ~; the given func- 

tions W r are its cumulants, n is ~-divisible by theorem (4); for, --1 WT is positive 
m 

on ~ ,  and so is the cumulant function of some cyclic representation, by what has 
just been proved. 

This proves Theorem 7. 

Remark. One can give the following explicit heuristic expression for n: let 
A~fr then 

n(A) IP~, ... , P,) = ~ W~(AP~) IP~ . . . . .  ~ ,  . . . ,  P,) 
J (8) 
+ WT(A) IP~,..., P,) + ~ IP~,..., (APj), . . . ,  I),) + IA~ P1 . . . . .  P,) 

J 

and n(A) f2 = WT(A ) f2 + IA).  

Indeed, applying (8) successively to f2, one obtains (by induction) 

n(A1). . . n(A,) f2= 7qA1. . . A,) 

confirming that W are the moments of (f2, n). The formula (8) for n is implicit in 
[9J, and with a change of notation may be found in [5]. 

4. Coboundaries and Cocycles 
Most of this section is the differential form of results in [5]. 
Let 6 ~ be an associative algebra, D a linear space, and n a representation of 6 ~ 

on D. Then C~(#, D, n) is the linear space ofp-cochains #~; that is, #J is a multilinear 
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map g x ~ x ... x ~ ~ D. The co-boundary operator is a map 3: C p--+ & § 1 given by 

(3O)(x~ ... .  , x~+0=~(x00 (x2 , . . . ,X~+ l )  
P 

+ • ( -  1) j O(Xl, . . . ,  XjXj+I, . . . ,  X p + l ) .  
1 

This is multilinear, and satisfies 32=0. The cohomology theory defined in this 
way is a special case of the usual one [12], in that the right action is taken to be 
trivial. 

Defining as usual the p-cocycle group ~ v  as the kernel of 3: C p---, C v+l, and 
the p-coboundary group NP as the image of 3: & -  ~ --* &,  we see that a 1-cocycle 
is a map 0: g---,D that satisfies O(XY)=rc(X)~,(Y), and a 1 co-boundary is a 
map ~: g ~ D such that ~ (X) = n (X) f2 for some t? e D. 

If D = C  and zr=0, a 2co-boundary is a bilinear form O(X, Y) of the form 
0 (X, Y) = - ~0 (X Y) for some linear form q~ on ~. A 2 co-boundary ~ in N2 (g, ~, 0) 
is said to be positive if ~,(X*, X ) > 0  for all X e g .  

If E = gx ((r the enveloping algebra of a Lie algebra without identity, and D 
is a dense invariant common domain ofn in a Hilbert space S ,  then we may restate 
Theorem 7 as follows: 

There is a 1:1 correspondence between oo-divisible representations (co, n) of 
(r and positive elements of N2 (g~ (fr It, 0). This is the analogue of the lemma, 
[2], p. 254, and Theorem 5.1 of [5]. 

Let g[ be the space of forms on gx, and g; + the subset of positive forms. Let 
us say WreO~; + is pure if it is not the sum Wr= W4+ W}', with W} and W}'~r +, 
with neither proportional to Wr. The decomposition of an impure form gives 
rise to the factorization of an oo-divisible representation into two others, neither 
of which is a fractional power of the given one. It also corresponds to the decom- 
position used by Johansen [13]. 

There is a relationship between positive elements of N2(~1, II;, 0), and the 
elements of Y~ (gl, S ,  n') for some representation n'. (This is the analogue of [5], 
or [2], Theorem 11.) 

Let Wr on ~1 be positive. Then, as in the proof of Theorem 7, (ii) we construct 
a Hilbert space K with invariant domain D, and a representation n' of gt in K, 
and a map 0: gl ---' K. K is the separated, completed space gl furnished with the 
scalar product (X,  Y )=WT(X*Y)  and ~ is the canonical embedding. The 
representation n' is defined by n'(X) O(Y) = ~,(XY). That is, 0 is a 1-cocycle relative 
to n'. However, in general, not all 1-cocycles of a given representation n' can 
occur from this construction. For, if 0 is a 1-cocycle of re' arising from some WT, 
then Wr(X* Y)= (O(X), O(Y)), that is, @(X), O(Y)) is a 2 boundary. This means, 
it is a functional depending only on X* Y and not X and Y separately; and more- 
over, it can be extended to elements of degree 1 (i. e. elements of N) in a consistent 
manner, so that it vanishes on the commutator ideal of N((q). We have the following 
partial result. 

