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Summary. It is shown that if (X, Y, #) is a product of totally ordered measure 
spaces and f~ ( j=1,2,3,4)  are measurable non-negative functions on X 
satisfying 

f l  (x)f2 (Y) < fs (x v Y)f4 (x A y), 

where (v ,  A) are the lattice operations on X, then 

(Sfl d#)(Sf2 d#) <= (Sfs d#)(Sf, d#). 

This generalises results of Ahlswede and Daykin (for counting measure on 
finite sets) and Preston (for special choices of fj). 

1. Introduction 

In recent years a number of inequalities have been discovered relating the 
cardinalities of subsets of a finite distributive lattice L and also the values of 
certain functions on L satisfying special conditions. One of the first of these was 
obtained by Kleitman [12] who showed that if S is any finite set, U an up-set 
and D a down-set in the lattice L = 2 s of all subsets of S, then 

ILl IU~Ol<lOl [DI (1.1) 

where IAI denotes the cardinality of A. This was strengthened by Daykin [5] 
who showed that for any subsets F and G of any finite distributive lattice L, 

IFI IGI ~ IF v G[ IF A GI (1.2) 
where 

F v G = { x v y : x ~ F , y ~ G } ,  FAG={xAy:x~F,y~G} .  
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This result shows that (1.1) is valid in any finite distirbutive lattice, and also 
implies several other previously known inequalities. Daykin [6] later considered 
functions A ~ F A and A --+ G A of 2 s into 2 c, where S is any finite set and L is any 
finite distributive lattice. He showed that 

where 

lEvi Ias\al ~ ~ IHc[ IgcI (1.3) 
A c S  C c S  

A u B = C  A u B ~ C  

When S is empty, (1.3) reduces to (1.2). If we put 

f l ( / )  = [FAI fz(A) = IGA[ 

f3(A) = IHA[ f4(A) = IKs\AI 

//c= U FAv C,, Kc= U FsXA ̂ Gs ,. 

(1.4) 

More general non-negative functions satisfying inequalities similar to (1.4) 
had already been considered by a number of authors. Fortuin, Kastelyn and 
Ginibre [9] showed that if f l ,  f2, f3 and f4 coincide on 2 s and satisfy (1.4), then 

( ~ u(A)f~(A))( ~ v(B)f2(B))<= ( ~ u(C)v(C)f3(C)) ( ~ f4(D)) (1.5) 
A c S  B c S  C o S  D e S  

for any increasing (non-negative) functions u and v on 2 s. Holley [10] extended 
this by showing that if f l  =f3,  f :  =fr and (fl, f2, f3, f4) satisfies (1.4), then 

( y~ f~(A))( y~ v(B)f2(B))<= ( ~ v(C)f3(C))( ~ f4(D)). 
A c S  B c S  C ~ S  D c S  

(1.6) 

(At first sight (1.6) may appear less general than (1.5) but this is only because of 
the stronger conditions imposed in [9]. To obtain (1.5) as a special case of (1.6) 
one simply replaces f l  by uf~ and f3 by uf3, noting that (1.4) is still valid.) A 
further extension was made by Preston [13] who showed that if ( X , ~ , # )  is a 
finite product of totally ordered measure spaces (so X is a lattice in the product 
ordering), f~ and f2 are non-negative integrable functions on X, v 1 is a bounded 
increasing measurable function on X, f3=f l ,  f4=f2,  Vz=V 1 and (fl, f2, f3, f4) 
satisfy the lattice-theoretic analogue of (1.4): 

then 
f l(x) f 2(y) <= f 3(x v y) f4(x /', y) 

(~ f ~ dlO (~ v l f2 d#) < (~ v 2 f3 dlO (~ f4 d#). 

(1.7) 

(1.8) 

The case of counting measure on a finite set gave (1.6). Preston's theorem was 
extended to countable products of probability spaces by the first author [3]. A 
simplified proof of (1.8) in finite products was found independently by Edwards 
[8] and Kemperman [ l l J  (Edwards also considered countable products). How- 
ever this method did not show the existence of certain interesting measures on 

then (1.2) gives 

f l  (A) f2(B) < f3(A u B) f4(A ~ B). 
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X 2 as established in [10, 13]. The original applications of (1.5) were to problems 
in statistical mechanics, but Seymour and Welsh [14, 15] have shown how (1.5), 
(1.6) and (1.8) are important in combinatorial and percolation theory. 

Edwards and Kemperman in fact found that the inductive proof of (1.8) was 
made simpler if they replaced the assumption that v 1 and v 2 coincide and are 
increasing by the weaker condition: 

vl(x ) < v2(y ) whenever x < y (1.9) 

but they retained the conditions f3 = f l  and f4=f2.  Ahlswede and Daykin [1] 
dropped even these conditions, thereby making it unnecessary to introduce vl 
and v 2 at all, but they considered only finite sets. They showed that if f~, f2, f3 
and f4 are non-negative functions satisfying (1.7) on a finite distributive lattice L 
then 

( ~ f~(x))( ~ f2(Y)) --<( ~ f3(z))( ~ f4(w)). (1.10) 
x e L  yeL z~L  weL  

In [-2] they considered more abstract situations in which the lattice L and 
operations v and /x are replaced by any finite set S and mappings 4) and ~ of 
S 2 into S. Defining (4), ~/) to be "~)l-expansive" if 

whenever 

( E A(x))(Z L(y))<=( Z Z A(w)) 
xeS  yES zeS  weS  

L (x) f 2(y) <= f 3( 4) (x, y)) A( r y) ), 

(1.11) 

they showed that the class of 9Jr-expansive pairs of mappings (4),0) is closed 
under direct products. While studying direct products, they were led to in- 
troduce an apparently stronger notion of "~-explosiveness", which they showed 
to be equivalent to 9Jl-expansiveness. 

