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Summary. Let 0<h(e)T and {S,} a renewal process. We find conditions 
oo 

under which as t~oo ~, h(S,)~m-l yh(s)ds where m=ES 1, ~z(t) 
n>~(t) t 

=min(n :  S,>t}. We apply these results to obtain sample path representation 
of local time at a point for a Markov  process. 

w 

Let T1, T 2 . . . . .  be a sequence of i.i.d, nonnegative random variables and put 
Sn=T1+...+Tn, So=0,  and assume P [ T I > 0 J > 0 .  If h > 0  is a decreasing inte- 
grable function on [0, oo) and if the T~ are nearly constant, say T 1 -Si-S~_ ~-m 
= ETa, then approximately 

h(Sk)~-l/m ~ h(Sk) Sk--Sk_l)~--l/m ~ h(x) dx. 
k=n k ~ n  S(n) 

In other words, if we write H(x) = S h(s) ds, then one should have 
x 

lim H(S,,) -~ ~ h(Sk)=l/m, (1.1a) 

a.s., or, equivalently (almost), 

lira H(t) - t  ~ h(Sk)=l/m (1.1) 
t ~  k = ~ ( t )  

where 

n ( t ) = m i n  {n: S,,>t}. 

However, (1.1) need not hold even for nice h and nice T i. See w 3. One purpose 
of this paper is to find reasonably general conditions for (1.1). The motivat ion 
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for studying this limit comes from a problem in the representation of local 
time at a point for a one-dimensional diffusion. See [5] pp. 212-222. We 
discuss this problem, its connection with (1.1) as well as some related matters 
in w167 The main results are Theorems 1 and 2 in w Theorem 3 in w 
Theorem 4 in w 5, and the example in w 6. 

Notation. i .o.=infinitely often; a.s .=almost surely; w.p. l .=with probability 
one: 0, o, ~ have the usual meanings; if A is a linear Borel set, IAI denotes its 

Lebesgue measure. If h > 0  and r is a Borel measure, ~hr{dx}<oo means 

h(x)r{dx}<oo for some a > 0 ,  ~ h r { d x } = o o  means ~ h(x)r{dx}=oo for all 
a a 

a. A similar meaning is assigned to ~ hr{dx} < oo or = oo. If h is a function, 
0 +  

h(x)-1= 1/h(x) but h - l (x )  is the functional inverse of h, if it exists, lg=natura l  
logarithm function. Integrable, unqualified, means integrable with respect to 
Lebesgue measure. The reader is warned that in w167 1-4 m stands for the mean 
of a random variable, but in w167 5 and 6 m stands for the speed measure of a 
diffusion. If x is a r.v, I(xeA)= 1 or 0 according as xeA or xr 

w 

In this section we state and prove the main results concerning (1.1). Through- 
out this section [S,, n > 0] is as in w 1, F is the common distribution of the T~ 
and U is the renewal measure: 

n = 0  n ~ 0  

where F"* has the usual meaning. We assume that F is not concentrated at 0. 
The following proposition gives a criterion for the finiteness of ~ h(S,). It will 
not be used explicitly in the sequel. 

] Proposition 1. Let O<he+, h(0)<oo. 7hen P h(S,)<oo =0  or 1 according 
n _  

as ~h(x) U{dx} diverges or converges. If m=ET l=SxF{dx}<co,  then 
0 

h(x) U{dx}<oo if andonlyif h(x)dx<oo. 

Proof Since E ~ h(S,)= h(s) U{ds}, it is clear that S h(x) U{dx} < oo assures 
0 0 0 

that the random variable ~ h(S,) is integrable and hence finite w.p.1. So let us 
assume 

EZ,T ~ h(x) U {dx} = ~, n ~ oo, (,) 
0 
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where Z,=h(So)+ ... +h(S,). From 0 < h c ~  and Sk>0, we have for j > k ,  

Eh(Sk) h(S;) G Eh(Sk) h(Sj-  Sk)= Eh(Sk) Eh(Sj_k), 

and then 

EZ~ < ~" Eh(Sk)2 + 2 ~ Eh(Sk) Eh(S;_k) 
k < n  O < k < d < ~  

__< h(0) E z .  + 2 ( e z y  = ( E z y  (2 + o(1)). 

In other words 

lim sup (EZ~)2/EZ2, > �89 > O, 
n ~ o  

and it follows from a generalization of the Borel-Cantelli Lemma, Kochen- 
Stone, [-7], that lim sup ZJEZ,  > 1 with a positive probability. But then Z,--,  oo 
w.p.1, by (,) and the 0 - 1  law for symmetric events, Feller, [4], p. 124. The 
second assertion of the Proposition follows easily from the strong law of large 
numbers. There is a finite random variable N such that �89 for all 
k > N. Hence 

~, h(2mk)< ~, h(Sk)< ~, h(�89 
k = N  k ~ N  k = N  

co 
For monotone h, Eh(ck)< oe for a c >0  if and only if f h(x)dx < co. 

0 

Note 1. The second assertion, P[~h(S,)<o�9 if and only if ~hdx<oo, 
0 

remains valid if the T's may take on negative values but ET 1 - -m>0.  Note also 
that monotonicity may be replaced by a condition such as h(x + y)< const, h(x) 
for all x, y > 0. The proof is the same. 

A limit such as (1.1) seems to require either strong moment conditions on 
the T~ or else strong integrability conditions on h. See Theorems 1 and 2. There 
does not appear to be a single nice necessary and sufficient condition for (1.1), 
but the following proposition is a key ingredient. Before stating it we make the 
following assumptions regarding h and F to reamin in effect throughout this 
section. 

h is a nonnegative, decreasing, (Lebesgue) integrable function on [0, oo). We 
write 

H(x) = i ~ his ) ds (2.0) 
x 

and assume H(x) > 0 for all x > 0. Regarding F we assume F {0} - P [T  1 = 0] < 1, 
F has at least 2 points of increase and 

m=gTl= ~ xF {dx} < oo. 
0 

Proposition 2. For each e > 0 and n = O, 1 .... .  define the random variables. 

fin=max{k: k >O, IS, ,+k-S,-kml> ka}. 
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(i) l y  as n-~ oo 

fin = o (H (S.)/h (S.)) 

for every 8 > O, then (1.1) holds a.s. 
(ii) I f  for some r > 1 

ET[+ I < oo, 

and 

E {h(S,~{t))/H(S~{t))}" ~ O, 

then (1.1) takes place in mean of  order r. 

