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Maximum Likelihood Estimators for Ranked Means 

EDWARD J. DUDEWICZ* 

1. Introduction 

Suppose that observations from populations ~1 . . . . .  ~k (k>=2) are normally 
distributed with unknown means #1 . . . .  ,/~k (respectively) and a common known 
variance a 2. Let #m_--<...---~Jl[k ] denote the ranked means. Several ranking and 
selection procedures take n independent observations from each population, 
denote the sample mean of the n observations from ~i by X i (i= 1 . . . . .  k), and 
utilize the ranked sample means X m <. . .  < X~kl. (See [6] for details.) We assume 
throughout  that both the numerical values of Pl , - . - ,  #k and the pairings of the 
#m, " - ,  P~kl with the populations rq, .. . ,  7c k are completely unknown and consider 
problems of estimation of PVl (1 < i <  k) by likelihood methods. 

2. Maximum Likelihood Estimators 

In maximum likelihood estimation of #i, .-., ]2k, we seek the maximum likeli- 
hood estimators (MLE's), those functions /)1, ...,/~k (if such exist) such that the 
density of the observed statistics (whatever they may be) is maximized by setting 

^ A 

Our observed statistics, as stated above, are X u ( i= 1, ..., k; j =  1, ..., n), but 
since -~1 . . . . .  Xk are sufficient statistics we may take them as fundamental. Then, 
letting 4)(') denote the standard normal  density, 

(1) i x  . . . . . .  x~(Xl' " " ' x k ) = ( V n l a ) k  4) \ at]/~ ] ...4) \ al],/n ] 

and (if #i=~]~j; i=t=j; i , j = l  . . . . .  k) the MLE's  of Pl, .-.,Pk based on X1 . . . .  ,Xk 
exist and are uniquely 

(2)  = X l ,  . . . ,  = x k .  

(The restriction to MLE's  based on Xt . . . .  ,-Yk is a consequence of the general 
result that MLE's  are functions only of sufficient statistics for a problem.) The 
problem of possible equalities among #m, " ' ,  #Ek~ is discussed below; similar 
results hold for the case of equalities among Pl, .-., #k. 

For  the problem of finding an MLE of a 1-1 function u(pl . . . . .  Pk), it is well- 
known that (assuming the MLE of Pl . . . .  , #k exists) u (/~1, .-., ilk)= U (say) furnishes 
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a solution, essentially because forcing u-= h implies/~1 =/)1 . . . .  , #k =/)k" If U(#I . . . .  , #k) 
is not 1-i, i.e. if it is many-to-one, points other than #~=/~a, ...,l~k=/)k may 
also be implied by u = ft. In this case Zehna (1966) was the first to state explicitly 
a reason for picking only the "r ight"  point #~ =/)~, ..., #k = fik for attention (and 
thus for calling fi an MLE). Berk (1967) gives a different justification for calling 

an MLE. 

From the above it is clear that, based on X~ . . . .  , X" k, 

(3) /~tq = {i,th smallest of X~, ..., Xk} --- X-~il (i = 1,..., k) 

is the Berk-Zehna-MLE of #~j . . . .  , #fkl" Below we discuss the problem of MLE- 
type estimators of (#m, "- ,  #tk~) from another point of view. This method, lterated- 
MLE's, is discussed further in [5]. 

Blumenthal and Cohen (1968a), (1968b) (who provided the author with 
preliminaries of their papers) studied, for a translation parameter family, (1) esti- 
mation of the pair (#~1~, #t21) for the sum of squared errors as loss function and 
(2) estimation of #t2~ for a squared error loss function. 

Other work on the case k=2,  in another formulation, was done by Katz 
(1963), who proposed to estimate (#m,#t2j) when one knows that (e.g.) zq is 
associated with #tal and r~ 2 is associated with Ptzj. This work was done for binomial 
probabilities and also for normal means, with (e.g.)sum of squared error losses. 
(The fact that (XI, X2) is not a totally desirable estimator may be seen intuitively 
from the fact that, although #[11~#[21, in general {X~ 2>X2} can occur with posi- 
tive probability.) In our work one does not know the association of the #t~ with 
the ~j (i,j= 1, ..., k); see Robertson and Waltman (1968) for the case where one 
does. 

