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Introduction 

The connection of the standard Brownian motion process B(t), B(0)=0, with 
various forms of the heat equation is well-known and well documented, going 
back (for example) to L. Bachelier (1912), A.N. Kolmogorov (1931), P. L6vy 
(1948), and M. Kac (1951). The present work is an effort at consolidation in one 
particular direction. On the purely analytical side, we obtain the fundamental 
solutions p(tl, z; t2, x), 0 < tl < t2, of the two evolution equations 

1 02 0 
2 Ox 2 Q - &  Q -  2 t -2 I(0 ' ~o)(x)Q =0,  (0.1) 

l 92 0 
2 Ox 2 Q - &  Q-2I~b''~)(x)Q=O' (0.2) 

where t= t2 ,  Q =Q(x, t), 2>0 ,  b >0, and I~ denotes the indicator function of B. 
For  (0.1) with t, =0  it is necessary to assume initial value z<0 ,  or no fundamen- 
tal solution exists. For  t l > 0  , however, the existence and uniqueness of the 
solutions (with continuous first order derivatives) is guaranteed by a theorem of 
M. Rosenblatt (1951). The outcome below is to give the explicit expressions of 
the solutions in terms of elementary functions. We largely leave it to the reader 
to experiment with changes of variable, etc., to obtain related solutions. Thus, 
for example, the restriction b > 0 in (0.2) is only a matter of convenience. 

Equation (0.2) can be interpreted as the heat equation for a material moving 
at constant velocity b past the juncture of two media having different linear heat 
transfer coefficients. It seems strange, therefore, that the solution is not well 
known, but we have found no hint of it in the standard references on the heat 
equation, such as [2, 11]. We mention at this point an equivalent form of (0.2) 
which is doubtless more familiar to probabilists. By making the substitution for 
x + b t for x, it reduces to 

192  O Q  0 
20x  2 Q + b ~xx - ~7 Q - 2 I~o ' ~)(x) Q = O. (0.3) 
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Thus it corresponds to the sojourn times in (0, oo) of a Brownian motion with 
constant drift b. Moreover, the probabilistic method leads to a simple reduction 
of the general case to the case b = 0, as expressed by (2.4) below. 

On the probabilistic side, the main result of the work is to obtain the explicit 
distribution of the sojourn time of a standard B above a straight line b s, 0 < s < t, 
conditional on the pair B(0)=z, B( t )=x .  This does not require any really new 
results or techniques. Rather, it is a combination of known transformations of B 
passage time distributions to lines, and the following basic result known as 

1 

P. L&y's  Law. Conditional on B(0)=B(1)=0,  the sojourn time ~I~o ' ~)(B(t))dt is 
uniformly distributed on (0, 1). 0 

This result goes back to P. L6vy (1939), p. 323, who arrived at it by a 
remarkable train of probabilistic reasonings. Later it was derived rigorously by 
the analytical method of M. Kac (1951) (see Problem 1, Sect. 2.6, of [4]). Most of 
the other ingredients in our solutions are also implicit in Sect. 8, pp. 320-330, of 
L6vy (1939), but unlike L6vy's Law they do not seem to have received inde- 
pendent proofs. In fact, the extent of the present paper is simply to provide these 
proofs, and to show how the ingredients are used to solve the two equations. It 
should be noted here, perhaps, that the methods used below are relatively brief, 
and not along the lines of L6vy's argument (which is perhaps not rigorous by 
modern standards). However, the final expressions for the solutions of (0.1) and 
(0.2) depend on rather tedious algebraic computations. These may be omitted by 
the reader interested primarily in the probabilistic content. 

1. The First Equation 

We begin with Eq. (0.1) because one can verify the solution directly by differen- 
tiations. In order to conform to the situation of [10] we first choose b >0  and 
replace I(0,~ ) by I(b,~ ) and t -2 by (max(e,t)) -2 for e>0.  Then letting ~ 0 +  it 
follows from Theorem 1 of [10] that the solution for t ,  = 0  approaching the unit 
mass at 0 as t 2 = t---, 0 + can be expressed as 

t 

E ( e x p - 2  ~I(v,~)(B(s))s 2 dslB(t )=x)p( t ,O,x) ,  
0 

(1.1) 

where p ( t , x , y ) = ( 2 r c O - ~ e x p ( - ( 2 t ) - l ( x - y ) 2 ) ,  i.e. the fundamental solution of 
the heat equation. 