Remark. Note that 
lim h (x)/H (x) = O. 

Proof  Put 

a.s. 

t---~ oo  

since S~(t)-+oo as t--,oo, (2.3) will hold 

Z . =  ~ h(Sk)= ~ h(S.+k). 
k=n k=O 

Fix 0 < 8 < m. From monotonicity and the definition of/~., we have 

+ 
k -  k=fln+ a k=fin+ l 

(fin -~- 1) h (Sn) @. (m - 8 ) -  1 ~ h (x) dx 
S~ 

H (S,,) - a Z .  - 1/m < (fin + 1) q(S.) -1 + 8', 

q (x) = H (x)/h (x). 

o r  

where 8'= 8 / m ( m -  8) and 

Similarly 

h (S n + k (m + e)) 

n ( t ) - m i n  {k: S k > t  } =n,  

then H(&_  1)- 1 < H(t)-  1 < H(S , ) -  1 and, since Z n_ 1 = Z ,  + h(S,,_ 1), it follows 
that 

H(S ._  1)- a Z n - a -- q(S._ 1)- 1 < H( t ) -  * Z .  <= H(S,,)- 1 Z . .  (2.5) 

Suppose that 

H ( S n  ) -  1 Z n  _ l / m  ~ - (fin -~- 1) q(Sn) -1  --  8", 

where 8 = 8/m(m + 8)= 8. Combining the inequalities gives 

IH (S.)-  a Z ,, - 1/ml < (ft. + 1) q(S. ) -  1 + 82 

o r  

(2.4) 

(2.1) 

(2.2) 

(2.3) 

whenever 

Z , G  ~, h(S,,+k)>= ~ h ( S , + k ( m §  
k=fln+ 1 k=fln+ 1 

> {m + 8)-1 { H (S. + (/~~ + 1) (m + 8)) - H (&)} + (m + 8)- ~ H (&) 

> - (ft. + 1) h(S,,) + (m + 8)-1 H(S.), 
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Par t  (i) now follows immedia te ly  f rom (2.1), (2.4) and  (2.5) as soon as we show 
tha t  

q(S, , )~oo as n - ~  a.s. (2.6) 

Suppose,  to the contrary,  that  (2.6) fail. Then  by the 0 - 1  law for symmetr ic  
events, there exists a constant  a < oo such that  

P[q(S~)<a i.o.] =1 .  

Let  a 0 = 0  and 

~rk=min{n:  n>crk_ 1, q(S~)<a}. 

Then  a k < oo and ak~" oo as k ~ ~ a.s. 
N o w  notice the following m o r e  or less obvious  facts: (a) r~ depends only on 
the r a n d o m  variables  T,.+ t, T~+ 2 . . . .  and  so must  be independent  of  the event  
[ a ~ = r ]  which depends only on So, S ~ . . . . .  S~. (b) { r ~ , r > 0 )  is a s ta t ionary  
sequence. It  follows f rom (a) and (b) that  

P [r~(k) =J, ak = r] = P I-r~ = j ]  P [ak = r] = P [rio =J ]  P [ak = r],  

or, since ak < ~ a.s., 

P [r~(k) =J ]  = ~ P Jr.(k) =J, ak = 1"3 = P [-rio =J]" 
r - - O  

By assumpt ion  F has at least 2 points  of  increase, so P[T~=m=ET~]<I and 
for some ~ > 0 

P [ r o = O ] = P [ I S k - k m l < k e  for all k] <1 .  

It  follows that  we can choose Jo > 0  so that  

P [rio =Jo]  > 0, 
and then 

P[fi~ik)=jo i.o. as k T ~ ] >  l im P [ r ~ k ) = j 0 ~  =P[fio=Jo] >0 .  
k ~ o O  

We now have a contradiction,, for, on the event l-fi~(k)=J0 i.o.], we have  on the 
one hand  

but  on the other  

fi~(k)/q(Xo(k)) >jo/a i.o., 

fio(k//q(So(k)) --' 0 as k ~ o o  

by (2.1). This cont radic t ion  establishes (2.6). 
It  remains  to prove  (ii). First  note  that  (2.2) implies Efi~)< ~ .  Indeed,  one 

m a y  show that  (2.2) holds if and  only if Efi~o < o% See [31, pp. 361-371. Next,  
since the fix are identically dis tr ibuted and  since fi~(,) and (~(t), S O . . . . .  S~(u) are 
independent ,  we get 

r - - r  _ _  r - - r  Eft,w) q(S ,~)) - E fio Eq(S,~(~)) . 
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We can now get K-convergence of H(S,(t))-IZ,(~) to 1/m from (2.3) and (2.4). 
K-convergence of  H(t)- ~ Z,(r) to 1/m then follows from (2.5). 

Note 2. If we only assume that  q(S,)~ co as n ~ o o  a.s. and Eft o <oo for every 
e > 0 ,  then an average version of  (1.1) holds: as t ~  oo 

t -1 i l l ( r )  -1 ~ h(Sk)dr~l/m 
0 k~=~z(r) 

a.s. Let  us verify the average version of (1.1a). Put  W , = H ( S , ) - I ~  h(Sk). Then 
by (2.4), k=, 

n-lk=~ ~ Wk-1/m <n- lk=l  ~" flkq(Sk)-l+e[ (*) 

Now for fixed e, {fin, n > 0 }  is a s ta t ionary ergodic sequence fo r andom vari- 
ables. The stat ionari ty is clear from the definition of the/~,  and stat ionari ty of 
{T,,, n >  1}, and the ergodicity follows from the fact that  the tail a-field of the 
/?'s is contained in the tail a-field of the T's which is the trivial a-field. 
Applying the ergodic theorem gives n - l ( f l  1 + . . .  +fl ,)-- ,E/3 o < oo a.s. as n ~  oo, 

n 

and then, clearly, n -~ ~ fl~q(Sk)-l~O. Since e ' > 0  is arbitrary,  we conclude 
k = l  

from (,) that  n-I (W i +... + W,)~ 1/m a.s. as n ~ oo which is the average version 
of (1.1a). 

Our  first theorem involves strong condit ions on the T~ but  relatively weak 
condit ions on h. It applies directly to the local t ime problem referred to in w 1, 
See w 4. 

