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1. Introduction and Summary 

In this paper the general theory of the Martin boundary (or exit space) for 
Markov processes is applied to construct boundaries for several space-time 
processes. We shall consider the following processes in spacetime: Cauchy-, d- 
dimensional Bessel processes and Poisson processes composed with a symmetric 
binomial distribution. In [10] Wiener-, Poisson- and Gamma processes are also 
discussed. In all these cases the minimal part of the boundary will be determined 
using directly the definition of minimality. 

Although the theory of the exit space of Markov processes is relatively old 
only a few boundaries for processes with continuous time and space are 
explicitly known. The aim of this note is to make this abstract construction 
more concrete, and perhaps convince readers of its great importance in the 
theory of stochastic processes. 

2. Space Time Processes 

Let X =  {x(t)}, t>0 ,  be a Markov process over some probability space (f2, ~,, ~)  
taking values in a LCC space E; the a-algebra generated by the open sets in E is 
denoted by ~(E). If E is not compact, let A be a point not contained within E 
such that Eu{A} is a one-point compactification of E; if E is compact, let A be 
an arbitrary point isolated from E. Further, let ( be the lifetime of the process X, 
i.e., for c~f2, ((co)=inf{t:x(t, oo)r We extend the process X to E~{A} by 
setting, in the case ( (~)<  ~ ,  

x,(t,~):={A(t, co ) if t < ((~o), 
if t > ((co)" 

We maintain the notation X for this extended process. 
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Let us construct a new process, Y= {y(t)}, t>0 ,  over the same probability 
space by setting yt(co)= (t, xt(co)) for all t s  T =  [0, oo) and co~f2. It is clear that Yis 
also a Markov process and taking values in the product space (T x E, N (T  x E)). 
A stochastic process Ywith this kind of a structure is called a space-time process. 

Let P(t, x, A), t~ T, xEE, A~N(E), and P'(t, x, ~ ) ,  t~ T, x E T x E, d ~ d ( T  x E), 
be the transition functions of the processes X and Y, respectively. From the 
construction of the process g i t  follows that 

p , ( t , x , d )={P( t - s , x ,A ( t ) ) ,  if t>s, 
, otherwise, 

where x = (s, x) and A (t)= {x~E:(t, x)Es4}. 

Let f be a non-negative, N(TxE)-measurable  function and, for a fixed t, set 
gt: =f(t, .). Now, consider the function 

P / f  (x)= ~ P'(t, x, du x dy)f(u, y) 
T •  

= S n(t -- s, x, dy) gt (y) ." = Pt-s gt(x) �9 
E 

f is called space-time excessive if for all seT  Pt_sgt'~g s pointwise as t+s, and 
t S space-time invariant if for all t, s, t >=s, Pt-sg - g .  

3. The Exit Space of a Markov Process 

The usual references for the Martin boundary theory of Markov processes are 
[2, 11, 6, 9, 3 and 4 I. Using [4] we shall now list the basic assumptions under 
which the exit space can be constructed. 

Let us consider the kernel 

G(x ,A) . -  P(t ,x,A)dt,  x~E, A ~ ( E )  
0 

and assume that there exists a measure m on E which is finite in compact sets 
and such that 

(i) G(x, A)= ~ g(x, y)m(dy), 
A 

where g(x, y) is a non-negative, ~(E)  x N(E)-measurable function such that 

(ii) Vfs  Cc(E ) (=  continuous functions with compact support) 

g(f, y) = ~ m(dx)f(x) g(x, y) 
E 

is continuous and bounded by a constant which only depends o n f  
A function g with these properties is called a Green function of the process X. 
Further, we assume that there exists a finite measure 7 such that 

(iii) q(y)= ~ 7(dx) g(x, y) 
E 
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is positive and continuous, 
(iv) there exists a positive, .~(E)-measurable function 0 such that 

c 0 = ~ ~ (dx) S g(x, y) ~, (y) m (dy) < ~ .  
E E 

A measure 7 with these properties is called a standard (or reference) measure 
of the process X. (Note that (iv) is a transience assumption.) 

