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Summary. Given a fixed parametric family {P0} it is desired to estimate 0. 
However, due to contaminations of various sorts, the data actually collected 
by the statistician follow a distribution that is close to, but possibly distinct 
from, the P0's. It is proved that, under these conditions and in an appropriate 
asymptotic framework, the minimum distance estimators of the Cram6r-von 
Mises type are robust. Specification of a Cramdr-von Mises weight function 
H defines a notion of distance; each such choice of H then delineates the 
kind of contamination possible, and leads to an estimator which defends 
optimally against it. When the theory is specialized to location models, 
various choices of H lead to estimators asymptotically equivalent to such 
familiar ones as trimmed mean, median, Hodges-Lehmann estimator, and so 
forth. The framework developed herein provides some guidelines for choosing 
among the possible estimators, and suggests that the standard Cramdr-von 
Mises estimator of location is probably as good a robust estimator as any. 

1. Introduction 

Let {P0,0EO} be a parametric family of probabilities on the line, indexed by 
O, an open subset of R d. Let F, be the sample distribution obtained from n identi- 
cally distributed observations. Let d ( . , . )  be some "distance" or "discrepancy" 
defined on distribution functions; for example, d(F, G)= [IF-GII where [1"1[ is 
a norm on the collection of right continuous functions, or d(F, G)= S(F-G) 2 d G, 
the Cram6r-von Mises "distance". Let ~o ae, be an element of {P0} which is "clos- 
est" to Pn; i.e., an element of {P0} that achieves infd(Fn, P0). Assuming for the 

eo 
purposes of this introduction that questions of existence and uniqueness have 
been settled, call ~z 0 i~, a minimum distance estimator. If selection of P0o~ {P0} 
is tantamount to selecting 0 o, then evidently ~o/~n can be regarded as an estimator 
of the parameter 0. The main result of this paper is that certain minimum distance 
estimators are robust, in the sense made precise in Sect. 2. 
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The basic thought behind the minimum distance concept has no doubt been 
implicit in many statistical investigations from the very start; an impressive 
demonstration of its power and utility occurred, for example, in the pioneering 
work of J. Neyman on minimum chisquare (Neyman, 1949). The idea was taken 
up by Wolfowitz who, in a series of papers (1953, 1957 for example), elevated 
it explicitly to a general principle. Since then, such estimators have been studied by 
many authors. It has long been part of the statistical folklore that such estimators 
should have good robustness properties. For  example, Kniisel, 1969, argued for 
the robustness of certain such estimators in some location models; unfortunately, 
the notion of robustness he used is decidedly unsatisfactory. Some very interesting 
and suggestive remarks on the relationship between minimum distance and 
robustness were made by Holm (discussion of Bickel, 1976). A more penetrating 
study was undertaken by Beran, 1977a, who argued that minimum Hellinger 
distance estimators should be robust; however, as acknowledged by that author, 
the robustness properties were only incompletely established - indeed, it was 
Beran who first called my attention to the fact that problem of the robustness of 
minimum distance estimators was still open. 

Recently, Parr and Schucany, 1979, undertook Monte Carlo studies of sev- 
eral such estimators and found empirically that, in certain location models, 
they enjoy robustness properties that compare favorably with those of currently 
fashionable robust procedures. Apparently it is even an empirical fact that mini- 
mum distance estimators are robust. A main contribution of this paper is the 
construction of a reasonable mathematical framework in which this empirical 
phenomenon becomes understandable. As such, this paper appears to be the 
first to provide general theoretical justification for the widespread beliefs in the 
robustness of minimum distance estimators. 

The results of this paper are derived within a clearly articulated decision 
theoretic framework. This is explained rigorously in Sect. 2, but since this point 
of view appears to be somewhat at variance with the current mode in robustness 
investigations, it is perhaps best to give an heuristic account of it here. The family 
{P0, 0EO} is to be regarded as a theoretically correct probabilistic model of the 
phenomenon at hand; one could imagine it perhaps forced on us by accepted 
principles of theoretical physics. However, due to noise, roundoff errors, incom- 
petence, or other contaminations, the random variables actually presented to 
the statistician follow a distribution G which may be distinct from any of the 
P0's. If the incompetence has not  been too great, presumably G will lie "close" 
to some P0. 

If so, the basic task is then to discover what 0 is, even though the true distribu- 
tion of the data follows some distribution G different from any P0. Since a large 
number of probability distributions are involved in this framework, it is most 
natural to parametrize by the measures themselves. In decision theoretic terms, 
the suggested approach to robust estimation is to adopt  as parameter set some 
(fairly large) collection of distributions G, and as decision space the collection of 
measures {P0,0eO}; loss will then be expressed essentially in terms of some 
"distance" between G and P0, if G is the ' t rue '  distribution of the data given the 
statistician, and P0 is selected from the decision space. The loss functions will 
be selected in such a way that a) if G is very close to {P0}, and an inept choice of 
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P0 is made, then the statistician is penalized; b) if G is relatively far from {P0}, 
then no matter what choice of P0 is made, there will still be some penalty - this 
is a reasonable property since one has rio right to any confidence in the decision 
made if the data has been badly contaminated. 

Technically, robustness is given a 'local asymptotic '  definition. Let H be a 
measure on the line. At time n, the observations are n i.i.d, random variables 
from a distribution G satisfying d(G, Poo)<cn-~, 0o~0 (here d is L2(H) distance 
between cdfs - see Sect. 2). The set of such G delineates the possible contamination 
at time n, and forms the enlarged parameter set described in the preceding para- 
graph. If P0 is then selected from the decision space, loss will essentially be a func- 
tion of n~d(G, P0) - see Sect. 2 for the precise description. Any estimator that is 
asymptotically minimax in this decision theoretic framework is then called robust. 
In short, the essential feature of robustness - namely, reasonable behavior of the 
estimator over a neighborhood of the model - is to be automatically guaranteed 
by the choice of decision theoretic optimality criteria, and not by the more common 
criteria of 'continuity '  or 'differentiability' (cf., Hampel, 1971; Beran, 1977b). 