The aim of this paper is to exhibit a single inequality which includes (1.1), 
(1.2), (1.5), (1.6), (1.8) and (1.10) as special cases. Thus it will be shown that if 
(X, Y,  #) is a finite product of totally ordered measure spaces and f l ,  f2, f3 and 
f4 are measurable functions of X into [0, oe] satisfying (1.7), then 

q L dn)q L d#) <= q d )q L (1.13) 

At this level of generality the inductive step in the proof becomes much simpler 
than that in [10] or [13]. Furthermore the extension to countably infinite 
products is now a straightforward application of the Fubini-Jessen theorem. The 
main difficulty in proving the infinite case in [-3] and I-8] was caused by 
uncertainty as to whether (1.8) is satisfied if (1.7) holds only #2-a.e. in X 2. We 
shall see here that in finite products this is the case, and indeed (1.13) is always 
valid if (1.7) holds #2-a.e. 

The main results are presented for abstract pairs (gb, 0) rather than (v ,  /~), 
and they therefore include also (1.11) as a special case. Section2 of the paper is 
devoted to a study of the inequality (1.12), Sect. 3 contains the main results 
showing that certain pairings (4), gt) satisfy the measure-theoretic analogue of 9J~- 
expansiveness, and Sect. 4 contains a discussion of a measure-theoretic version of 

(1.12) 
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9Jbexplosiveness. The final section is devoted to finite distributive lattices, 
showing how inequalities such as (1.1), (1.2) and (1.3) are related to 9)l- 
expansiveness and to each other. 

It will be convenient to allow funcitons to take values in the extended non- 
negative reals [0, oo], and we shall adopt the usual conventions concerning the 
arithmetic of this system, except that we shall regard 0.oo and oo.0 as 
undefined. Furthermore an inequality will be considered to be satisfied if either 
side is undefined. We shall also need to consider n-tuples of functions taking 
values in [0, oo], and we shall denote these interchangably either componentwise 
as (f> ...,f,) or as a single function f: X--* [0, eel". 

2. Compatibility 

Our basic object of study will be a system 5 p = (X, ~,/~, qS, ~) consisting of a a- 
finite measure space (X, ~ ,  p), whose measure-theoretic product with itself will 
be denoted by (X 2, @2, #2), together with a mapping (0, ~) of X 2 into itself. 
Such a system will be called a paired measure space with pairing (~9, t)). If (qS, ~) is 
@2-measurable, we shall say that 6 P is measurably paired. As a matter of 
notational convenience, the component parts of a paired measure space denoted 
by Sex, where 2 may be an index, will themselves always be denoted by (Xz, ~z, 
/~, ~ ,  ~'~). 

An involution on 5 ~ is a bijection rc of X such that for any x and y in X and 
E in ~ ,  rc(Tc(x))=x, ~o(rc(x),Tr(y))=Tz(O(y,x)), rc(E)eg and #(rc(E))=#(E). Fol- 
lowing [2], an ~-measurable  function f of X into [0, 00] 4 will be said to be 
compatible (resp. #-compatible, resp. diagonally #-compatible) with (~, 0) if 

f l(x) f ~(y) <= A(q)(x, y)) L(g,(x, y)) (2.1) 

for all (resp. #2-almost all, resp. g-almost all) pairs (x, y) in X 2, where /7 is the 
image of # under the mapping x + (x, x) of X onto the diagonal A in X 2. Thus f 
is diagonally/,-compatible if 

A(x) f2(x) <-_ f3(O(x, x))L(O(x, x)) (2.2) 

/~-a.e.(x). The sets of all compatible,/~-compatible and diagonally #-compatible 
functions f will be denoted by R(O, 0), R~(qS, O) and R~(0, 0) respectively, or 
simply by fl, !~1, and !;/~ if no confusion is likely. A 4-tuple (El, E2, E3, Er of ~ -  
measurable sets will be said to be compatible with (0, 0) if 

O(E 1 •  3 and I~(E 1 •  4 (2.3) 

or equivalently if their characteristic functions ()~E1, ZE2, Ze3, Ze4) are compatible. 
Thus the set of compatible 4-tuples of sets is in one-to-one correspondence with 
the set ~ of functions in fl taking values in {0, 1} 4. 

For (x,y) in X 2, put (x,y)* =(y,x). For any function c~ on X 2, put e*(z) 
=c~(z*). The following properties of compatibility are clear: 

(2.4) 

f e a ( ~ ,  O) ~ (L, A, Y4, A)~a(~, 4,) (2.5) 
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f, geR(qS, 0) ~ (fa "g,, f ;  'g2, f3" g3, f4 '  g4)eR(q 5, 0) (2.6) 

feR(qS, 0) <=> (fl ~ n, leo re, f3 o n, f4o n)e R(t/J*, qS*) (2.7) 

where ~ is an involution. 
Suppose that Y is an ~-measurable subset of X such that O ( Y 2 ) c Y  and 

~J(Y2)mY. Let 5 f l y= (Y ,~ ,# r ,  qSy, Or) be the paired measure space obtained 
from J by restriction to Y. Given g: Y ~  1-0, o0] 4, let gx be the extension of g to 
X vanishing outside Y. Then 

geR(~by, Cy) ~ gx~R(qS, 0)- (2.8) 

Both #-compatibility and diagonal #-compatibility have properties similar to 
(2.4), (2.5), (2.6), (2.7) and (2.8). 

In general there is no reason to suppose that #-compatibility implies 
diagonal #-compatibility. However the technical lemma in [-3] gave one particu- 
lar circumstance in which this phenomenon does occur, and we shall be deeply 
involved with the property in Sect. 3. Thus we shall say that 5 e is diagonally 
settled if Ru is contained in R~ a. If # is purely atomic, then /~ is absolutely 
continuous with respect to #2, and 5 ~ is diagonally settled. The following two 
propositions in this section give some other examples of diagonally settled 
spaces. 

