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Summary. Let {P0n: 0eO}, O an open subset of R k, be a regular parametric 
model for a sample of n independent, identically distributed observations. 
This paper describes estimates {Tn; n> l}  of 0 which are asymptotically 
efficient under the parametric model and are robust under small deviations 
from that model. In essence, the estimates are adaptively modified, one-step 
maximum likelihood estimates, which adjust themselves according to how 
well the parametric model appears to fit the data. When the fit seems poor, 
Tn discounts observations that would have large influence on the value of the 
usual one-step MLE. The estimates {T,} are shown to be asymptotically 
minimax, in the H~jek-LeCam sense, for a Hellinger ball contamination 
model. An alternative construction of robust asymptotically minimax es- 
timates, as modified MLE's, is described for canonical exponential families. 

1. Introduction 

The most satisfactory account to date of what constitutes optimal estimation in 
large samples from a parametric model is provided by the H~jek (1972) and 
LeCam (1972) asymptotic minimax theorem. Foreshadowed by earlier work, 
notably geCam (1953), the paper by Dvoretzky, Kiefer, Wolfowitz (1956) on the 
empirical c.d.f., and a result attributed to C. Stein and to H. Rubin in Chernoff 
(1956), the asymptotic minimax theorem has several desirable features. Asymp- 
totic optimality is established over the class of all procedures; for the regular 
models of classical parametric estimation theory, the asymptotic minimax 
theorem leads to the most general form of the Fisher information bound; 
parametric models which are not regular in this sense can also be treated. Off- 
setting these virtues is the fact that the theorem refers only to the local behavior 
of procedures in large samples. Nevertheless, asymptotic minimax is a powerful 
criterion for identifying good statistical methods. 
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Recent work has explored asymptotic minimax ideas in more complicated 
statistical contexts, including nonparametrics and robust estimation in para- 
metric models. (For examples of the former, see Koshevnik and Levit (1976), 
Moussatat (1976), Millar (1979); for the latter, Beran (1980).) In some problems, 
such as nonparametric estimation of a c.d.f., familiar procedures turn out to be 
asymptotically minimax. However, in other areas, such as robust estimation of a 
parameter or nonparametric density estimation, asymptotically minimax pro- 
cedures are not obvious and may depend strongly upon the mathematical 
formulation of the problem. The understanding of possibilities to be gained in 
such cases makes the search for asymptotically minimax procedures particularly 
interesting. 

Robust estimation in parametric models is our present theme. As in an 
earlier paper (Beran, 1980), we take the fundamental goal of robust estimation to 
be the estimation of the actual distribution of the sample. A parameter estimate 
determines a fitted parametric distribution, that member of the parameter model 
which is identified by the parameter estimate. The fitted parametric distribution 
is regarded as an estimate of the actual distribution. Questions of efficiency and 
robustness are addressed by comparing the fitted parametric distribution with 
the actual distribution. Where this paper and the earlier one differ importantly is 
in the contamination model - the set of distributions outside the parametric 
model which are regarded as possible for the data. The larger set treated in this 
paper leads to a more interesting and, we hope, more useful theory of robust 
estimation. 

Let {P0n: 0~O} denote the parametric model for a sample of size n; let T n be 
an estimate of 0 based upon this sample; and let Q" be the actual distribution of 
the sample. The adequacy of P~, as an estimate of Q" can be measured by the 
maximum risk, sup Eo, l[d(P~n, Q")], attained over all probabilities Q" in some 

Q- 
neighborhood of P0". Here d is a metric on probabilities and l is a reasonable loss 
function. The goal is to find an estimate T, which minimizes the maximum risk, 
at least for all sufficiently large sample sizes. 

Further developments in this approach to robust estimation depend on 
several choices. Apart from some technicalities, it will be assumed in this paper 
that d is Hellinger metric; l is non-negative and monotone increasing; the 
probabilities P0" and Qn are product measures; the marginal probabilities 
{P0: 0sO} are quadratic mean differentiable in 0; and the neighborhood of P0 " to 
which Q" belongs is a Hellinger ball. The most significant of these choices, from 
the viewpoint of robustness, are the first and last. 

As will be shown, these specific assumptions result in an optimistic robust- 
ness theory under which adaptively modified, one-step maximum likelihood 
estimates of 0 are asymptotically minimax. These optimal robust estimates {T,} 
adjust themselves according to how well the parametric model {P0": 0~ O} ap- 
pears to fit the data. When the fit seems good, T, is virtually identical with the 
usual (LeCam, 1956) one-step MLE of 0; however, when the fit seems poor, T, 
discounts observations that would have unduly large influence upon the value of 
the one-step MLE. The transition in the behavior of T, occurs continuously 
according to the estimated degree-of-fit of the parametric model. Moreover, the 
{T,} are asymptotically efficient as estimates of 0 within the parametric model 
{P0": 0~o}. 
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It is interesting that relatively simple decision theoretic considerations based 
upon a Hellinger ball contamination model should lead to estimates {Tn} which 
embody two older themes in refined form: the idea that robustness can be 
achieved through sensible adaptation (cf. the review paper by Hogg (1974)); and 
the idea that asymptotic efficiency at the parametric model is compatible with a 
reasonable amount of robustness (Beran, 1977, 1978). 

The Hellinger ball contamination model might be questioned on the grounds 
that it fails to allow for round-off errors in the data and, therefore, must be too 
restricted. Actually, rounding-off of observations causes no conceptual difficulty 
if, in modelling, densities with respect to Lebesgue measure are re-interpreted 
(after rescaling) as densities with respect to a more realistic counting measure. 
We would also argue by results. The non-robustness of the sample mean is 
already evident under the Hellinger ball contamination model (Example 1 of 
Sect. 2); the corresponding asymptotically minimax estimates {Tn} appear ro- 
bust. Fuller discussion awaits practical experience with these estimates and the 
investigation of asymptotically minimax estimates for other, more severe, con- 
tamination neighborhoods. 

The technical results are organized as follows. Section 2 gives an asymptotic 
lower bound for the maximum risk achieved by any estimate of 0 over a 
Hellinger ball contamination neighborhood. The existence of robust estimates 
{T,} whose maximum risk attains the lower bound asymptotically is demon- 
strated by the constructions in Sects. 3 and 4. Section 3 handles the general case 
of quadratic mean differentiable models, while Sect. 4 describes adaptively 
modified maximum likelihood estimates which work in canonical exponential 
families. 