Blumenthal and Cohen (1968), who utilize the MLE of l~2j found below, desired 
their estimate to be symmetric in Xa, X2; in order to force this they based their 
estimate on the maximal invariant Xt~j, X-fzj. Note, however, that in order to 
obtain symmetry in X~, X2 (and certain other invariance conditions) in one's 
estimator, one need not go to X~j, Xfz I (at least for the normal case;see (3)). Note 
that (although the Berk-Zehna-MLE of t~tz~ based on Xx, X2 is XE2~) the MLE 
of Ptz~ based on Xtq, X~2~ is not. In [5] we give additional justification for basing 
the MLE on X~j, Xtz 1. 

We will now consider the general case in which it is desired to find the MLE's 
of/~tq, "",/~t~ based on X~t~, ..., Xt~ ~. The likelihood function is given in (A.1), 
and (due to its symmetry in t%,  ..., #t~) if/~t~J . . . .  ,/~t~ is an MLE then so is any 
permutation of it (so that it is not necessarily the case that /~t~<-. .  </)tk~)' In 
order to eliminate such undesirable occurrences, we require a consistency condi- 
tion. 

(4) Consistency Criterion. Among the (at most k !) permutation MLE's which 
any #tq . . . .  , #tk~ which maximizes (A.1) provides, only the one with #t~l <'"=#tkJ 
will be called an MLE. 

From (A.1) and the form of q~(.), it is clear that we may restrict our search 
for the maximum to/~t~x, "',/~t~ such that x~_< { / ~ ,  ..., #t~J} < Xk. By (4) we need 
only consider the case/~t~ < " "  -<-/~tk~, and not all k ! (fewer if there are any equali- 
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ties) orderings. It is well-known that  in such a case the maximum must occur 
a t /2m,  "-', # ~  such that 

(5) ~f'vm ..... *t~J (xl' "" '  xk)- = 0 (i = 1, . . . ,  k); 

any point #m . . . . .  /2(k] (which depends on the values of xl, ..., Xk) where (5) holds 
is called a critical point. 

In taking the derivatives (5), the results depend on how many, and which, 
of the k - 1  inequalities #m--<"" < &kl are equalities. There are thus 2 k- 1 mutual ly 
exclusive and exhaustive cases, say 

(6) s ~ {(/21 . . . .  ,/lk):/2f ~ 9~ (i = 1, . . . ,  k)} = f2(1 ) + g2(2 ) + . . -  + ~(2~- ~) 

where the f2(i ) are disjoint, ~'~(1) = ~c~(:~:)_ {/2:/211] :~:/2[2] :~ ' "  4=/2[k]}, and the f2(i ) 
( i=2,  .. . ,  2 k-l) are the other 2k-l--1 cases in some order. Fix any i (2-<i-<2 k-l) 
and suppose that  some/2*e f2(0 solves the system (5) (i. e., is a critical point when 
the derivatives are taken for/~Ef2(0 ). Then it is easy to verify (using (A.1)) that  
#* is a critical point  of system (5) when derivatives are taken for/2ef2o). We thus 
have the 

(7) Theorem. Any critical point for our problem is a solution of system (5) with 
derivatives taken for/2~ (2 (4=), provided only that we allow boundary points (i. e., 
points of (2(z) +... + f2(2~- ~) to be considered solutions. 

To completely justify calling the boundary  points included in Theorem (7) 
critical points, one should show that  any such point is a solution of system (5) 
when derivatives are taken for/~ in its f2(~); this is clear from the proof  of Theo- 
rem (7). 

Now (taking derivatives when/2111 <:"" <,//[k]) system (5) is 

(8) r ( ] (( (1/~/~)= o 

( i=  1 . . . .  , k), 
where Sk is the symmetric group on k elements, or 

Z Nil(i) ~9 (Xfl(1)--/211]_~ Xfl(lO--]'/[k] 
o/v  I 

(9) ;~ , l -  ( i=  1 , . . . ,  k) 
E ~ ( Xfl(1)--t/[1] [ Xfl(k)--/2[k] 

or 

( x~(1) -/2m ~ ( xp(k)-/~Ek~ 1 
(10) /2U]-P~s~XPu) 4) a/l/n ]'' '(p ~r/Vn ] ( i , j =  1 . . . .  , k; i < j ) .  