The fundamental example to be considered at this stage occurs when X is a 
lattice and q5 and ~ are the lattice operations v and /x (cf. I-I, 5, 13]). Then X is 
totally ordered if and only if {x v y, x/x y} = {x, y} for all (x, y) in X 2. In general 
we shall say that the pairing (qS, ~j) is selective, and 5 P is selectively paired, if 
{~b(x,y), 4J(x,y)} = {x,y} for all (x,y) in X 2. (In this case, ~b is an arbitrary choice 
from each ordered pair (x, y), and q/is the other choice.) We shall also say that 
5 p is diagonally invariant if ~(x,x)=~p(x,x)=x for all x in X. Clearly any 
selectively paired space is diagonally invariant. 

Proposition 2.1. Any selectively paired measure space 5 ~ is diagonally settled. 

Proof. Consider a #-compatible function f: X--+ [0, 00] 4, and let 

X o = {yeX:  (2.1) holds for #-almost all x}. 

Then X \ X  o is #-null, so replacing 5 P by JIX\Xo, we may assume that X = X  o. 
If fl(x)=O, f2(x)=0, f3(x)=oo or f4(x)=oo, then (2.2) is automatically 

satisfied. Thus we can assume none of these possibilities occurs in X. Let X 1 
= {xeX:  f~(x)=0}. Then fl(x)f2(y)=O #2-a.e. (x,y) in X 2. Hence either f l  or f2 
vanishes #-a.e. in X1, so X 1 is null. Thus replacing 5 ~ by 5P[x\x ~, we can assume 
that f4(x)> 0 and similarly that f3(x)> 0, f l (x )< oo and fz(X)< oo. 

Put g(x)=fz(x)fa(X) -1 and h(x)=f2(x)f4(x) -1, so that 0<g(x )<oo  and 
0 < h (x ) <  or. Then (2.1) shows that for fixed y, 

f~(x) g(y) < f4(x) (2.9) 

for #-almost all x with O(x,y)=y, and 

f~(x) h(y) < f3(x) (2.10) 
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for/l-almost all x with O(x,y)=x. For integers k , n > l ,  let E k , = g - l ( ( k - 1 ) 2  -", 
k2-"],  and, assuming that Ek, is non-empty, choose a sequence y~,, (r = 1, 2,...) in 
Ek, such that 

sup {h(y~,,): r =  1,2, ...} =sup  {h(x): X~Ek,}. (2.11) 

Let E'k,={X~Ek,: C~(x,y~k,)=X for all r} and E '=  UE~,.-Applying (2.10), we see 
k , n  

that for/i-almost all x in Ek,, 

fl(x) h(Y~k,) < f3(x), 

so it follows from (2.11) that fl(x)h(x)<f3(x), i.e. (2.2) holds/i-a.e, in E'. 
Now consider x in X\E' .  For each n, there is a (unique) integer k such that x 

/ r _ _  r belongs to  gkn\Ekn. For some r, ~(X, Ykn)--Ykn. It follows from (2.9) that for #- 
almost all such x, 

fl(x)(g(x) - 2-") < fl(x) g(y;,) < f4(x). 

Letting n--.oo, it now follows that fl(x)g(x)<f4(x), i.e. (2.2) holds. Thus f is 
diagonally/,-compatible. 

We begin now our consideration of product spaces. The direct product of a 
finite family of paired measure spaces { ~ :  2cA}, or an infinite family of paired 
probability spaces, is defined to be the paired measure space 5 ~ = (X, ~ ,  #, qS, r 
where (X, ~,, #) is the measure-theoretic product of {(X z, ~ , / ix)  } and ~b and 
are defined by: 

~(x,y)=(~(x~,y~)), r162 

In the case when A={1,2},  we may denote ~ ~b and ~ by 5~i xSP2, ~b 1X~b 2 and 
~ x ~ .  

Proposition2.2. A finite direct product of diagonally settled measurably paired 
measure spaces is diagonally settled and measurably paired. 

Proof It suffices by induction to consider the case when 5~=5~ • The 
measurability is clear. Take a function f which is/i-compatible with (~b, ~). For 
/i~-almost all (x2, Y2) in X22, the following inequality is valid ff2-a.e. (x 1, Y 1): 

fl( x 1, Xz)f2(Y,, Y2) < f3(r 1(xl, Y0, q~z(X2, Y2))f4(r Y0, r Y2))- (2.12) 

Thus if we put 

hi(x1) = fl(x 1, x2) 

h3(x O = f 3(xl, ~b2(x2, Y2)) 

h2(xa) =f2(x 1, Y2) 

h4(xl) =f4(x D ~2(x2, Y2)) 
(2.13) 

then h is /il-compatible and hence diagonally /il-compatible with (q51,r so 
that the following inequality is valid for #l-almost all x 1 in XI:  

fl(xl, x2)f2(xl, Y2) ~ f3(~bl(x1, x1), ~2(x2 , Y2))f4(@l (Xl' xl) '  1~/2(x2' Y2)). (2.14) 

Hence for #l-almost all x 1, (2.14) holds /i2-a.e. (Xz, y2). (The measurability of 
(~ba, ~bj) is used here to allow Tonelli's form of Fubini's theorem to be applied.) A 
similar argument now shows that (2.14) holds/T2-a.e, Hence f is diagonally #- 
compatible with (~b, r 



Generalised Holley-Preston Inequalities on Measure Spaces and Their Products 163 

Example2.3. Let Y be the direct product of a sequence of measurably paired 
probability spaces ~ ,  and suppose that there exist G-measurable sets En such 
that 

Z #.(e.) = 
n 

o0 .  

n 

Let E =  {x~X: xn~E . for infinitely many n}. By the Borel-Cantelli lemmas, #(E) 
= 1 and #2(~b-~(E))=0. Thus the function (1, 1, 1-Z~,  1) is #-compatible. Howev- 
er if each ~ and hence 50 is diagonally invariant, this function is not diagonally 
#-compatible, so .9 D is not diagonally settled. 