We will use the notation ---- to denote equivalence in distribution, either for 
random variables or processes. Then we have 

B (t) =- t B(t - 1), (1.2) 

also due to P. L6vy (see 1.4, Problem 3, of [4]). It follows that 
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(B(s)) s - dslB(t) = x (1.3) 

= (t~lI(b,o~)(B(s-1))dsIB(t)= x )  

= ( j l I , b s ,~ ) ( sB(s -1 )ds l t - l  B ( t ) = t - t  X) 

Iib~, ~)(B(s)) ds lB( t -  1) _= t -  ~ x . 
a; 

Now the explicit distribution of the last expression in (1.3) will be obtained 
by using 

L e m m a  1.1. For b > 0, we have the equivalence of  distribution 

oo 

I(b,, ~)(B(s)) ds - b - 2 T 1 - 1  U, 
0 

where T 1 and U are independent random variables, U is uniformly distributed on 
(0, 1), and T 1 is the first passage time of  B to the line x = 1. 

Proof. Let T b denote  the first passage time of B to x =b.  Then, using the strong 
Markov  proper ty  of B at T a and (1.2), we have 

S I(bs,~)(B(s))ds-- y I(b~,~) sB ds 
0 0 

oo oo 

= y I(b,~)(B(t))t-2 d t=  y lm, o~)(B(t))(t + Th)-2 dt (1.4) 
0 0 

(30 

= Tb -1 S I(0 ' o~)(B(t))(1 + t)-2 dt. 
0 

On the other  hand, by P. L4vy's Law, 

( i )  U -  Im,~)(B(t))dt B(1 )=0  

= ( i l (o ,~)( tB( t -1))dt  B (1 )=O)= (il(o,o~)(B(t-1))dt B ( I ) = 0 )  

= I(o, oo)(B(t))t-2dt B(1 )=0  -SI(o .o~)(B( t ) ) ( l+t) -edt .  
0 

(2.5) 

Finally, by the scaling proper ty  B ( t ) - k B ( k - 2 t )  it is seen that  T,o-b 2 T 1. 
Combining this with (1.4) and (1.5), we obtain L e m m a  1.1. 

Returning to the distribution of (1.3), let T = inf{s > t -  1 : B(s) = b s}, with inf,) 
= o~. Then, condit ional  on B ( t - 1 ) = t  -1 x, the distribution of T - t  -1 is the well- 
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known passage t ime dis tr ibut ion to a line (see, for example,  Kar l in  and Taylor  
(1975)). It  has density on 0 < y <  oo given by 

I x - b l t - l ( 2 z c y 3 ) - ~ e x p ( - ( 2 y ) - l ( l x t b l - b y f ) ,  (1.6) 

with a residual mass  at + o o  if x<b.  To compute  the density of  (1.3) we 
distinguish two cases as follows. 

Case1. x>b.  Then  we have  a cont r ibut ion  T - t  -~, plus an independent  
cont r ibut ion  following t ime T and having the dis tr ibut ion given by L e m m a  1.1. 

Case 2. x < b. Then  we have no cont r ibut ion  before T. After  7;, if T < oo, we have 
a cont r ibut ion  as given by L e m m a  1.1. 

N o w  the Laplace  t rans form of the density (1.6), also known  from [6], is 

e x p ( - t - l ( x - b ) ( ( b Z + 2 2 ) ~ - b ) )  for x>b.  
(1.7) 

e x p ( - t - l ( b - x ) ( ( b 2 + 2 ) @ + b ) )  for x<b.  

Hence  we can express (1.1) directly as follows: 

Case 1. E exp ( - [t 1 (x - b) ((b 2 + 22)~ - b) + 2 b - 2 y l -  1 g ] )  p (t, 0, x).  

Case 2. 
[E (exp ( -  2 b - 2 T1-1 U)) exp ( -  (2 t - 1 (b - x) b)) 

+ (1 - exp ( -  2 t -  1 (b - x) b))]. p (t, 0, x) 

where we used the second t rans form of (1.7) at 2 = 0 to compute  the probabi l i ty  
of {T<  oo} for Case 2. 

