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In this paper we give a weak invariance principle for a class of dependent 
random variables which contains martingale-like sequences and (p-mixing se- 
quences. Stationarity is not required. Nevertheless, throughout the paper, var- 
ious conditions are required which are a weak form of stationarity. 

1. Introduction and Definitions 

McLeish (1975) proves an invariance principle (cf. Theorem (2.6), [8]) under an 
assumption on the conditional expectations of variables with respect to the 
distant past. In Sect. 2 of this paper we give an invariance principle similar to 
that of McLeish for another class of random variables under an "asymptotic 
martingale" type condition. In Sect. 3, this result is used to extend the in- 
variance principle obtained by McLeish (Theorem (5.1), [8]) for martingales to 
martingale-like sequences. We also prove an invariance principle for (p-mixing 
sequences under a variety of conditions for the ~0-mixing rate and for the L 2 
moments. One of the corollaries of this last theorem improves Theorem (3.8) of 
[8], showing that condition c) in this theorem, namely 

k + n  2 

E ,i=~k+lXi) -~0 a s  m i n ( k , n ) ~  oo 
// 

may be removed. 
Proofs of the results of this paper are given in Sect. 4. Let (f2,.~, P) be a 

probability space and { ~ ;  n >  1} a n  increasing sequence of sub-a-algebras of 
~ .  {Xn ,~ ;  n > l }  is said to be a stochastic sequence if X,  is ~-measurable  for 
each n. We will denote the convergence in Lp and weak convergence by --~rp 
and ~ respectively. We will denote 

E(XiIYm) by EmX i and E1/PlULP by IIULIp. 
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496 M. Peligrad 

d~-.  m Let {X, ,~ , ,  n _ l }  be a stochastic sequence of square integrable random 

variables and put S, = ~ X i. Throughout the paper we assume that 
i = l  

(1.1) ES~--+a z as n--, oo 
n 

where a is a positive constant. 
Consider the space D [0, 1], the set of all functions on the interval I-0, 1] 

which have left hand limits and are continuous from the right at every point. 
We endow this space with the Skorohod topology. Let ~) be the Borel cr- 
algebra in D and define a random function by 

(1.2) W,(t) = Sr~tl t e [0, 1] 
n l / 2 o - ~  

where l-x] is the greatest integer contained in x. This is a measurable map 
from (f2, i f )  into (D,N), and we will establish the weak convergence of 141,,, to 
the standard Brownian motion process on D, denoted by W in the sequel. 

(1.3) Definition [12]. A sequence W~ of random elements of a metric space is 
said to be Renyi-mixing (R-mixing) with limiting process W if: P(W,~. fE)  
converges weakly to the measure P(W~.) for every E s ~ -  such that P(E)>0. 

R-mixing is a useful concept when passing from non-random to random 
invariance principles (cf. Billingsley, Theorem 17.2, [-ll). 

2. The Invariance Principle 

The following conditions are suggested by Gordin's condition (see [-4]). 

(2,1) F~  every fixed m the sequence { U"'n=i=,n+ ~ 1 E m X i ; n > m }  cOnvergestO 

a function U,, in L2(f2 ) norm as n ~  oo. 

(2.2) The sequence {U2; m> 1} is uniformly integrable. 

(2.3) Theorem. Let {Xn,Y,; n>  1} be a stochastic sequence of square integrable 
random variables which satisfies (2.1) and (2.2). I f  {X2; i>1} is uniformly 
integrable, then {Wn; n >  1} is tight in D and any limit process is a.s. continuous. 

(2.4) Theorem. Suppose in addition to the conditions of Theorem (2.3) that 

(2.5) Ek_,, (Sk+" --Sk)2 , a 2 
n L~ 

as (m, k, n)--, c~ such that m <= k. 
Then W, is R-mixing with limit W, a standard Brownian motion process on D. 
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3. Applications 

One can apply Theorem (2.4) to martingaleqike sequences. 

(3.1) Definition [10]. The stochastic sequence { S , , ~ ;  n > l }  will be called a 
martingale in the L 2 limit if S, is square integrable and E,,(S,-Sm)----~O as 

L2 
n ~_ m - - ~  oo .  