As a specific example, we can take ~ to be the unit interval [0, 1] equipped 
with Lebesgue measure and the lattice operations, and E n = [0, n-~]. 

3. Expansiveness 

We shall now introduce the concept of expansiveness as a generalisation of the 
set-theoretic ideas developed in [2]. A paired measure space ~ will be said to 
be expansive if 

#(E 0 #(E2)__< #(E3)#(E4) (3.1) 

for all 4-tuples (E~, E2, E3, E4) of sets compatible with (~b, ~); 9)l-expansive if 

# ( f 0  #(f2) < #(f3) #(f4) (3.2) 

for all compatible functions f (where #(fj) is written in place of ~ f jd#);  strongly 
9Jbexpansive if (3.2) holds for all #-compatible f. x 

We begin by making some observations concerning these definitions. 

Remarks 3.1. (a) The inequality (3.2) is automatically satisfied if either f3 or f4 is 
not #-integrable, while if they are both integrable, and neither f l  nor f2 is #-null, 
(3.2) requires that f l  and f2 be integrable. 

(b) It is clear from (2.3) that Y is expansive if and only if 

#(E~) #(E2) N #*(~b(E, x E2) ) #*(O(E, x E2)) 

for all E~ and E 2 in Y,  where #* denotes outer #-measure. In particular, in an 
expansive probability space, 

#* (~b(X2))= #* (6(X2))= 1. 

(c) If 50 is expansive (resp. ~)l-expansive, strongly 9J~-expansive), and Y is an 
.'~Y-measurable subset of X with ~)(Y2)c Y and O ( y 2 ) c  y, then it follows from 
(2.8) that the restricted paired measure space SPIy is expansive (resp. 9Jb 
expansive, strongly 'J)l-expansive). 

(d) It follows from (2.6) that for (Et, E2, E 3, E4) and (fl , fz,f3,f4) compatible 
(or #-compatible) with (~b,O), the function (flzE~,f2z~2, f3ZE3, f4gE,) is also 
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compatible (or #-compatible). Thus in an 9N-expansive (or strongly 9)l-expan- 
sive) space, 

(S f l  d#)(S fzd#) <(~ f3d#)(~ f,d#). (3.3) 
E1 E2 E3 E4 

In particular if S is a finite set, #c is counting measure and (q~, ~) is a mapping of 
S 2 into itself, then (qS, ~) is expansive (resp. 9)l-expansive) in the sense defined in 
[2, pp. 268-269] if and only if (S, 2 s, #c, qS, ~) is expansive (resp. 9J/-expansive or 
equivalently strongly 9)l-expansive) according to the above definitions. In this 
respect the following study of expansive measure spaces extends the detailed 
investigation carried out in [2]. The theorem and corollary in [1] now become 
the statements that if S = 2 {1 ...... } then (S, 2 s, #c, ~ ,  m) is (strongly)9)l-expansive, 
and more generally that if S is a distributive lattice, then (S, 2 s, #c, v ,  A) is 
(strongly) 931-expansive. The reader is referred to [2] for some examples of 
expansive pairings on finite sets. 

(e) Following [2], it would be possible to define if-expansiveness for an 
arbitrary subset i of fl~ by requiring that (3.2) should hold for all f in i .  
Expansiveness, 9)l-expansiveness and strong 9Jbexpansiveness correspond re- 
spectively to taking i = ~3, 5t and ~, .  Other interesting classes i might include 
the bounded and the integrable functions in R and in 1~ (note the comments on 
integrability in (a) above), and many of our results remain valid for such classes. 
However we shall not list these as it should be clear from the proofs under what 
circumstances these variations are valid. 

Proposition 3.2. Let n be an involution on a (strongly) 9)l-expansive measure space 
5~. 7hen for any (#-)compatible f, 

#(f l"  (f2 ~ n)) < #(f3 '  (f4 ~ rr)). (3.4) 

Proof. It follows from (2.4)-(2.7) that (fx' (f2 ~ n), fz" (fl ~ n), f3" (f4 ~ n), f4" (f3 ~ n)) 
is (#-)compatible. Since n is measure-preserving, (3.2) gives 

# ( f l '  (f2 ~ n)) 2 = #(f l"  (f2 ~ re)) #(f2" (fl ~ n)) 

< # ( f 3 '  (f• ~ n))#(f~. (f3 ~ re)) 

= #(f3 '  ( f ,~  n))2. 

Example 3.3. Consider the case when X = {x, y}, f f  = 2 x, # = #~, 

q~(x, x) = ~ (x, y) = q~(y, x) = x, q~(y, y) = y 

~t(x,x)=x, ~(x,y)=~b(y,x)=~(y,y)=y 

n ( x )  = y ,  re(y)  = x .  

Then n is an involution, and 5 e is selectively paired and strongly 9Jl-expansive. 
The strong 9J/-expansiveness follows as a very special case of [1]. For the 
ordering defined by taking x > y is a distributive lattice-ordering in which ~b and 
q/ are the lattice operations. Now taking fj(x)=a~, f j (y )= l ,  (3.4) becomes the 
following inequality observed by Preston [13, Lemma 2]: 

0 ~ a l ~ a 3 ,  0 < a 2 ~ a 3 ,  O<a,,, a laz<aaa4~al+a2<a3+a, , .  (3.5) 
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Conversely putting a m=fl(x)f2(y), az=f~(y)f2(x), a3=f3(x)f~(y), a,=f3(y)f4(x) 
in (3.5) gives: 

feR ~ fl(x)f2(y) + f~(y)f2(x) < f3(x)f4(y) + f3(y)f4(x) (3.6) 

and adding in the additional inequalities fl(x)f2(x) =<f3(x)f4(x) and f~ (Y)f2(Y) 
<<-f3 (Y)f4(Y) gives: 

fes~ ~ (f l(x)  + L(y))(A(x) + A(y))_-< (f~(x) + f3(y))(f4(x) + f4(y)). 