In general, the Green function need not be excessive. It is, however, possible 
to overcome this difficulty (see [4]) and, with this in mind, we assume that 

(v) VyeE g( ' ,y)  is excessive. 

Set [g(x, y) 

K(x'Y)={Oq(Y) otherwise.~ {q<oe}, 

The function K(x, y) is called the Martin function of the process X. 
Further, we make one more assumption which, usually, is a consequence of 

some other assumption: 

(vi) Vf~ Cc(E ) the function 

K (f, y) = ~ m(dx) f (x) K (x, y) 
E 

is bounded by a constant which only depends onf.  

A Markov process X satisfying these assumptions together with certain 
regularity conditions is essentially Dynkin's special M-process (see [4]). 

It can be proved that for a special M-process there exists a set Ue~(E*)  (E* 
is a Martin compactification of E), called the exit space of the process X, which 
is in one-to-one correspondence with the set of all the minimal excessive 
functions of the process X. (An excessive function is called minimal if it cannot 
be represented in a non-trivial way as a linear combination of other excessive 
functions.) Given yE U, the minimal excessive function, ky, is either the Martin 
function K( ' ,  y) or its extension. 

Let h be any 7-integrable excessive function. Then there exists one and only 
one measure, ah, on U such that 

h = ~ ky ah(dy). 
U 

The measure a h is called the spectral measure of the function h. Obviously, given 
y~U, the spectral measure of the function ky, denoted aY, must be Dirac's 
measure at y, denoted e~y~. 

Further, let h be a ?-integrable excessive function and consider the transition 
function 

Ph(t ,x ,A)= 1 ~ p(t ,x ,  dy) h(y), 
htx) A 

where t6 T, x~E  n = {0 < h < Go }, A ~(Eh). The canonical realisation of a Markov 
process which has ph as transition function is called the h-process. (Note that 
h - 1  gives the original process X.) 
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Now, l imx(t)  exists in the Martin topology r - a.s. where ?h=hdy and ~.h 

are the probabili ty measures induced by the h-process. Denote the limit variable 
by z~, then it can be proved that 

oh(.) = "). 

Note that for ysU the ky-process converges ~ r  _ a.s. to the point y. 
Before we start with the examples let us see how this framework looks for a 

space-time process. Consider the kernel 

ao 

G'(x, d)= P'(t, x, d)dt 
0 

= S P(t-s, x, A(t))dt. 
s 

Assume that there exists a measure m, finite in compact  sets and such that 
P(t,x, ")~m for all t and x, and denote its density by p(t,x,y). We have 

=~ S p(t-s,x,y)m(dy)dt 
s A ( t )  

= ~ p(t-s, x, y)m(dy)dt.  
d 

Obviously a good candidate for a space-time Green function is: 

g,(x,y)={p(t-s,x,y ) for t>s, 
otherwise, 

where x = (s, x), y = (t, y). 
Further it follows from the Chapman-Kolmogorov  equation that the func- 

tions g '(- ,  y) are, for all y, space-time invariant. Consequently, the assumption (v) 
is, in this case, always true. Because a space time process is very strongly 
transient the assumption (iv) should not cause any trouble when choosing the 
standard measure. 

In order to construct the exit space we have to find measures m and y, and 
show that the assumptions (ii) and (vi) are satisfied. 

We shall now consider a space-time invariant function h and the correspond- 
ing h-process. Because h is invariant, the h-process never leaves the state space 
and, because the process moves deterministically in its first component,  it 
follows that the spectral measure ~r h has all its mass concentrated to the infinite 
part of the exit space, denoted by Moo. Therefore to prove the minimality of an 
invariant function ky, we have to show that, if there exists a finite measure 
such that for all x 

k,(x)= S 

then ~r = e{y/ 
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4. Examples 

4.1 Cauchy Processes 

Cauchy processes belong to the family of stable processes. The expectation of a 
random variable distributed according to a Cauchy law does not exist. 