( I r  ( ! 
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xl + ' "  +Xk 
(11) Theorem. (/)ill . . . . .  /)[kl) =(X, ' " ,  X) with ~= k is a critical point. 

Proof It is clear that this is so from system (9). 

We will now investigate the nature of this critical point. For  i , j= l ,  ..., k, 
for xl <=...<xk, 

a2 

I ) 
(12) xP(~ xPu)-#uJ 

a /]/~ a /V~ , i * j 

~---I~ESk(---~--v~)k+2(~ ( Xfl(l,-#[1]~''@ -' "~) ( X'~(k) --#[k] -' 

Thus, for the matrix Q=(du) of evaluations of (12) at (2 . . . .  , ~) we find 

t~#esk L n J 

k 
[i ~ I(Xi--X) (Xj--X), i4:j 

- , i= j  \ ~-~-~]J [(k_l)i~_ (xi_~2)2 k ( k_ l )  a2 
(13) n 

_ \ a ~ - ~ l ] ' [ k ( k - 1 ) v a r ( R ) - k ( k - 1 ) ( a Z / n ) ,  i=j  

_ \ a ~ - - ] ]  "[var(R)-a2/n,  i=j, 

where R and S are numbers selected at random (without replacement) from 
{xl, ..., xk}. If we let 

C=C(XI' . . . . .  Xk)~]g' (Vn/(~)k+4 [/--ff'[1 ~) ( G-~-] ] ~ 
(14) d I = cov(R, S)- c 

do = (var ( R ) -  a2/n) �9 c, 
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then dij=dl (i+j) and dij=d o (i=j). Now, if we find the eigenvalues of Q we 
can determine the nature of the critical point (7 . . . . .  7). Now 

fls) I 
d o - 2  dl dl ... dl dl ] 

da d o - 2  dl  . . .  d l  da 
[ Q - A I l = d e t  : ............ 

dl dl d~ ... d o - 2  dl 

dl d~ d 1 ... d 1 d o - 2  

= (do  - ,~ - d , ) k - '  (do  - 2 + (k  - 1) d , )  

where we have subtracted the last column from all others, added all rows to the 
last row, and taken minors. Thus, the k eigenvalues of Q are 

(16) 

and we have the 

21 . . . . .  )~k-1 =do - d l  

)'k = do + (k -- 1) dl 

(1.7) Theorem. The nature of the critical point (if, ..., E) is: 

do 
(i) relative minimum if - - - < d  1 <do; 

k - 1  

(ii) relative maximum if do < dx < do : 
k - l "  

do . - ~ d  1 = d  o or (iii) undecided if either: (a) - - k -  1 do =dl  <do 
k - 1  

- d  o - d  o 
or: (b) do=d 1< or do <=d 1= ; 

= k - 1  k - 1  

(iv) saddle point if d~ <rain (do, do (do, k - 1 -) or / f  dl > max - -  

Graphically, Graphically, 
d l do=d 1 

(ii) ,~ - )~ / - -  (iii)(a) - 

, ~  (iii)(b) 

,o) 
k - 1  " 

Fig. 1. Nature of critical point (2, ...,  4) in terms of do and d 1 

3 z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 19 
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The method of determinants can also be used to prove Theorem (17) (since the 
required determinants can be evaluated as in (15)), but is cumbersome. 

We now wish to investigate the nature (asymptotic as n-~ oo as well as small 
sample) of the critical point (~, .. . ,  2). Let Z 2 (b) denote a non-central  chi-square 
r.v. with "a"  degrees of freedom and noncentrali ty "b". 

(18) Theorem. I. P~ [(X . . . . .  X) is a relative minimum, or undecided] =0.  

) 1 II. Pu[(X, ..., X) is a saddle point-] =P,  )~2 1 ~ - ~ - V a r ( M )  > k -  1 ; other- 

wise (X , . . . ,  X) is a relative maximum. This probability does not depend on n if 

#[il  . . . . .  //[k] �9 
III. As n~oo,  P~[(X, .. . ,  X) is a saddle point] ~ 1 unless #m . . . . .  P~kl (in 

which case it is constant as given in II). 