This concept generalizes the notion of martingale; conditions of this type 
have been considered in [2], [7]. 

The following theorem extends the Theorem (5.1) of [8]. 

(3.2) Theorem. Let { X , , ~ ;  n>  1} be a sequence of differences of a martingale 
in the L 2 limit such that the set {X2; n >  1} is uniformly integrable and 

1 " 
(3.3) ni~l  Ek-"X2+'~i~ a2 

as (m, k, n)--* oo such that m < k. 
Then W, is R-mixing having as limit a standard Brownian motion process. 

Another result is an invariance principle under a (p-mixing condition. 
Let {X,,; n>  1} be a sequence of random variables and put N~=a(Sm-S, ) ,  

J~ = a (Xi; 1 < 1 < n), ~0 = {0, f2}. For each m > 0 define 

(p,,, = sup sup I P (B [A) - P (B)I. 
(n,j) (AE~'n, P(A)~O, B~.~n++'~ + j) 

We say that {X,; n > l }  is (p-mixing if (pm-~0. Obviously we can take (p,~ 
nonincreasing. 

(3.4) Theorem. Let {X,d n > l }  be a (p-mixing sequence of square integrable 
random variables centered at expectations and f a function f:  R + -* R + such that 
f((pk)> (pkfor all sufficiently large k. If: 

(3.5) ~f((p~) < o0 
k 

and 

(3.6) lim y XZdP(I+F(i) )=O uniformly in i, 

i - -2  

where F(i)= ~ (P~--(Pm+I then W, is R-mixing with limiting process W. 
m= l f((pm) ' 

This theorem gives a variety of conditions for the mixing rate related to the 
L 2 moment conditions. 

(3.7) Remark. If F(i) converges, then the condition (3.6) in the above theorem 
may be replaced by 

X 2 .  (3.8) the set { i ,  i>1} is uniformly integrable. 
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If we take for example for x > 0, f (x)  = x ~ with :~ < 1 or 

then 

f(x)={211nxfwithfor x>le /~>1 and x~(0 ,1 )  

supF(i)-< 1 dx 

The following corollary improves Theorem (3.8) of [-8] in the sense that 
condition c) in that theorem (requiring (1.1) for translations along the sequence) 
may be dropped. 

(3.9) Corollary. Let {Xi; i>1} be a (p-mixing sequence of L2-integrable random 

variables, such that the set { ~ ; i> 1} is uniformly integrable and (p,=O 1 
where L,  is a sequence satisfying 

1 
a) 2 - - < 0 0 ,  

n nLn 

c) L,, is eventually non-decreasing. 
Then W n is R-mixing with limiting process W. 

1 
Proof We define f((pn)=n/~-, and note that by Remark (3.7) to verify the 

conditions in Theorem (3.4) amounts to show that F(i) converges. Under 
conditions of this corollary we have 

i--2 i--2 { 1 
F(i)-- 

m=l f((pm) = m=2 ~f(~m) 

--o '-2 [-mLm- (m- 1)L.,_ lJ} 
{m~_l m/-Jrn m=l 

and the result follows. 
The following corollary shows that the mixing rate used by McLeish in 

Corollary (2.11) of [-9] may be also obtained from Theorem (3.4). 

(3.10) Corollary. I f  {Xi; i> 1} is a (p-mixing sequence of centered, L 2 integrabIe 
random variables such that the set {X~Z; i>  1} is uniformly integrable and 

k=l n- 

then W, is R-mixing with limiting process W. 
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Proof Wedef ine  f(qok) ( ~1 ~n)  -1/2 = . The condition f((p~) < oc, implies that 
"= k k=l 

n'f((p,)--,O as n ~ o ~ .  Therefore (pk< k ~-<f((pk) for all sufficiently large k. 

i= 1 (pl 
We have: 

We denote 

, - z  , -2  A 1 qOk--ePk+l 
F(n) = ~ - Z f((Pk)((pk-- (pk+ 1) )~ - -"  

k= 1 f(Pk) k= 1 i= 1 (pi 

k ) i  1 
So = 0, = % -  (p j + l  - 

j= 1 i=1 (Pi 

and we note that S~ < k. Consequently: 