Finally, to compu te  E e x p - 2 b  -2 T1-1 U we can use the fact that  for t > 0  the 
first derivatives with respect  to x in the two cases mus t  coincide at x =b .  This 
leads directly to 

E e x p ( - 2 b  -2T1 1 U ) = 2  lb((bZ+22)~-b).  (1.8) 

Subst i tut ing and  simplifying we obta in  after t ranslat ing by - b ( = z )  and put t ing 
x - z  for x, 

Theorem 1.1. The fundamental solution p(tl, z; t2, x) of (0.1), for t 1 = 0 and z < O, is 

[(2 ~z 0-~[z[ 2 -  ~ ((Z 2 + 22) ~ + Z) exp [(2 t ) -  1(22--  ((z2 + 22) ~ 
| +x)2)]; x>0  

p(0, z; t , x ) =  ](2 z c t)_~ {(]zl 2_ l((z 2 + 2 2 ) ~  + z) - 1) exp [ ( -  2 t ) - l ( x+z)  z] 

t + e x p [ ( - 2 t ) - l ( x - z ) 2 ] } ;  x<_O. 

As r emarked  before, p(O,z;t,x) does not  exist for z > 0 ,  because of the 
singularity t -2 (this is easy to see probabil is t ieal ly  by reduct io ad absurdum).  
However ,  for t 1 > 0  there is no theoret ical  diffuculty with either existence or 
uniqueness.  On the other  hand,  the explicit expressions become  still more  
compl ica ted  and involve integrals not  easily evaluated.  We will give the argu- 
men t  only for t I = 1, but  the general case reduces to this by changes of  scale. We 
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again replace I(o.~) by I(b, oo), and the solution is given by (1.1) except that in 
place of s -2 we have (1 +s) -2. Then instead of (1.3) we will use 

(i l(b, oo)(B(s))(1 +s) -2 ds,B(t)= x) 

[l +t 
- (  ! I(b.~)(B(s))s-2dslB(1)=O,B(l +t)=x)  

(1.9) 

= ((1 i I(bs,~,(sB(s-1))dslB(1)=O,(1 + t ) - '  B(1 +t )=(1  + t ) - '  x) 
+ t )  - 1 

((1 i I(bs, oo)(B(s))dslB((l +t)-l)=(l  +t)-l  x, B(1)=O) �9 --t) 1 
Compared with (1.3) the effect here is to replace t by l + t ,  and more 

importantly to replace the upper limit oc by 1 together with a condition B(1)=0. 
Thus we require the same reasoning as before except that the passage times to 
the line b s, and the sojourn time above the line, must be computed conditionally 
on B(1)=0. To this effect, we have the following two lemmas which seem to 
have independent interest. 

Lemmal.2.  Let b>=O and fi be constants, and let T=inf{s:  B(s)=bs+fi}, with 
B(0)=0 and infr  Then for t > 0  and any x, the density of T over {y<t} 
conditional on B(t)=x is given by 

3 _ !  ( f (y)= I/~l l / t (2 rcy ( t -  y)) 2 exp 

Proof The unconditional density of 

1 (l f i l( t-y)-(b t + f i - x )  y)) 
2 t y ( t - y )  " 

T is given by (1.6) in the form 
[fil(2r~y3)-~exp(-(2y)-l(lfll-by)2), hence it is natural to expect that the 
conditional density is this multiplied by p( t -  y, b y + fi, x) p - l(t, O, x). It turns out 
that this is correct, but to make the argument rigorous we reduce the problem to 
one involving the Brownian bridge B(s)-s  B(1)=Bo(s), 0 <s  < 1, and then use the 
well-known equivalence Bo(s)=-(1-s)B(s(1-s)-l)), due to J.L. Doob (1949), 
and valid for any initial value x=Bo(0 ). This is easily checked, in fact, using only 
the covariances, and it is similarly found that Bo(s ) and B(1) are independent. 
Hence for B(1)=0 we have Bo(s)-(B(s)[B(1)=O ) in a precise sense. 

