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Summary. This paper deals with the stable c-server queue with renewal 
input. The service time distributions may be different for the various 
servers. They are however all probability distributions of phase type. It is 
shown that the stationary distribution of the queue length at arrivals has an 
exact geometric tail of rate r/, 0<~/<1.  It is further shown that the sta- 
tionary waiting time distribution at arrivals has an exact exponential tail of 
decay parameter ~ >0. The quantities r /and  ~ may be evaluated together by 
an elementary algorithm. For  both distributions, the multiplicative con- 
stants which arise in the asymptotic forms may be fully characterized. 
These constants are however difficult to compute in general. 

1. Introduction 

Very few algorithmically tractable results are known for multi-server queues, 
except in the restrictive case where the service time distributions are exponen- 
tial. In this paper, we obtain results on the tail behavior of the stationary 
distributions of the queue length and the waiting time for a c-server queue 
with renewal input. The various servers are allowed to be heterogeneous, i.e. the 
service time distributions may be different for different servers. The c service 
time distributions are however required to be of phase type. 

If P,, and W(x) denote respectively the stationary probabilities that a 
customer arriving to the queue finds at least m customers in the system and 
that he has to wait for a time at most x, then we establish the asymptotic 
formulas 

P,,=Krlm+O(tlm), as m ~ o o ,  
and 

1-W(x)=Kle-~X+o(e-r as x-~ oo, 
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where K a =qCK. The constants r/ and ~, which satisfy 0 < q  < 1 and ~ >0, will 
be shown to satisfy a system of equations, which may easily be solved by 
elementary numerical procedures. The positive constants K and K 1 will be 
fully characterized, but their direct numerical evaluation is seen to be difficult, 
in general. 

In the course of the discussion, a number of results of theoretical interest 
on the GI/PH/c  queue with heterogeneous servers will be obtained. Because of 
the huge dimensions of the matrices, which arise in these results, their feasib- 
ility for algorithmic implementations is limited to particular cases. 

The proofs of the various results in this paper rely heavily on the elemen- 
tary properties of phase type distributions [4, 5, 8] and on the theory of block- 
partitioned stochastic matrices with a matrix-geometric invariant vector [6, 7, 
7]. Specific references will be given for each prior result, which is used, but no 
easily available proofs will be repeated. The particular results for the GI/PH/1 
queue were established in Neuts [8, 93. Corresponding results for the PH/PH/c 
queue with identical servers are discussed in Takahashi [113, while iterative 
numerical procedures for that model are proposed in Takahashi and Takami 
[I0]. 

The formal description of the model is as follows. Customers arrive to a c- 
server system according to a renewal process with interarrival time distribution 
F(.)  of finite mean 2'. The distribution F( ' )  satisfies F ( 0 + ) = 0 .  The service 
time distribution of a customer may depend on the server to which he gains 
access. Services by the j-th server, l<j<c,  have a common distribution 
of phase type, with irreducible representation [/~(j'), S(j)] where #(j) is a proba- 
bility row-vector of dimension v(j) and SO ) is a square, stable matrix of order 
v(j). The corresponding vector S~ is defined by S~  Throughout 
this paper, the symbol e will denote a column vector with all its components 
equal to one and of dimension appropriate to the formula in which it occurs. 
The mean service time #'(j) of the j-th server is given by #'(j)= -/~(j)S-l(j)e.  

It will be assumed that all service times are independent of the arrival 
process. For any k > 2  successive customers, the service times are assumed to 
be conditionally independent, given the labels of the servers by which they are 
processed. Under the stated assumptions, the model has a Markov chain, 
embedded at the successive epochs of arrival. Its states are of three types. For 
i>c, the state described by (i, hi, h e, ..., hc) signifies that, immediately prior to 
the arrival, there are i customers in the system and that for 1 <j<c, the j-th 
server is in the phase h~ of his PH-distribution. The set of all such states with a 
fixed index i will be denoted by i. The states ( c - 1 ;  h 1 . . . . .  he) are similarly de- 
fined, but one of the phase states now corresponds to the initial service phase, 
selected by the arriving customer. The remaining states correspond to the case 
where, prior to the arrival, there are fewer than c - 1  customers in the system. 
The precise labeling of these states is immaterial to our discussion. The set of 
all such states will be denoted by E. The states (i, ha .... ,hc), for i>c -1 ,  
l<=j<c, l<hj<v(j), are listed in lexicographic order. The states in E u ( e - 1 )  
are called the boundary states. 