. - 2  n-3 
F(n)= ~ f(%)(S'k--S'k_0< ~ ( f ( (pO-- f (% 1))k+(n-2)f((p,  2) 

n--3 
< ~ f((pk) + (n-- 2)f((p, 2)- 

k=l 

Therefore F(n) converges, and the corollary follows by Remark (3.7). [] 

Taking now f ( x ) = x  for x>0 ,  we observe that F(i)< ~' dX<[ln(pi ] and by 
x Theorem (3.4) follows" ~ 

(3.11) Corollary. I f  {Xi; i> 1} is a (p-mixing sequence of L 2 integrabIe random 
variables centered at expectations, satisfying 

a) ~ (pk<oc, 
k=l 

b) lim ~ X 2 dP [ln ((p~)l = 0 uniformly in i, then W, is R-mixing with limit- 
c~oo {x~>c} 

ing process W. 

4. Proofs 

(4.1) Lemma. Let { X , , ~ ;  n > l }  be a stochastic sequence satisfying (2.1). Then 
we have 

(4.2) S m = Z , , - U , ~ f o r  every m> l 
where U m is defined by (2.1) and {Z,,,J~m; re>l}  is a martingale. 

Proof. Put Z m = S,, + U,,. Clearly 

Em_ l (S~ + Um,,)=Sm_ l + U~_ l,,. 

But, by (2.1) the left side of the above equality converges in L 2 to E,,_ 1Z,, and 
the right side to Z,,. 
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(4.3) Lemma. Let {X~,~,; n > l }  be a stochastic sequence satisfying (2.1) and 
X 2 _ (2.2). If  { i; i> l} is uniformly integrable then the set 

(4.4) {max(SJ+nSk)2 } ; k > l , n > l  

is uniformly integrable. 

Proof Using the definition of Z n, 

( (Zj+k--Zk) 2 Uk) 2) max (SJ+k-Sk)2__<2 max ~-max (Uj+k-- 
j<~n n \j<-n n j<n n 

But 

Iax(U~+k--Uk)2<2 (k+" u'2 Fk -J +u~  
j<n n \ n 

Therefore on account of Theorem 20, p. 36 of I-6], the set 

{max (Uj+k n Uk)2; k > l ,  n > l }  

is uniformly integrable. 
Now, again by (4.2) we have: 

( z k  - z k _  1) 2 __< 3 ( x ~  2 2 + Uk + Uk- 1) 

for all k => 1, whence by the hypothesis of this lemma it follows that the set {(Z k 
- Z  k_ 1)2; k=> 1} is uniformly integrable. 

The proof of the fact that 

t (Sk+j - -Sk )2  } max ; k > l ,  n > l  
[. j<n n 

is uniformly integrable is similar to that of Theorem 23.1 of Billingsley, [1], 
where instead of stationarity, we use the uniform integrability of the martingale 
differences {(Z k - Z k_ 1) 2 ; k > 1 }. 

Proof of Theorem (2.3). By I-1], Theorem 8.4 adapted to D, the tightness 
condition will follow if we prove 

lim 22 P (max ISk+ j - Ski > 2n 1/2) = 0 

uniformly in (n, k). This follows from the uniform integrability of the set 

I m a x ( S k + j - - S k ) 2 " k > l ' n > l }  
(. j<n n 

which is shown in Lemma (4.3). Theorem 15.5 of [1] also shows that any weak 
limit process of W, must be a.s. concentrated on the continuous functions. 

Let d be the Skorohod's metric on D. 
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(4.5) Lemma. I f  Z,  is R-mixing with limiting process W and d ( W , , Z , ) - ~ O ,  
then W, is R-mixing with the same limiting process W. 

This is a minor extension of Theorem 4.1 of [1] and may be proved in a 
similar fashion. 

Let Z,  be defined by (4.2) and put 

V. ( t )  = Z[ , , ]  t ~ [0, 1] 
nl/2 G' 

V, is a random function from (s ~ )  into (D, N). 

(4.6) Lemma. Let {X, ,Y,;  n>=l} be a stochastic sequence satisfying (2.1) and 
(2.2). I f  V~ is R-mixing with limiting process W, then W, is R-mixing with the 
same limiting process W. 