Translating b y - x ,  and using the scaling property of B to see that 

(B(s) IB(O) = - x, B(t) = O) - ]/t(B(s t -  i ) 1 B ( 0 )  = - x t -  ~, B(1) = 0) 

we find that 

T - in f{ s :  Bo(st-a)=b t-~ s +( f i -  x)t -~} 
= t  inf{z: (1-~:)B(z(1-z ) - l )=bt+z+(f i -x ) t  -~} (1.10) 

=tso(l +so) -1, 

where s o = inf{s: B(s) = (b t ~ + (fl - x) t-~) s + ( f l -  x) t-21}. Now, as cited above, s o 
has the density 

Ifi[t-~(27cy3)-~exp(-(2y)-l(]filt-~-(bt~+(fi-x)t-~)y)2), 0 < y < o o .  
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A change of variables from (1.10) then yields the stated density for T on 0 < y  < t. 
Our second lemma concerns the sojourn time above a line, conditional on 

B( t )=x .  It is here that P. L6vy's Law provides the key ingredient. 

Lemmal.3.  For b>_O, conditional upon B(t)=0, we have the equivalence in 
distribution 

t t U  
o I(bs" ~)(B(s))ds- 1 + b 2 t T 1 ' 

where U and T 1 are independent random variables with U uniformly distributed on 
(0, 1) and T 1 the first  passage time of  B to the line x = 1. 

Proof We again use the notations T b for the unconditional first passage time of 
B to b, and Bo(s ) for the Brownian bridge (here, B0(0)=0 ). Then the integral in 
the Lemma may be replaced by a sequence of equivalent expressions as follows. 

t 

J'Iib~, ~)(]/ t  Bo(s t - l ) ) d s  
0 

1 

= t j" I{bt," ~)(]/ t  S o (z)) d z  
0 

1 

- t j" I(bvt~, oo) ( ( 1  - -  0B(z (1 - r)-1)) d~ 
0 

oo 

= t~ I(b~s ' ~)(B(s))(1 +s) -2 ds 
0 

~ t S l ( b g f s ,  oo ) s B  ( l + s ) - 2 d s  
0 

oo 

= t  S I(bVT, ~ ) (B(t))(1 +t)  -2 dt 
0 

= t 7 I(bv~,oo)(B(t))( 1 + t)-2 dt 
T b l f f  

oo 

=-t ~ Iw.oo)(B(t))(1 + t  + Tbr -2 dt 
0 

oo 

=t(1 + Tb~) -1 ~ I(o,~)B((1 + The)s)(1 +s) 2 ds 
0 

oo 

= t (1  + T b Or) - 1 ~ i(o, oo)((1 + T b r r B(s))(1  + s )  - 2 ds 
0 

1 

-- t(1 + Tbvt- )-1 ~ico ' ~)(Bo (s)) ds 
0 

=--t(l + Tbvt) -1 U, (1.11) 
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where for the next-to-last identity we go back to second and third but with 
b =0  and t--1, and for the last identity we use P. L6vy's Law (of course, the 
strong Markov property of B at Tbo-was used when needed, in the same way 
as in (1.4)). Replacing Tbvrby b2tT1 as after (1.5), Lemma 1.3 is proved. 

Returning now to (1.9), it is necessary to distinguish the cases x > b and x < b. 
Letting y , ( l+ t )  l__<y__<l, represent the arrival time after (1 +t) -1 of B at the 
line b s, we must integrate the density of y derived from Lemma 1.2, multiplying 
by e x p ( - 2 ( y - ( 1  +0-1))  for x>b, but not for x<b. Further, we must multiply 
by the conditional Laplace transform of the contribution following y, given y. In 
the second case, moreover, we must add P{the line b s is not reached}, which 
can be expressed by integrating the known density of y. 