Studies of robustness via local neighborhoods shrinking at rate n- 6 have 
been undertaken by many authors (e.g., Beran, 1979; Huber-Carol, 1970; Jaeckel, 
1971 ; Rieder, 1978; Bickel, 1979); see the survey by Bickel, 1979, for a description 
of its advantages, statistical significance, and for detailed discussion of references. 
The usual shrinking neighborhoods have heretofore employed spheres in the 
L1, Hellinger, Kolmogorov-Smirnov (K-S), or Prohorov metrics on measures. 
We introduce here for the first time neighborhoods based on the Hilbertian 
L2(H) metric on cdfs. This technical innovation has several advantages. First, 
the possibility of varying the measure H gives the present set-up a useful flexibi- 
lity. Because the basic notion of distance is Hilbertian, the resulting theory is 
fairly simple; L 1 and K-S neighborhood systems are more difficult to deal with. 
In particular, the minimum distance theory developed in our framework will 
be an asymptotically normal one- unlike that based on the K-S metric. Finally, 
the contamination neighborhoods here (like K-S) are quite large, so optimal 
procedures will deal effectively with severe contamination. Unlike L 1 and Hellin- 
ger systems, ours encompasses contamination that is singular with respect to 
the model. Because these neighborhoods are so broad, a rationale for restriction 
to n- 6 balls can be advanced: namely, one can first assess the plausibility of 
the model via a Kolmogorov-Smirnov test; should the model be accepted, re- 
striction to n- ~ neighborhoods makes sense since the K-S balls of given radius 
are contained in the L2(H) balls. No such interpretation is possible if L1 or Hellin- 
ger distances between measures are used to construct the contamination neigh- 
borhoods (cf. Bickel, 1979). 

The decision theoretic point of view advanced above is, of course, not  new; 
it can be discerned in Beran, 1979, and in Holm (op. cit.), and it is implicit in a 
large number of other papers. We differ here mainly in the militancy with which 
we insist on its explicitness. Reparametrization of the problem in terms of the 
measures themselves has ample historical precedent; it occurs with especial 
force in the work of LeCam, 1973. 

The decision theoretic framework just described does not include all possible 
notions of robustness, but it does cover a fair number of situations arising in 
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practice. Besides, it has several advantages. First, it is not limited to locationscale 
models: fairly general models {P0} can be employed. For example, Sect. 3 applies 
the theory to families differentiable in quadratic mean, to exponential families, 
and others. Second, the kind of 'contamination' is essentially arbitrary. In this 
framework, the observed distributions can actually be singular with respect to 
the P0's; this allows, without strained artifices, contaminations due to discretiza- 
tions of the data (roundoff, for example). Third, no restrictions are made a priori 
on the class of estimators to be considered; they are not required to be solutions 
of favored functional equations, nor are they required to have a preferred asymptot- 
ic expansion; they are not even required to be asymptotically normal. The local 
minimax optimality criterion employed here apparently cuts out unreasonable 
competitors, as it does in purely parametric estimation problems. Fourth, this 
particular framework sidesteps the debilitating relativism involved in the frequent 
suggestion (Huber, 1972; Bickel-Lehmann, 1975; Hampel, 1974) that the true 
parameter of interest is whatever one's favorite estimator estimates. Such rel- 
ativism arose historically as an attempt to cope with the immense conceptual 
difficulties in understanding what 'center of symmetry' should mean when a 
symmetric location model is subject to asymmetric contamination. The present 
framework does not depend on the existence of symmetries, and so here the dif- 
ficulty does not arise. Fifth, the abstract setup here excludes from the select 
circle of'  robust estimators' those estimators that have long incurred opprobrium. 
To illustrate, Example 3A in Sect. 3 presents a simple result to the effect that the 
notorious 'sample mean' is essentially never robust in the present framework. 
In short, elevated status is denied to known troublemakers. 

Finally, and perhaps most important, the theory developed here appears to 
provide a coherent rationale that explains the robustness of a number of very 
popular procedures that have proved reliable in practice. Each choice of the 
measure H leads, according to the basic theory, to a minimum distance estimator 
which depends on H. Each such estimator will be robust according to the local 
asymptotic definition of this paper. So in this way one arrives at a whole family of 
robust minimum distance estimators. In pure location models, various choices 
of /4  (see Sect. 3 for the details) lead, under certain conditions, to such familiar 
estimators as median, Hodges-Lehmann estimator, trimmed mean, and so forth. 
That is, a number of estimators that have been proposed on what seem to be ad 
hoc grounds, but which nevertheless have demonstrated empirical robustness, 
fit neatly into one general framework. Of course, some choices of H are more 
reasonable than others, and the general development here provides some guide- 
lines. For example, choice of/-/also determines the size of the possible n- ~ con- 
tamination neighborhoods, and the larger the neighborhood, the better the 
estimator can handle contamination. Finite /4 yield very full neighborhoods, 
infinite H result in smaller neighborhoods. The Hodges-Lehmann estimator 
in location models results from an infinite H, and consequently would perhaps 
be downrated slightly in favor of, say, a standard Cram6r-von Mises estimator. 
These matters are discussed at length in Sect. 3, Subsect. (B). It is our belief that 
the structure developed in this paper provides helpful conceptual guidelines for 
picking one's way through the heap of ad hoc procedures, guidelines that permit 
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intelligent assessments as to the viable possibilities before plunging into the 
Monte Carlo simulations. At the very least, there is the guarantee that the estimator 
selected fulfills minimal theoretical prerequisites. 

The organization of the paper is as follows. Section 2 contains the technical 
statement of the main results, and the definition of robustness used throughout. 
Section 3 analyzes a number of common examples, including location-scale models 
and exponential families, and explains how the basic theory provides sensible 
robust estimators. Section 4 contains the proofs, which are extensions of those of 
Millar, 1979, involving tools of abstract decision theory, Hilbert space parametriza- 
tions, and concomitant notions from the theory of abstract Wiener spaces. 
Section 5 presents a few extensions of the main theory. 

2. Statement of Main Results 

Let O be an open subset of R d. For 0~O, let P0 be a probability on the line, ab- 
solutely continuous with respect to a sigma finite measure J. Let F 0 be the cu- 
mulative distribution function (cdf) of P0. Single out a distinguished point 0 o ~ O; 
for simplicity, take 00 =0. Let H be a finite measure on R 1, and define [ [n, (,)H 
to be norm and inner product of L2(H), while [ l, and (,) ,  shall be ordinary Euclid- 
ean norm and inner product for R d. 