Proof. I. Case (i) or case (iii)(a) of Theorem (17) holds iff (see (13)) 

do 
k - 1  <=died~ 

i.e. iff 
1 

k -  1 (Var (R) - a2/n) <= coy (R, S)_<_ Var (R) - a2/n, 

~2/n o2/n 
k -  1 ( k -  1) Var(R) <=p(R, S)N 1 Var(R) " 

- - I  
Since (w.p. 1) p(R, S )=-k_  1 ' w.p. 1 Eq. (19) fails to hold. W.p. 1 case (iii)(b) fails 

to hold since (for it to hold) at least one of the inequalities in (19) must be an 
equality; this occurs w.p. 0. 

II. As in I, it can be seen that  case (ii) holds iff 

~ /n - 1 G2 /n 
<p(R, S) < -k-~i- -~ (20) 1 Var(R) ( k - 1 )  Var(R) 

Since the r. h. s. of (20) holds w.p. 1, ease (ii) holds iff 

o-2/n - 1 
(21) 1 < 

Var (R) k -  1 ' 
k 2 

i. e. iffVar (R)/~Z-i- < o- /n; otherwise (by I) case (iv) must hold. Now from Graybill  
- -  k 

(1961), p. 88 (Theorem 4.20), p. 91 (Problem 4.24), Var(R)=(1/k)  ~ ( ~ ' i - ~ ) a  is 
(o-2/(n k)) Z2_l  (2) with i=1 

1 k n ( ~ l~2i (~  #,)2 ] 
2 -  2 a2 \ k k 2 ! 

(22) 
1 kn 

- 2 o -2 Var(M),  

i.e. iff (since V a r ( R ) > 0  w.p. 1) 

1 
(19) - -  
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where M is a number  selected at r andom from {~q, . . . ,  #k}" Thus, 

(23) 

Pu[(37 '""37)  is a relative max imum]  : P" [ V a r ( R ) > k - 1  0 . 2 ] k  n 

0-2 0-2 

IlI. This follows from II. 

N o t e  that  even when (X" . . . .  ,37) is a relative max imum it is not  necessarily an 
absolute one (which it would be if, e. g., the system had no other  solution). Below we 
will find reason to believe that  the max imum is "nea r "  (tim, .- ' ,  ~tk~) = (Xm . . . . .  XE~)" 

Fo r  the case k = 2 ,  Theorem(17)  shows (after some reduction) that  (.~, if) is 

a relative max imum iff (xl - Xz) 2 < 2 0.2/n 

(24) undecided (negative semi-definite) iff (xl - x2) 2 = 2 0.2/n 

a saddle point  iff (Xa - x2) 2 > 2 0.2/n. 

The limiting results of Theorem (18) can, for the case k = 2, be obtained using (24). 

We will now seek the M L E  (for k>2 ) :  We may (without loss) choose our  
es t imator  to be of the form 

Dm: x l  + a l ( x l  . . . .  , x 0  
(25) 

fl[kl = Xk q- ak (Xl . . . .  , Xk)" 

AS noted following (4), we may restrict ourselves without  loss to 

Xl _-< {Din . . . .  , D~l}_<x~, 

from which it follows that  we have 

0 < a  1 

(26) - - ( X i - - x j < a i < ( X k - - X i )  ( i=  1, . . . ,  k) 

ak <=O. 

Let  (for 1 _< 1 < k; i = 1 . . . .  , k) 

At(i)= ~, ~P ( x P t l ) - x l - a  1 . 0-/~ ) a~ 

(27) pfi)=l 

Y, r ( xe(1)-xl e~s~ 0-/]fn ) ""cP ( Xp(k)--Xk---ak ] ~ a 1 A =  
0.117~ 1" 

Then (note that, for any 1 =< i <  k, A = / l ( i ) + " "  + Ak(i)) from system (9) we find 
that  a 1 . . . .  , a k must satisfy the system 

(28) (x i+ai )  A = x l  A l ( i ) +  "" + xk Ak(i) ( i=  1 . . . .  , k). 
3* 
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If we add the terms of  (28) over i =  1, . . . ,  k, we obtain (since A = A~(1)+ . . -+  A~(k) 
for l = l  . . . .  ,k) 

A(xl  + ... + xk) + (a I + ... +ak) A = A(x l  + ... + xk) , 

or (since A > O) a 1 + . . .  + ak = 0. Thus, we have the 

(29) Theorem. For k > 2, the M L E  is given by 

]All] = X--j1] AV al (~'[1] . . . .  , a[k,) . . . . .  ~[k] = X-[k] 4- ak (X~[1] . . . . .  X~[k]), 

where a 1 . . . .  , ak are some solution of  system (28) and must satisfy 

--(xi--Xl)<=ai<--(xk--xi) ( i=  1, . . . ,  k) 
and 

a ~ + - . . + a k = 0 .  