A space-time Cauchy process has the following Green function 

g (x, y) = t - s 
(t - s)'~ + (y - x)  ~ 

for x = y ,  

for t>s ,  

otherwise, 

where x = (s, x) and y = (t, y). When showing that the assumptions (ii) and (vi) are 
satisfied it will turn out that the "right" state space for this process is E 
=eu{(0,  o o ) x ( - o o ,  oo)}, where e is a point in the plane isolated from (0, oo) 
x ( -  0% oo) and playing the role of the origin. In this setting Y{e} can be used as a 

standard measure, and the Martin function takes the form 

t - - s  t 2 + y  2 
K (x, y) - - -  

t ( t -  s) 2 + ( y -  x) 2" 

It follows that no matter how we approach infinity l i m K ( x , y , ) =  1 as n]'o% 
where {y,} is a point sequence in E such that lira/ly, II = oo (ll" ]l is the usual 
Euclidean norm); so the Martin compactification is a one-point compactifi- 
cation, and the constants are the only space-time invariant functions. 

4.2 d-dimensional Bessel Processes 

Let {W(t)}--{(Wt (t), W2(t), ..., W~(t))}, t>0 ,  be a standard d-dimensional Wiener 
process. Let us consider the one-dimensional process 

{B(t)} = {(Wl(t)2 + W;(t)2 + ... + We(t)2)1/2}, t__>0. 

This process is called a d-dimensional Bessel process; when d = 1 it is a reflected 
Brownian motion. A Bessel process has the following transition density (see [7] 
p. 60) 

P(S(t)~dylB(s)= x) = pa(t, y; s, x) dy ]<Texp( 2(t_s)],e/2_l\,_ozdy(,X---~Yt for x > 0 ,  

= /  2*-a/2 ya-1 y2   exp( ,'or x:o, 

where Iu(x ) is the modified Bessel function of order u. For  Iu(x ) we have the 
approximate formulae: 
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(4.1) I,(t)~_(x/2)"/r(u+l), when u is fixed and ~ { - 1 ,  - 2 ,  ...} and x > 0  is small 
(see [1] 9.6.7). 

(4.2) I,(x)~-exp(x)/l/~x, when u is fixed and x > 0  is large (see [1] 9.7.1). 

Further, we have an upper bound 

(4.3) I,(x)<(x/2)"exp(x)/F(u+ 1), when u >  - 1 / 2  and x > 0  (see [13 9.1.62). 

Remark 1. Note that we define Bessel processes, for all d, in the state space 
[0, oo), the usual one, for d > 1, is (0, oo). We do this because it is convenient to 
be able to start the process from the origin. (See [-7] p. 96.) 

The case d--1 is very similar to the Wiener process case. Our state space is 
ew{(0, oo) x [0, oo)}, where e is again an isolated point playing the role of the 
origin. 7 =~{e} can be used as a standard measure and the Martin boundary is 
homeomorphic to [0, oo)w{A}; the minimal part is [-0, oo) and the minimal 
excessive functions are 

k~(x) = exp(- �89  z 2) cosh x z. 

When d > 1 the situation is more complicated. First we can consider our process 
only in the state space E=ew{(0, oo)x (0, oo)} (see [9]). However, this is not a 
serious problem because we know that the Bessel process, for d >  1, does not 
touch x = 0 at a positive time, i.e. 

~ (B( t )>0  for all t > 0 l B ( 0 ) = 0 ) = l  

(see [7] p. 61). We can therefore change our probability space without changing 
the finite dimensional distributions of the process, and consider a process taking 
values only in E. 

Using (4.3) it is not difficult but tedious to prove that the assumptions (ii) 
and (vi) are satisfied (see [10]). 

Now, consider the Martin function; this can be written in the form 

t - - s  

x2 sy2 ~I xy 
�9 e x p ( 2 ( t - s )  2t(t-s)' e / z - l ( t ~ s ) "  

Let y. be a sequence such that II y. II Too as n Too; it can be seen that lim K(x, y,) 
exists if and only if lim y,/t, exists or "equals" co, and we have 

l i m K ( x , y . ) = F  ( ~ ) ( ~ - ) l - a / 2 e x p ( - l s z 2 ) l d / 2 _ l ( x z )  

=~(~)oxp~-~z2, ~o~,~+~2, ,  
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where 

lim y,/t,=z~(O, oo); and 

=0  when limy,/t,= oe (use (4.2))7 

= 1 when limy./t,=O (use (4.1)). 