The parametric family {P0} and the measure H shall satisfy the following 
assumptions: 

(2.1) Differentiability: there exists a function ~ on R 1 with values in R ~ such 
that (0, ~)aL2(H) for all 0 and 

[ F o - F o - ( O  , ~)IH=o(10[) as 0 goes to 0 

(2.2) Identifiability: if IF0-F0[n~0 for some sequence 0n, then 0n~0. 

Condition (2.1) is Fr6chet differentiability of F 0 at Fo as elements of L2(H); 
the derivative ~ of course depends on 0o and H. Although the analysis of this 
paper is local, proper interpretation of the results requires these hypotheses to 
hold at each 0o~O. 

Differentiability conditions on parametric families appear in many asymptotic 
studies. In classical parametric theory (LeCam, 1969) as well as in modern robust- 
ness studies (Beran, Bickel, Rieder, op. cit.), the usual condition is quadratic mean 
differentiability. The differentiability condition (2.1) on cdFs is weaker than q.m. 
differentiability and applies to more parametric families (cf., Sect. 3E, 3F). Sys- 
tematic use of it in robustness theory appears here for the first time. 

Define ~ = ~ = {(0, ~) :0~Re} ; assume that 
0o 

(2.3) dimension ~ in L2(H) is d. 

For a cdf G, define ~oG to be any cdf F0,,0'~O which satisfies inf[G-F0[ n 
0 

=]G-F0,1H. Define ~ to be orthogonal projection in L2(H) to the subspace ~ .  
Let N(c) = {q eL2(H):lql ~ < c}, and let Gnq be the cdf defined by G~q = F o + n -  ~q, 

q~N(c)  (assuming q chosen so that this is indeed a cdf). Let G~q(dx) be the product 
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measure I~[ Gnq(dxi)  , x = (x 1 , . . .  , xn). The m e a s u r e s  Gnnq, q~N(c), give the possible 
i 

distributions of the contaminated data at stage n; that is, the data consists of n 
iid observations from some cdf lying in a ball of radius cn -~ of F o in the metric 
I in. The collection of G,q, qeN(c) is called a contamination neighborhood of 
F o. Different choices of H give different contamination neighborhoods; if H is 
finite, however, each such neighborhood contains all distributions G such that 
]G-Fotr(-suplG(t) -Fo( t ) l<cn-~H(R e) - i.e., contains a n -~ ball in the Kol- 

t 

mogorov distance, a fact whose significance is discussed later in this section. 
Finally, a loss function will be introduced which assesses penalty when anq 

is the distribution of the data, and 0 is selected from the decision space. Because 
of (2.2), knowledge of F 0 determines 0 so it is reasonable to reparametrize, taking 
the cdf's F0 as the basic objects to be estimated. In this situation, a natural candidate 
for loss might be an increasing function of n]Gnq- F0] ~; however, simple considera- 
tions show the problem degnerate for this choice. Instead, introduce the closely 
related loss L,(Gnq , F0): 

g~(G,q, Fo) = l[nl~o Gnq - fo]~ + (n[ a , q -  ~z o Gna[~)/x a] 

where l is an increasing function on [0, oo). This loss evidently has the two pro- 
perties mentioned in the introduction: it penalizes both for bad data (but only 
boundedly), and also for inept choice of 0 when Gnq is close to the parametric 
family. Such loss functions, of course, are not 'philosophically necessary' (as 
one referee complained); I confess never having met any philosophically necessary 
loss function. The point is, however, that the losses introduced here are intuitively 
reasonable, lead to a simple theory, and the procedures derived within the re- 
sultant decision theoretic structure accord well with those that have been found 
best in practice. 

Let W be the usual Brownian bridge stochastic process. For  theorem (2.4) 
below, the estimators T in  question are estimators of the cdf's F 0, according to 
the reparametrization discussed in the preceding paragraph. 

(2.4) Theorem. Under hypotheses (2.1)-(2.3) and the technical hypothesis (4.4), 
if cnT oo, then 

lim inf sup ~L~(G~q, T) dG~,q> glEl~ WoFo]2 +a]. 
n T q~N(Cn) 

(2.5) Definition. Any sequence of estimators T, for which the limiting minimax 
risk, lim sup ~Ln(Gnq; rn) dGnq, equals the lower bound of (2.4) will be called 

n qeN(cn)  

/-/-robust. If H is finite, then the contamination neighborhoods contain a ball 
in the Kolmogorov metric, and in this case call the estimators T, fully robust. 
This terminology is reasonable because a preliminary Kolmogorov-Smirnov 
test can then assess the plausibility of the model; if the model be accepted, then 
restriction to our Hilbertian n- ~ neighborhoods is reasonable. As mentioned in 
the introduction, no such interpretation is possible if L 1, Hellinger, or L2(/H) 
(H only sigma finite) distances are used. 

Define P, to be the empirical distribution function. Assume that l satisfies 
the growth condition 
(2.6) y-  2 log l(y) = o(1) as y--* oo. 
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(2.7) Theorem. Under assumptions (2.1)-(2.3), (2.6), there exist c.'r co such that 

lira qsug.)~L.(G.q; xoF.) dG".q=ElEl~ Wo fol~ + a] 

Moreover, relative to the metric [ [H: 

rCoiv.=Fo+Tr(F.-Fo)+o(n -4) under {G~,,} 

In short, the minimum distance estimator ~roiv . is robust in the sense of Def- 
inition (2.6). 

Subsection 2A: Local Structure. The estimators discussed in Theorems (2.4), (2.7) 
are estimators of cdfs and only indirectly are they estimators of 0. It is important 
to realize that locally the manner in which 0 is actually selected by the estimator 
~z0iv . is quite transparent. By (2.7), rooF . is locally like orthogonal projection of 
iV. (in LZ(H)) to F 0 + ~,  so it estimates 0 by picking an element of the form Fo + ~0., ~), 
where the estimator 0. is easily determined from well known properties of orthog- 
onal projection in Hilbert space. For example i f ~  is one dimensional, for example, 
~0., ~) is 0.~, and so by the usual characterization of projection of projection 
in Hilbert space 

(2.8) 0. = ~ F . -  F0, ~ ~ 2 ~)~/l~l~ 

The asymptotic normality of the estimate 0n of 0 is hence immediate, as it is in 
the d-dimensional case as well. Calculation of (2.8) in special cases can be found 
in Sect. 3. 