2. Asymptotic Minimax Bound 

The following notation is useful in expressing the assumptions and results of this 
paper. Let H be the set of all probabilities on a measurable space. Define a set H 
as follows (cf. Neveu (1965), p. 112; Koshevnik and Levit (1976)): A typical 
element of H is a pair (4, P), usually written ~(dP) ~/2, such that P ~ H  and ~ is a 
random variable in L2(P ). For simplicity, the element l(dP) ~/2 is written as 
(dP) ~/2. Suppose that ~ (dP)l/2 and r/(dQ)~/2 are elements of H and that y = 2-1 (p 
+ Q). Define the inner product 

ldP~ 1/2 [dQ~l/2d~ (2.1) 
(~(dP) 1/2, q(dO) */z) =5 ~q \dfil \dyl 

and, for arbitrary real a, b, the linear combination 

a~(dP)i/2+btl(dQ) 1/2= [a~ (~fi)fdp\l/2 +btl (dQ~ 1/2]] (dy) ~/2. (2.2) 

The corresponding norm I1" I] on H is given by 

11 r 1/2 ]l 2 = (~(dp)l/2, ~(dp)l/~) 
= y ~a dp" (2.3) 
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In particular, H(dP) 1/2 - ( d Q )  1/2 ]l is the Hellinger distance between the probabili- 
ties P, QeFI. The elements {(dP) 1/2 and tl(dQ) 1/2 of H are said to be equivalent if 
][~(dP) 1/2- rl(dQ) 1/211 =0. The set /J of equivalence classes in H forms a Hilbert 
space with the above inner product and norm. 

Suppose ~b=(~bl, ~b2, ..., q~,)' is a random vector whose components lie in 
L2(P ). Then 4(dP) 1/2 represents the vector  (~l(dP) 1/2, 02(dP) 1/2 . . . . .  ~n(dp)l/2) ' 
and IlO(dP)l/2112 means 51412dP. Similarly, if ~l(dQ) 1/2 belongs to H, 
((o(dP) l/2, tl(dQ) V2) denotes the column vector of componentwise inner pro- 
ducts. 

Let {P"=P0 x P0 • .-- • P0 n-times: 0eO} be the parametric model for a sam- 
ple of size n. Suppose that Q" = Q x Q x ... x Q n-times is the actual distribution 
of the sample. Both {P0: 0eO} and Q are probabilities on a Euclidean space ~r 
with Borel a-algebra M. The {P0: 0~O} are assumed to satisfy the following 
regularity conditions. The parameter space O is an open subset of R k. The 
mapping 0-+ P0 has the property that 

(i) for every 0cO, there exists tloeL~(Po) such that 

lim I tl - 111 (dPo + , )1/2 _ ( d P o ) l / 2  _ C Wo(dPo) 1/z  II = 0;  
t ~ 0  

(ii) for every 0~0, the Fisher information matrix 

I (0)=4 Y tlo~'odP o 

(2.4) 

(2.5) 

is non-singular. It is clear that the quadratic mean derivative q0 is unique, up to 
equivalence in L~(P0), and that y qodPo=O. 

Let T, be an estimate of 0 based upon the sample of size n. The risk of T, 
discussed in the introduction is a function of the squared Hellinger distance 
ql(dp~, )l/2 _ (dQn)l/2 [] 2. Since 

LI(dP~,)l/Z-(dQ")I/ZIIZ=2-2{1-Z-lIi(dPT~)l/2-(dQ)l/2H2} ", (2.6) 

it is equally reasonable, in the i.i.d, sampling situation, to consider risks which 
depend on T, through II(dPTy/2-(dQ)l/2[I2. Suppose Q" lies in a Hellinger ball 

centered at Pd and of radius less than l/2. Replacing (dPr,) 1/2 with the hyper- 
plane approximation implied by (2.4) suggests risks which are functions of 

II (7-, - 0)' ~lo(dPo) 1/2 + (dP0) 1/2 - (dQ) 1/2 IL 2. (2.7) 

The difference (dQ)l/Z-(dPo) 1/2 has an orthogonal decomposition in H, one 
component of which is the projection into the subspace spanned by the 
components of the vector  ~lo(dPo) 1/2. Thus, (2.7) can be expressed as the sum of 
two terms, only one of which depends on T,. This term equals 4-1(T, 

- T(O, Q))' I(0) (T , -  T(O, Q)), where 

T(O, (2)= 0 + 41-1(0) (~7o(dPo) 1/2, (dQ) ~/2 - (dPo)l/2). (2.8) 

For every c~(0, 2), let S,(O, c) be the set of all probabilities Q on (5~, N) such 
that N(dQn)I/Z-(dPon)I/zH 2 ~=2-c. In view of the preceding paragraph, the ade- 
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quacy of T~ as a robust estimate can be measured through the risk 

R,(T,, Q)=Eo, u[n(T . -  T(O, Q))'I(O) ( T , -  T(O, Q))], (2.9) 

where u is a monotone loss function. Our goal is to choose T, so as to minimize 
sup{R,(T,, Q): Q6S,(O, c)}, whatever the value of 060.  The function u will be 
required to have the following statistically reasonable properties: u is real- 
valued, monotone increasing on [0, oc) with u(0)=0, and 

Ro(u ) =~ u(lzl 2) qbk(z ) dz < oo, (2.10) 

q5 k being the standard k-dimensional normal density. 
It is clear from (2.4) and (2.8) that 

T(O, Po+, 1/2h)=O+n-1/2h+~ (2.11) 

for every h~R k. Under some further assumptions on {P0: 0~O}, it can be shown 
that T(O,Q) approximates that value of t~O which minimizes II(dP~) 1/2 
-(dQ) 1/2 H; for details see Beran (1977). 

The following theorem gives an asymptotic minimax bound for the robust 
estimation problem just described. 

Theorem 1. Under the assumptions described above, 

lira l iminf inf  sup R,(T,, Q)>Ro(u ) (2.12) 
c ~  0 n 7['. QeSrz(O, c) 

for ever), 0~0.  

