MICROBIAL STERILIZATION IN ULTRA-HIGH VACUUM AND OUTER SPACE: A KINETIC COMPARISON*

(Research Note)
J. P. BRANNEN
Planetary Quarantine Department, Sandia Laboratories, Sandia Base, Albuquerque, N.M., 87115, U.S.A.

(Received 14 April, 1970)
There has been a series of papers (Davis et al., 1962; Hotchin et al., 1965; Porter et al., 1961) concerned with the survival of microorganisms in ultra-high vacuum and in space. The correlation between microbial die off in ultra-high vacuum and space is not immediately obvious. It is the purpose of this note to call attention to the fact that from a kinetic viewpoint, D values obtained under ultra-high vacuum, 10^{-6} torr, are not appreciably different from those obtained under 10^{-17} torr, pressure of outer space.

Suppose the microorganisms are being sterilized by a first order chemical reaction, i.e., survival is logarithmic. Then the relationship between the D value and the reaction rate constant, k, is given by

$$
\begin{equation*}
D=-\ln (0.1) / k \tag{1}
\end{equation*}
$$

Under the absolute reaction rate theory

$$
\begin{equation*}
k=\frac{K T}{h} \exp \left(-\Delta F^{\ddagger} / R T\right) \tag{2}
\end{equation*}
$$

where K is Boltzmann's constant, h is Planck's constant, T is the temperature in degrees Kelvin, R is the gas constant and ΔF^{\ddagger} is the free energy of activation. ΔF^{\ddagger} may be broken down further as

$$
\begin{equation*}
\Delta F^{\ddagger}=\Delta H^{\ddagger}-T \Delta S^{\ddagger}+p \Delta V^{\ddagger}, \tag{3}
\end{equation*}
$$

where $\Delta H^{\ddagger}, \Delta S^{\ddagger}$, and ΔV^{\ddagger} are activation enthalpy, entropy, and volume respectively, and where p is pressure (Glasstone et al., 1941).

One normally associates a positive ΔV^{\ddagger} with first order reactions. Furthermore, with ΔV^{\ddagger} positive, as pressure decreases the reaction rate increases so that from Equation (1) we see that the D value decreases. The question we address is how much will D decrease for a fixed value of ΔV^{\ddagger} as p goes from 10^{-6} to 10^{-17} torr.

Combining Equations (2) and (3) we get the relationship for pressures p_{1} and p_{2}.

$$
\begin{equation*}
\ln \left(k_{p_{1}} / k_{p_{2}}\right)=\Delta V^{\ddagger}\left(p_{2}-p_{1}\right) / R T \tag{4}
\end{equation*}
$$

[^0]If we take pressure in atm, the gas constant will be

$$
R=82.06 \mathrm{cc} \mathrm{~atm} / \mathrm{mole}
$$

From Equations (1) and (4) we find

$$
\begin{equation*}
\ln \left(D_{p_{2}} / D_{p_{1}}\right)=\ln \left(k_{p_{1}} / k_{p_{2}}\right) \tag{5}
\end{equation*}
$$

The largest ΔV^{\ddagger} value we have seen was recorded for ribonuclease by Kettman et al. (1966) as $200 \mathrm{cc} / \mathrm{mole}$. To be safe we will use $10000 \mathrm{cc} / \mathrm{mole}$. Suppose we assume that $T=333 \mathrm{~K}=60^{\circ} \mathrm{C}$. We convert the pressures to atmospheres so that

$$
p_{1}=10^{-6} \text { torr }=(1 / 7.6) \times 10^{-8} \mathrm{~atm}
$$

and

$$
p_{2}=10^{-17} \text { torr }=(1 / 7.6) \times 10^{-19} \mathrm{~atm}
$$

Using these values in Equation (4) we find that

$$
\ln \left(k_{p_{1}} / k_{p_{2}}\right)=\frac{\left(10^{4} \mathrm{cc} / \text { mole }\right)(1 / 7.6)\left(10^{-19}-10^{-8}\right) \mathrm{atm}}{(333 \mathrm{deg})(86.0597 \mathrm{cc} \mathrm{~atm} / \mathrm{deg} \text { mole })}
$$

Using orders of magnitude we see that

$$
\begin{equation*}
\ln \left(k_{p_{1}} / k_{p_{2}}\right) \approx 10^{-10}\left(10^{-11}-1\right) \tag{6}
\end{equation*}
$$

Thus despite the magnitude of the ΔV^{\ddagger} chosen the right side of Equation (6) differs from 0 by less than 10^{-8}. This of course implies that the ratio $k_{p_{1}} / k_{p_{2}}$ is so near 1 that in view of Equation (5) an experimenter could not distinguish between D values taken at 10^{-6} and 10^{-17} torr if only first order kinetics is involved in the sterilization.

References

Davis, N. S., Silverman, G. J., and Keller, W. H.: 1962, Appl. Microbiol. 11, 202.
Glasstone, S., Laidler, K., and Eyring, H.: 1941, The Theory of Rate Processes, McGraw-Hill, New York.
Hotchin, J., Lorenz, P., and Hemennay, C.: 1965, Nature 206, 442.
Kettman, M. S., Nishikawa, A. H., Morita, R. Y., and Becker, R. R.: 1966, Biochem. Biophys. Res. Comm. 22, 262.
Portner, D. M., Spiner, D. R., Hoffman, R. K., and Phillips, C. R.: 1961, Science 134, 2047.

[^0]: * This work was conducted under contract No. NASA W-12,853, Bioscience Division, Office of Space Science and Application, NASA Headquarters, Washington, D.C.