Asymptotically, the loss at time n, when G.q is true and P0 guessed, is an in- 
creasing function of ]rcq-(O, ~)12+](1-n)ql2Aa.  But nq=(Oq, ~) for some 
Oq~R d, s o  this becomes ]@q- 0, ~)[~ + [(1- n)qJr~ A a. If there is no data contam- 
ination, then the second term in the last expression is zero, so the loss is essentially 
a squared error loss between the ' t rue '  0q and our guess for it. In general it is 
clear that, even with data contamination, the loss still preserves its character 
as locally a kind of squared error loss. 

Subsection 2B: Extensions. Proper understanding of the examples of Sect. 3 
requires two extensions of the main result. Other extensions are mentioned in 
Sect. 5. 

(a) Sigma finite H. Suppose that H is a sigma finite measure satisfying 

(2.9) SFo(t) [1-e0(t)]  H(dt)< oo 

in addition to (2.1) - (2.3). If I is bounded (say) then Theorems (2.4), (2.7) continue 
to hold, provided the sets N(c) are narrowed to (e.g.) {q: lq[H<c,~lq]dH<c}. 
Notice that when H is infinite, the sets N(c) will typically be quite skimpy - 
they will not, for example, contain K-S balls as they do when H is finite. There- 
fore, though the estimator ~oiv, will be H-robust according to Definition (2.5), 
it is clear by looking at N(c) that these estimators can not defend against heavy 
contamination as well as those coming from finite H. See the examples of Sect. 3 
for illustrations of this point. 
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(b )  Families o f  Measures.  For each 0~O, let H o be a measure on the line; denote 
by ] 10 the L2(Ho) norm. Amend the definition of rc o G to mean any element F o 
which achieves infLG-Fo]o. The choice H o = F 0 makes ~zoP . the standard Cram6r- 

0 
yon Mises estimator of F 0. Under reasonable smoothness assumptions on {Ho}. 
the conclusions of Theorems (2.4), (2.7) still hold. Here is one workable set of such 
assumptions: (i) each H o is a probability (ii) O ~ H  o is continuous in the usual 
weak* sense (iii) each F 0 is continuous (iv) if IF0 -F0o[0 ~0 ,  then 0 ~ 0 o .  (v) dif- 
ferentiability assumption (2.1) holds, but with I [~: replacing [ [u (iv) dimension 

is d in L2(Ho), all 0. We shall omit the proof; discussion, contemporaneous 
with the present effort, of the asymptotic normality of zco/', under various assump- 
tions may be found in Parr and de Wet, 1979, and in Pollack, 1979. After prelim- 
inary global considerations, the main thrust of these discussions is to replace 
the norms I [0 by ] [0o, and so reduce the problem locally to the case of just one 
measure, Hoo. 

3. Examples 

The theory of this paper functions more or less like a scientific theory of empirical 
robustness: it predicts in known cases what experience acknowledges to be the 
case, and in unknown cases suggests sensible estimators whose empirical per- 
formance can be checked. To illustrate this we first check (Subsect. 3A) that the 
sample mean is never fully robust in the sense of Definition (2.5); examination 
of the argument shows that the theory here reproduces the well known empirical 
fact that the sample mean cannot defend against heavy tailed contamination. 
Next, in Subsect. 3B, 3C, 3D, location models, scale models, and locationscale 
models are studied. Simple choices of bounded H lead quickly to procedures 
asymptotically equivalent to empirically reliable procedures. On the other 
hand, it is shown that there is an H (not bounded) for which the corresponding 
minimum distance estimator is asymptotically equivalent to the sample mean: 
the contamination neighborhoods in this case are extremely thin, of course, but 
nevertheless the theory predicts that the sample mean can cope with certain 
limited kinds of contamination. This seems to be borne out in empirical investiga- 
tions of the behaviour of the sample mean visa vis fairly accurate (but discernibly 
non-normal) data from the physical sciences. (cf., Stigler, 1977). To illustrate the 
breadth of the theory, Subsect. (3F) shows that it applies to general quadratic 
mean families. These include, in particular, exponential families whose importance 
in modelling in applied statistics is well known. Subsection 3G applies the theory 
to the uniform [0, 0] families. This perhaps has amusement value: the classical 
parametric analysis of U(0, 0) leads to an (annoying, actually) non-normal theory; 
the present framework, involving contamination, forces it back into the normal 
fold. Seasoned practitioners could no doubt have guessed this, but it is gratifying 
that the theory does it so effortlessly. 

(3A) Non-robust Estimators. This subsection demonstrates that the sample 
mean is never ful ly  robust in the theory of this paper. Similar analyses easily 
show, for example, that the sample variance cannot be robust either. 
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To see that the sample mean is not robust, suppose given a family {P0} with 
0 real. We shall localize about 0 = 0. Suppose that the characteristic function qo 
of Po satisfies ~0(t)= 1 +of(0) t+o(t), t~O. Assume there exist r>0 ,  s>0,  such 
that [P0-P o[ 2 > r whenever [0[ > s. The standard real normal shift family satisfies 
these conditions for example. Let C, be the Cauchy distribution with ch.f. 
exp{-n]t]}. Set G,=(1-n-~)Fo+n ~C,. If H is assumed bounded, then G, 
is in the contamination neighborhood. If ~0,(t) is the ch.f. of the sample mean 
under G,, then qo, is easily computed and lira ~o,(t)=0 for every t+0.  It then fol- 

tl 

lows from standard identities involving ch.f. and cdf that lim G,"(]X[ > a)-- 1 for 
n 

any a > 0. This easily implies that the limiting minimax risk is I(oo), proving the 
non-robustness of X. 

Obviously, it does not help to center the sample mean by addition of a bounded 
function. One reason the sample mean fails to be robust here is that the contamina- 
tion neighborhoods are quite broad; if extremely narrow neighborhoods are 
employed, the robustness or not of the sample mean is more delicate - see Beran, 
1979, and Example (3B.5) below. 

(3B) Location Model. Let O=R1; fix a cdf Fo. Define F 0 by Fo(t)=Fo(t-O ). The 
parametric family {F0} is the so-called location model, the most intensively 
studied model in robustness theory to date. In this subsection, we apply (2.10) 
to see what familiar estimators arise from particular choices of H. The thrust 
of the discussion is that the fully robust estimators of the present theory yield 
estimators asymptotically equivalent to well-known reliable estimators of loca- 
tion; those that are not fully robust (e.g. sample mean) are downrated because 
of the narrowness of the contamination neighborhoods. Since it is easy to check 
the Hypotheses (2.1)-(2.3), we omit discussion of this point. 