Thus the gJLexpansiveness of J is effectively equivalent to (3.5) and also to (3.6). 
The only other selective pairings on X are (0, q~), (~bo, ~o) and (~o, ~bo), where 

~bo(Z, w)= z and Oo(Z, w)= w. It is now easy to verify that (3.6) remains valid when 
compatibility refers to any of these pairs. 

We turn next to arbitrary selectively paired spaces. 

Proposition 3.4. Any selectively paired measure space 5 P is strongly 9Jl-expansive. 

Proof Consider a #-compatible function f, and assume without loss that f3 and 
f4 are #-integrable (Remark3.1(a)). For any (x,y) in X2\A,  let ~bxy and Oxy be 
the restrictions of q~ and 0 to the two-point set {x,y}. These form a selective 
pairing on {x, y}, and we can ask whether the funciton f~y obtained by restricting 
f to {x, y} is compatible with (qSxr , Oxy). To check this, it is required to verify that 

fl(x')f2(y') < f3(O(x', y'))f4(O(x', y')) (3.7) 

whenever (x', y') = (x, x), (x, y), (y, x) or (y, y). Since f is #-compatible, (3.7) is valid 
when (x',y')=(x,y) or (y,x) for #Z-almost all pairs (x,y) in xz\z]. Also by 
Proposition2.1, f is diagonally #-compatible, so by (2.2), (3.7) holds for (x',y') 
= (x, x) for #-almost all x, and hence for #Z-almost all pairs (x, y). Similarly (3.7) 
holds for (x',y')=(y,y) for #2-almost all (x,y). Thus for #2-almost all (x,y) in 
X 2 \  A, fxy is compatible with the selective pairing (~bxy, Oxr) on the two-point set 
{x,y}, so by (3.6) 

fa(x)fz(y) + fl(y)fz(X) < f3(x)f4(y) + f3(Y)f4(x). (3.8) 

For (x,y) in A, (3.8) is equivalent to (2.1), so (3.8) holds #2-a.e. in A, and hence 
/~2-a.e. in X 2. Integrating with respect to #2 over X 2 gives 

2#(L)  #(f2) < 2 #(f3) # (f4)- 

There is a converse to Proposition 3.4. 

Proposition3.5. Let X be any set, ~ be the ~-algebra of all countable and all 
cocountabIe subsets of X, ((~, O) be a mapping of X 2 into X 2, and suppose that 
(X, ~ ,  p, 4, ~9) is expansive for every measure # on (X, ~).  Then ((p, O) is selective. 

Proof Take EI=E2={x  } and # = ~ ,  where 3~ is the unit mass at x. Then 
Remark 3.1(b) gives 

1 < 3~ {4(x, x)} 6~{0 (x, x)}. 

Hence O(x,x)=O(x,x)=x. 
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Now for distinct x and y take E1--{x}, E2={y}, and # = 2 b x +  @ Then 
Remark 3.1(b) gives 

2 < (26 x { q~ (x, y)} + 6,{q5 (x, y)})(26~{0(x, y)} + 6, {O(x, y)}). 

Hence 6~,{(o(x,y)} and 3~{0(x,y)} are not both zero, i.e. c>(x,y)=x or O(x,y)=x. 
Similarly qS(x, y) = y or 0(x, y) = y. 

We turn now to our main consideration of direct products. The following 
lemma is an abstract version of [2, Lemma 1]. 

Lemma3.6. Let 50 be the direct product of two paired measure spaces 5~a and 502, 
and suppose that 5~1 is (strongly) 9Jl-expansive. Let f : X ~ [ 0 ,  oo] 4 be (#-)- 
compatible with (4), 0), and put 

gi(x2) = S fj(Xl' X2) d#1(xl). 
Xj 

Then g is (#2-)compatible with (#)2,02). 

Proof We consider the case when f is #-compatible, the other being similar. For 
#2-almost all (x2,Y2) in X22, the function h: X 1 ~ [0, oo] ~ defined by (2.13) is #l- 
compatible with (~b1,01), so, assuming that ~ is strongly ~Ot-expansive, 

#1(h1) #1(h2)-< #1(h3)#1(h4). 

This gives immediately 

gl(x2) g2(Y2) < g3(~b2(x2, Y2)) g4(02(x2, Y2)) #~-a.e. (x2, Y2). 

The next result is the main theorem concerning direct products, and is a 
measure-theoretic analogue of [2, Theorem 1]. 

Theorem 3.7. The direct product of any finite family of (strongly) 9J~-expansive 
paired measure spaces is (strongly) 9Jl-expansive. 

Proof By induction it suffices to consider the product of two spaces. Using the 
notation of Lemma 3.6, for any f (#-)compatible with (qS, 0), g is (#2-)compatible 
with (~b2,02). Since oct 2 is (strongly) gJl-expansive, 

#2(gl) #2(g2) <~ #2(g3) #2(g4)" 

But, by Fubini's theorem, #2(gj)= #(fj), and the theorem follows. 
As in [3, 8], it is possible to extend Theorem 3.7 to cover infinite products. 

However at this level of abstraction, there is an additional technical com- 
plication. 