Theorem 1. Suppose that for some b > 0 

P[Tl >t]=O(e -b~) t > 0 .  (2.7) 

Suppose that h satisfies 

• e -aH(x)/h(x) U {dx} < co for every a > 0, (2.8) 

and 
h (x) = O (H (x)) x > 0. (2.9) 

Then (1.1) holds a.s. and in mean of order r for every r> 1. 

Note 3. It will be seen from the p roof  that  (2.9) is needed only to get the L ~- 
convergence. 

For  the next theorem we impose stronger condit ions on h, weaker ones on 
the T~. 

Theorem 2. I f  we replace (2.7) by 

ET[+l<oo for some r > l  (2.10) 
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Write S ' k = ( T , + l - m ) + . . .  +(T,+k--m ). From the definition of ft,, the preceding 
inequalities and Markov's inequality, we get 

PEfi,, =k]  < PES' k > ke] + P E -  S'k> ke ] 
< e-  Oo~k [EeOoS~ + E e -  OoS;] 

= e-  Oo~k [f(Oo)k +f(__ o0)k] < 2e-Zk 

A summation gives (2.12) with A <2(e z -  1) -1 
As in Proposition 2 write 

q (x) = H (x)/h (x). 

Since ft, and S n are independent we have by (2.12) 

P[fin>C~q(S,,)] = ~ E {n[f i ,  > y] ly:~q(s~)} 
n = O  n 

< A Z Ee-~ ~ e -~q(x) U {dx} 
n 0 

for any ~>0. The last integral is finite for every 3 > 0  by (2.8), and it follows 
from the Borel-Cantelli lemma that (2.1) holds. 

To complete the proof we need to verify (2.3). But the random variables 
{q(S~(,) -r, t>0} are uniformly bounded by some constant C by (2.9), and, by 
(2.6), q(S~,))-~-~O as t ~  ~ a.s. Dominated convergence now gives (2.3). 

Proof of Theorem 2. Fix 0 < e < m .  From [3], pp. 365-370, it can be shown that 
(2.10) implies 

r _ _  r E fl , - E fi o or. 

Computing as in the proof of Theorem 1 we get for any c~ > 0 

P [fi. > 6q (S.)] < ~- r efi~o ~ q (x)-~ U {dx} < o~ 
n = O  0 

by (2.11). Hence P[fi , ,>6q(S,)i .o.]  =0, i.e. (2.1) holds. To get (2.3) simply note 
that q(S~(t)) -~ goes to 0 as t ~  and is dominated by the integrable random 

nO 

variable ~ q(S,)-L 
n = 0  

w 

Examples. 1. Our first example shows that (1.1) need not hold even for nice h 
and F. Let h(x )=e  -x, F(s)=P[Ti<s-,,  = 1 - e  -s/m, s>=O. Then H ( x ) = e  -x and ET i 
-- m. Put 

n >>- ~ ( t )  k =  O 
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where Sk=S~(t)+k--t. It  is a well k n o w n  proper ty  of  the exponent ia l  distribu- 
t ion that  the taw of the sequence {S~,, k > 0 }  does not  depend on  t ( Indeed 
Law {S~, k > 0 }  = L a w  {S,, n >  1}). 

Consequent ly  the dis t r ibut ion of V~ does not  depend  on t. Clearly this 
dis t r ibut ion has at  least two distinct points  in its suppor t  (i.e. V o is not  a 
cons tan t  r.v.), and  it follows that  the limit (1.1) cannot  exist. (In fact l im inf V t 
= 0  and lira sup V~= ~ a.s. But  note  tha t  EVt= 1/m for all t.) 

2. If  h is regularly varying,  tha t  is if as t ---, oo 

h(tx)/h(t)~x ~ for all x > 0 ,  for some cons tant  c (3.t) 

(c < - 1  since h is supposed  to be integrable),  then (1.1) holds a.s. and in mean  
even if m- -  oo (1/c~ ~ 0). To  see this note  first tha t  (3.1) gives us the following. 
As t ~ o o  

h(t + o (t)) = h(t) (1 + o(1)), (3.2) 

h iO = 0 (~  (t)/O, (3.3) 

H( t  + oit)) = H(t) (1 + o (1)). (?.4) 

The first of these is obvious  f rom (3.1) and  (3.3) follows f rom Feller [4], p. 281, 
Final ly (3.4) is p roved  f rom (3.2) and i3.3) thus: 

t+i(t) h(x) dx IH(t + o( t ) ) -  H ( O  I = < (h(t) + h(t + o(t))) o(t) 

= o (i  h ( t))  = o ( H  (t)).  

Consider  the case m < ~ .  (We cont inue to assume F is concent ra ted  on [0, oo), 
F {0} < 1, but  no other  condit ions on F need be imposed.)  By the s t rong law of 
large numbers ,  we have  as n~oo, t~oo  S,=nm(1 +o(1)), rc( t )=m -1 t(1 +o(1))  
a.s. Hence  

h(S , )=  ~ h(nm[l+o(1)]) 
n>~(t) n>rc(t) 

=(1 + o(1)) m -~ H(t+o(t))=m - t  Hit) (1 + o(1)) 

as t--, oo, and (1.1) follows. We leave it to the reader  to establish (1.1) when m 
= ~ (by a t runca t ion  argument)  and to establish the m e a n  convergence.  

3. Here  is a non-regular ly  varying example.  Let  T 1, T 2 . . . . .  be as in exam- 
ple 1 and 

h (x) = e -  xd 

with 0 < d < l .  Then  U{dx}=m- ldx ,  x > 0 ,  H(x)~d-- lx l -de  xd as x--,oo~ so 
(2.8) holds and T h e o r e m  1 applies. 

4. Here  is a p rob l em for the reader.  Let  T 1, T 2 . . . . .  be as in Example  1 and 
let h(x)=e -x/lgx, x~e ,  h(x)=cons t . ,  x<e. Does  (1.1) hold a.s.? Note  tha t  
H(x)~h(x) lgx as x-- ,c~ so (1.1) does hold  in mean  by P ropos i t i on2 .  Theo-  
rems 1 and 2 do not  apply. 
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w  

Let {Xt, t > 0} be a standard Markov process with state space Q. (With a slight 
change in notation our assumptions and definitions are as in I-l], Chap. 5, w 3, 
(except that we will assume M r-= 1). See also [-51. Chap. 6.) Let 0 be a point in 
Q which satisfies 

where 
Po[-~o = 0] = 1, (4.1) 

t /=min[ t :  t>0 ,  X~=0}. 