(30) Theorem. For i, j = 1, ..., k, i f  aj # 0 then 

dli A1 (i) +. . .  + dkl Ak(i) 
a i= aj d l j A l ( j ) + . . .  + dkj Ak(j) 

where dij = x i -  x j =  - dji (i, j = 1, . . . ,  k). 

Proof  System (28) is equivalent to the system 

a~ y~ 4~ ( t Xfl(1)--Xl ~ a ~  

=~s~(xl~'~176 . . . 4 ) (  xlJ'k)-xk-aklaT--~ ] ( i=1 ,  . . . .  k), 

or (substituting the d~]s) 

a,(a,(i)+...+ak(i))=dx,&(i)+...+dk, a~(i) 0=1, ,k). 

Thus, the theorem follows. (Note that  the denomina to r  dla&0)+---+dk~&(j) 
is zero iff aj = 0.) 

(31) Lemma.  For the case k = 2 ,  a 1 = - a 2 .  Also, O<al  < x = - x l .  

Proof. F r o m  Theorem (30), 

dnA , (1 )q -d2 ,  A2(1) d2, A2(1) A2(1) 
a l = a 2  d12A1(2 )+d22A2(2 )=a2  d12A~(2) a2 A1(2 ) =a2  

The theorem follows from Theorem (29). 

(32) L e m m a .  Let  d = x 2  - x  I ~_~0. Then the M L E  for  k = 2  is given by 

/~[1] = X~[1] ~-al.(XYl], X[2]), ~[2] = X--[2,- a l  (X[11 , -eY[2]) 
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where a t is some root of  
d2-- 2al d 

a=a (l+e ) 
and O<al <d. 

Proof. By Lemma (31) we must have 0 < a  1 = - a  2 <d .  Then by Theorem (29), 
the M L E  must  be of the form given where al is some root of the system (28): 

(X @ a l )  A = x I A 1 (1) + x 2 A 2 (1) 

(x 2 - al) A = xl A1 (2) + X 2 A 2 (2), 

X1 A2 (1) + al A = x  2 A2(1) 

x2 A , ( 2 ) -  az A = x l  A1 (2), 

a~ A = dA2 (1) = dAa (2), 

al A = dA1 (2), 

Aa(2) 
al = d  

A1 (2) + A 2 (2) '  

d 
a I -- A/(2) 

1 + - -  
A1(2) 

N o w  

A,(2)= ~ ~ x M 1 ) - x l - a l  
tieS2 0"/]~ 

fl(2)=1 

- -  e 

2 rt (72/n 

(XM1) --X1 - - a  1 
A/(2 )=  e~s:2 q5 a / l / ~  

p(2)=2 

1 "? -7~/~ e 
2 ~ a2/n 

Thus, 

Xfl(2)--X2--a2 ( d - a l ]  ( a l - d ~  

and the lemma follows. 

x a ( 2 ) - x 2 - a 2 )  - a l  ( a ~ n - n )  

A2(2 ) '~? + (d- al) 2 d2--2aid 
_ e- ~27~/~ ~ 7 ~  = e ~ 

Al(2) 

(33) Lemma.  For f ixed d and 0 ~ a  I <d, the roots of 

d2-- 2ald 
(34) d = a l ( l + e  ~ ) 

d 80 
are (1) al=d/2,  and (2) a 1 = ~ - + - ~  a 2 / n / f  d > V ~ / l f ~ .  Here go is either of the 
two solutions of  

(35) d 2 n/r 2 = e coth (g/2). 
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Proof. First, a 1 =d /2  is seen to satisfy (34). Now,  suppose there is another  
solution of (34), say (without loss of generality) 

g 
a 1 = d/2 + ~-~  0.2/n 

with - d 2 r//o -2 _< g --< d 2 n/a 2 (since 0 < a 1 =< d), e =~ 0. Substituting in (34), we find e 
must  satisfy 

1 d= ( - f + ~  -~-) t 1 +e <,~/. )= d e 
(36) 