Proof. To use Lemma (4.5) it is enough to show that 

for each positive e. 
Clearly 

We have 

P(d(W,,,V,)>=O---~O as n-~oo 

{ [U,t \ 
P(d(W,,V,,)>e)<_P sup ~ > ~ / .  

- -  \ l  <=k<=n n / G ] 

P(sup I kL> ) 
\1  <_k<_n H1/2G 

i )" /IUk[ > _<_~ 1 
- -  k= 1 k= 1 3 2 n G 2  {U 2 >nt7282} 

Because the set {U2; re> l}  is uniformly integrable we have that for every 
~>0: 

P(d(W,, V,) > 0  < a  

Proof of Theorem (2.4). We shall prove that the conditions of Theorem (5.1) of 
McLeish (1975) are satisfied for martingale differences {Z n - Z , _  1; n >= 1}. 

The first condition is 
a) The set {(Z, - Z,_ 02 ; n_->l} is uniformly integrable. This is already 

established in the proof of Lemma (4.3). 
We verify now the second condition. 

n 

__ ~,  2 2 (m, k, n)--~ ~ such that m < k. b) 1 Ek-~.(Z~+i--Zk+~ 1) -EF  ~ as 
n/  _---1 

By (4.2) and the Cauchy-Schwarz inequality, we have 

1 
- E I ( Z ~  + .  - Z k ) ;  - -  ( S k + ,  - -  S~)2 i  
n 
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g 2 On account of the fact that the set { k; k > l }  is uniformly integrable 
1 
-E(Uk+,--Uk)2-+O as n--,oo, and by Lemma (4.3) the sequence 
F/ 

{ 1 E ( S k +  n --Sk)2, n ~  1} is bounded. Then 

1 
(4.7) --]5']{Zk+n--Zk}2--(Sk+n--Sk)21--+lJ,--"-- - - -  --- - - - '  ~ . . . .  _. as n ~  

n 

and b) follows from (2.5). 
The conditions of Theorem (5.1) of [8] are satisfied. Therefore V, is R- 

mixing with limit W, where W is a standard Brownian motion process on D. 

Proof of Theorem (3.2). If {X,; n > l }  is a sequence of differences of a mar- 
tingale in the L 2 limit then I[gm,,ll2--+0 as n>m-+oo. For fixed m and n<n', 
we have , >  Ilgm,-gm,.,ll2<l[g.,..l[2--+O a s  n = n ~ .  

Therefore {Urn,,; n>m} converges in L 2 for m fixed, to a stochastic sequence 
{ U,,, ~m; m>  1} and so the condition (2.1) is satisfied. Because [I Um,,H2 ~ 0 as 
n > m ~  ~ ,  it follows that {U,,; r e> l}  also converges in L 2 to 0, whence (2.2) 
follows. 

It remains to verify the condition (2.5). By (2.1) and the Cauchy-Schwarz 
inequality we have 

E [(Z~- Z,_ ~)2 _ X}] < E(U~+ ~ - U f  +2 HXi H 2 ]l Ui-rl -- UiH 2. 

Therefore (Z~-Z~_ 0 2 - X 2 . - - - ~ 0  and by (3.3) and (4.7), (2.5) holds, t L1 

From the proof of Theorem 2.2 of [133, we deduce the following: 

(4.8) Lemma. I f  {X,; n > l }  is a sequence of random variables centered at 
expectations such that for some C, IX~I < C a.s., then for m < i 

(4 .9)  ][IA E ( X i  I~m)H 2 ~ 2 C P ( A )  U2 (Pi- m 

for every A ~ Y.  

(4.10) Lemma. I f  the sequence {Xi; i>1} satisfies the conditions of Theorem 
f 1 

(3.4) then the set {max 2(Sk+ 
( i<=n n 

Proof. For positive C put 

and 

i--Sk)2; k> 1, n> 1} is uniformly integrable. 

X~i = Xi I{Ix, J <=c}, 

~=xT-Ex~ 

= x~-  x~ + E(X~- X). 