Further 

/ t \d /2 t exp( 
when y,+0 and t~to>S. 

i x 2 )  
2 to-S  

It follows that the Martin boundary of the d-dimensional space-time Bessel 
process is homeomorphic to M=MouMoow{A}, where M 0 = 0  x (0, oe) and M~ 
= oe x [-0, ~).  We will now prove that the minimal part is MowM ~. 

First, consider the functions 

kt(x)=l!z@s)d/2exp( - - -  
i x  2 ) 
2 z~-s for s<z, 

otherwise, 

where z~M o. It is not difficult to see that these functions are minimal and satisfy 

Ptkz(x)={; z(x) otherwise.f~ t>s , t<z ,  

Next, consider the functions 

where zeM~.  To prove the invariance of these functions, let us change the order 
of integration and summation; it follows that we have to verify the identity 

( 1  2 o~ ixZUz2m 
(2(t-s)) '-d/2exp - \ t - s  ( x-+(t_s)zatt//k=Om=OZ ~ F ~ - s ~  

(4.4) 
~_~ X 2k Z 2k 

k=2"o 2Zkk ! F(k + d/2)' 

where 

F = 2 zk+ 2m k! m! ['(k + d/2) F(m + d/2) 

( ) I= ~ yZ,,+Zk+a-1 1 yZ 
exp - - -  ~ dy. 

o t - s  2 

When integrated by parts, 

I= F (m + k + d/2) (2(t-  s)) m+k +a/z- a is obtained. 
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After simple manipulations with the series in (4.4) it can be seen that it must be 
proved that, for all m, u, 

k=7-" ~ k F (k~-d/2~F~ ~-d/2) - [ 0 otherwise. 

This is equivalent to 

F(u+d/2) F(m+k+d/2) ffm~u) m ~ u ~  ~'( 
- 1)"-k(u--k)! F(k+d/2) k! F(m+d/2) = otherwise. ( O  k = O  

But this identity is easily proved by comparing the coefficients of t" in 

(1  - -  t) u+d/2 - 1  (1  -- t ) -m  -d/2 = (1 - t) . . . .  1. 

(Note that the coefficient of t" is zero when m < u.) 
Next, we shall prove the minimality of these functions: Let ze[0,  Go) and 

assume that there exists a finite measure # and an interval [za, z2] such that 
Zr Z2] and #{[z l ,z2]  } = m > 0  and 

co 

kz(x)= ~ k~(x)#(dw) for all x. 
o 

Consequently for all x (assume z I >0) 

g2 

kz(x)>= ~ kw(x ) #(dw) 
z1 

i(z   iz ~=>1 > M e x p ( -  �89 2 -zZ))Iie/2_1 

If z<z 1 consider the values of the right-hand side on the rays x=c.s,  where 
1 z ~ - z  2 1 z Z - z  2 

c > - - ;  and if z > z z we choose c < . Letting s ~ oe and using (4.2) it 
2 z l - z  2 z - z  1 

can be seen that the right-hand side tends to infinity, which is a contradiction. If 
we cannot choose z a > 0  the only possibility is that # = a .  ~(z~+b.e~o~ and so for 
all 

b 
kz(x)=akz(x)+b ,~  k~(x) = 1 - a '  

which is absurd if z > O. 
So we have proved that the functions k~, z~M~, are spacetime invariant 

and minimal. A by-product is that 

lira B(O =0  ~ -  a.s. 
t ~  t 

=z  ~ j -  a.s. 