In order to define the transition probability matrix /5 of the embedded 
Markov chain, we introduce the matrices Pj(r, t), for r__>0, t>0 ,  and l<j<c.  
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These matrices satisfy the differential equations 

P/(O, t)=Pj(0, 0s(j), (i) 
Pj(r, t)= P~(r, t)S(j)+Pj(r- 1, t) S~ ~(j), 

for r >= 1, with the initial conditions P~(r, 0)= 6to I, for r > 0. Their significance is 
the same as in [-5] or [-6]. 

We note that 

Pj(r, 0 z~ = exp {[,S(j) + zS~ ]~(j)l t}, 
r = O  

for t>0 ,  0_<z_<l. 
The matrices Ak, k > 0, are defined by 

(2) 

Ak = ~ ~ P1 (ra, t) | P2 (ra, t) |  | Pc (re, t) dF (t), 
o 

(3) 

for k>0.  The summation is over all c-tuples (rl,...,rc), which satisfy 
ra>0 . . . .  ,re>0, r a + ... +rc=k. The symbol | stands for the Kronecker product 
of matrices. As shown in [,6J, the matrices Pj(r,t) are positive for r > l ,  t>0 ,  
and 1 < j < c .  It is therefore clear that the matrices Ak, k>c ,  are positive. The 
matrices Ak, k > 0, are of order m, given by 

_L 
m= l [  v(j). (4) 

j = l  

From Formulas (2) and (3), it follows that 

A*(z)= ~ A~? 
k=O 
Oo 

= ~ exp {[,S(1)+ zS~ (1)J/(1)l t} |  | exp {[-S(c)+ zS~ t} dF(t). 
o (5) 

The matrix A*(z) is positive for 0 < z <  1. 
The transition probability matrix t5 is now given by 

E c - 1  I I e c + l  c + 2  c + 3  

0 0 0 0 
A o 0 0 0 

E 
c - - 1  

P= c 
c + l  
c + 2  
c + 3  

A~ A 0 0 0 
A 2 A 1 A 0 0 
A3 A2 A1 Ao 
A4 A3 A2 A1 

(6) 
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The elements in the columns, labeled E and e - l ,  are immaterial to our 
discussion. They are, in general, exceedingly complicated and depend on the 
rule by which arriving customers are assigned to free servers. Explicit, but 
highly involved expressions are given for the case c = 2, in Chap. 4 of [8]. In all 
properly defined cases, the matrix P is irreducible. 

The matrix A =  ~ Ak=A*(1), is a strictly positive, stochastic matrix. Let 
k=0 

0(j) be the positive probability vector satisfying 

O(j)[S(j)+S~ =0 0(j) e = 1, (7) 

for 1 < j <  c, then it readily follows from (5) that the m-vector re, which satisfies 
r~A=~, ~ e =  1, is given by 

rc = 0(1) |  | O(c). (8) 

By using elementary formulas, proved in [-5], we may also express the 

vector ~*= ~ kAke , explicitly in terms of the data of the model. We then 
k = l  

easily verify that 

rcfl*=2' ~ #,-1(/.). (9) 
j = l  

As shown in Chap. 1 of [8], the Markov chain P is positive recurrent if and 
only if r~fl* > 1, or equivalently 

,~,-1< ~ ~,-1(]). (10) 
j = l  

The arrival rate 2'-1 to the queue must be less than the combined service rate 
of the c servers. This intuitive equilibrium condition may also be proved by 
applying the main theorem in Lavenberg [3]. 

The invariant probability vector x of P is now partitioned into vectors x~, 
xc_l, xc, xc+ 1 . . . .  , where the vectors xi, i>c-1,  are m-vectors and the vector 
x E is of dimension card (E). 