Assume F 0 has a density f with respect to Lebesgue measure. Then under 
t 

mild conditions, ~(t) = - f i t ) .  If G(t) = ~f(s) H(ds) then integration by parts yields 
(F,-Fo, ~)~ =~ G(t) d(P,-Fo)(t). Set c=~ G(t) Fo(dt), b- ~ =~ f2(t) H(dt), ~b(t)= 
b [G(t) -c] .  Then by (2.8) asymptotically about 0 o = 0: 

n 

O. = n -  1 E 
1 

Notice that the ~/ functions here (the so-called 'influence curves') satisfy: (i) 
is monotone increasing and bounded if H is finite (ii) if H, f are symmetric about 
0, then ~ is odd (iii) if H is nonatomic, then r is continuous. Properties (i), (iii) 
are often considered desirable for location estimators with robust pretentions. 

Next, let us evaluate the influence curves ~ for various choices of H. Remember 
that the localization is about 0o =0;  localizations about arbitrary 0 should in- 
volve the families Ho, Ho(dr) = H(dt-  0). 

(3B.1) Hodges-Lehmann Estimator (H/L). Take H to be Lebesgue measure on 
the line. Then @(t)= [Fo(t)-�89 dr. When F 0 is symmetric, ~, is the influence 
curve of the familiar Hodges-Lehmann estimator (cf. Hodges, Lehmann, 1963; 
Andrews, et al., 1972). Therefore (under symmetry) in the case H(dx)=dx, the 
minimum distance estimator is asymptotically equivalent to the H/L estimator; 
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one way of looking at this particularly interesting case is to view the I-IlL estimator 
as an adaptive version of the minimum distance estimator since its recipe does 
not depend on knowing {F0} (remark of P. Bickel). The H/L estimator is not fully 
robust, of course; however, the contamination neighborhoods contain, if F 0 is 
normal, contamination by stable distributions of index a > 1. That  is, H/L can, 
in the present theory, still deal with very heavy tailed contamination - a fact 
which perhaps explains the excellent performance of H/L under standard Monte 
Carlo analysis. 

(3B.2) Normal Distributions. If H is N(0,~r 2) and if F o is N(0, 1),then ~p(t) 
=(2rc(l+q2))~(~(tq-1)-�89 where q2=a2(a2+l) -1, 45=cdf of N(0,1). The 
case a 2 = 1 gives the standard Cram~r-von Mises estimator, while a 2 = oo corre- 
sponds to H=Lebesgue  measure (cf. 3B.1). 

(3B.3) Median. If H is unit mass at 0, then O(t)=[Ito, oo)(t)-(1-Fo(O))]/f(O), I 
being the indicator of the interval [0, oo). If Fo is symmetric, ~p(t) =�89 1 sign t, 
the influence curve of the median. 

(3B.4) Trimmed Means. Choose H(dx)= (f(x))- l dx if [xJ < a, H(dx)= 0 otherwise. 
I f f  is bounded away from 0 on ( - a, a). the resulting minimum distance estimator 
will be fully robust; otherwise it will not. Here ~p( t )=-a/p ,  t < - a ;  =t/p, - a  

<- t < a; = a/p, t > a where p = ~f(t) dt. This is the influence curve of the trimmed 

mean (at �89 - p )  percent; cf. Andrews, et al. 1972). That  is, for this choice of H, 
the minimum distance estimator is asymptotically equivalent to the trimmed mean 
estimator of location. 

(3.B5) Sample Mean. Choose H(dx)=(f(x))-tdx (the measure is defined to be 
zero where f(x)--0) .  The existence of the required derivatives can be established 
if ~(f'(x))2/f(x) dx < oo (i.e., i f f  has finite Fisher information.) Assume in addition 
that ~[x]f(x) dx< oo and support Fo=R 1. Then O(t)---t-c,  - oo < t <  ~ ,  where 
c=~xf(x)dx; this is the familiar ~ function of the sample mean. Of course H 
here is not finite so the sample mean is not fully robust. The contamination 
neighborhoods contain only such cdf's G that satisfy ~(G(t)-Fo(t)) 2 (f(t))-ldt 
<cn -~. The presence of l / f  (t) in this integral forces the tails of the allowable 
G's to mimic the tails of Fo extremely closely. The development here therefore 
suggests the fact, often noted in practice, that the mean cannot be robust against 
"heavy tailed" contamination, while at the same time our development shows in 
a striking quantitative way that the mean does have some robustness against 
very limited kinds of contamination. Of course, the fact that the allowable contam- 
ination neighborhoods are so small indicates that the mean will not generally 
be a reliable estimator of location. It is interesting to note that if F o is N(0A) 
then these contamination neighborhoods do nor contain the contaminated normal 
distributions (1-n-~)Fo+n-~G where G is N(O, o2),o2>l. Thus the present 
theory appears to reproduce the suspicion of some applied statisticians that the 
misbehaviour of the sample mean is already apparent even for this type contamina- 
tion (el. Tukey, 1960). 

(3B.6) Outer Mean. The choice H(dt)= 1/f(t)dt if Itl>a, = 0  otherwise leads 
to ~p(t)=t+c~, t <  - a ;  =0,  - a < t - < a ;  = t - a , t > a .  This is the influence curve 
of the outer mean; as expected, examination of the contamination neighborhoods 
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shows that the tails of the contaminating G's must follow the tails of/~o closely, 
but the middle part of G can be fairly arbitrary. 

(3B.7) Winsorized Means. Choose H=H I+H 2 where Hl(dt)=(1/J'(t))dt if 
c~<t<fi, H1 =0  otherwise; and H 2 is a two point distribution on {~}, {/?}. One 
is led to a tp of the form ~(t)=al,t<~; =ag+a3(t-c~),~<t<fi=a4, t> ft. The 
function ~r will jump at e and ft. Various specializations of this produce the in- 
fluence curve of the Winsorized mean (see Hampel, 1974 for the definition). It 
would seem that the unnatural choice of H would in itself call this estimator into 
question. 