As is well known, (4.1) is both necessary and sufficient for X to have a local 
time at 0, i.e., a continuous additive functional L(t) which is non-negative and 
increase only at times t e Z  where 

Z = {t: Xt = 0}. 

L is unique up to a multiplicative constant. For proofs of the basic facts about 
L see the references cited above. When X is a canonical Brownian motion on 
the line, Levy gave a number of important sample path representations for L(t). 
See [-5] w One of these representations, (4.9) below, need not hold in 
general even if X is a nice diffusion, [-51, w 6.4. In this section after describing 
the representation we give a sufficient condition for its validity. 

With very little loss of generality, we may suppose that 0 is regular for 
{Off (as well as for {0}), that 0 is a recurrent point and that L has no linear 
part. Thus, in addition to (4.1) 

Po [r/{o)c = O] = 1, (4.2) 

P0[Xt=0 i.o. as tToo]=l ,  (4.3) 

Po [,Lebesgue meas. I-t: X~ = 01 = 0] = 1. (4.4) 

Define the inverse local time L-1 by 

L- 1 (s) = inf{t: L(0 > s}. 

Note that X(L-I (s ) )=O a.s. (P0) and that L(L- l ( s ) )=s  by continuity but that 
L- l (L ( t ) )= t  if and only if t e Z  and t is not isolated from above in Z. The 
process L -1 is a subordinator, i.e., a non-decreasing right continuous process 
with stationary independent increments which increases only by jumps, more- 
over, under (4.1)-(4.4) every s-interval contains infinitely many discontinuities 
of L -1. Let us denote by N the counting measure on ~{[0,  oo)x(0, oo)} given 
by 

N{(s t, s21 x(~ 1, e21}= 4~ jumps of L -1 during s l < s < s  2 

of magnitude L- l (s) - L- 1 (s - )e(e l ,  ~21, 

then 
oo 

0 0 0 
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The law of N, with respect to Po, has a Poisson structure with mean measure 

g0]~[ {(s1, $2] x (~1, ~2~} = ( $ 2 - - s 1 )  v{(~l ,  ~2]}, (4.5) 

where v, the Levy measure of L-~, satisfies 

In addition 

v{(O, oo)} = oo, ~ min(1, x) v{dx}<oo. (4.6) 
0 

oO 

- l g  E o e -~L- ~<'~ = j (1 - e  -~*) v{dx} =sG(O, 0)- 1 
0 

(4.7) 

where G(0, 0) (=G(x0)  in the notation of [1]) is the c~-potential of L. (More 
about this in w 5.) 

Since Z is closed we may write 

Z c : ~) e/~ 

where the e~ are open pairwise disjoint intervals (the excursion intervals of X 
away from 0). Each e B corresponds to a fiat stretch in L and a jump in L 1 
Fix t > 0 and put 

V(t, 8) = @ intervals e~ c [0, t] with length > 

= ~ I(]er 
p: e~ c [0, t] 

If r = L  l(L(t)), then L(t)=L(r) and 

V(t, ~) < V(r, ~) = N {[0, L(r)] x (~, oo)} < V(t, ~) + 1. 

Now ~(e)-v{(e, c~)} (= the  expected number of jumps >~ per unit time in 
L-l)---, oo as e$O, and this fact, the Poisson structure of N, and the strong law 
of large numbers gives 

V(t, e)/~(e)oL(O as e$0 a.s. (P0). (4.8) 

In light of (4.8) it is plausible that one should also have for every t 

W(t, e) xv{dx}--,L(t) as ~;0 (4.9) 

a.s. where W(t, e) is the total length of the intervals e~ c [0, t] of length < e, i.e. 

W(t, e)= ~ levi I(le~l < e) 
/~: e~ c [O,t] 

=i xN{[O,L(r)],dx}, r=L-l(L(t)). 
o 

Note that i xv{dx} may be roughly interpreted as the average length per unit 
0 

time of a jump in the truncated process s~-+ixN{[O,s],dx }. As we noted 
p 

0 
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earlier, however, Ito and McKean have discovered that, though (4.9) does hold 
in the Brownian notion case, it fails in general. 

The following theorem provides a sufficient condition for (4.9) which seems 
to be very close to a necessary condition as well. 

Theorem 3. Suppose that v, the Levy jump measure of L-1, is non-atomic. I f  for 
every a > O, 

J+ exp ( - a  i xv{dx}/e) v{de} < (4.10) 

then for every t> 0 (4.9) holds a.s. (Po). 

Note I. The sure event on which (4.9) holds may be chosen independent of t 
and the convergence is uniform on bounded t-intervals. 

Note 2. The measure v will be non-atomic in the case that X is a diffusion on 
the line. Indeed in this case v is absolutely continuous with a density v' which 
is analytic! See Ito and McKean, [5], p. 217. For  general conditions on X 
under which v is either non-atomic or absolutely continuous, see [2], pp. 68- 
73. 

Proof Let us write 

h(t)=min{~: ~(~)<t=sup{e:  ~(~)>t} 

where ~(e)=v{(e, oo)} as above. Then h and 7 are non-decreasing, ~7 is con- 
tinuous since v is non-atomic, h is right continuous and h(0+)=~7(0+)=oo,  
h ( o o - ) = ~ ( o o - ) = 0 .  Moreover ~(h(t))=t for all t > 0  but 

h(~(e)) = e if and only if eel(v), (4.11) 

l(v)--{e: v{(e-6, e)} > 0  for all 6>0} csupp(v).  

Finally if a = h (A), b = h (B), a < b, then 

b A 

f (e) v(de) = ~ f (h(t)) dt (4.12) 
a B 

whenever either integral makes sense. Fix 2, 0 < 2 <  oo, and let Y1, I<2 . . . . .  be 
the atoms of the counting measure A ~N{(0 ,  2] x A} =-Na(A). Since v is non- 
atomic and L-1 on (0, 2] has only finitely many jumps of magnitude > e for 
any fixed e>0,  we may suppose these Y's are listed in strict descending order: 
I71 > Y2 > ' ' '  (The Y's are random variables because [Y,>b]  = ENd(b, oo)>n]  for 
any b > 0 and the latter event is measurable.) 

Lemma 1. 

Po [h07(Y~))= Y~ for all i] = 1. 