The Kolmogorov backward equation for an ordinary Bessel process is given by 

a f  1 O2f d - 1  8f  
& - 2  ~ X  2 ~ 2 ~  OX 
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It follows that, in smooth functions with compact support, the infinitesimal 
operator of the space-time Bessel process coincides with the differential operator 

1 ~ 2 f  d - 1  o f  o f  
A f - 2 a x ~ + 2 ~  ~? x + & " 

It can easily be seen that, as the functions k= are spacetime invariant, the 
infinitesimal operator of the kz-process coincides with the differential operator 

A ~ 1 c~zf d - 1  Of 1 Ok~ Of ~ f  
f = 2  ~x 2 + 2x  Ox + k~ Ox ~?x + Ot 

1 oaf . ( d - 1  d - Z _  I'a/z_x(XZ)\ o f  Of 

2 ~ + 2x  Ia/2 _ 

- - y ;  - -  

IA 
Using the formula I ' u ( X ) = I u + l ( x ) + - I  u (x) (see [1] 9.6.26) this can be written in 
the form x 

1 02f ( d - l + z  Ie/2(zx) ~ Of o f  
- 2 0 x  2 x 2x 

It follows that the k=-process on the real line is a diffusion process with a drift 
rate 

d - 1 Icl/2(Z X) 
a(t, X)=-~X -k- Z IcI/2_ I (Z X ). 

Note that for large values of x the d-dimensional Bessel process behaves like a 
Brownian motion and, as is natural, the k=-process like a Brownian motion with 
a drift z (use 4.2). 

Remark 2. Let d = 3  and consider the kz-process in the interval (0, +co). It 
follows from the above that, in smooth functions with compact support, the 
infinitesimal operator of this process coincides with the differential operator 

where 

1 d 2 +-#'(x)d'dx A t 
2 dx 2 - 

fz  co thzx  if z>O, 
#z(X) = [ t im #z(x)= 1/x if z =0.  

,to 

This diffusion figures in [12] and [-8], and could be interpreted as an absorbing 
Brownian motion with a drift - z  conditioned to converge to the Martin 
boundary point + co. As shown above these diffusions could be called Bessel 
processes with a drift z (>  0), and so their appearance in the papers [12] and I-8] 
becomes more natural and intuitive. 

Further, we have the following fact: Consider a space-time Brownian motion 
with a drift - z ,  z > 0 and absorption at - e ,  e > 0. The minimal part of the 
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Mar t in  bounda ry  of  this process is {(+ oo, - 0 } w {  + oo x [0, + oo)}. It  can easily 
be p roved  that, as e$0, the finite d imensional  dis tr ibut ions of  the k(oo,o)- and 
k(oo,z)-processes (when considered on the real line) converge to the distr ibutions 
of  a usual 3-dimensional  Bessel process and one with a drift z, respectively. 

4.3 Poisson Processes Composed with a Symmetric Binomial Distribution 

Let  ~ be a r a n d o m  var iable  with 

~ ( ~ =  + 1) = ~ ( ~  = - 1 ) -3,-1 

and { Ct} a Poisson process composed  with this distribution. Simple calculat ions 
show that  

:~(Ct = k l Cs = n) = e x p ( -  2 (t - s)) Ilk-nl( 4 (t -- s)), 

where 2 is the intensity of  our  Poisson process, t>=s, k, n are integers and I , (x)  is 
the modif ied Bessel funct ion of  order  u. 

Consider  this process in space- t ime;  the Mar t in  function is then given by 

K(x ,  y) = exp(•s) I lk-  nl (2(t - s)) 
iN(2 t )  ' 

where x = (s, n), y = (t, k) and t > s. 7 = el(o, o)~ is used as a s tandard  measure.  
We shall first de termine l imK(x,y ,~)  as roT o o, where Ym is a point  sequence 

in the state space such that  []ymHT oo. The  following expansion holds for 
modif ied Bessel functions 