It then follows from general results, proved in [7] or [8], that 

x i=xc_ lR  i-c+1, for i>c-1,  (11) 

where the positive matrix R is the minimal nonnegative solution to the non- 
linear matrix equation 

R= ~ RkAk. (12) 
k=0 

The vectors x E and xc_z are determined, up to a multiplicative constant, by 
solving a homogeneous system of linear equations. That constant is determined 
by use of the normalizing equation 

x~e+x~_ 1 ( I -R)  -1 e = l .  (13) 
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The spectral radius r/= sp(R), is the unique solution in (0, 1) of the equation 

z=X(z), (14) 

where X(z) is the spectral radius of A*(z). The matrix R is also the unique 
nonnegative solution of spectral radius less than one to the Eq. (12). 

2. Preliminary Results 

The probability distribution of phase type with irreducible representation [,6(]), 
S(j)] has a rational Laplace-Stieltjes transform, given by 

4)j(s)=flU)[sI-S(j)]-lS~ for Re s>0.  (15) 

Let the abscissa of convergence of q~j(s) be -z~<0.  The function 4~(s) is then 
defined, positive and convex decreasing on the interval (-~,j, oo). 

Lemma 1. The equation 
zc~j(s) = 1, (16) 

has a unique real solution sj=0j(z), for every z in (0, 1]. The function Oj(') 
satisfies - z < 0 j ( z ) < 0  , and is strictly increasing on (0, 1]. Moreover 0 j ( 0 + ) =  
- 5 ,  and t/J)(1)=#'-l(j). 

The quantity Oj(z) is the eigenvalue of maximal real part of the matrix S(j) 
+zS~ flU). The corresponding left eigenvector u(j, z), normalized by u(j, z) e 
= 1, is given by 

u(j,z)=z(z-1)-lOj(z)ig(j)[O~(z)I-S(j)] -1, for 0 < z < l ,  
(17) 

= 0(j), for z -  1. 

Proof. Essentially the same results were proved in [111 . For easy of reference, 
we repeat the proof. The first set of properties of O3(z) follow readily from 
consideration of the graph of ~b~(s) and from the Eq. (16). The equation 

u(j, z) [SO) + zS ~ (j)/~q)] = #,y(z) u(j, z), (18) 
leads to 

u(j, z) = z [u(j, z) S ~ (J)] fl(J) [0~(z) I - S(j)] -1 

Postmultiplication by S~ leads to z4~[0j(z)]=l .  The inner product 
u(j,z)S~ does not vanish, since the matrix Oj(z)I-S(j) is nonsingular for 
0 < z < l .  

The vector u(j, z)= ~ exp [-O~(z) t].  f(j) exp [S(J) t] dr, is positive, since the 
0 

vector fl(j)exp[S(j)t] is positive for t>0 ,  as was shown in [61. This implies 
that the eigenvalue Oj(z) of the irreducible stable matrix S(j)+zS~ is the 
eigenvalue of maximal real part. The normalization u(] ,z)e= 1, readily yields 
(17). 
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Lemma 2. The maximal eigenvalue Z(z) of A*(z) is given by 

Z(z)=f[-j~=l~/j(z)], for O<z<l, (19) 

where f(.)  is the Laplace-Stieltjes transform of the interarrival time distribution 
F('). The corresponding eigenvector n(z) is given by 

u(z) = u(1, z) |  | u(c, z). (20) 

Proof. The vector u(z) is clearly positive and satisfies u (z )e= l .  It readily 
follows from (18) that 

u (j, z) exp { [S (]) + z S o (]) fl (])] t } = exp [~bj (z) t ]u  (j, z), 

and hence by (5), that 

u(z)A*(z)= f [ -  ~=l ~bj(z)]u(z). 

This clearly implies (19) and completes the proof. 
Let now t/ be the unique solution in (0, 1) of the Eq. (14). The vector u(t/) 

=u(1, r/) |174  t/), is then given by 

u(j,~)=tl(~]--I)-II/tj(I~)I~(])EI~Ij(I~)I--S(j)] -1, for l <=j<c. 

As shown in Chap. 1 of I-8], the vector u(r/) is also the left eigenvector of the 
matrix R, corresponding to its Perron eigenvalue r/. 