Proof For any Borel Ac (0 ,  oo), Po[YieA]<Po[N~A>__I]<EoNxA=2v(A ). 
Hence for every i the distribution of Y~ is absolutely continuous with respect to 
v. Take A =supp (v)\l(v). Then Po [Y/r < 2 v ( A ) = 0  since A is countable (A is 
the collection of right hand end points of the open intervals which make up 
(0, oo)\supp(v)) and v is non-atomic. Lemma 1 now follows form (4.11). 
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Now consider the process r~Nx(h(r), Go)=_N(r), r>O. From the Poisson 
character of N we see that (i) N is a right continuous process which increases 
only by unit jumps. (ii) N(r) has a Poisson distribution with mean EN(r) 
=2f(h(r))=,~r (iii) ~r has independent increments. In other words N is an 
ordinary Poisson process with rate )o. Let Sa < $ 2 < . . .  be the jump times of 
and put S0=0. Then /V(r)=max{n' S ,<r} and the increments ri=si-Si_l, 
i>  1, are mutually independent random variables with distribution 

PolE>t3 =e-~q t>0, 

and mean E o T~= 1/2. From Lemma 1 we have that h(Si)= Yi for all i and, if e 
=h(r), then 

8 

S xN{[0, 2], dx} =~ YiI[Yi<s] 
0 i 

=~ h(Si)I[h(Si)<a]= ~ h(Si) 
i i = ~ (r) 

where ~z (r) = min (n :S. > r} -- b~ (r) + I. 
8 

By (4.12) S xv{dx} = ~ h(s)ds=It(r) and 
0 r 

and from Theorem 1 in w 2 we get for each )~ 

lira xv{dx} ~ xN{[0, 21, dx} =2  (4.13) 
8 ~ 0 +  0 

a.s. (Po) whenever (4.10) holds for each a>O. (Note that the fact that h(O+)= oo 
does not matter; ~ h(S,)= ~ hb(S,) for all r sufficiently large where hb(x ) 

=min{b, h(x)}.) Since the right hand side of (4.13) is a continuous function of 
2 and the left hand side is for each s > O, a non-decreasing function of 2 we see 
that the sure event on which (4.13) holds may be chosen independent of L 
Setting 2=L(O we get 

lim xv{dx} yg{[0 ,  L(t)3, dy} =L(t) (4.14) 
s ~ O +  

a.s. and again the sure event may be chosen independent of t. Now if teZ ~, 
then 

e~ c[O,t]  

-i - yN{[0, L(t)3, dy} 
0 
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as soon as c<[e~(t) [ where e~(,) is the unique excursion interval containing t. 
Thus (4.9) holds for t e Z  c. But Z C is dense in (0, oe) a.s. which implies that (4.9) 
holds for all t > 0  by continuity of L and monotonicity of t~--~W(t, 5). 

This completes the proof of Theorem 3. 

w 5. Diffusions 

In this section we find a sufficient condition on the speed measure of a 
diffusion on the line in order that (4.9) hold. Since our condition is certainly 
not necessary, see w we will confine our attention to the case of a natural 
scale diffusion on [0, oe] which is reflecting at 0. The reader should consult Ito 
and McKean, [5], Chaps. 3-6, for the proofs of various assertions we make 
about diffusion processes. 

Let m be a measure on B[0, oe] such that 

m {I} > 0 for every open I c [0, oe). (5.2) 

Without loss of generality we may also suppose 

re{O} =0. (5.2) 

Let X be the diffusion process on [0, 0o) with generator given by the differen- 
tial operator 

A f = a w - - f  ' on (0, oe) (5.3) 
a m  

( f '=~fx  =ordinary derivative of f )  with the boundary condition 

f + (0) - lim ( f  (c5) - f  (0)/~ = 0, (5.4) 
~ o  

provided the origin is both entrance and exit. 
This will be the case if and only if 

m(x)~m{[O,  x l } < o e  for all x > 0 .  (5.5) 

Proposition 1. Under the above assumptions, (4.1)-(4.4) hold. 

Proof. Ito and McKean [5] Chap. 3 and 4. 

Theorem 4. Suppose, in addition to (5.1)-(5.5), that m is absolutely continuous on 
[0, 6], some 6>0,  with a density m ' ( x ) = d m / d x  which regularly varying at 0 with 
exponent ~ > - 1, i.e., for all c > 0 

lim m' ( c x)/m' (x) = c ~, (5.6) 
xJ, O 

then (4.9) holds for any local time of  X at O. 

Proof  Let B be a standard one-dimensional canonical Brownian motion with 
local times lx(t)=l(t, x ) j o in t l y  continuous in (t, x), normalized so that for t>0 ,  
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Borel F 

as customary. Define 

i l~(B(s) ds=2 j l(t, x) dx 
0 F 

a.s.  

Ix(t)= j l(t, x) m{dx} ,  
o (5.7) 

# l(t)=inf{s: Ix(s)>t}, t>0 ,  

(Note that I X ( ~ - ) = I X - I ( ~ - ) = ~  as one easily checks.) By [-5], Chap. 5, the 
processes Bo/~ -~ and X are identical in law and we will write X = B o i x  -~. A 
local time for X at 0 is then given by 

L(t) = 1 o (It- l(t)), t > O, (5.8) 

(all other local times at 0 for X are, of course, multiples of this one) and its 
inverse by 

L i(t) = t x (lo x(t)) = ~ 1(Io ~(t), x) m {dx}. (5.9) 
0 

(To prove (5.9) note that 

{s: L(s) > t} = {s: [o(ix- l(s)) > t =  lo(Iol(t)) = {s: Ix-l(s) > /o  l(t)} 

where the last equality is from l o l ( t )= in f { r :  l o ( r ) > t } = m a x ( r :  lo(r)=t}. But 
{k:ix(k)>s}=(ix-l(s),oe), so {S ' IX- I ( s )>lo l ( t ) }={S: IX( IFI ( t )<s} ,  and thus 
L-l ( t )=- inf{s:  L ( s )> t }=#( lo l ( t ) ) . )  To prove Theorem4 it clearly suffices to 
show that (4.9) holds for the L given in (5.8). 