Proof. It suffices to prove (2.12) under the additional assumption that u is 
bounded and continuous, since the theorem, as stated, then follows. Fix 0~O 
and let On=O+n-1/Zh, where h~R k. H~tjek (1972) and LeCam (1972) have 
shown that 

lim l iminf in f  sup Ee~u[n(T,-On)'I(O)(T,-O,,)]>Ro(u). (2.13) 
b ~ o o  n Tn I h l ~ b  

This inequality remains valid under the following substitutions: first replace 
the risk with R,(T,,, Po,,), using (2.11); then replace R,(T n, Po,) with R,(T,, Q) and 
the supremum over Ih] <b with the supremum over all probabilities Q such that 
n I](dQ) 1/2- (dPo) 1/z ]1 ~ <b 2. This step makes use of (2.4) and the nonsingularity of 
I(0). Because of the identity (2.6), with T n replaced by O, the inequality n J[(dQ) lj~ 
-(dPo)l/Zl[2~b 2 implies ]l(dQ")l/2-(dPo")l/2H < 2 - 2  exp(-b2/2)+o(1) for all 
large n. The theorem follows from (2.13) and these considerations. 

The main result of this paper is the asymptotic attainability of the lower 
bound in (2.12). 

Theorem 2. In addition to the assumptions for Theorem 1, suppose that u is 
bounded and that the mapping O-~P o is one-to-one. Then, there exist robust 
estimates {T~; n>  1} such that 

lira sup R,(7~, Q)=Ro(u) (2.14) 
n ~ c ~  QeS, , (O.  c) 

for ever), 0 ~ 0  and every c~(O, 2). 
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Such asymptotically minimax estimates {Tn} will be constructed in Sect. 3. 
The example below, exhibiting the misbehaviour of the sample mean, supports 
our view that the Hellinger ball contamination model is useful in robustness 
studies. Interestingly, the proof of Theorem 1 implies that the parametric family 
{P0: 0sO} itself contains a least favorable distribution. Thus, the minimax 
criterion can hardly be regarded as too pessimistic in this context. 

Example I. Suppose O is the real line, P0 is N(O, 1), the loss function u is as in 
Theorem 1, and M R is the sample mean. Then, for every 0eO, 

lim lim sup R,(Mn, Q)=u(oo), (2.15) 
c~O n~eo Q~S,~(O,c) 

which exceeds Ro(u ) unless u is trivially constant. 
To verify (2.15), fix 0eO and let {a , ;n> l}  be a sequence of positive 

constants such that lira n-1/2a,=oo. Let D(a) be the atomic probability sup- 
t l  ~ CX3 

ported on the point a and define 

Q , = ( 1 - b n - 1 ) P 0 + b n - l D ( a , + 0 )  (2.16) 

for some b>0.  It is clear that lim H(dQ~)l/2-(dPo")l/2]12=2-2exp(-b/2) and 

that the probability sequences {Q~; n> l}  and {P0 n" n> l}  are not contiguous 
(because the log-likelihood ratio of Q] with respect to P0" converges in P0"- 
probability to -b) .  

Observe that T(O, Q,)= 0, because D(a,+ O) and P0 are mutually singular, and 
that 

R,(M, ,  Q,) = EQ~ u [n ( m , -  0) 2] 

(~) (bn-1) r ( 1 - b n - ' )  "-r Eu[n-  ' , (n-r) ' /2 Z + ra,, z] 
r ~ 0  

=>(1 - bn-  ~)" Eu(lZ[ z ) 

+ [1 - (1  - b n - Z )  "] Eu []max {0, n -1/2 a, -]ZI}12], 

where Z has a N(0, 1) distribution. Hence, 

lim inf R,(M,, Q,)> exp( -b)Ro(u)+  [ 1 -  exp(-b) ]  u(co), (2.18) 
n 

which implies (2.15). The sample mean fails to be asymptotically minimax, even 
for bounded u, because it is too sensitive to distant outliers. 

Remark. The asymptotic minimax approach to robustness is inherently local: for 
every Q 6S,(O, c), n II (dQ) 1/2 - -  ( d P 0 )  1 /2  ]12 ~ - -  2 log (c/2), so that the lack-of-fit of the 
parametric model to the actual marginal distribution Q decreases as sample size 
increases. This feature of the contamination model is advantageous for assessing 
the effect of small but potentially troublesome departures from the parametric 
model (Example 1 is an instance). However, by confounding sample size with 
contamination amount, it is possible to devise trivial estimates {T,} which satisfy 
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(2.14) without being robust globally (see the remarks in Sect. 3.3). Theorem 2 
asserts the existence of estimates {Tn} which satisfy (2.14) and behave sensibly 
under non-local contamination. 

3. Asymptotically Minimax Estimates 

Let {P0: 0~O} be a parametric model which has properties (2.4) and (2.5). We 
will prove Theorem 2 in Subsect. 3.4 by constructing robust estimates {Tn; n > 1} 
which satisfy (2.14). Notation and lemmas needed for the construction are 
described in Subsects. 3.1 to 3.4. 

3.1 Initial Estimates 

The first lemma asserts in a formal way the existence of estimates {O*;n > 1} for 
0 which are robust under the Hellinger ball contamination model. The estimates 

* ... x,), provide the starting point {0, }, which are functions of the sample (xl, xz, , 
for the construction of asymptotically minimax estimates {Tn}. 

Lemma 1. Suppose {P0: 0~O} satisfies (2.4), (2.5) and the mapping O-~ P o is one-to- 
one. Then there exist estimates {0"; n>  1} which have the following property for 
every 0~0.  Suppose {Qn; n > l }  is any sequence of probabilities on (5~, ~ )  such 
that {nl/Z[(dQn)a/z-(dpo)l/Z];n> l} converges weakly to an element in H. The 
distributions of {111/2(0 * --0); n~ 1} under {Q~} are tight. 

Extension of the argument on pp. 104-107 of Le Cam (1969) shows that a 
modified minimum Kolomogorov distance estimate of 0 will serve as the 0* 
described in this lemma. Other constructions of such {0"} are possible in 
particular parametric models {P0: 0eO}, as will be illustrated for exponential 
families in Sect. 4. 

A discretized version 0 n of 0* is defined as follows (cf. Le Cam (1969)). Let d 
be an arbitrary positive constant. Cover the parameter space O c R  k with 
disjoint semi-closed hypercubes of side length n-1/2d. Set 0 n equal to the center 
of the hypercube which contains 0". Tightness of {nl/2(O*-O)} under {Q~} 
clearly implies tightness of {nl/2(0 n -  0)}. 

3.2 Pseudo-Derivatives 

Under the assumptions on {P0: 0~O}, the quadratic mean derivative t/0 appear- 
ing in (2.4) need not be continuous in 0. To avoid technical difficulties, we will 
replace r/0 with a sequence of related difference quotients, defined in (3.5) below. 