(3B.8) Which H? The basic theory of this paper delineates a broad class of robust 
estimators (one for each finite H), and also damns a host of other possible estima- 
tors. Among the fully robust estimators, the theory does NOT lead inexorably 
to a single estimator whose excellence towers over all others- instead a whole 
spectrum of good estimators is produced. There are some guidelines for selection 
among these. For example, since [ [~ is supposed to measure distance between 
measures, it seems clear that in general an H with full support would do a better 
job than a point mass. One could also try to choose H so that the resulting mini- 
mum distance estimator has as high efficiency as possible (in the classical sense) 
at the model; see Parr, deWet, 1980, for some attempts in this direction. Finally, 
if one knows something about the kind of contamination one could attempt to 
choose the estimator whose contamination neighborhoods have the most ap- 
propriate shape. None of these further suggestions are entirely convincing, and 
they fall distinctly outside the purview of the decision theoretic structure. Since 
(rightly) neither practitioners nor theoreticians can decide for all time on (e.g.) 
the 'proper '  percentage for a trimmed mean, it is perhaps a good thing that our 
theory does not rigidly dictate the amount  either. 

(3C) Scale Models. Assume O=(0,  oo) and that the family {F0} is given by 
Fo(x)=Fo(x/O) for a fixed cdf F o . Assume that/7o has a density f with respect to 
Lebesgue measure. Reparametrize by ~r: Fo(x)=Fo(x/l+a ). We intend to see 
what the estimator ~oPn amounts to for ~ near 0. Denote by &n the choice of a 
made by the estimator noF n. Proceeding as in the location case, one finds under 
mild assumptions, ~ ( t ) = - t f ( t )  so that & n = n - l ~ J ( X i )  where r 

t 

M(t)=~sf(s) H(ds), c=~M(t) Fo(dt ). If H,f  are symmetric about 0 then the 
curves here satisfy (i) ~ decreases as t goes from - oo to 0 and increases as t goes 
from 0 to oo ; (ii) ~k is a bounded, even function if ~ Is]f (s) H(ds) < oo. Again, the 
shape of these ~ curves is typically what one might expect of robust estimators 
in the scale case. 

(3C.1) Normal Distributions. Let F 0 be N(0, 1) and let H be N(0, c2). Straight- 
forward calculation gives ~J(t)=K[p(p2+l)-~-exp(-t2/2p:)] where K is a 
constant and p: = c2/(c a + 1). 

(3C.2) Step Function ~p. Take H to be point mass 1 at each of the points { -  1} 
and {1}. I f f  is symmetric, then 

~P(t)=(2f(1))-*(Fo(1)-Fo(-1)) if I t l>l ;  
=(2f(1))-l(Fo(1)-Fo(-1)-l), It l<l.  
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Slight variants of this example produce the influence curves of the familiar me- 
dian absolute deviation. 

(3D) Location-Scale Model. Here the parameter set O is R x (0, oo); P0 is given 
by Fo(x)=Fo(x-Oi/02) if 0= (0 i ,  02). Reparametrize by Fo(x-O/l+~r),  0, a real. 
Then ~Zo(P,-Fo) is given locally (near the parameter point (0, 0)) by projection 
onto the span ~ off(t) ,  tf(t) where f is the density of F o ; every point in ~ has a 
representation ((0, a), ~), ~ = ( - f ( t ) , - t f ( t ) )  and so the point (0, &) that gives 
~z(P,- Fo) is the estimator of (0, a). Performing this calculation gives the estimator 
S(F,-Fo), where S(x) is the vector (Sl(x), S2(x)) with x~LZ(H) and 

Sl(x ) = (ai2 a2(x) + a2z a l(x))/c 

S2(x) = (ai 1 a2(x) + at a al (x))/c 

where 
aij = (ei, ej)n,  ai(x ) = (x ,  ei) n i = 1, 2; j =  1, 2 

el = - f ( t ) ,  e2 = - t f ( t )  

c = a ~  a ~ - - ( a ~ )  ~ 

Notice that if f ( t )  is perpendicular to t f ( t )  then S(x) simplifies to 

S i ( x )=a l (x ) /a i i  
S2(x) = a2(x)/a2z 

so in this case the estimation of location and scale can be accomplished by esti- 
mating each separately, according to the recipes given earlier in this section. This 
separation of cases occurs, for example, when f and H are symmetric about  0. 

(3E) General Parametric Families. An important feature of the present approach 
to robustness is that it does not depend on notions of symmetry for its implemen- 
tation - quite general models can be employed. As an example of this, suppose 
P0 is absolutely continuous with respect to d J, and f0 = dPo/dJ. Assume the fam- 
ily {P0} is quadratic mean differentiable (qmd) at 00(=0): there exists 
t]=(t]l, /']2 . . . . .  /~d), theL2(J), depending on 0o, such that ~ [ f o - f o - ( O ,  t/}[ z d J =  

t 

o([012) as 0--*0. Then (2.1) holds with r defined by (0 ,~ ( t ) )=2~  fo (O,  rl} dJ, 
and the differentiability of (2.1) is actually in the sense of the sup norm I [K. Let 
C be the Banach space of continuous functions obtained as the span of all elements 

i f - ~  hdJ, heL2(j). Then ~ is d-dimensional in C if the matrix with entries 
rh(t ) rli(t ) Fo(dt ) is non-singular. The notion of qmd is fundamental for certain 

problems of classical estimation theory; see LeCam, 1969, for discussion of 
its statistical significance. 