1 ( ~ /3 0 .2 e 0.2 

o r  

0 -2 0 -2 
d 2 = d 2 e - ~ + g  +g e -e,  

n n 

or (since e :4= 0 =~ 1 - e-"  + 0) 

0 -2 l + e - ~  a 2 e ~ / 2 + e - ~ / 2  0 -2 

dg=g n 1 - e  -~  =e n e~/2 e_~/2 - e - - c o t h ( e / 2 ) . n  

Since c o t h ( - z ) =  - c o t h  (z), e coth (e/2) is an even function. Now,  

Since 

e 1 
l ime  coth(e/2) = lim (1 + e - 9  - lim - - - 2 1 i m 7 = 2 .  
~ o  ~ ~.o 1 - -e  -e ~.o 

0 
- -  [e coth (~/2)3 = coth (e /2) -  (~/2) csch 2 (e/2) & 

cosh(e/2) 1 
- sinh(e/2) (e/2) sinh 2 (e/2) 

1 } 
sinh(e/2) sinh(e/2) ' 

the facts sinh (e/2) > 0 if e > 0 and 

cosh (e/2) 
e/2 1 

[sinh (e/2) cosh ( e /2 ) - e /2]  
sinh(~/2) sinh(~/2) 

1 sinh(e) e/2] 
- sinh(e/2) [ 2 

1 I- e 3 e 5 _~]  

- 2sinh(e/2) [ a + ~ - !  + M - !  + " "  
1 [ g3 g5 g7 

- 2sinh(e/2) / - ~ .  + ~ - !  +-~-!  + ' ' ' ]  > 0  
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imply that ~ [e coth (e/2)] > 0. Combining the above information, we may plot 
Fig. 2. 

\ \  

~z x 

"~NN 

\ \ \ \  

\ \ \  2 

I I I I I I \ "  

/ 
~'coth (~'/2) / / /  

/ /  
/ 

/ /  

/ I T ~ I I I 

Fig. 2. The function e coth (a/2) 

Since co th(x)>  1 for x > 0 ,  the range of e coth(e/2)will be r/2,a 2 n+| 1 ~x- j  when e 

is in [- - d 2 n/0- 2, d 2 n/0-2]. Thus, there will be two additional solutions if d 2 n/0- 2 > 2 
and none if d 2 n/0- 2 < 2. 

Note that a t = 0  corresponds to the estimator (x j, x2); al = d/2 corresponds 
to (if, ~); and a t = d  corresponds to (x2, xt). Consistency Criterion (4) rules out 
values a t > d/2; thus, in seeking the M L E  we only consider a o which is the negative 
solution of (35) in Theorem (33) (or, what is the same, - e o where s o is the positive 
solution). 

(37) Theorem. I f  O<=dG]//20-/]/~, (~, ~) is the only critical point and is the M L E .  

I f  d >  ]/20-/]/-n, there are two critical points. One yields (~2, ~2) and is a saddle 
point. The other yields the M L E  

(38) ( X - ~ d  0-2/n' - s0 0-2/n) x q- -~-  

where s o is the positive solution of  

(39) d 2 n/0- 2 = ~ coth (e/2). 

Theorem (37) follows from previous results, notably Lemma (32) for the form 
of the MLE, Lemma (33) for the solutions of a certain equation, and (24) for the 
nature of (~, if). In obtaining the form of (38), relations such as 

. d So 0-2/n 
# m = x l + a a = x l q  2 2d 

= X -- ~ d  0-2/n 

are used. Note  that, for d 2 n/a 2 "large", so -~ d 2 n/a 2, so that (38) is "close" to (x~, xz). 

The following lemma studies the approach of So to d 2 n 
0.2 - 
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(40) L e m m a .  I f% is the positive solution of(39), then (with o(n)>O) 

d 2 n 
8o = ~ T - - - o ( n  ) . 