Separability of O and quadratic mean continuity of P0 in 0 ensure the 
existence of a probability # on (~, ~)  such that P0~/l for every 0~O. Let po(X) 

dP0 
= d~ (x). Let {ei; 1 < i N k }  be the usual orthonormal basis for R~; e i is a column 
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vector whose jth component is 1 and whose other components are 0. For  x~ST 
and 0~O define 

f k  
On, o ( X ) = j ~  ~/2 _~/2 ~/2 1 n [Po (X)po+n_~/~,(x)- 1] ej if po(x)>O (3.1) t;: 

if po(X) = O. 

Lemma 2. Suppose the assumptions of  Lemma 1 are satisfied. Let {Q,; n >  1} be 
any sequence of  probabilities on (:T, ~)  such that {n 1/2 [(dQn) 1/2-(dP0)l /z] ;n> 1} 
converges weakly to an element in H. Then 

I[On, o,(MPo,)~/2-tlo(dPo)I/2II (2~, 0 (3.2) 

as  n---~ oo. 

Proof From (2.4) and the property of 0, described in Lemma 1, 

Q- 
IlnZ/2[(dPo,)~/2-(dPo)Z/Z]-nX/2(On-O)'tlo(dPo)a/2[I ",0 (3.3) 

and 

II n1"2 [(d Po, +n-1/2ej) 1/2 - -  (N Po) 1/2]  - -  [ nl/2 (On -- 0) "q- ej]' tlo(d Po) 1/2 II 

Let B, = {x: po,(x) >0}. Then 

IOn, On( X ) p1!2(X) --  ~]0( X ) P l /2(X)[  2 dt~ 
Bn 

k 
= Z ~ [-nl/a(pl!2, 1/2~j(x)--P~/,2(x)l-e)rlo(x) P~/2(xf 12 d# 

j = l  B. 
k 

< ~. IlnX/2[(dpo~+_x~2~y/2-(dPo,f/2]-e)~o(dPo)~/2ll 2 (2LO 
j = l  

e~  0. (3.4) 

(3.5) 

by (3.3) and (3.4). 
- (2,'I, 

On the other hand, Po(Bn)-----~O because PO (Bn)=0 and the variation norm 
1/3 1/2 [[Po--Po.l[var is bounded from above by 2 II(dP0) -(dP~.) II, which converges to 

zero under Q~ because of (3.3). Thus 

S IOn, o.(X) PU (X)-- '7o(X) PU (X)I 2 d 
B. Q,, 

= ~ IH0(x)l 2 dPo ~2~0. 
B .  

(3.6) 

The lemma follows from (3.5) and (3.6). 

3.3 Random Windows 

The asymptotically mimmax estimate T n constructed in Subsect. 3.4 depends 
upon a random window w n which has the technical properties described in 
Lemma 3 below. The role of w n is to discount observations that would otherwise 
have undue influence upon the value of T n. 



Efficient Robust Estimates in Parametric Models 99 

Let m be an absolutely continuous function mapping R + into [0, 1] such 
that m(0)= 1, sup [xm(x)] < ~ ,  and the derivative m' is bounded. Let {Q,; n >  1} 

x > 0  

be any sequence of probabilities on (X, ~)  such that {nl/2[(dQn)l/2-(dPo)l/2]; 
n > l }  converges weakly to an element in H. Let {c*; n > l }  be positive, real- 
valued statistics such that c* is a function of the sample (xl, x z . . . .  , x,) and 
{n ~/#-~ c*} is tight under ~Q,}r, for some 6~(0, 1/4). Discretize c,* as follows. Let b 
be an arbitrary positive constant. Starting with the origin as an endpoint, cover 
the positive real axis with disjoint semi-closed intervals of length n-1/4+Ob. Set 

* Tightness of {n 1/4-~ c*} s equal to the center of the interval which contains c,. 
under {Q~} implies tightness of {nl/4-6 d,}. Note that C,>2 -1 n-1/#+6b. 

Define the random window w, by 

w.(x; wl, x2, ..., xn)=m(< I~',,<(x)l) (3.7) 

for xeX .  We will write w,(x) in place of w,(x; xl ,  x 2 . . . .  , x,,). 

Lemma 3. Suppose the assumptions of Lemma 1 are satisfied. Then 

[w.(x)- 1] 2 dP0~ a--L 0 (3.8) 
and 

n -1/4 sup [~,,,0,(x) w,(x)l e", O. (3.9) 
x 

Proof. The validity of (3.9) rests upon the inequality 

n-1/4 sup [0,. on(x) w,(x)] <(n 1/# s sup [zm(z)]. (3.10) 
x z>O 

On the other hand, (3.8) follows because of Lemma 2 and the inequality 

[wn(x ) - 13 2 dPon<=d 2 ][O,,o,(dPon)l/2H 2 sup Ira'(x)[ 2. (3.11) 
x 

As will become clearer in Subsect. 3.4, the statistic d,, should measure the 
lack-of-fit between the parametric model {Po: OeO} and the actual distribution 
of the data. The trivial choice, d,=n -1/#+~ for some 6e(0, 1/4), leads to an 
unsatisfactory asymptotically minimax estimate T, which is not robust globally. 
The problem arises because this C, confuses sample size with the amount of 
contamination present. A more effective d, would be a goodness-of-fit test 
statistic which is sensitive to fairly arbitrary departures from the parametric 
model. 

For instance, let F, be the empirical c.d.f, of the sample (x~, xz, ..., x,) and let 
F o be the c.d.f, o f P  0. For some e>0 ,  6~(0, 1/4), let 

C* = 0~ [ s u p  IFn(X)-FO.(x)I] 1/2-20, (3.12) 
ac 

where O, is the discretized initial estimate discussed in Subsect. 3.1. 
It is readily verified, in view of (2.4) and the properties of {6,}, that 

{n 1/2 sup IF,(x)-Fon(x)l} is tight under {Q,"}; hence {n 1/4-~ c*} is also tight under 
x 

{Q,"} in this case. 
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3.4 The Estimates 

Let in be a weighted and re-centered version of the pseudo-derivative O~,0n, 
defined as follows: 

~n(X)=[l~n,O.(X)--[~wn(t)dPo.]-l ~ ~ln, O.(t) Wn(t)dPo.]Wn(X). ( 3 . 1 3 )  

Key properties of ~. are 
S ~ . ( x )dPo=O (3.14) 

and the two convergences described in the next lemma. 