UdP, 
{u>y} 

Note that X i = Y~ + V/. 
Let us use the notation E (y) U = 

k+j  k+ j  
y y 

i=k+ 1 i=k+ 1 
Vii, and Sk(j)=Sk+j--Sk. 
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Then 

and hence 
S~(j) < 2(y2(j) + Vk2 (j)) 

/ +4e(max E (') (max <4-E('/4) (max ~2(j)). 
\ j<=n n ] n "<n t2 ,! = j<=n 

On account of the fact that 
i - 1  

m=O 

we have 

where 

k k+j--1 

gk(J)= Z Yk-,m (j)~- E Zk,  m(J) 
m~O m = k + l  

k+j 

Yk, m (j)~- E ( E i - m  Vi i -  E i - m -  x Vi) 
i=k+ l 

k+j 
z~,~0)= Z (~ mv~-E,_~_~v~). 

i = m + l  

(4.11) 

Obviously for fixed (k,m), re<k ,  {Yk, m(J), ~+~-, , ,  j > l }  and 
Y, . , j > 1} are martingales. It-t- j n'l = 

We have 

E (max 19k2 0")t 
\ j<=n l'~ ] 

[(2 max [Yk,m 
<2 E -0 J~, t-E 

Whence by Cauchy-Schwartz inequality, 

E (max 9kz(j)t <2 [ ~ k 1 
' ,j<. n / - n  o f(cp~) ~ - - E ( m ,  axYk2m(j)) 

= m=of((Pm) j=n ' 
k+n--1 ] k + . -  1 1 

+ ~ f(~o,,) Z ~, ,E(maxZ2m(jl) " 
re=k+1 m~k + l J((P,n} j=n ' A 

k+,-1 \21 E maxfZ ,., )fJ / 
m=k+l J=~ i . ] .  

{z~, ~(j), 

Using Doob's inequality (p. 317 of [3]), (3.5) and (4.11), we obtain for some 
positive constant K, 

l P?U)~ E | m a x - - /  
\ j<n Yl ] 

K f k 1 k+, 

k + n - i  1 k+n 
+ ~ ~ ~E(E~ ~Vy-~(E~_~ ~)~3 

K k+~ i-1 1 
=--n i=k+~2 ~ 0  f ~  [ E ( E i - m V 3 2 - E ( E ~  "-  1V32] 
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This inequality yields. 

K k+, ~EE2 i-1 
~-~-- 2 U(~)O) -~ m~=l ~(;m) 1 ] E(Ei_m g/)2 ] f(q~m_ i)I t'1, i=k+ 1 

By Theorem (2.2) of [13] 

E(E i_ ,,, V/) 2 < 4 <p~, E V~ z. 

Therefore, for some constant K 1 

< ~ k + n  r 1 i_ l  [ 1 1 11 
= n i=k+12  (xi- x )2 + = f((pm_ 1) 13 

K k+n [f((/)O)[ " ~_ (])m-1 i-2 1 --q)m+ 1) lj < - 1  E e(xi-x ) 2 +oZlyT2S )(+m �9 n i=k f(~0m-t) = 

The convergence in (3.6) being uniformly in i, we may choose and fix C, 
such that 

-Vk2(j)] 
E max for every n > 1 and k > 1. 

For this fixed value of C, we apply Lemma (4.3) to the sequence Y~. By 
Lemma (4.8) for n'_> n_> m, we have 

n' n" 
E(Y~I~-m) < 2 C  Z q)i-m- 

i=n 2 i=n 

Using (3.5) and the fact that f@k) >= ~Ok for all sufficiently large k it follows that 
t" n h 
~ ~,, E(YilY.,),n>m~ is Cauchy in L 2 for m fixed, and therefore (2.1)is 
[. - -  i=m+l ) 
verified. By the same argument it follows that for all m =< n 

i=m+l k=l 

which implies that the limit sequence {U~; m>  1} is uniformly bounded in L 1. 
This and (4.9) shows that the sequence { U~; m > 1} is uniformly integrable. 

By Lemma (4.3) it follows that the sequence 

is uniformly integrable, and therefore we may choose y sufficiently large such 
that -r/u)) 

E (r/4) (max < e/8 for every n>  1 and k__> 1. 
k j<n 11 ] 
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Then, for this value of y 

for every n>  1 and k >  1. 