Proof. If  we write a = d2/0-2~ then we are interested in the posit ive solut ion of 
8 coth  (8/2) = a .  n. Let  us set this solut ion as e o = a .  n -  c, and investigate the order  
of  c,. Subst i tut ing in the equat ion,  

(a . n -c . )  coth ( a " n-c"  ) 
�9 2 - = a . n  

o r  

(41) (1-- c, ] c o t h ( a . n - c , _ ) = l  
\ a . n l  2 " 

F r o m  Fig. 2 we see tha t  eo ~ o o  as n ~ o o ,  and since % > 0  we have c,<a. n 
or c,/n<a. Since c o t h ( x ) > l  if x > 0 ,  and since (41) must  be satisfied, c,/n>O. 
Now,  taking the limit of  (41) as n ~ o% we find that  

(1-b/a). 1 = 1 

where 0_-_ b = lim c ,  __< a. This  is a contradic t ion unless lim c ,  = 0, so that  c, = o (n). 
n ~ o o  n ? /~ao  n 

0.78[- ~ - " " - , , a ~  1 1 ,,2 

v2~- . . . . . . . . . . . .  -~-->~.~.:..-~---- 
0,37~- 

, , , . .  

1 7.47 1.67 2 y = d 
1.54 

Fig. 3. Likel ihoods  o f (X ,  X) ( M L E  if 0-<y-<l/2)_ _ ... e-i~/4; and  of (Xm, X[21)... Nd-Nt ~ e -y~ 

It  is of  interest  to c o m p a r e  (for the case k = 2) the l ikelihoods of the three 
es t imators  (X, X), (Xm, XE21), and  the MLE.  With  d = x 2 -  xl,  we find (see (A.1)) 

0-2 
n fxm,x[2l(xl, x2) 

n 

) 
d 2 

e - ~  if (#m,/~[Zl)=(Y, 2), the M L E  for 0<-dZ<-20-2/n 
(42) d2 

• 1 7 7  ~ r ~ / " 2 7 2 ~  if (/~m, #[21) = (Xl, X2) 
1 g 0  0 - 2  2 -- 1 [ gO 0-2 _ \2  

80 0 -2 80 0 -2 \ 

if (#m,Pt2]) = ~ 2d n - ' X + 2 d - n - ) '  

the M L E  for d 2 > 2 0 - E / n .  
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If O<=dl/~n/G<__l~, (X, X) i s  the MLE, and the curve of (X,X) has ordinate �89 
when d l / ~ / a = 2 ~ - l . 6 7 .  The curves of ()f,_~) and (~m,_~21) cross at 
d l/~/a~-l.54. At d l//~/a=2, for (-gin, X~21)we find �89189 =�89189 
0.5092, while for the MLE, a solution of 4=e  coth(e/2) is approximately ~o =3.8 
(thus eo/4 = 0.95) and 1-e0/4 = 0.05. Thus, for the MLE we find 

y2 /'~0 , ] 2  y2 ( e  0 112 

�89 a-tT-*, +�89 =�89 

>• + e-3.sa671~ ~ l q  019~=0.5095 
= 2 (  J - - 2 ~  �9 ! �9 

Note that Theorem (2.1.33) of [5] indicates the reasonableness of an estimator 
which compensates, as does the MLE = (x~ + a, Xe -b), for under and over estima- 
tion with regard to expectation; the likelihood approach bears this out. 

The above results indicate a weakness of taking a function of MLE's to 
estimate that function of the parameters for a problem (as discussed at (3)): 

/ 

other methods yield different estimators with higher likelihoods. (In namely, 
\ 

1 
fact, with the other method the likelihoodt could never exceed ~ n/a 2; with our 

\ 

method it can never be less than ~ -  n/a2. / 

Acknowledgmem. Thanks  are especially due to Professor Lionel Weiss for his suggestions for 
and guidance of I-5], which contains these results. 

Appendix A. Joint Distribution of  ~'[1] . . . . .  X[k] 
The joint density of X1 . . . . .  Sk is 

fx ...... x~(Y, . . . . .  Yk)=Tx,(YO .'.fx,,(Yk) (yCeffl; i =  1 . . . . .  k) 

where f~,(.) is the N(#~, a2/n) density function ( i= 1 . . . .  , k). 

It is well-known that  then the joint  density of the ordered -'~i (i = 1, ...,  k), i.e. of 37 m < . . .  < XEkJ, is 

fxt ....... X[kI(X1 . . . . .  Xk) 

t ~fx ...... ,~(x~,, ..... xp,k,), x~ <=... <=x~ 

[.0, otherwise 

Xfl(k)-- ~k 

(.0, otherwise 

X~(k) - -  ~[k] 

=10, /g,, otherwise. 
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