Lemma 4. Suppose the assumptions of  Lemma 1 are satisfied. Let {Q.; n>  1} be 
any sequence o f  probabilities on (Y(, ~ )  such that {n 1/2 [(dQn) 1/2- (dP0)l/2] ; n = 1} 
converges weakly to an element in H. Then 

Ih~.(dPo)X/2_rlo(dPo)l/21l o.". 0 (3.15) 
and 

n -1/4 supl~.(x)l on  0. (3.16) 
x 

Proof. Because of Lemma 2 and (2.4), ~ ~., 0. dPo. o ~  ~ qo dPo = 0. Using this and 
(3.8) of Lemma 3 yields 

15 ~., o.w.dPo.I <= ~ O. o.dPo.[ + N~.,o.(dPo.)I/2ll " H(w,,- 1)(dPo.)l/2l[ q~, O. (3.17) 

Similarly, ~ w. dPo. e.") 1. Hence 

sup I in (X) -- 4'., 0o (X) W. (X) I O" 0 (3.18) 
x 

which, together with (3.9), implies (3.14). 
On the other hand, 

11 ~.(dP0) 1/2 - qo(dPo) 1/21[ <= ]1 ~.(dPo) 1/z - 0.,  o. w.(dPo) 1/2 I[ 

+ 1[~., o. w.(dPo) 1/2 - ~., on w.(dPo.) 1/2 LI 

+ ILO., o. w.(dPo.) 1/2 - tlo w.(dPo) 1/2 hi 

+ Ntlo w.(dPo) 1/2 - tlo(dPo) a/z II. (3.19) 

Every term on the right side of (3.17) converges in Q~-probability to zero. For 
the first term, use (3.18). The second term is bounded from above by 
n -I/2 sup LO.,o.(x)w.(x)L. In 1/2 II(dPo)I/Z-(dPo.)I/zLI], the first factor converging 

x 

in probability to zero by (3.9) while the second factor is tight because of (2.4) 
and Lemma 1. For the third term, use (3.2) of Lemma 2. Asymptotic negli- 
gibility of the final term follows from the bounds, for any c > 0, 

5 [w. -1]2) lo lZdPo < 5 l~olZdPo 
[qo]2>c lqol2>c 

[w -1]2)lo[2 deo<c S (w -1 )2  deo (3.20) 
],/ol2 <c  

and (3.8), Lemma 1, and (2.4). This completes the proof. 
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Let In=4~n(X)~'n(x)dPo, and let T n be the adaptively modified, one step 
maximum likelihood estimate of 0 defined by 

T, =O,+2n  -I  I, -a ~ ~,(xi), (3.21) 
i = 1  

where (xl, x 2 . . . . .  x,) is the sample. The next result shows that I, converges in 
probability to a nonsingular matrix and that the estimates {Tn;n__>l} are 
asymptotically minimax in that they satisfy (2.14). This proves Theorem 2. In 
essence, (3.21) is a robust version of the one-step MLE studied by LeCam 
(1956), (1969). 

Proposition 1. Suppose {P0: 0~O} satisfies (2.4), (2.5) and the mapping O-+P o is 
one-to-one. Let {Q,; n__> 1} be any sequence of probabilities in Sn(O , c)such that 
{nl/2[(dQJ/2-(dPo)I/2]; n > l }  converges weakly to an element ((dR) 1/2 in H. 
Then, the limiting distribution of {nl/2(Tn-T(O, Qn)); n > l }  under {Q,"} is 
N(O, I -  1 (0)). Consequently, the { Tn} satisfy (2.14) for every c~(O, 2). 

Proof Fix 0eO and c. The random vector n -1/2 Z {,(xi) can be expressed as the 
i = 1  

sum of three integrals, 

= n  n(x) Qn) 
A2n=n 1/2 ~ ~n(x) d(Qn- Po) 

A3, =n 1/2 ~ ~n(x)d(Po-Po, ). (3.22) 

/~ being the empirical distribution of the sample and the last integral drawing on 
(3.14). 

Let On=O-I-n-1/2h, cn=n-U4+ad for h~R k, d~R and define (, by replacing 
(O,, C,) with (0n, %) in the definition (3.13) of ~n. Let {an; n > l }  be any sequence 
of positive constants such that l i m a , = o e ,  l imn-a /2a ,=0 .  Let D, 

n ~ o o  n ~ o o  

={x: frlo(X)12<an}. The limiting distribution of {nl/2 ~ qo(x)d(fi,-Qn)} under 
Dr, 

{Q,"} is evidently N(0,4-1I(O)). Both n~/2~((n(x)-rlo(x))d(fin-Qn ) and 
D ~  

nl/2 ~ (n(x) d(Pn-Qn) converge to zero in Q",-probability, by Cebygev's inequality. 
13,, 

Indeed 

[~(x)-%(x)l  2 d Q ~  f~ I~(x)-%(x) l  2 dPo 
Dn D~ 

+ [sup [(.(x)l 2 + a , ] .  O(n-1/2)__~ 0 (3.23) 
x 

as in Lemma 4. A similar argument shows that ~ I~,(x)[ / dQn--~O. Thus, 
Dn 

n 1/2 ~ ~,(x) d (P , -Qn) -n  1/2 ~ tlo(X ) d ( ~ - Q n  ) e,~ O. (3.24) 
DR 

Because of the tightness properties and discreteness of (0,, C,,), (3.24) remains 
valid when (,  is replaced by ~,. 
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We conclude that the limiting distribution of {At. } under {Q."} is 
N(0, 4 -~ I(0)). 