Let N2 (N)= ~2 be the subalgebra of ~(~)  generated by monomials of degree 
>2. 

L e mma . / f  ~b ~ ~ ( ~  (~f), ~ ,  ~z) then Wr:X , Y ~  (O (X), O(Y)) lies in ~ (~2, ~, 0). 
I f  ~ vanishes on ~, then Re WreN2 (Nx((q), IR, 0). 
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Proof For any monomial X = A  1 ... A,, A f iN,  we may define 

Wr(At... A,)= (O(A*... A~), OfAj+I... A,)). 

This is independent of the choice of j, since 

WT(AI ... A,)= (O(A*... A*), ~c(A;+ I) O(Ab+2 ... A,)) 

= @(A*+O O(A*... A~{), O(Aj+2 ... A,)) 

= (0(A*+l.. .  A~), 0(Aj+2 ... A,)). 

W T can be extended to the whole of #2, so it lies in ~2 (#2, q;, 0). 
If 0 vanishes on ~, then Re W T vanishes on cg 3 (elements of cd of degree 3 at 

least). For elements of degree 2, C=AB-BA~C#,  we see 

Re W T (AB)-  Re WT (BA) = Re ( 0  (A*), ~ (n)) - Re ( 0  (n*), 0 (A)). 

Since A * = - A ,  B * = - B  for A, Be~,  we get Re WT(A,B)=O. Hence Re W r 
vanishes on cg, and so defines a functional on #2 (if), which vanishes on [if, (r 
We can extend it to #1(if) by requiring that on ff it is some character 7. of ff (a 
character of ff is a linear functional vanishing on [if, ff]). This means that 
Re W T ~ ~2 (gl, N). This proves the lemma. 

We may therefore again rephrase Theorem 7. There is a 1 : 1 correspondence 
between ~-divisible representations (5(, (o, ~) of if, and triplets (n', 0, 7.), where u' 
is a representation of ff in some prehilbert space K, 0 ~ a ( & ,  K, u') is some 
cocycle of u' with the property that 

Im (0(X), 0(Y)) ~ 2  (C~, 1R, 0) (9) 

and 7. is a real character of ft. 

In this correspondence 

WT(X* Y)= <0(X), 0(Y)) X, Y~#I, 

WT(A)=(O(A~(), 0(A2)) - (0(A~) ,  0 (A0)  if A = [ A i ,  A2J~ff , 

IVT(A)=7.(A ) if A6[fg, ff] 

(cf. [51, Theorem 5.1). 

It is possible to show that if(9) fails to hold, then the triple (~z', $, 7.) corresponds 
to a projective rather than a true representation of f#; and that this representation 
say (~, (o, n) is oo-divisible in a suitable sense. This is the differential analogue 
of recent theorems of Parthasarathy and Schmidt [151. 

It is quite possible for re' to be zero. This happens when all the cumulants 
beyond the second vanish, as for the Gaussian. The cocycles of re'=0 are the 
positive semi-definite bilinear forms in fr 

The following is somewhat analogous to Lemma 7.2 of [5]. 
Let # be an associative *-algebra. Let ~' § be the set of positive forms on g. 

Let D(# '+) be the linear space generated by #'+, and X ~ z ' ( X )  the following 
representation of g in D: let f2eD; then define for each X e #  the following form 
on #, denoted rc'(X) f2: 

YX). 

If f2=>0 then u'(X) (2=>0; therefore 7c' maps D into D. 
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Suppose now K is a prehilbert space carrying a representation re" of E, and 
0 ~ ~ t  (~, K, re") is a cocycle satisfying the extra condition (9). If ~ contains the 
identity then 0(X)=rc(X)0(1) ,  and so the cocycle is a coboundary. We are 
interested in the case where ~ = gl(ff), without identity. Condition (9) together 
with the lemma ensures that there exists ~2 e g' + such that ( ~  (X), ~ (Y)) = £2 (X* Y). 
We may embed K in g' + (assuming K consists of tp (g)) by the map i: K ~ ~' + 
given by: 

i(O(X))(A) = (O(X),  C2(A) 
by definition. 

Clearly, rc'lK= ~", by the cocycle condition on O and re". Therefore O(X) may 
be identified with ~'(X) f2, that is, 0 is a coboundary in the cohomology theory 
(g, D, ~'). 
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