A great many of the common parametric families satisfy the qmd assumption. 
Perhaps of greatest importance for applied statistics are the exponential fam- 
ilies. Here, in standard form, dPo/dJ = a(O)exp((0, h}) where a(O) is a normal- 
izing constant, h=(h i , . . . ,  hd), hi a Borel function on some measure space, O =  
int{0eRd: 0 < a ( 0 ) <  oo}. Then rl=�89 ~ will be d-dimensional (in C) 
if Cov(hlPo) is non-singular. Identifiability assumption (2.2) is also satisfied; 
see Berk, 1972. 
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(3F) Uniform distributions. The uniform distributions on [0, 0] are in general 
somewhat of a headache for classical estimation theory, because if the model 
is correct, the 'best' estimator of 0 has an asymptotic theory that does not lead 
to Gaussian distributions. The deviant theory is trivial, but the departure from 
normality is annoying. The optimality properties of the maximum as an estimator 
of 0 depend critically on peculiarities of the U(0, 0) distribution; it is obvious, 
however that such an estimator cannot be (empirically) robust under any sub- 
stantial data contamination. One amusing feature of our robustness theory is 
that it forces (perhaps brutally) the U(0, 0) model back into the asymptotically 
Gaussian framework. Indeed, if the model is reparametrized to U(0, 1 + 0) and 
local analysis is undertaken at 00=0, then it is easy to see that (2.1) holds, with 
~(t)=0, t < 0 ;  = - t ,  0 < t < l ;  =0, t > l .  Assumptions (2.2), (2.3) are immediate, 
and so for finite H the minimum distance estimator of 0 is robust. Its asymptotic 
form, given by (2.8), shows it asymptotically normal. That is, unlike the purely 
parametric situation, the best (robust) estimator is indeed asymptotically normal. 
It is easy to see that the maximum cannot be robust in the present framework. 
The uniform (0-�89 0+�89 models also satisfy the assumptions (2.1)-(2.3), and 
could have been treated under Subsect. (3 B); of course the best (robust) estimators 
here will be asymptotically normal too. 

4. Proofs 

This section supplies proofs of theorems (2.4), (2.7), including the extension to 
sigma finite H in Subsect. 2B. The proofs will be undertaken in three steps. 

Step (i). Weak Convergence of Empirical edf in L2(H). Let W be the standard 
Brownian bridge stochastic process. 

(4.1) Proposition. Let F, be a sequence ofcdf'son the line, F, converging in H measure 
to a cdf F. Assume SF,(1--F,)dH<~, S F ( 1 - F ) d H < ~  and l im~F,(1-F,)dH 

1 A it 

, L2(H)_ =~F(1-F)dH.  Then under the product measures {F~"}, n (F~-F,) is an 
valued random variable which converges in distribution on L2(H) to Wo F. 

Proof If H is finite, then I ]n<const I IK, so (4.1) is a trivial consequence of the 
well known weak convergence of the empirical cdf on the usual Banach space 
of continuous functions. Set Y, = n ~(P.-  F,), Y= Wo F. Let e~, i = 1, 2,... be an 
orthonormal basis of LZ(H) such that each ei is bounded and H(S~)< co, where 
S~ is the support of ei. By the usual weak convergence criterion in Hilbert space 
(cf. Prohorov, 1956) it suffices to show that for each e >0, there exists k for which 

(4.2) sup ~ E<Y,,ei>2<e 
n i > = k  

Routine calculation, using the hypotheses and choice of el, show lim 
n i > 1  

E<Y n, ei)2= ~ E<Y, ei) 2 and, for each i, lim E<Y~, e~)~ =E<Y, e~) 2, which are 
i > l  n 

sufficient for (4.2). Since the finite dimensional distributions < Y,, el>n,.. .  , < Y,, ek> H 
converge to < Y, el>r1,..., < Y, ek>u, Proposition (4.1) follows. 

Application of this result will employ Fn of the form F, = Fo + n ~ q,, q, ~N(c). 
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Step (ii). Proof of (2.4). The proof will be carried out under the assumption that 
I is uniformly continuous; the general case follows on approximating general 
I from below by uniformly continuous functions. Fix c and q~N(c). Then because 
of (2.1)-(2.3), ~roG,q=Fo+n-+nq within o(n -~) in the metric I In. For such 
G,q, the form of L, forces the elements F o selected from the decision space to lie 
within a n-@-ball of F0(I-In metric); so within o(n-~) such an element has the form 
Fo+n -~ 7;, T=(O,  4). Because of the assumed uniform continuity of l, the loss 
function L,(G,q, Fo) may then for asymptotic purposes, be replaced by l (]nq - 7] 2 + 
([(1-n)q[ 2)/x a). To lighten the notation, assume a=0 .  This having been done, 
we now bound from below 

(4.3) lim inf sup S/(Ire(q- T)] 2) dG~,q 
n T q E N ( c )  

where procedures T now select elements of ~ .  In particular, the cdf parametri- 
zation {Fo} described in section 2 has been replaced by {(0, ~), OsRa}. 

If f is the density of P0 with respect to J, define Leo(J) to be the Hilbert space 
consisting of elements h~LZ(J) orthogonal to f~. Let [. IJ be the norm of Lz(J). 
Define densities fin ; h; x), h ~ Leo (J) by f-~(n ; h ; x) = (1 - n- 1 ]h [~)~ f~(x) + n- -~ h(x). 

t 

This will indeed be a density if Jh[ 2 < n. Define % a mapping on Leo(J) by "c h(t)= 

f~hdJ .  Since I'ch(t)Jz<=]h]J Fo(t)A(1-Fo(t)), it is clear from Hypothesis (2.9) 
that z maps Leo(J) into L2 (H). Let Leo(H) be the closure in L2(H) o f f  Leo(J). It is not 
difficult to check that z is a Hilbert-Schmidt operator from L2o(J) to Leo(H). As- 
sume from now on: 

(4.4) ~ c Leo(H) 

Discussion of this hypothesis appears in Remark (4.5) below. 
Let Qo be the image under z of the canonical normal distribution on Leo(J) 

(the characteristic functional of Qo is exp{ --~lz*2[ ,51jl,"lax geL2o(H), ~. =adjoint  -c; 
see, e.g., Millar, 1979, for the definition of this concept.) Since z is Hilbert-Schmidt, 
Qo is of course countably additive; indeed, Q0 is the distribution on Leo(H) of 
WoF (cf. (4.1)). Define probabilities Qh on the Borel sets of Leo(H) by Qh(A)= 

Q o ( A -  zh). Then I~I f (n; h; xi)/ f (xi)converges in distribution, under H f (xi)dxl, 
H 

i = 1  i = 1  

to dQh/dQo. It then follows from a basic asymptotic minimax theorem and (4.4) 
that (4.3) may be bounded below by 

lim infinf s u ~ ) ~  l(In(vh- T)I 2) dG~"a>inf s u ~  ) ~ l(In(zh- T)] 2 dQ h 

where now T takes values in LZ(H). 
See Millar, 1979, for more detail on the argument just indicated, as well 

as for a version of the minimax theorem immediately applicable to the present 
situation; see LeCam, 1972, H~tjek, 1972, for other variants of the minimax 
theorem. If now c, increases to infinity in any way whatsoever, it then follows 
that 

lim inf inf sup ~ l(Irc(q - T)l 2) dG~,q > inf sup ~ l(In(T - rh)l 2) dQ o 
n T q ~ N ( c n )  T h 
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Since x-+l(bzxl 2) is subconvex on L2(H) in the sense of Millar, 1979, section 3, 
the last expression in the foregoing display can be evaluated as J/(l~x[ g) Qo(dx). 
Q.E.D. 