Also, because of Lemma 4, 

IA2.- 2n ~/z ( ~.(dPo) 1/2, (dQ.) 1/2 - (dPo)l/2)l 
=n 1:2 I( ~.(dQ.) 1/2 - ~.(dPo)l/2o (dQ_.n) 1/2 -(deo)i/2)l 

-< n - 1:2 sup I~.(x)[ �9 [ -  2 log (c/2)31:2 ~ 0 (3.25) 
X 

Q'~ t/2 and, therefore, A2.-----~ 2(r/0(dP0) , ((dR)l/2). Similarly, 

IA 3. + 2nl/2 (~. (dP0)l/a, (dpg,,)l/2 _ (dp0)l/2 } [ 

<n -~/2 sup t~.(x)l " In [](dPo.) 1/2 -(dPo)1/2112]-~-,0 (3.26) 
X 

by (2.4) and Lemmas 1, 4. Since 

n ~/2 (~.(deo)l/2, (dPo.) 1/z - (dPo)l/2 } 

= [~ r tfo(x ) dPo]. n 1/2 (O~- O)+ o,(1) 

= 4-1 I(0), n ~/a (0. - O) + Op (1), (3.27) 

it follows that ]A3. + 2  -~ 1(0). n~/2(O~-O)l Q~, O. 
~2~ On the other hand, I .  ~I(0) because, for every a~R k, 

[[a' ~.(dPo.)l/a-a'  tlo(dPo)l/2jJ < = s u p  la ~ , (X)I  . I ] ( d P o , ) l / 2 - ( d P o ) l / 2 l l  
N 

+ Ila'~.(dPo)~/Z-a'tlo(dPo)~/2[[ e ~ O  (3.28) 

by (2.4) and Lemmas 1, 4. Substituting the asymptotic approximations for A2., 
A~., and i .  into the definition (3.21) of T. and recalling the definition (2.8) of 
r(O, Q) yields 

n~/a(T.-  7(0, Q.)) = 21 -~ (0) As. + Or(l). (3.29) 

Thus, the distributions of {n l /2(T . -  T(O, Q.))} converge weakly, under {Q."}, to a 
N(0, 1.2 (0)) distribution. 

To verify that the {T.} satisfy (2.14), we will prove the technically stronger 
result, 

Jim sup [R.(T., Q)-Ro(u)[=O. (3.30) 
n~ce QeS~O, c) 

Suppose (3.30) is false. Then, there exists a sequence of probabilities 
{Q.ES.(O, c); n > l }  such that R.(T. ,  Q.) does not converge to Ro(u). Note that 
Q.~S.(O,c) entails n Jl(dQ.)l/2-(dPo)X/2112<-21og(c/2). By considering sub- 
sequences, we may assume without loss of generality that (nu2[(dQn) 1/2 
-(dP0)I/2]} converges weakly in H while R.(T. ,  Q.) does not converge to Ro(u). 
But u is continuous a.e. (Lebesgue) because it is bounded and monotone 
increasing. Thus, the first part of Proposition 1 implies convergence of 
{R.(T.,  Q.)} to Ro(u ). The contradiction proves (3.30). 
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Remarks. The matrix I n appearing in the definition (3.21) of T n can be replaced 

with Jn= 4n- l ~  ~(xi)~'n(xi). Under the assumptions of Proposition 1, J~ 
i ~ l  

-4S~n(x)~'n(x)dQn~O because of Lemma4  and discretization; also 

4~. ~n(x)~',(x)dQn en I(0) by an argument similar to (3.28). 
Some models {Po: OeO} satisfying (2.4) and (2.5) have the additional proper- 

ty that 
lim II t/0 +,(dP0 +t) ~/2 - rlo(dPo) 1/2 II = 0. (3.31) 
t ~ 0  

In this event, 0n, 0 may be replaced with q0 in Lemmas 2, 3 and hence in the 
definitions of ~,(x) and T,. If, moreover, t/0 is bounded, then the choice w,(x)-1 
suffices to make T, asymptotically minimax. 

When k>2,  a different random window may be used to define each com- 
ponent of 4n- 

Example 2. Suppose O is the real line and P0 is N(O, 1). Since rlo(X)=2-1(x-O), 
(3.31) holds, and P0 is symmetric, we may take {,(x)=2-1(x-On)w,(x). Any 
discretized M-estimate of 0 having the tightness property described in Lemma 1 
can be selected as initial estimate 0 n. Possible choices of the function m which 
determines the shape of the random window w, include: m(x)=min{1, x-*}; 
re(x)-- max {(1 - x2) 2, 0}; re(x) = x-  1 sin (x). The corresponding asymptotically 
minimax estimates T n are adaptively scaled versions of the one-step M-estimates 
associated with the names Huber, Tukey, and Andrews respectively (cf. Andrews 
et al. (1972)). 

Looking at the formula (3.21) for T,, we can describe the role of d n in this 
example as follows. If d, is small (i.e. the sample appears normal), %(x) remains 
close to 1 for all moderate x and T, is, approximately, the average of those 
observations not too far from the initial estimate 0n; the more distant obser- 
vations are downweighted. If d, is large (i.e. the sample contains a few extreme 
outliers, or just appears non-normal), wn(x ) drops to zero quickly as x moves 
from the origin and T, disregards all but the observations nearest 0 n. Thus, the 
estimate T n is very conservatively robust in the presence of detectable con- 
tamination and remains cautious even when the sample appears to be normally 
distributed. 

Example 3. Suppose O is the real line and dPo/dx =f(x-0) ,  where f  is absolutely 
continuous with derivative f '  such that ~ [f'(x)]2/f(x) dx is finite, nonzero. Then 
{P0: 0sO} satisfies (2.4) and (2.5) with t / 0 ( x ) = - 2 - a f - l ( x - O ) f ' ( x - O )  (Hfijek 
(1972)) and the mapping 0 + P  0 is one-to-one. Thus, this location model is 
covered by Theorem 2 and the construction of T, in Subsect. 3.5. 

Example 4. Consider the special case of Example 3 when f is the Cauchy density. 
Since, for this model, rlo(X)=[l+(x-O)2]-l(x-O) is bounded and satisfies 
(3.31), we may take ~,=t/o, and In=2-~ in defining T n. The one-step MLE of 0 
based upon a robust initial estimate 0", is already asymptotically minimax in the 
sense of Theorem 2. 
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Example 5. Let # be a a-finite measure on (Sg,~) and let h(x)=(hl(X), 
h2(x ) . . . .  , hk(X))' be a Borel measurable function mapping 5F into R k. Let 0(x) 
= (h i (x), hz(x ) . . . .  , hk(X), 1) and suppose the {hi} are such that 5 (a' 0(x)) 2 d # > 0  
for every nonzero column vector a e R  k. The canonical exponential family 
{Po: 0 ~ 0 }  generated by # and h has densities 

dP~ (x) = exp [0' h ( x ) -  b (0)3, 
d# 

(3.32) 

where 0 is a column vector in R k, b(O) is the normalizing constant, and O 
= int {O~Rk: exp [b(0)] < oe}. This parametric model satisfies (2.4) and (2.5) with 
derivative t/0(x) = 2-1 [h(x)-  E(h(x) I Po)l and information matrix 1(0) 
=Cov(h(x)lPo).  The mapping O--~P o is one-to-one (cf. Berk (1972)). Thus, the 
assumptions of Theorem 2 are fulfilled. 