3. Asymptotic Behavior of the Queue Length Density 

Theorem 1. The stationary density of the queue length at arrivals satisfies 

~xie=(1--tl)-l(xc_lZ)rlk-C+l+O(rlk), as k ~ ,  (21) 
i= k  

where z is the right eigenvector of R, corresponding to the eigenvalue r 1 and satis- 
fies u(~/) z -  1. 

Proof Let us write u for u(r/). A classical property of irreducible, nonnegative 
matrices now yields that 

Ri=rlizu+o(tfi), as i--+ oo. 
Since 

~ xie=xo_lRk-C+l(I-R)-le, 
i = k  

Formula (21) readily follows. 

Remark. We clearly also have 

Xi  = X c _  l R i - c  + l =- ti i c + l ( X c _  l g )  n + o ( t l i ) ,  as i--+ oo. (22) 
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This implies that 

xi  - - - ~ u ,  as i--+ oo. (23) 
x~e 

The left hand side is the conditional probability density of the c-tuple of 
service phases, given that the arriving customer finds i customers in the queue�9 
For large i, we find that the joint conditional contribution of the c residual 
service times has the limit distribution with c-fold Laplace-Stieltjes transform 

h(s I . . . .  , so)= u. {[-slI- S (1)] -1 SO(l)| | [-sfl-S(c)]-1 SO(c)} 

= (I  uq, ~)[sfl-s(j)] - ~  s~ 
j = l  

We see that for large i, the conditional residual service times in the c servers, 
given that the arriving customer finds i customers in the system, are approxi- 
mately independent. The marginal distribution of the residual service time for 
the j-th server is then approximately the PH-disribution with representation 
[-u(j, t/), SO)], for l<-_j<c. 

4. Asymptotic Behavior of the Stationary Waiting Time Distribution 
at Arrivals 

Once the vector x c_1 and the matrix R are known, the probability distribution 
W(.) of the waiting time at arrivals under the first-come, first-served discipline, 
may be computed by solving a finite, highly structured system of differential 
equations with constant coefficients. This will be shown by generalizing the 
proof, given for the case of the GI/PH/1 queue, in [8] or [-9]. For multi-server 
queues, the practical utility of this result is severely limited by the dimension 
m. The proof of this result is however essential to the derivation of the desired 
asymptotic formula for W(-). 

Let the matrices C and D be defined by 

C = S(1) | S(2) @... | S(c), (24) 
D = S ~ (1) ]~ (1) | S O (2) fl (2) @... | S O (c) fl (c), 

where the symbol @ is the Kronecker sum of matrices [-1]. The distribution 
W(.) may be viewed as the distribution of the time till absorption into the 
state �9 in the Markov process with generator Q, given by 

Q= 
c 

c + l  
c + 2  
c + 3  

* c c + l  c + 2  c + 3  

0 0 0 0 0 ... 
De C 0 0 0 ... 
0 D C 0 0 ... (25) 
0 0 D C 0 ... 
0 0 0 D C ... 
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x~e+xc_ t e, xc_ t R, xc_lR 2, .... 

It is readily seen that the Laplace-Stieltjes transform w(s) of W(.) is given 
by 

W(S)=XEe+Xc-1 ~ Ri[( s I -C) -1D] i  e 
i=O 

--xEe+Xc_ ~ ~*(s) e, 

where tp, (s) is the square matrix of order m, which satisfies 

T*(s)=I +R tP*(s)(sI- C)-~D. 

(26) 

(27) 

The Eq. (27) is now transformed in the same manner as discussed in [9]. If 
~P(') is the matrix of mass functions with Laplace-Stieltjes transform 7J*(s) and 
~,(x) is the mLvector obtained by forming the direct sum of rows of 7~(x), then 
we derive from (27) that 

0(x) = i~-v( I  | C+Rr |  -1 {I | I -  exp [ ( I |  C+Rr|174 

for x>0 .  The vector v is the m2-vector obtained by forming the direct sum of 
the identity matrix. R r is the transpose of the matrix R. 

We now set v ~ 1 7 4  C+Rr |  -I, and 

O(x)=v~174174  for x_>_0. 