Theorem3.8. Let 5" be the direct product of a family {50~: 2cA} of gJl-expansive 
paired probability spaces. Suppose that there is no ~-measurable set E such that 
# ( E ) = I  and (ExE)c~dp-a(E)~O-l(E) is empty. Then 50 is 9J~-expansive. In 
particular if each ~ is diagonally invariant and 9Jr-expansive, then 5 ~ is 9Jl- 
expansive. 
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Proof Take a function f: X ~ [0, oo] 4 which is compatible with (~b, 0). Since f is 
~-measurable, there is a countable subset A o of A such that f(x)= f(y) whenever 
x:=yx for all 2 in A 0. Thus replacing A by A 0, we may assume that A is 
countable, and hence that A = N. 

Let ~ = (Zm, Nm, Vm, Pro, fire) and ~ (Z' ~ . . . .  ~ m = ~  m,~m,  Vm, Pm,ffm) be the respective 
direct products of {~ :  n>m} and {~ :  1 <n<m}, and identify 50 with ~ '  x J~. 
By Theorem 3.7, ~ '  is 9J~-expansive. Thus if 

fj(W'm,Z,.)dr 
z;, 

Lemma 3.6 shows that f ,  is compatible with (pro, %), i.e. 

f,~(Zm)f,,z(W,,)<L3(Pm(Z,,,W,,))f,,4(%(Zm,W,,)) (Zm,W,,eZm) 

or equivalently, 

L~(x)L2(y)< L~(r (x,y~X). (3.9) 

By the reverse version of the Fubini-Jessen theorem [-7, TheoremIII.11.27], 
fmj(X) converges to the constant #(fj) as m ~ oo for all x in some set E with #(E) 
= 1. Taking (x, y) in the non-empty set (E x E) m 0 -  ~(E) m 0 - a(E) and letting 
m-~ oo in (3.9) gives (3.2). 

If each ~ and hence 5: is diagonally invariant, choosing x in E and putting y 
= x in (3.9) gives the result. 

Corollary 3.9. The direct product of an), family of selectively paired probability 
spaces is 9J~-expansive. 

Proof This is immediate from Proposition 3.4, Theorem 3.8 and the fact that a 
selective pairing is diagonally invariant. 

# ,  2 In the notation of Theorem3.8, Remark 3.1(b) shows that ~(q~(X~)) 
- -  * 2 1 #* -#x(Ox(X~))= , so #*(~b(X2))= (~(X2))=1. Hence if #(E)>0, then ~b-~(E) 
and ~p-~(E) are non-empty. However it is not clear that (E 
x E) c~ ~b- l(E) m 0 -  i(E) is non-empty, even if #(E)= 1, nor indeed whether 

Theorem 3.8 remains valid if this condition is dropped. Note however that if (E 
x E)~c)-~(E)~-~(E) is empty, then (2)~,Z~,2-Z~,2-ZE) is compatible. He- 

nce if 5: is 931-expansive, then #(E) < 1. 
Strong 'J)l-expansiveness is rarely preserved under infinite direct products. 

For instance the #-compatible function (1, 1, 1-)~E, 1) as constructed in Exam- 
ple2.3 does not satisfy (3.2). Indeed using Proposition2.2 and the forward 
version of the Fubini-Jessen theorem, it is possible to show that a product 50 of 
diagonally settled, diagonally invariant, strongly 9)l-expansive, measurably pai- 
red spaces is strongly 9)l-expansive if and only if 5: is diagonally settled. A 
simple modification of the proof of Theorem 3.8 shows that this does occur if 
(and only if) there is no .~--measurable set E with # (E)=I  such that 
~-~(E)~O-~(E) is #Z-null. 

Example3.10. Suppose that X is a lattice and v~ and v 2 are functions of X into 
[0, oo] satisfying (1.9), viz. vz(x)<=v2(y ) whenever x<y. Then (1,v~,v2,1) is 
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compatible with (v , /x ) .  Furthermore if f is compatible with ( v ,  /x), then by 
(2.6), so is (fl,  vlf2, Vzf3,f4). 

Now if (X, ~,, #) is a product of totally ordered measure spaces and X is 
given the product ordering, then X is a lattice, and 5 p =(X,  ~, #, v ,  A) is 931- 
expansive by Corollary3.9. Thus for va,v 2 and f as above we recover the 
inequality (1.8), viz. 

#(f  O #(va f 2) < #(v2 f3) #(f4). 

Thus in the terminology of [1 1], 5 p is an "FKG-space".  The inequality (1.8) was 
first proved in [13] for finite products and in [3] for infinite products under the 
additional assumptions that v 1 = v2, f l  = f3  and f2 = f4. Edwards [8] and Kem- 
perman [11] gave simplified proofs and allowed v, and v2 to differ, but they still 
required that f ,=f3  and fz=f4. If the proof of Corollary3.9 is followed 
through, it seems that our proof of the more general result is simpler than those 
in [8, 11] both in finite cases and in the infinite extension. Furthermore for a 
finite product, Proposition3.4 and Theorem3.7 show that 5 P is strongly 9Jr- 
expansive, so our result also improves that of [13] in that for (1.8) to be valid it 
is sufficient that (1.7) holds #2-a.e. (and that V t ( X ) ~ V 2 ( X  V y)#2-a.e.). However to 
establish this required considerably more technical detail in the proof of 
Proposition 3.4. 

Allowing for example fa and fa to differ makes it pointless to seek measures 
on  {(x, y)ffxZ:x <= y} with certain marginals as was successfully done in [13]. 