4. Modif ied M L E ' s  in Exponential  Fami l ies  

Let {Po: 0 ~ 0 }  be the canonical exponential family described in the preceding 
example. It is well-known that the maximum likelihood estimate of 0 exists with 
P0~-probability one in sufficiently large samples, is unique and asymptotically 
efficient (cf. Berk (1972)), but may not be robust in the sense of Theorem 2 
(Example 1 of Sect. 2). This section describes robust modifications of the MLE 
which possess some or all of the good properties just cited. In particular, we 
obtain modified MLE's which are asymptotically minimax in the sense of 
Theorem 2. 

Let {v,(x); n > l }  be a sequence of Borel measurable functions mapping X 
into (0, 1], which has the following properties for every 0~O: 

n - 1/4 sup [h(x) v,(x)L---, 0 (4.1) 
ar 

and there exists a Borel measurable function v:X--~ (0, 1] such that 

[v . (x ) -  v(x)] 2 dfo~O. (4.2) 

Particular choices of {v,} and v will be discussed later in this section. 
Let bv(,)(O) be the function on O determined by the equation 

exp [by(,)(0)] = ~ exp (0' h(x)) v,(x) d#. 

The parametric family of probabilities {Po, ~(,): 0eO} on (~, N) having densities 
dPo, ~(,)/d# = exp [0' h ( x ) -  b~(,)(0)] v,(x) is canonical exponential. Thus, b~(,)(O) is 
strictly convex with 

Vbv(,)( O) = E [h(x) [ Po, ~(,)] = E~ v,(x) d Po] -1 ~ h (x) v,(x) dP o 

V 2 bv(,)(O ) =Cov  (h(x) ] Po, ~(,)), (4.3) 

the covariance matrix being positive definite and continuous in 0. Replacing v, 
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by v in these formulae yields another exponential family {Po, v: 0~0}  and a 
function b~,(O) with parallel properties. 

Given a sample (xl, x 2 . . . .  , x,), define the estimate T,* as the unique value of 
s~O which maximizes the strictly concave function 

M,(s)=n ~ v,(xi) s' h(xi) vn(xi)-nb~(,)(s ) (4.4) 
i=1 i=1 

if such a maximizing value exists; otherwise let T,* =00, an arbitrary element of 
O. Equivalently, T,* is the unique solution to the equation 

[5 v,(x) dP~] -1 ~ h(x) v,(x) dP~ = v,(xi) h(xi) v,(xi) (4.5) 
i i=1 

if such exists and is 00 otherwise. When v,(x)=-l, T,* reduces to the maximum 
likelihood estimate of 0. 

Let D~(O) be the k x (k + 1) partitioned matrix 

[5 v (x) dPo] -1 (I~: - [5 v (x) dPo] - 1 ~ h (x) v (x) dPo), 

where I k is the k x k identity matrix. Let Av(0)= IV 2 b~(0)]-1 Dr(O). 

Proposition 2. Let {Q,; n > 1} be any sequence of  probabilities in S,(O, c) such that 
{n 1/2 [(dQ,) 1/2-(dPo)1/2]; n> 1} converges weakly to an element ~(dR) 1/2 in H. 
Suppose the windows {v,;n=>l}, v satisfy (4.1) and (4.2). Then, the limiting 
distribution of {nl/2(T, * - 0 ) ;  n=> 1} under Q", is N(#~, Ev) , with 

#~ = 2A~(0) (O v(dPo) 1/2, ~(dR) 1/2) 

Z~ =A~(0) Cov (O(x) v(x) lPo) A'~(O). (4.6) 

For the canonical exponential family under discussion, rlo(X)=2-a[h(x) 
- E(h(x) l Po)] and I(0)= Cov(h(x)[P0). The weak convergence of {n 1/2 [(dQ,) t/z 
-(dPo)l/2]} to ~,(dR) 1/2 entails orthogonality in H of ~(dR) t/2 and (dPo) 1/2. When 
v(x) -1 ,  Eq. (4.3) and this orthogonality permit the simplifications 

#, = 2I -1(0) (h (dP0) 1/2, ~(dR) ale) 

= 41 - 1(0) {tlo(dPo) 1/2, ~(dR) '/2 ) 

X~=I-I(O). (4.7) 

Consequently, by the argument used in Proposition 1, the estimates T,* satisfy 
(2.14) for every cs(0, 2). 

Proof. Fix 0EO. For t eR  k, let 

L , ( t ) = f M , ( O + n - 1 / z t ) - M , ( O )  if 0-~- h i / 2  t E O  
(4.8) 

) o e -  otherwise. 

Let t~t,, denote the unique value of t which maximizes L,(t), if it exists. The 
estimate T,* equals O+n -t/2 t~t,, in that event. Let /~  be the empirical distribu- 
tion of the sample. For O+n -1/2 teO, it follows from (4.4) and (4.3) that 
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Ln(~ ) = nl/2 [~ vn(x ) dfin] I t' ~ h(x) vn(x) dP n 
- n [bv(.)(O + n -  1/2 t) - bv(.)(_O)] 

= t' Z n -  n [bv(n)(O + n - 1/2 t ) -  b~(n)(O ) -  n - 1/2 t' Vb~.)(O)] (4.9) 

where Z n = n  1/2 Dn ~ ~(x)vn(x ) d(Pn-Po) and D n is the k x (k+ 1) parti t ioned ma- 
trix [-~ v,,(x) dPo] -1 (Ik: - [ j  v,(x) dP,] -1 ~ h(x) vn(x ) dPn). 