For brevity, we will write only the case x > b. To apply Lemma 1.2 we use the 
line bs+(b-x ) ( l+ t )  -1, with the condition B ( 1 - ( 1 + 0 - 1 ) = - x ( l + 0  -1 (as a 
figure makes clear). Then we replace y by y - ( 1  +t)  -1 and 1- (1  + 0  -1 - y  by 1 
- y  to represent the arrival time after (1 + 0  -1. This results in the expression 

(x_b)t~((2n)(1 3 -* +0 ) ~((y-0 +0-1)3(1-y))-~ 

[ ( ( 1 - y ) ( x - b ) - b ( l + t ) ( y - ( l + t )  1))2 
P e X p  

2 t(1 + t)(y - (1 + t)-1)(1 --y) 

for the density of the arrival time. Now if the arrival time is y < 1, then B(s) in 
y < s < 1 becomes a Brownian motion starting and ending at 0 if we subtract the 
line segment from B(y)=by to 0, in view of P. Ldvy's observation that B(t) 
-tB(1) is independent of B(1). This means that in order to apply Lemma 1.3 to 
the contribution following y we must replace t by 1 - y  and also b by b+by(1 
_ y ) - I  =b(1 _ y ) - l .  Hence the total contribution to (1.9), given y, is y - ( 1  +t)  -1 

(~-y)~ u 
-F( l_y)+b2T1.  Going back to the Laplace transform (1.1) multiplied by 

p(t,O,x) (with ( l+s )  -2 in place of s -2, as noted before (1.9)), some algebraic 
simplification is possible in the integrand, and we finally are left with the 
expression 

x - b  exp ( (x-b)2] i A B C d y  
(2 re)-1 (1+0  3/2 ~ I  {1+o-~ 

where 

and 

A = ( y -  (1 + t)-1)3 (1 -y ) - r  

( l[(x-b 2 1 ]) 
B=exp  - ~ [ ~ l + t !  y - ( l + t )  -1 ~-b2y(1-y)-I ' 

-t- (1 - y ) + b  2 T~ J I "  

It is possible, but quite tedious, to check by differentiations that this does give 
the solution. 
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Finally, to obtain our elementary solution p(1, z; t, x) with z < 0 and x > 0  we 
need only translate this result to b=0 .  Thus z = - b < 0 ,  and x-b-*x>O,  
1 +t-*t, and we have 

Theorem 1.2. For z < 0 < x ,  1 <t ,  the solution of (0.1) is 

p(1, z ; t , x )=(2~) - l x t  -3/2 e x p - ~  ~ ( y - t - 1 ) 3 ( 1 - y ) - ~  
t - t  

. exp ( _ l [ ( x  t_l)  2 1 ~_z2y( l_y)_l])Edy 
y - t  -~ 

where 
E = E e x p ( _ 2 [ y _ t - l +  ( l - Y ) 2 _  U_ ]~ 

( 1 - y ) + z  2 Ti l l '  

with U and T 1 as in Lemma 1.3. 

The other three case z<0 ,  x < 0 ;  z>0 ,  x > 0 ;  and z>0 ,  x < 0  are treated quite 
similarly. Thus for z > 0  we need to use lines of slope b<0 .  However, by 
appealing to symmetry, the contribution to (1.9) with x <b  < 0  has the form t(1 
+ t ) - 1 _  Z where Z is the same contribution using - b  and - x ,  hence reducing 
to the case just treated. We leave the details of these three cases to the reader. 

2. The Second Equation 

The methods developed in Sect. 1 (in particular, Lemmas 1.2 and 1.3) lead easily 
to the fundamental solution of (0.2). However, it is in the form of a double 
integral. A direct method based on the Green function of (0.3) leads to the same 
result by inverting a complicated Laplace transform, but this gives less insight. 

According to Theo reml  of [10], the  fundamental solution of (0.2) with 
initial value z - -0  is given (as in (1.1)) by 

r 

pb(0, 0; t, x) =E(exp- -  2 ~I(bs,~)(B(s))dslB(t)=x)p(t, O,x). (2.1) 
0 

By translating the problem to initial value z, it follows that 

t 

pb(O,z;t,x)=E~(exp--2 ~I(bs, oo)(B(s))dsIB(t)=x)p(t,z,x), (2.2) 
0 

where E~ denotes expectation for B(s) with B(0)--z. Furthermore, it is easily 
checked by substitution (or seen from a picture) that 

pb(tx, z; t2, x) = pb(0, z - b t 1 ; t 2 - t 1 , x - b tl), (2.3) 