Lemma 1, Let  X~, X 2 be two natural scale diffusions reflecting at 0 with speed 
measures ml,  m 2 satisfying (5.1), (5.2), (5.5). Let X i be represented as B o #~-1 

IX~(.)= ~ l( . ,  x ) m  i {dx} with local time at 0 given by L i = l o o IXF 1. 
0 

Let v~ be the Levy jump measure of L7 t as in w Suppose m~ is absolutely 
continuous with respect to m 2 on [0, 6] for some ~5 > 0 and that 

d m l / d m 2 < K  on [0, 6], (5.10) 

for some constant K. Then 

limsup ~l(~) _<1. (5.11) 
~o ~2(~/K)- 

Proof. Let t /=min(t :  B(t)=cS}. Then for any s<lo(tl  ) we have l(s, x )=l~(s)=O 
for x > ~5 and 
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6 

L~ I (s ) -L~ l ( s - ) =  j [l~(lff l(s)) - l~(l o l ( s - ) ) ]  ms {dx} 
0 

6 

__< K 1 [I~ (Io ~(s)) - l~ (lo- ' ( s - ) ) ]  m~ {dx} 
0 

=/< [L~ ~(s)- L~ ~(s-)] .  

It follows that for every e > O, 

U 1 {[0, s ] x  (e, oo)} < N 2 {[0, s] x (elK, Go)} (5.12) 

a.s. (Po) on the event [lo(r/)>s ] where N 1, N2 are the random Poisson counting 
measure for L] z, L? a as in w 4. From the strong law of large numbers for N,  
see [5], w 6.3, we have for i=  1, 2 and a.s. (Po) 

lira Ni{[0, s ] x  (e, oo)}/~i(e)=s (5.13) 
e+O 

uniformly for s in bounded intervals (see w 4). (5.11) is now clear from (5.12) and 
(5.13) and the fact that the event [lo(r/) >s ]  has positive Po probability. 

Corollary to Lemma 1. i f  (dml/clrna)(x)~K as x;O, then ~l(e)/~z(e/K)--,l as 
E$O. 

Lemma 2. Let  q=q(x ,  c0=%(x ) satisfy q< oo, q is differentiable and 

A q =  ~q on (0, oo) (5.14) 

where A is the differential operator (5.3). 
function 

satisfies 

Then for each constant c > 0  the 

x~,q~(x,  a) =- q(cx, c~/c) 

A ~ qC = c~ qC 

where A C is the operator (5.3) with m replaced by m ~ given by 

mC{dx} =-m{cdx}. 

Proof  With qC as in (5.15) we have by definition of the operators A c, A 

b Ix~bc d ~ y~b d ,,(x) l 
I A5 q: (y) rn ~ {dy} = ~dy q~(y), =0 = c dxx u~/c I . . . .  
a 

bc  

=c f A%/~(x)m{dx} 
ac  

for every 0 < a < b <  o9. But A%/~=a/c%/~, so 

b b e  

~ ACq;(y)mC{dY} =~ f q(x, ~/c)m{dx} 
a a c  

b 

=c~ ~ q(cy, c~/c) mC{dy}. 
a 

(5.15) 

(5.16) 

(5.17) 
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Since this holds for all 0 < a  < b < o0, (5.16) follows from (5.1) and continuity of q. 
Let G~(x,y)=G(a; x ,y )  be the Green function for the operator A of (5.3). 

That is let gl, g2 satisfy gaiT, g2~+, 

Agl ( x )=ag l ( x ) ,  x>=O 
(5.18) 

Ag2(x)=ag2(x) ,  x > 0  

g~-(0)=0, and g + g 2 - g l g ~ - ~ l ,  then G~(x,y)=gl(x)gz(y) ,  x < y ,  and G~(x,y) 
=gz(x) gl(y), x > y .  From [53, w we get 

(1 - e  -~x) v{dx} = G~(0, 0) -1 = - g~- (0, a)/g2(0, a). (5.19) 
0 

Corollary to Lemma 2. Let ~c correspond to m c, then 

~C(x)=c~(cx) (5.20) 

Proof. From (5.19), (4.6) and an integration by parts, we have 

a ~ e ~x ~(x) dx = - g ~  (0; cz)/g2(0; a). (5.21) 
o 

From Lemma 2 and the definitions of g], g~ (at (5.18)) we get, 

g] (x ;~)=g~(cx;  a/c), g~(x;c0=c-~g2(cx,  a/c). (5.22) 

From these formulas and a change of variable, we get 

a ~ e -=x 9~(x) dx = -g~+ (0; a)/g{z(O; a) 
0 

= - cg) ~ (0; a/c)/g 2 (0; a/c) = of e ~ ~(cx) c dx. 
0 

We get (5.20) on peeling away the Laplace transform and noting that 9, ~ are 
continuous, [5], p. 217. 

Let us now finish the proof of Theorem 4. If m ~ is as in (5.17) and if m 
satisfies (5.6), then for every c > 0 

dm c 
dm (x )=cm' (cx ) /m ' (x )~ce+l '  x+O. 

Consequently 

~(~)/~(~/ce+ ~)-~ 1, <0, 

by the corollary to Lemma 1. But then 

c~(ee)/~(e/cn+ 1) ~ 1 

by (5.20) and the above. It follows that as t+0 

(t x)/9 (t) --* x r, r = (fl + 2)- 1 
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for every x > 0 .  In  other  words under  (5.6), ~ is regularly varying at 0 with 
exponent  - r where 0 < r < 1. N o w  

0 0 

and all three terms go to 0 as e+0 by (4.6). It  is a basic proper ty  of  regular 
varying functions that  

e~(e) ~(x)dx ~ l - r  as e+0 

Hence for e sufficiently small 

E 

y xv{dx} > be~(e) 
0 

for some constant  b > 0 .  F r o m  this and the elementary e -Z<kz  -~, z > 0 ,  k a 
constant  depending on q, we see that  

y exp ( - a  i xv{dx} /e )v{de}  <=k 1 ~(e)-~v{de} 
O+ 0 O+ 

for some k I < oo. Aga in  from s tandard  facts about  regular variation, the latter 
integral will be seen to be finite as soon as q > 1. 

Corollary to Theorem 4. Let now X be any recurrent diffusion on an interval Q 
with scale s and speed measure m. Let xo6Q. I f  u ~ m o s - l ( u +  Xo) has a regularly 
varying derivative at O, then (4.9) holds for L(t, Xo). 

Remark. We know from the p roo f  that 

9(e) = e- r  S (l/e), r = (fl + 2)-  1, 

where for every x, 

S(tx)/S(t) --+ 1 as t ~ oo. 