The first stage of the proof is to show that  the limiting distribution of {Zn} 
under {Q~} is normal  with mean 2D~(O)(Ov(dPo) 1/2, ~(dR) 1/2} and covariance 
matrix Dv(O ) C o v  (O(x) v(x) lPo)D',(O). Indeed, this is a consequence of three facts: 

n 1/2 ~ O(x) v,(x) d(fi n -  Qn) ~ N(O, Coy (O(x) v(x)[Po) ) (4.10) 
and 

n 1/2 ~ l)(X) Vn(X ) d(Q, - Po) -+ 2 ( 0  v(dPo) 1/2, ~(dR) 1/2 ) (4.11) 

and D n ~  Dv(O). 
To verify (4.10), let {an; n > 1} be any sequence of positive constants such that 

lira a, = oo, lira n-1/2 an = 0 and let B n = {x:l ~ (x)l 2 < a,}. Then 
n ~ o o  n ~ o o  

Bn B~ 

+n a/2 ~ ~9(x)[vn(x)-v(x) ] d ( ~ - Q n  ). (4.12) 
B~ 

The limiting distribution of the first integral on the right side of (4.12) is 
N(0, Cov (O(x) v(x) I P0) ) ,  because lira Coy [n 1/2 J O(x) v(x) d(P n -  Q,)] 

n ~ oo Bn 

=Cov(O(x)  v(x)lPo) by the choice of {an}. On the other hand, the second 
integral on the right converges in Q~,-probability to zero because 

1~9 (x)l 2 [v n(x) - v(x)] 2 dQn < a, j [v, (x) - v (x)] 2 dp  ~ 
Bn 

+0(n-1 /2)  �9 [suplO(x) v,(x)12 +an]--~O (4.13) 
x 

in view of (4.1) and (4.2). Moreover,  n 1/2 ~ tp(x)v~(x)d( l~-Q,)  f2~ 0 because 
Bn 

j" I@(x) v,(x)l 2 dQn< ~ I~,(x)l 2 dPo+O(n 1 / 2 )  sup i0(x) v,(x)[ 2--'0. (4.14) 
Bn Bn x 

The calculations of this paragraph imply (4.10). 
Justification of (4.11) rests on the inequalities 

In 1/2 j O(x) v,(x) d(Q, - Po)- 2(t/Jvn(dPo) 1/2, n 1 / 2  [(dQn) 1/2 - (dPo)l/2])[ 

-<_ sup ] 0(x) v,(x)l - n 1/2 II (dOn) 1/2 - (dPo) 1/2 tl 2 (4.15) 
x 

and 
I(tP(v n -- v)(dPo) i/2, n 1/2 [(dOn) 1/2 -(dPo)a/2] 51 

--< II 0(~'n- v)(dP0)'/2]l- [ -  2 log (c/2)] a/z, (4.16) 

since Q,~S,(O, c). Both bounds converge to zero under the assumptions on {v,} 

and {Q,}. Finally, combining (4.10), (4.11) with (4.2) yields O n o ~  D~(O). 
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The second stage of the proof considers the asymptotic behavior of tM,, ,  the 
value of t eR  k which maximizes L,(t) .  By Skorohod's theorem, there exist 
versions of the random variables {Z,} and a random variable Z such that 
Z , ~ Z  and Z has a normal distribution with mean 2D~(O)(Ov(dPo) l/z, 
( (dR)  1/2) and covariance matrix D~(O) Cov (0(x) v(x) I P0) D'~(O). For t ~ R  k, let 

L(t)  = t' Z - 2 - 1 t' V 2 by (0) t. (4.17) 

We will show that for these random variables {Z,}, Z and for every a > 0, 

sup I L n(t) - L(t) l . . . .  ) 0. (4.18) 
Itl<=a 

Since the value of t which maximizes L(t)  is t M = [V 2 by(0)]-1Z and since L,(t) is 
strictly concave or - o o ,  it follows from (4.18) that tM, . exists a.s. if n is 
sufficiently large and tM, . a's'>t u as n ~ o o .  Thus, n l / 2 ( T , - O )  .... , tM,  which 
implies the proposition. 

The validity of (4.18) is clear from the definitions of L~(t) and L(t), once it has 
been shown that 

sup V2bv( , ) (O+n-~/2 t )  - [72bv(O)[----~O (4.19) 
It[ -< a 

for every a>0 .  Since gZb~,(O) is continuous in 0, it suffices to check that 

sup  ]gZbv(n)(O+n-1/zt)  - V Zbv (O+n-a /2 t ) l~O .  (4.20) 
N__<a 

The last convergence can be verified by calculation, using (4.2), (2.4), (4.3) and 
the definitions of P0, ~ and P0. ~(,). 

Remarks .  When I h(x)l is bounded, the choices v , ( x ) = v ( x ) = l  satisfy (4.1) and 
(4.2). Hence, the MLE of 0 is asymptotically minimax under these circumstances. 

For general h(x), an initial robust estimate of 0 can be obtained as follows. 
Let v , ( x ) = v ( x ) = q ( l h ( x ) - f l l ) ,  where fl is a vector constant, q is a Borel measur- 
able function mapping R + into (0, 1], such that q (0)= l  and sup [xq(x)]  < oo. 

x > O  

Ideally, fl should approximate the unknown value of E(h(x )  lPo). Let 0* be the 
estimate of 0 determined by the modified ML equations (4.5) corresponding to 
this choice of v,. Since Proposition 2 is applicable, the estimates {0"} have the 
tightness property described in Lemma 1. 

Once a suitable initial estimate 0* has been found, an asymptotically 
minimax estimate can be constructed by the method of Sect. 3 and Example 5. 
Alternatively, we may solve the modified ML equations (4.5) with v, (x)=-w,(x) ,  
the discretized random window defined in Subsect. 3.3. Proposition 2 can be 
extended to this random v,, with v(x) = - 1. In view of (4.7), this modified ML 
estimate is asymptotically minimax, by the argument used in Proposition 1. 

Example  6. For r>2 ,  let S~={x~R~:  Ix[ = 1} and let # be the rotation invariant 
measure on S~, normalized so that #(S~)= 1. Relative to #, the Fisher-von Mises 
distribution has density proportional to exp(~cv'x), where to>0 and veS , .  This 
model can be reparametrized into the form 

dP0 
d~ (x) = exp [O'x - b(0)], x ~S~, (4.21) 
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with 0~O = R  r. Since Ix] = 1, the MLE of 0 is already asymptotically minimax. 

Example 7. Let e=(1, 1 . . . .  ,1) '~R r, r>2 .  The submodel of N(#, X) which corre- 
sponds to the one-way layout with random effects specifies that #=c~e and 
= o -2 [(1 - p )  Ir+pee '] ,  with e real, a 2 >0, 0 < p  < 1. Reparametrization gives the 
equivalent form 

~ =  exp [01[x] 2 + Oz(e' + 3 (e' x ) -  (0)] (4.22) x) 2 0 b 

for x e R  r, 01 < O, 0 < 02 < -  r-101 , and 03 real. Since these constraints define an 
open subset of the natural parameter space, the estimation theory of this section 
is applicable. 

Acknowledgernem. Use of the simplified risk (2.9) was suggested by conversations with P.W. Millar. I 
am grateful for his interest and comments. 
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