1 2 Iu(X)=~(U -'~- X 2) - 1 / 4  

�9 e x p ( ( u 2 + x 2 ) i / 2 - u s i n h - l U ) ( l + O ( x - 1 ) )  ' 

where u , x > O  (see [5] 7.13.(8) p. 86). With  the aid of  this, the Mar t in  funct ion 
can be wri t ten in the form 

where  

l +O((,~(t-s) -~) 
K (x, y) = T 1 (x, y) exp  (4 s + T 2 (x, y) + T 3 (x, y)) 1 + 0 ((2 t ) -  l )  , 

k 2 + ) 2  t2 

T2 (x, y) = ( ( k -  n) 2 + 4 2 ( t -  s)2) 1/2 - (k 2 +,~2 t2)1/2, 

r3(x, y)=[kl  s inh_ l lk_~lt _ l k _ n l  s inh_ 1 [ k - n l  
,~(t- s)" 
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It is obvious that limTl(x, y,,)= 1 as mT oo. Let us now consider Tz, and assume 
that lim k,Jt m =z, for example, exists. Then it can easily be seen that 

z.n+22.s 
lim T2(x' Ym) = ]/~5 + 22 

If lira km/t m = _+ oe, then lira T 2 = - n and + n, respectively. T 3 can be written in 
the form 

Ik-nl  § 
\ 2 ( t - s ) ]  ] " 

We can now assume that limkm/tm=z, for example, exists. Using l'Hospital's 
rule, it can be seen that 

limT3(x, ym)=(]z~12 +l~(;)z)sg"(z)"  

zn Iz122s ] 
�9 exp (-[zls-~ ~ t ] / ~ 5 + z 2 ( l z [ + ~ ) / .  

Combining these results, we get 

limK(x, ym)=(]z~]§ sgn(z)n 

22 
�9 exp((2-,z, . z ] + ~ )  s), 

when limk,,/t,, =z exists. If limk~/t m = +_ oo, then limK(x, y,,) =0. 
Before we proceed, let us consider a Poisson process composed with the 

following distribution 

~ ( ~ =  + l ) = p ,  ~ ( ~ = - l ) = l - p = q .  

It is clear that, in this case, 

~(C,=k]Co=O)=(~f/Zexp(--2t)lk(22]/-pqt) 

Set 21 =22p, 22=22q;  then this can be written 

21] k/2 exp(-�89 + 22)t)Ik(]/2 , 2 2 �9 t). 
22] 

Let kz(x)=limK(x,y.) when limkm/tm=z; and consider the k=-transformation 
of the transition function of our Poisson process�9 It can be seen that 

~ ( c , = k l C o = O )  

-- (JZ[ -]- ~ ) sgn(z,kexp(- ~ Z 2  ~) 



52 P. Salminen 

Set 21 = l / ~ + z  2 +lz[, 2 2 = ] / ~ + z  2 - [z] ;  then this takes the form 

21 ~sgn(z) k/2 
7221 e x p ( - l ( 2  t + 22)t) Ik( ~ ] / ~  2 ~ �9 t). 

It follows that the k~-process is a compound Poisson process with parameter 2' 
= ~ z 2 and the distribution 

~ ( ~ - - + 1 ) - - ~ [ 1 + -  ]zl t \ ~ 1  for z>O, 

_ 1  (1 Iz[ ] 
2 ~ /  for z<0 .  

The invariance of the functions k~, z e ( - 0 %  + oo), is an immediate consequence 
of these considerations, and the minimality can be proved as in the Bessel 
process case. 

5. Space Time Invariant Functions as Radon-Nikodym Derivatives 

Let X be a Markov process on the real line starting from 0, and let us assume 
that the corresponding process in space time is a special M-process with a 
standard measure 7 = e{(o. 0)} (or perhaps e{e }, where e is an isolated point). Set ~0 
= {0, f2}, ~x=a(xs,  s< t), ~ =  a( U ~ ) .  Denote by ~ o  and ~= probability 

t>0 
measures on (~, ff~) induced by the process X and the ks-process on the real 
line, respectively, where k z is a minimal space-time invariant function. Denote by 
N~ t and ~zlt the restrictions of the measures ~o  and Nz, respectively, on the o-- 
algebra o~t x. It can now easily be proved that ~z]t is absolutely continuous with 
respect to ~~ with a Radon-Nikodym derivative k~(t, xt). 
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