4. Explosiveness 

Again following [2], we now introduce the concept of explosiveness for a paired 
measure space ~ An ~--measurable function g: X ~ [ 0 ,  oo] s is bicompatible 
(resp. #-bicompatible) with (~b, 0) if: 

gl(x) g2 (x') g3(Y)g4(Y') < gs(qS( x, Y')) g6(O(Y, x')) g7 (qS(y, x')) gs(O(x, y')) (4.1) 

for all (resp./**-almost all) (x,x',y,y') in X 4. For subsets F 1 and F 2 of X 2, put 

q5 ~(F,, F2)= {(~b (x, y'), ~/, (y, x')): (x, x')eF1, (y, y')eF2}. (4.2) 

A 4-tuple (F1, F 2, F3, F~) of ~2-measurable sets is bicompatible with (qS, qJ) if 

~bO(F,,F2)cF 3 and qbO(F2,F1)cF 4. (4.3) 

The space Y is explosive if 

#2 (F,) #2 (V2) __< #2 (F3) #2 (F4) 

for all (F1,F2, F3,F4) bicompatible with (~b, ~b); (strongly) 9~-explosive if 

(Sgl|174174174 2) (4.4) 
F1 F2 F3 F4 

for all (#-)bicompatible g and bicompatible (F 1, F 2, F 3, F4), where 

(h| (x,x'~X). 
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For counting measure on a finite set, these definitions of explosiveness and ~l- 
explosiveness reduce to those of [2]. 

Define a pairing (q5 4, ~b 4) on X 2 by: 

4 ((x, x'), (y, y')) = (q~ (x, y'), 4 (y, x')) 

4((x, x'), (y, y')) = (r x'), 4(x,  y')) 

so that 04(z)=O4(z*)=4~(z)*.  (The asterisks here refer to the operation 
changing the order of pairs in X 2 x X 2. In [2], q54 and ~b 4 were denoted by q52 
and 42 respectively, but we feel such notation might be in conflict with that 
adopted elsewhere in this paper.) Then it is clear from (2.1), (2.3), (4.1), (4.2) and 
(4.3) that 

g is (#-)bicompatible with (qS, 4) r 

(gl @ g2, g3 @ g4, g5 @ g6, g7 @ g8) is (#-)compatible with (~b 4, q5 4) (4.5) 

()4(F1,F2)=dP4(F1 xF2), 64(Fe,FO=O4(F1 xF2) 

(F l, F 2, F 3 , F4) is bicompatible with (~b, 4) <=~ 

(F x, F2, F3, F4) is compatible with (~b 4, ~b 4). (4.6) 

The following is a measure-theoretic extension of [2, Theorem 6]. 

Theorem4.1. The following are equivalent for a paired measure space 50: 

(i) (X 2, if2, #2, ~b x 4*, 4 x q~*) is (strongly) 9)Lexpansive 
(ii) (X 2, y2,/~2, q~ 4, ~b 4) is (strongly) 9Jl-expansive 

(iii) 5 P is (strongly) 9J~-explosive 
(iii)' For any g(#-)bicompatible with (4, 4), 

#(gl)/2 (g2) #(ga) #(g4) =< #(gs)/2 (g6)/2 (g7) fl (g8) 

(iv) 50 is (strongly) 9J~-expansive 
(v) (X, Y,#, 4", qS*) is (strongly) 9~-expansive. 

Proof We shall consider the weaker properties, the equivalence of the stronger 
versions being analogous. 

(i)~(ii).  It is readily verified (cf. [2, p.285]) that (fDf2,f3,f4) is compatible 
with (~b 4, q5 4) if and only if ( f l , f*, fa, f*) is compatible with (q5 • 4*, 4 x qS*). 
Furthermore 

(ii) ~ (iii). The inequality (4.4) follows from (ii) via (4.5), (4.6) and (3.3). 

(iii) ~ (iii)'. This is immediate on restricting (4.4) to the case Fj = X 2. 

(iii)' ~ (iv). For f compatible with (~b, 4), put 

gl =g3 = f l ,  g2=g4=f2, g5 = g7 = f3, g6 =g8 =f4 '  

Then g is bicompatible with (4, 4), so 

#(fl) 2 #(fz) 2 =/z(gl) P(g2) Iz(g3) ~z(g4) < #(gs) P(g6) #(gT) #(ga) = P(fa) 2 Iz(f4) 2- 
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(iv) ,*~ (v). By (2.4) and (2.5), (fl,f2,f3,f4) is compatible with (qS, 0) if and only 
if (f2,fl,f4,f3) is compatible with (0*, ~b*). 

(iv) ~ (i). This follows immediately from the already proved equivalence of 
(iv) with (v) together with Theorem 3.7. 

Proposition 4.2. Consider the following properties of a paired measure space 5 p: 

(i) (X 2, j~2, #z, ~b x 0*, 0 x q~*) is expansive 
(ii) (X21 if2,/~2, ~ - ,  q~__~_0) is expansive 

(iii) 5 p is explosive 
(iv) 5 f is expansive 
(v) (X, ff;#,0*,4)*) is expansive. 

The following implications are valid: 

(i) <=~ (ii) ~=> (iii) ~ (iv) <=~ (v). 

Proof Specialising the proof of Theorem4.1 to the case of characteristic func- 
tions leads to a proof of all implications except (iii) ~ (ii), which is immediate 
from (4.6). 

5. Finite Distributive Lattices 

Example 3.3 shows that ({0, 1}, 2 ~~ #c, v ,  A) is an 9Jl-expansive space. Apply- 
ing Theorem 3.7 to a finite family of copies of this space shows that for any finite 
set A, 5P(A)=(2a,22A,#c, u ,  c~) is also gJLexpansive. Any finite distributive 
lattice L can be embedded in 2 a for some finite set A [-4, Corollary, p. 59], so it 
follows from Remark3.1(c) that 5tL=(L, 2C,#c, v ,  A) is gJl-expansive, i.e. in- 
equality (1.10) holds. (An extension to infinite lattices can then be made by a 
simple limiting argument.) This result was first obtained in [1], and itself has 
many important consequences as listed in [-2, Sect. 9]. The expansiveness of 5e L 
gives inequality (1.2). 