Step (iii). Proof of (2.7). The proof will be accomplished first under the assump- 
tion that 1 be uniformly continuous (and bounded, if H is only sigma finite). 
Fix c; define Y, = n~(i~,- Fo). If A(2)= {1Y~[l~ > 2}, then by Chebychev, G~,q(A(2))= 
0(2- 2), where 0 is independent of q as long as it belongs to N(c). It then follows 
from (2.1)- (2.3) that on complement A(2), ~oP,=Fo+Tr(P,-Fo)+%(n-~). Since 
I is uniformly continuous on [0, 2], the global loss L,(G,q, s o F,) may, for asymp- 
totic purposes, be replaced on A~(2) by l(nl=(['~-G,q)l 2) (taking a = 0  as in step 
(ii)). If in addition l is uniformly bounded, it is easy to see that this replacement 
on the entire sample space affects the risk at G],q by 0(2-2)(uniformly for qeN(c)); 
if 1 satisfies only (2.6) and H is finite a slightly tedious uniform integrability 
argument (which invokes Kiefer, Wolfowitz, 1958) leads to essentially the same 
conclusion with o(1) replacing 0(2-2) as 2--+ o9. 

It is also clear that 

SU lira q~O)S/(nl~(P~ -G,~)I 2) dG~,q = El([~ Wo F o 1~) 

Indeed, if this were not so, then there would exist q~N(c)  and ~>0 such that 
-�89 if F~ = F o + n q~ then (because of step (ii)) 

lira j" I (nlTc(P~ - F~)I~) dF~=EI(I~ Wo F01~)+ e. 

But if q~sN(c), then F~ satisfies the hypotheses of (4.1), leading to a contradiction. 
Taking the approximation of the preceding paragraph into account, one finds, 
by a standard argument, sequences cn~ ov such that, by letting 2T Go, one ob- 
tains (2.7). A modest amount of care is needed to do the entire argument in 
complete detail. 

To remove the hypothesis that l be uniformly continuous, notice that the 
uniform continuity was needed only for l restricted to [0,2]. The extension to 
general l can be completed by approximating l abovc on [0, 2] by uniformly 
continuous functions and using the fact the distribution of ]~Wo F0[ ~ is non- 
atomic. Q.E.D. 

(4.5) Remark. Hypothesis (4.4) can be guaranteed in a variety of ways. To 
t 

illustrate, if 6) is a subinterval of R l, then in many examples, ~(t)=S f(Oo, s) J(ds) 
where f(O, s) = c~/~? 0 f(O, s). If f(Oo, s)/f  (0o, s)~L2(j). Then ~ = z ( f / f  ~) so (4.4) 
evidently holds. For a better condition, write f~(O, t)=(1-lhol2)~f~(O,t)+ho 
where h o is orthogonal to f~(0,.  ) in L2(j). Then, because of (2.1) it is easy to see 
that (4.4) will hold if n~(2(Po,-�89 Po)-~O, for then (0 ,~)  is a limit in L2(H) of 

t 

2~f  o ho,-  �89 d J; Here ( denotes Hellinger distance between the measures in 
question. That (4.4) holds for the U(0, 0) case can be checked directly. 
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5. Extensions 

(SA) Dependent Observations. The assumption of independent observations 
can be weakened. If, under the envisioned dependence, (4.1) still holds, and if 
independence is a special case of the type of dependence under consideration, 
then the main results may be recovered. 

(SB) Multidimensional Case. Analogues of the main results continue to hold 
if P0 is permitted to be a probability on R e (instead of R~). The Brownian bridge, 
of course, is replaced by another Gaussian process depending on Fo, and so 
forth. 

(5 C) Global Variants. It is possible to write variants of the main result in which 
the point 0o is not chosen in advance. Instead of n -§  balls about a fixed 0o, one 
envisions a n -~ 'sausage'  surrounding the entire P0 family; this sausage is the 
union of n - r  balls at each 0. To rederive the main result under these circumstances, 
additional (but mild) compactness properties of the family {P0} are brought 
in; we spare the reader the details. 

(5D) Testing. It is possible to develop a theory of robust testing based on the 
estimators of this paper. Roughly speaking, one would reject (say) 0 = 0  if hop n 
were too far away from Po. This theory, with the definition of robustness (2.5) 
adapted to the testing problem, has been developed in Millar, 1979. 

(5E) Families of Measures. The extension of the theory to families {Ho} was 
mentioned in Sect. 2. In these circumstances, other minimum distance type 
estimators -easier to analyse-  can be introduced. For  example, if 0n is a prelim- 
inary n r consistent estimator of 0 (see LeCam, 1969, for existence of such; his 
theory can be adapted to robustness frameworks), one can define ~ Fn to be 
any element Fo which achieves inflPn-F0len. Robustness, in the sense of this 

0 
paper, can be established for this modified estimator. Variants of this turn out 
to be useful in the testing problem when there are nuisance parameters (see 
Millar, 1979, for this; see Pollack, 1979, for some asymptotic normality results 
about these modified estimators). 

(SF) Alternatives to Sample edf. The minimum distance estimators of this paper 
are defined in terms of the sample cdf. Instead, one can introduce a kernel k(-), 
defined on R 1, and consider tV,(k, t) = ~ k( t -  x) P~(dx). If k is the indicator of [0, oo), 
the empirical cdf is recovered. The parameter 0 naturally will be estimated by 
picking the element ~ k( t -  x) Fo(dx ) closest to Fn(k, t). Under regularity assumptions 
on k, one can obtain analogues of the main result. In the location problem, one 
may obtain by proper choice of k, estimators with redescending influence curves - 
something not possible with n o Pn. This possibility was pointed out to me by 
R.J. Beran. 

Acknowledgement. I thank R. Beran for calling my attention to the problem discussed herein, for a 
number of helpful comments, and for continued interest in the project. 
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