The m x m matrices V ~ and O(x) have the vectors v ~ and O(x) as the direct 
sums of their respective rows. They satisfy the equations 

V ~ C +R V~ = - I ,  (29) 

and 

O'(x)=O(x)C+RO(x)D, O(0)= V ~ , (30) 

for x_>0. 
By virtue of (28), the matrix T(x) is then given by 

tP (x )=I+RV~ for x>=O. (31) 

The distribution W(-) is given by 

W (x)= x~e + xc_ l e + xc_ a R V~ D e -  xc _ l R O (x)D e, (32) 

for x>0 .  This expression may be further simplified. We post-multiply in (29) 
by e and note that C e + D e = 0 .  This yields that V~ Upon 
substitution into (32). we readily obtain 

W(x)=l -xc_~RO(x)De ,  for x>=0. (33) 

We see that the probability distribution W(-) may, in princaple, be computed 
by first evaluating the matrix V ~ and then solving the matrix-differential Eq. 
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(30). In order to obtain the asymptotic formula, we need a number of pre- 
liminary lemmas. 

Lemma 3. The matrix C +tlD , given by 

C + t/D = [S(1) + t/S ~ (1)/~ (1), 1 |  �9 [S (c)+ t/S ~ (c) ~(c),l, (34) 

is an irreducible, stable matrix. Its eigenvalue - ~  of maximal real part is given 
by 

-~= ~ ~,j(t/). (3s) 
j=l 

The corresponding left eigenvector is given by u=u(t/). The corresponding right 
eigenvector u ~ normalized by u u ~  is given by the Kronecker product u ~ 
= u ~ (1) |  | u ~ where 

uO(j)= t/-1 
rl~i(t/)" fl(])rtpj(t/)I_S(])]_2sO(]). [~[Ij(t/)I-S(])]-lS~ (36) 

for l <=j<=c. 

Proof Since each of the matrices S(])+tiS~ l< j<c ,  is an irreducible 
stable matrix, so is the matrix C+tlD, rll ,l  . The matrix C+t/D is the sum of c 
matrices of the form 

~ | 1 7 4  o rs( / )+  t/s~ fj) - # ( / ) - Io t  o . . . o i .  

This readily yields, by (18), that 

u(C+t/o)= ~ 4Jj(t/).u. 
j=l 

The vector u~ is clearly a right eigenvector of S(])+t/S~ . fl(j), correspond- 
ing to ~j(t/). Furthermore u(j, t/)u~ 1. Since 

uu~ = (I u(/, t/)u~ 1, 
j=l 

the proof is complete. 

Lemma 4. The matrix I |  C + R T | D has nonnegative off-diagonal elements and 
is irreducible. Its eigenvalue of maximal real part is -4 .  The corresponding left 
and right eigenvectors are respectively given by zT|  and u r |  ~ Their inner 
product is one. 

Proof The off-diagonal elements of I | 1 7 4  are clearly nonnegative. 
The irreducibility of the matrix 1 @ C + Rr@ D follows from the positivity of R 
and the irreducibility of the representation of the service time distributions. 

We have 

(zT | U)(I | C+RT|  

= z T | 1 7 4 1 7 4  = --  ~(zT (~ U), 
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and a similar calculation for the right eigenvector. Since both eigenvectors are 
positive, - ~  is the eigenvalue of maximal real part [2]. 

L e m m a  5. The vector v ~ 1 7 4  C + RT | -1, satisfies 

v o (u r | u o) = ~ - i. (37)  

Also 
u D e =  ~(1--r/) -1 . (38) 

Proof It follows from the definition of v ~ that 

V~174176 --V(I|  C+RT|174174176 

However 

~ uluO~ 

u |176 e2' " '  em] [ u2"uO ] :  v=l ~ uv(evu~176 = 1" 

Lu~u~ 

The vectors e~ are the m unit-vectors of dimension m. This proves Formula 
(37). 