Conversely let L be a finite lattice such that 5PL is gJl-expansive. Then 5PL is an 
FKG-space (see Example 3.10) and hence L is distributive [11, Theorem 7-]. Thus 
~L is gJl-expansive if and only if "YL is an FKG-space, or, equivalently, L is 
distributive. 

For any finite set S, there is an involution re on 5P(S) given by re(A)=S\A. 
Let F 1 and F 2 be functions of 2 s into 2 L, and put 

F3(C)= U Fa(A)vF2(B) 
A u B ~ C  

F4(C ) = (..) FI(A )/x Fa(B ) (5.1) 
A c ~ B ~ C  

fj(A) = [Fj(A)[ (j = 1, 2, 3, 4). 

Then (1.2) shows that f is compatible with (u, c~) on 2 s. Now applying Pro- 
position 3.2 gives the inequality 

Z ]FI(A)I ]Fz(S\A)]<= Z IF3(C)I ]F4(S\C)] (5.2) 
A c S  C o S  
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which (apart from notational changes) is the same as (l.3). Thus [6, Theorem 1] 
can be deduced from (1.2) and 9X-expansiveness. Since (1.2) is itself a con- 
sequence of expansiveness, (5.2) could be obtained directly from a single appli- 
cation of expansiveness. Rather than giving explicit details of this, we prefer to 
show how (5.2) can be obtained more fundamentally from an application of (1.2) 
in a different lattice. 

Let 2,q be the lattice 2sx L x L with the product ordering, where L is the 
lattice obtained from L by reversing the ordering in L. Put 

~ =  { (A ,  X l , X 2 ) ~ :  xl~Ft(A),x2~F2(S\A)} 

= {(B, Yl, 22) E~*a: Ya eF2 (B), J'2 EF1 (S\B)}. 

Then 

v ~ c  {(C, z 1, z2)E~: zleG(C),  z2~G(S\C)} 
~r A B c {(D, wl, w2)eS:  w 1 ~F4(D), w2~F 3 (S\D)} 

I~1---I~l = ~ IF~KA)I [F2(S\A)I 
AcS 

[ar v-~'l, I~/A~I_-- < ~, IF3(C)IIF4(S\C)[. 
Cc S  

Thus (1.2) applied to d and N gives (the square of)  (5.1) immediately. 
Recall that a subset U of L is an up-set if 

xeU, yeL, x < y  ~ yeU. 

Down-sets are defined similarly, and a down-set of the form {yeL:y<x} is an 
ideal in L. 

Daykin [6] has obtained a number of other inequalities concerning up-sets, 
down-sets and ideals in 2 A, but it was not clear from his methods that the results 
could be transferred to arbitrary finite distributive lattices. (An up-set in one 
lattice may fail to be an up-set in a larger lattice.) We shall now show that they 
do remain valid by deducing them from (5.2). 

Theorem5.1. Let I and J be ideals in a finite distributive lattice L, S be a finite 
set, U, V, W and X be increasing functions from 2 s into the set of up-sets in L 
(ordered by inclusion), and D and E be decreasing functions of 2 s into the set of 
down-sets in L. Suppose that I c J, U(A) ~ V(A), W(A) ~ X(A) and D(A) ~ E(A) for 
all A in 2 s. Then 

III ~ IJnV(At~D(A)I+ISl Y~ II~U(At~E(A)I 
A~S  A c S  

< ~ IIc~W(C)JlSnO(S\C)l+ ~ [InE(C)llJnV(S\C)l (5.31 
C=S C~S 

II c~ U(A)I ]J n X(S\A)I + ~ JI c~ W(A)I [J c~ V(S\A)I 
A c S  A ~ S  

<llI ~ IJnX(C)nV(C)l+lJI  ~ ]Ic~U(ClnW(C)l. (5.4) 
C~S CcS  
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Proof Let S' be the set obtained by adjoining one additional point ~o to S, and 
for A contained in S, let A'= A w {co}. Put 

FI(A)=I~U(A)~E(A) FI(A')=J~V(A)~D(A) 

F2(A)=I F2(A')=J. 

Then F 1 and F 2 are functions from 2 s' into 2 L, and if F 3 and F 4 are defined by 
(5.1) with S' replacing S, 

F3(C)= I@ (Ic~U(A)c~E(A))vI 
A u B = C  

~I  c~ U(C) 

F 3(C') = U {[(I m U(A) c~ E(A)) v J]  u [(J ~ V(A) c~ D(A)) v I] 
A u B = C  

u [(J ~ V(A) c~D(A)) v J]} 
~J  c~ V( C). 

Similarly 

F4(C)cI~E(C), F4(C')~JcaD(C). 

Now applying (5.2) with S replaced by S' gives 

III ~ IJ ~ V(A) c~ D(A)t + Igl ~ [I m U(A) c~ E(A)[ 
A c S  A c S  

= F, IVl(A)l IFz(S'\A')I+ ~, IFI(A)[ IF2(S'\A)I 
A c S  A c S  

= E ]Fa(B)l IF2(g'\B)l 
B c S '  

< Y~ Ira(B)lIf4(S'\B)l 
B c S "  

< Y~ II c~ g(C)l [J c~D(S\C)I + • II n E(C)I Id c~ V(S\C)I. 
C o S  C o S  

A similar argument, the details of which are left to the reader, leads to (5.4). 
The inequalities (5.3) and (5.4) were obtained in [6, Theorems 2, 3] in the case 

when L--2  A for some finite set A. Combining the methods of this section, they 
could each have been deduced from a single application of expansiveness in @,, 
where 5Y'=2S'xLxL.  Putting S=0,  I=J=L ,  U(S)=0, V(S)=U, D(S)=E(S) 
=D gives (1.1) as a special case of (5.3). 
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