By hypothesis we also have 

where 

m' (x) = x ~ L(1/x) 

L(tx)/L(t) --, 1. 

The quest ion is what  is the asymptot ic  relation between S and L? L e m m a  i 
does not  seem to be s trong enough to answer this except in the case that L is 
known  to be a constant,  then S is also a constant.  

w 

In  this section we construct  an example of  a diffusion which shows that (5.6) is 
not  necessary for (4.9). The example is of  independent  interest inasmuch as 



A L i m i t  T h e o r e m  for R e n e w a l  Sequences  553 

we compute the asymptotic behavior of both the speed measure density m'(x), 
x$0, and of the tailsum ~(e), e+0, of the Levy jump measure of the inverse local 
time. This example is patterned after an example in Ito and McKean,  [5], 
w 6.4. Whenever possible we will use the details of their computations without 
comment. 

In what follows C's are 
ables within the formulas in 

Fix k > 0 and let 

Then 

finite positive constants independent of any vari- 
which they occur. 

1 

r(0) =1~(0)- ~ O*sk-tV(s+l)- lds ,  0 < 0 <  oo. (6.1) 
0 

1 

O<r'(O)=(1/O) ~ OSsk-l F(s)-l dsToo as 050. (6.2) 
0 

Let us write O(x)= r-l(x)  (functional inverse of r). Then 

o(o)-o(o+)=o'(o+)=o 

and, since ) ~ r ( e  -~) has a positive second derivative we also have 

0" (x) 0' (x)- 2 < 0 (x)- i x > 0. 

Lemma 1. As O J, O, x $ O we have 

r(O) - F(k) [lg oi-k(1 + O(llg 0l- ~)), 

r'(O) =(1/0)/~(k + 1)Ilg 0l -k 1(1 + O(llg 0t-x)), 

0(x)=exp {--cox l/k(1 +O(xl/k))}, 

(6.4) 

(6.5) 

(6,6) 

(6.7) 

O'(x)=clx -(l/k)-* exp{-CoX-*/~(1 +O(xl/~))} (1 +O(xl/k)). (6.8) 

Proof. By straightforward calculus methods, we obtain as 050 

1 

Jk(O) =-- ~ 0 ~ s k-~ ds = F(k) Ilg 01-k(1 + O(0 [lg O] k- 2)). (6.9) 
0 

By Taylor's formula F(s + 1) 1 = 1 + O (s), hence rk(O ) = Jk(O) + O (J~+ 1(0)). Apply 
(6.9) to get (6.5) then (6.6) follows from (6.5) and r~,(O)=(1/O)rk+l(O ). (6.7) and 
(6.8) are easily checked by substituting these expressions into r(O(x))=x and 
r'(O(x)) O'(x)= 1 and applying (6.5)-(6.6). 

Now let X be the recurrent natural scale diffusion on [0, ~ )  reflecting at 0 
with speed measure 

rn{dx}=O'(x)2dx, x > 0 ,  m{0} =0.  (6.10) 

From (6.7)-(6.8) we have for x near 0 

m'(x)=c~x (2/k)-2 exp{_2CoX a/k(1 +O(xl/k))} (l+O(xl/k)). (6.11) 
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The exponential term forces (5.5) but destroys (5.6), nevertheless we will show 
that (4.9) still holds provided k > l .  One should note that the I to-McKean 
example is the Special case k =  l for which (4.9) fails. 

To continue, le t  gl, g2 be the increasing and decreasing solutions to 
Ag-(O')-2g=c~g exactly as in (5.18) but with the additional initial condition 
gx(0) = 1. Then 

g2(x)=gl(x)-i S gl(s)-2ds, x>O. (6.12) 
X 

Define 83 on the range of 0 by g3(O)=gl(x), O=O(x). Then 

g~ (0) + 0" (x) 0' (x)- 2 g; (0) = eg~ (0), (6.13) 

g3(0)= 1, g+(0)=0 and (6.14) 

g'~(O)<eg3(O)<g'~(O)+(1/O)g'3(O ), 0>0 ,  (6.15) 

by virtue of (6.4). 

Lemma 2. Let Y be a diffusion on [0, oo) with 0 an entrance point. Let D be the 
generator and D o the differential operator coinciding with D on the domain of D. 
Suppose u~C[O, co) is locally in the domain of D and satisfies i) u ( 0 ) = u ( 0 + ) = 0 ,  
ii) Dou=2u+ f on (0, co) where i i i ) f  >0, f~C(0 ,  ~).  Then u(O)>O for all 0>0.  

Proof. Let Y he Y killed at time o- where o- is Exp(2) independent of Y. Then 
D v = D v - 2 v ( = D o V - 2 v  on (0, oo)), vEdomain(/))=domain(D). Fix a and 
x~(0, a) and let u=v on (0, a) where v~domain(D). Put T=min{t/X, a} where ~/x 
=min{t :  Y~=x}. Applying Dynkin's formula and recalling v(~)=v(A)=v(O) 
= u ( 0 ) = 0  gives us 

T 

s ~ ~v(~)dt=~oV(~)-v(O)=EoEU(X), ~x<~] =u(x) Po(~x <~). 
0 

T T 

But /~o ~Dv(~)dt=Eo ~ [Du(Yt)-2u(Y~)]dt>O by iii), the fact that Yt~[0, x] 
0 0 

for t <  T, and Po(T>0)=  1. Since Po(t/x < a ) > 0 ,  the conclusion follows. 
We apply the lemma first with Do=�89 2, u(O)=exp(c~O)-g3(O), then 

with Do = �89 .@ ( 1 / 0 )  d /dx ,  u (0) = g3 (0) - I 0 (o~ �89 O) where I o is the usual mod- 
ified Bessel function, Io(0)=1. In both cases 7:-5 , and the fact that f - D o u  
- l c ~ u > 0  on (0, oo) is from (6.15). The result is 

Io(,-~O(x))<g~(x)<exp(c~O(x)), x>O, (6.16) 

and thus, see (6.12) and [-5] p. 221, 
CO cO 

exp ( - f i~  0(x))dx<gz(O)<fl -~  lgf l+ ~ exp ( -  ()'/~) + O(x))dx (6.17) 
0 0 

where fl=4c~ and 7T 1 as , r ~ ,  ~ independent of x. But, see (6.2), (6.9), 
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ao 

exp(-fi~O(x)) dx = 5 e x p ( -  fi~O) r'(O) dO 
0 0 

1 
= ~ f i  - �89 s sk  1 l ds  = a,:(~- ~) 