A typical term of De is the Kronecker product e |174174174176174174174 
Premultiplication by u=u(1) |  | yields 

u(j) s~ ~ ( ~ _  1)-1 ~j(~) p(i) [4,j(~)I- s(/)]-i s~ 

: (u - 1 ) - 1 0 j ( ~ ) ,  
so that 

u D e = ( r / - 1 )  -1 ~, 0 j ( t / )=~(1- t / )  -1. 
j=l 

Theorem 2. The waiting time distribution W(') satisfies 

1-W(x)=rl(1-~)-l(xc_iz)e-~X+o(e-r as x~oo. (39) 

Proof It follows from the definition of the vector O(x) and the properties of the 
matrix I |  C+RT| that 

O(x) = v ~ [(u T | u~ �9 (z r @ u)]  e -  Cx + o ( e -  ~x) 

= ~-~(zr @ u) e - ~  +o(e-~X), as x--, oo. 

The vector z r |  is the direct sum of the rows of the matrix z .u .  The 
preceding formula may therefore be equivalently written as 

O(x)=~-l(z.u)e-~+o(e-r as x ~ o o .  

Substitution into (33) yields 

1-W(x)=~-l(X~_lRZ)(uDe)e-e~+o(e-e~), as x--* oo. 

Since Rz=r /z ,  and by using Formula (38), we readily obtain (39). 
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Remark. Results, similar to those in Theorems 1 and 2, may be proved for the 
stationary distributions of the queue length and the waiting time at an arbi- 
trary time. The proofs proceed along the same lines as in the single server case, 
discussed in [9]. The same decay parameters t/ and ~ are obtained, but the 
multiplicative constants are different. 

5. Computational Procedure and Applications 

The decay parameters t/ and ~ may be computed together by elementary 
algorithms. There are various alternative methods. It is advisible to solve the 
equation 

for t/ in (0, 1) by a method which does not involve derivatives. The secant or 
bisection methods may be implemented with equal ease. 

At each stage of the computation, we have two values z 1 and z 2 satisfying 

C 

since the right hand side of (40) is increasing. As the next trial value z' is 
obtained, either by bisection or the secant method, the corresponding values 
qJj(z'). 1 < j  < c, are computed by solving the equations 

z fl (j) [~bj (z) I - S (])] -1 S o (]) = 1, (41) 

for their unique solutions in the intervals ( - z j ,  O), l<j<c. One clearly only 
solves those equations which are actually different. The monotonicity proper- 
ties of the Oj(z), proved in Lemma 1 are useful in solving the Eq. (41). When 
the interval (zl, z2) , which brackets t/ is sufficiently small, we evaluate a final 
value 0, which is the computed value of r/. The computed value ~" of ~ is 

obtained by setting ~ ' = -  ~ ~j(0). 
j=l 

For many PH-distributions of interest, the Laplace-Stieltjes transform is, of 
course, explicitly available, so that the Eq. (41) can then be written in a 
computationally more convenient form. 

Except for queues with a very small number of servers and then only for 
PH-distributions with few phases, the computation of the matrix R, and hence 
of the vectors xc_ 1 and z, is not practically feasible. Even without explicit 
knowledge of the constant xc_ t z, the asymptotic results of Theorems 1 and 2 
have practical uses. 

With t/ and ~ so easily computable, these results may be used to test the 
merits of simulation procedures for the queue length and waiting times in 
multiserver queues. The estimates of - l o g [ 1 -  W(x)], for example, should for 
large x lie approximately on a straight line of slope ~. Assuming that the 
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simulation procedure can correctly identify the parameter 4, it should also be 
sufficiently accurate to provide a good estimate for the intercept of the linear 
asymptote of - l o g  [-1- W(x)]. We will then have an estimate of xc_lz, which 
may be used in the asymptotic formulas to provide'estimates of tail probabili- 
ties for the queue length and waiting time. 

As a point of theoretical interest, it appears likely that the asymptotic 
results of Theorems 1 and 2 remain valid for the GI/G/c queue with hetero- 
geneous servers, provided that each of the c service time distributions have a 
Laplace-Stieltjes transform with a negative abscissa of convergence. This may 
probably be proved by appropriate continuity arguments and the approxima- 
tion of the service time distributions by PH-distributions. This matter, as well 
as the applications to simulation methodology, will be taken up elsewhere. 
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