S o :  

(4.12) Lfmax!(Sk+j--Sk)2;j<-n n > l ;  k>l} 
is uniformly integrable. 

For the proof of Theorem (3.4) we need the following theorem (Theorem 
19.2, 1-1]). 

(4.13) Theorem. Let {X,, n>  1} be a sequence of random functions in D with 
asymptotically independent increments such that {X,2(t); n>l} is uniformly 
integrable for each t, E(X~(t))-+0 and E(X2,,(t))-+t as n--+oo. Suppose that for 
each positive ~ and tl, there exists a positive (5 such that for all sufficiently large n 

(4.14) P(w(X, ,  ~) >= e) <__ t 1 

where w(x,(~) is the modulus of continuity of x. Then X ,  ~ W. 

Proof of Theorem (3.4). Since ~) ~ is an algebra generating a(W 1, W 2 ....  ) we 
n = l  

need only to verify that for arbitrary m and F ~  with P ( F ) > 0  it follows 
P(W,~ . [F)  ~ W. We shall apply Theorem (4.13) with P( . )  replaced by /7(.) 
= P ( .  IF), /~(.) by E(.IF). We have first to show that 
O<s 1 <ta < s 2 < t  2 ... < s , < t , < l  implies, for all linear Borel sets H~ .. . . .  H,, that 
the difference 

P{  wo( t , ) -  W,(si) s z-/i i = 1, 2, . . . ,  r} - ( I  P { w , ( t 3  - w,,(si) E n l}  
i=1 

converges to 0 as n ~  oo. This follows from the definition of (p-mixing se- 
quences by induction on r, as in the proof of the Theorem 20.1 of Eli, taking 
into account that for sufficiently large n, F~.Tt.t, ]. Tightness of the measures 
P ( W  n E. iF) and the uniform integrability of {W2(t), n >  1} for each t~ [0, 1], 
follow directly from (4.12). To verify that ff~Wn(t)-+O for every t, we note that 
for n sufficiently large F ~ ~1/2t]. 

Therefore 

~p~ !E[NIf2t](~'[Bt'--S2[nI/2t')dPJf-~E[S~ ( ) 

1 [2~,1/2 IlS[,,l-S2[,,/2tlll 2 ]lS2[,i/~tlll 2 
<P(F) [ 'e[,,~/=t] nil2 k nl/2 

and using (1.1) it follows that EW,,(t)-~O as n ~  oo. 
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By (1.1) EWn2(t)-+t as n--~ ~ .  Using the fact that 

we obtain by (1.1). 

and 

Therefore 

(4.15) 

S[2t] - ( S[nt] - $ 2[nl/2 t]) 2 

2 :S2[nl/2t]'J- S2[nl/2tj(S[ntj-S2[nl/2t]) 

- S  2 E S~,tl (St< nZt.~/2o) __~0 

s St~'l-n (St'l-S2t"~"J)2 --,0 

]J~ Wn 2 (t) -- E W  2 (t)l - E(SE'tl - ~ 2  tn*/z,l) 2 

as  t / - -~  o0 .  

as n--+ oe 

as  n---r oo. 

E(S[m] - S 2[nl/@2 --tO 
n 

If, for some positive C, we denote Ac:{JXt,t~-S2~nl/=,ll<=C } and 
Ac = {ISt, q-S2tnl/2tl [ > C} we obtain for n sufficiently large 

J~(S[nt] S 2 
- -  2[nl/211 ) E(S[ml-Si[nl/2t]) 2 

n n 

- 2[ni/2t]) __E(S[ntl-Sz[nZ/2tl ) < l  riB (S[nt] S 2 2 IA~ 

S 2 §176 I -~-E (S[ml-S2['r 1~c 
n ~[c /7 

p ~  S2[nl/2t])2 __< 2q~i,1/2tl C + E (St"t~- I~ .  
n 

By Lemma (4.10) we choose and fix C sufficiently large that the second 
F, 

term is less than ~. The first term can be made <~  for n sufficiently large. 

Therefore by (4.15) Iff~W.2(t)-EW~(t)l-~O as n--,oe hence ff~W.2(t)--+t as 
g / ~  GO. [ ]  
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