0 

= 2 k C(k) (lg fi) k (1 + O (fi I(lg fi)k- 1)), 

as fi~" c~, and it follows that  

c 21(lg fi)- k(1 - c  3 fi- 4(lg fi)k- 1)< ga(0) 

< c  2 ~(lg 7 fi)-k(1 § c# fi- +(lg yfi)k- 1), (6.18) 

for all fi sufficiently large. But, see (5.19), 

SO 

62(o)  - *  = ( g , ( 0 )  g2(O)) - *  = ~ ~ e ~x ~(x)  dx, 
0 

oo 

c2(lg yfl)k (1 - c~ fi- �89 7 fi)k- 1) <= cz ~ e- ~' ~(x) dx 
0 

<=c2(lgfi)k(l +csfl-~(lgfi)k-1), (6.19) 

where f i=4cc (If the reader is also following the example in [53, he should note 
that  7 in 7), p. 221, must  be adjusted to account for the term ~. ~ lg~ in 5).) 

Since 9 is convex, ~ i v e -~x ~(x)dx > ~(1/~), and then 
0 

T~(x)<c 2 ]lg 1 k 1 g X [  q - C 6 2 X  I l g l x l  2 k - l = - q ( � 8 8  (6 .20 )  

for all x sufficiently small. By choosing c 6 sufficiently large (but don' t  touch c 2 !) 
we may suppose (6.20) valid for all x >0.  Also q and ~ are nonincreasing near 
0, SO 

But by (6.19) 

i/= 

q(1/o:)-~(2/~)<�89 I [q(x)-~(4x)] dx 
i/2~ 

<=�89 ~ e-~X[q(x)- 9(4x)] dx. 
0 

0 0 

> c2(lg 7cQ k -  c 7 c~ ~(lg 7cQ 2k- 1 

where 7~'1 as c~T~, and 

o: ~ e-~:'q(x)dx=c2 ~ e- ':l lgx-lgo:lkdx +c60: -~ ~ e ":]lgx--lgo:12k-l dx. 
0 0 0 
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Combining these inequalities and noting the elementary 

IAI k -  IBlk< kin +B[ ([11 ~- ~ + IBI k- ~), 

~ e-~[lgxl~llgx--lgelbdx=O(lgbcO, ~?oo, a,b>_O, 
0 

we get 
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q(1/cO- v(2/~)=O ( i  e-X(lg x-- lg  c~fk--]lg ~ + lg T[k) dx 

+O ( ~ - '  ~ e-Xllgx--lg~,2k-l  dx) 
0 

+ O(c~-~[lg Tc~l 2k-I ) 

=0 (i e-X[lgxTl(llgx-lg~ +llgT~/k-1)dx 

+ O(~-~llg c~[ zk-1 ) 

=O(lgcO k-l, ~T~.  

In other words for x near 0 

l~(X) ~ C 2 tlg�89 k -  Cs Ilg x} k-  1 

c 2 [lg �88 [k_ C9 flg X[ k- 1, (6.21) 

or, if we combine (6.20) and (6.21) 

k I~(x)-c2Ilg ;xl I=O(l lg�88 (6.22) 

as x~.O. On setting h(t)= ~-1(0, as before, we get that for t sufficiently large 

c1 o exp ( - (t/c 2) a/k) < h (t) < c 11 exp ( - (t/c2)1/~), (6.23) 

c12 t~-(1/k)h(O<H(O= ~ h(s)ds<q3 tl-(1/k)h(t). (6.24) 
t 

Therefore, if a 1 = c12 a, then 

f exp - a  f xv{dx}/e d~= f exp ( - aH( t ) /h ( t )  dt 
O+ 0 co 

< ~ e x p ( - a  1 t 1-(Iff)) dt < 0o (6.25) 

for all a > 0 as soon as k > 1 and then (4.9) holds by Theorem 3. 

Remark 1. A general class of diffusions for which the asymptotic behavior of 
both m' and ~ can be computed may  be constructed by replacing (6.1) with 

1 

r(O) = ~ 0 ~ s k- ~ L(s) ds (6.26) 
0 
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where L is slowly varying 0; for all x > 0 ,  

L(tx)/L(t)~ 1 as t,~0 (6.27) 

Defining O(x), m'(x)=O'(x) 2 as before and applying a standard Abelian Theo- 
rem, [4], Theorem 3, p. 445 (put 0 = eX), we obtain first that 

m'(x)=blL,(x ) 2/kx-(2/k)-2 exp{--b2x-1/k(l +O(1))} (6,28) 

where bl, b 2 are positive constants and L ,  is a slowly varying function such 
that 

L,(x) L(xl/kL,(x) l/k) -+ 1, xj, O, (6.29) 

(Such an L ,  may be shown to exist and to be asymptotically unique.) Applying 
Abelian and Tauberian theorems to first estimate g2(~; 0), as c~1"oo, and then 
~7(~), e+0, we end up with 

~(e) = b311g elk L(l lg  ~t-  1)-1 (1 + 0(1)). (6.30) 

Note that (6.28) and (6.30) are not as precise as (6.11) and (6.23) and, indeed, 
one cannot determine if the first two integrals in (6.25) converge or not. (From 
(6.30) one can only get b4exp(-bstl/k)<h(t)<b6 exp(-bTt ~/k) for some un- 
known constants b4, bs, b6, bT, and one must have b 5 =b  7 to get anywhere.) If 
one could differentiate (6.30), which seems reasonable since ~' is monotone, one 
could in fact determine the convergence or divergence in (6.25). Unfortunately 
the right hand side is a slowly varying function which is a borderline case, i.e., 
if ~(~)~JS(e) where S is slowly varying and />0.  and if ~' is monotone, then 
~'(e)~/ez-lS(e). (See [4], p. 446, for the case ~ o o . )  This result only allows 
~'(e)=o(S(e)) in the case / = 0  which is not strong enough. One should be able 
to compare with the case when L -  1 to conclude that (4.9) holds when k > 1 in 
(6.26). 

w 

It has recently come to my attention that B.E. Fristedt and S.J. Taylor have 
also obtained, by entirely different methods, conditions under which there will 

be some normalization b(e), not necessarily b(~)=ixv{dx}, for which 
0 

W(t, e)/b(e)~L(t) a.s. They did not consider the relationship of speed measures 
to such representations. 
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