hence only (2.2) need be computed. We now observe that it suffices to obtain the 
first factor on the right of (2.2) in the special case b--0. Here we use the fact that 
the process B(s) -s t - lB( t ) ,  O<s<t, is independent of B(t) (see the proof of 
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Lemma 1.2). Thus we can substract the line b s from the process B(s) conditional 
upon B(t)= x to get the process conditional upon B(t)= x - b  t. The integral will 
be unchanged if we also replace I(bs,~) by I(0 ' oo), hence we have 

pb(0, z; t, x ) =  po(0, z; t, x - b  t)(p(t, z, x) /p(t ,  z, x - b  t)). 

Computing the last factor and combining with (2.3), we obtain 

pb(tl,Z; tz,X)=po(O, z - b  tl; t 2 - t l ,  x -b t2 )  exP(�89 (2.4) 

It remains to find the explicit expression of po(0, z; t, x) using (2.2). We treat 
first the case x < 0 < z .  Letting T denote the passage time of B(s) to 0, we need 
the conditional density of T given B(0)=z, B(t)=x. As justified by Lemma 1.2 
(and some algebra) this is the density of T given just B(0)=z  multiplied by p(t 
-y,O,x)/p(t,z,x), 0 < y < t .  The last factor is cancelled by the last factor of (2.2), 
and the density given B(0)=z only is fzl (2~y3) -1/2 e x p ( - ( 2 y )  -1 z2), as in (1.6). 
Finally, if T = y  < t, the the contribution to the integral in (2.2) following time y 
is obtained from Lemma 1.3 by subtracting the line segment from (y, 0) to (t, x) 

- - X  
from the Brownian path segment. This changes the slope b from 0 to - - ,  thus 

t - y  
( - 2 ( t -  y) U 1 Of course, for z < 0  we must the factor in (2.2) is given by E exp \(t - y) + x- T 1/" 

add the probability of not reaching 0, while for x > 0 and z > 0 we must add this 
times exp - 2  t. We can thus write the four cases as follows. 

Theorem 2.1. The fundamental solution of (0.2) is derived from the case b = 0 by 
the substitution (2.4). For the latter, we have 

Case1. z>0 ,  x < 0 .  
' [ - . ~ ( t - y )  2 g \ , 

,(0, z; t , x ) = ~  ! exp(-2y-1/2(zz/y+x2/(t-  y)) Eexp t ( t - y ) +  x2 T1] ay" 
~(t-y) 

Case2. z<0~ x < 0 .  

p(0, z; t, x) 

- - Z  
2zc iexp-1/Z(z2/y+x2/(t-Y))o ]/yY-(t--y) ( Eexp C-2(t-y)2U~- Y)+xZT1 I-- 11dy ) + p(t, z~ x). 

Case3. z<0 ,  x>0 .  

Case4. z>0 ,  x > 0 .  

p(0, z; t, x) =p(0, x; t, z) 

p(0, z; t ,x )=(exp-  2 t) p*(O, - z ; t, - x) 

where p* denotes p with - 2  in place of 2. In the above, U and T 1 are 
independent random variables with U having density 1 on (0, 1) and T 1 having 
density (2 n) - 1/2 y - 3/2 exp - (2 y) - 1 on (0, oc). 
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Remarks. The symmetry of p in (z,x) is a consequence of the self-adjointness of 
1 d 2 
2 d x  2 2I(o,~)(x), and holds for all (z,x). It can be made evident by routine 

changes of variable in Case 1, which yield the symmetric expression 

p(0, z; t, x) 
t t - - s  

= Ix zl ,~-1 (2 re) --~ ~(1 - e-~'S) s -~ ~ exp( -  2 v -  1/2(z2/v+xZ/t-s-  v)) dv ds. 
o o ( v ( t -  s - v ) )~  

The reduction given in Case 4 is also valid in Case 3. Thus for x >0  the slope 
- x / ( t - y )  used in Case I and 2 is negative, which necessitates that the expec- 

(t_y)2 g \ 
tation be replaced by E e x p - 2  t - Y - ~ "  Y'+ x 2 t ~ -  ) ~1/~l" This leads easily to the 
asserted reductions. 
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