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Summary. In the random field approach to lattice gas models it has been 
shown that the one point conditional probabilities determine the finite set 
conditional probabilities under conditions of strict positivity and regularity. 
This paper considers the case when strict positivity does not obtain with 
families of conditional probabilities more general than the one-point con- 
ditional probabilities. 

1. Introduction 

Certain problems in the theory of random fields had their origins in lattice gas 
models of statistical mechanics. The basic structures are a countably infinite set 
of sites S and a finite set Y which describes the configuration of a single site, the 
overall configuration being described by a point of X =  yS. In application to 
magnetic phenomena, S corresponds to the locations of atoms in a crystal and the 
point of Y gives the direction of the spin of a specific atom. In the physical 
model one prescribes an interaction potential among sites and determines the 
properties of probability measures on X which are consistent with the given 
potential (for details see Ruelle [8]). 

Another approach to systems of this type employs conditional probabilities. 
Let d denote the set of finite subsets of S. For c ~ d  we have the natural 
projection from X to YL Let .Y~ denote the a-field of subsets of X which are 
inverse images of subsets of Y~ under this projection. Let Y~ denote the o--field 
generated by {Y~: f l e d ,  flc~c~=O}, and let ~- denote the a-field generated by all 
~ ,  c~e~. Corresponding to the probability measure # on (X, ~-) there is the 
conditional expectation operator E ( . I ~  -~) for each eEsd. Since (X,Y) is a 
standard Borel space, E(. I W~) can be expressed in terms of a regular conditional 
probability distribution /x(w=x on c~[ co=y on S\c 0 for w, x, y~X, ccEsd (see 
[6]). 

In [3] Dobrushin considered the following problem. Given the real valued 
function P~(x, y) for e e d ,  x, y~X, find all probability measures # on (X, S )  
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which satisfy 

#(co=xonc~[o~=yonS\cQ=P~(x,y) #-a.e. (0) 

This line of investigation has been extensively pursued (see Preston [7]). 
In order for (0) to hold for some probability measure # on (X, ~ ) ,  the 

function P~(x,y) must satisfy certain positivity, normalization and consistency 
conditions. It is convenient to define the equivalence relationship x = y rood ~ to 
mean that xJ=y j for j eS \~ ,  the superscript denoting component. For  c~Ed the 
equivalence class mod ~ of a particular element x s X  is a finite subset of X. We 
note that P~(x, y) need only be defined for x = y  mode.  The positivity require- 
ment is P,(x, y)~0.  The normalization requirement is 

P~(x, y) = 1 each y~X,  
x 

where the sum is over those x equivalent to y mod c~. The consistency require- 
ment is that for all ~ E d ,  y~X and flcc~, 

P (y, y)= e (y, y)/Z P,(x, yl, 
X 

where the sum is over those x equivalent to y rood ft. This means essentially that 
the conditional probabilities for r i c e  can be constructed from P~ in the usual 
way. All the above relations need hold only #-almost everywhere. 

The problem we consider in this paper is given {P~(x, y)} for all f lE~ and x 
= y  mod fl, where N is a proper subset of d ,  what are the consistency conditions 
on {P~(x, y)} and in how many ways can one construct a consistent {P~: c~ed} 
which agrees with that given for c ~ .  The most important case is when 
={{j}:j~S}. The collection {P(j~:j~S} are called the one point conditional 
probabilities; the full collection {P~: c~s /}  are called the finite set conditional 
probabilities. Under assumption of strict positivity, together with regularity 
conditions, it has been shown that the one point conditional probabilities 
determine the finite set conditional probabilities and a corresponding potential 
can be constructed (see [2, 5, 10]). 

In both the physical and mathematical contexts it is natural to consider 
models in which strict positivity fails. To deal with this case we introduce a set 
of allowed configurations X 0 c X where strict positivity does obtain. For  a given 
X o and a family {P~: ~ }  we ask two questions: Are the given data consistent? 
Do they determine {P~: ees~} uniquely? 

To motivate the techniques used below consider the case in which S is a 
finite set so that the space X is also finite. Let N =  {{j}:jeS}. If (0) is satisfied 
and P~(x,y) is strictly positive, then #({x})/#({y})=P~j~(x,y)/P~j~(y,y) for x 
= y m o d j .  Now given x, y e X  we can find a chain xo=-x, x~,x2, ... x , = y  where 
x i and xi+ 1 differ at only one site. Now #({x})/#({y}) is the product of the 
rations #({xl})/#({xi+ 1}). Thus {P~j~(x, y):jeS} determines uniquely #({x})/#({y}) 
for x, y~X. Normalization then determines # uniquely. The consistency require- 
ment is that any chain from x to y should yield the same value for #({x})/#({y}). 
To carry out these manipulations we need strict positivity. If however the set X o 
on which strict positiv, ity obtains has the property that any two distinct elements 
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differ on at least two sites, then the one point conditional probabilities are trivial 
and the above method gives no information about/2. 

When we consider the general case in the next section we shall recast the 
problem in algebraic form in order to avoid the difficulty of the relationships 
holding only almost everywhere. It is convenient to work in an abstract format 
involving partially ordered equivalence relations. In this context the extent to 
which {P~: ~s~}  determine {P~: ~s~4} and the consistency conditions have 
natural expressions in terms of concepts from homological algebra. This still 
leaves the problem of expressing the geometric constraints of a given model in 
terms of the algebraic criteria. For an important class of one dimensional 
systems we can give a reasonably satisfactory solution. Higher dimensional 
models pose difficult combinatorial problems. 

2. Algebraic and Ratio Specifications 

The basic structures for our algebraic approach are as follows. We have a set X o 
and a collection of partitions of X o into equivalence classes. The partitions are 
parametrized by the set d ,  which itself is a collection of subsets of the set S. For 
each ~ e d  and x~X o we write {x}~ to denote the equivalence class of x 
corresponding to c~; also we write x=y  rood ~ for this equivalence. We require 
that {x}~{x}~ when ~ / 3  with x~Xo, c~,/3ed. Also we require that for each 
cr /3~d there is a ? ~ d  with c~u/3c?. The above sets and equivalence classes 
will be denoted by the symbol f .  

2.1. Definition. An ,algebraic specification P~(x,y) is a real valued function 
defined for all e ~ d  and x = y  rood a, which satisfies 

P~(x, y) > 0, (1) 

Pdx, y) = P~(x, x), (2) 

P~(x, y) P~(y, x) = Pa(x, y) P~(y, x) when c~ c/3 (3) 

for all ~ , /3~d and x = y m o d  c~. 
This definition is motivated by conditional probabilities: (2) corresponds to 

measurability with respect to the appropriate a-field and (3) corresponds to the 
consistency requirement (see Preston [7], Lemma 5.1). 

2.2. Definition. Two algebraic specifications P~(x, y) and Q~(x, y) on 2~ are said to 
be equivalent if 

P,(x, y)Q~(y, x)=PdY, x) Q~(x, y) 

for all a e d  and x = y m o d a .  
In the conditional probability context one can often choose a particular 

element of each equivalence class by the requirement of normalization with 
respect to certain measures. 

2.3. Definition. A ratio specification F~(x,y) on f is a real valued function 
defined for all a ~ d  and x = y  rood a which satisfies 
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F~(x, y) > O, 

F~(x, y) F~(y, z)=F~(x, z), 

F~(x, y)= F~(x, y) when ~ c f i  

for all e, f l e d  and x = y m o d  e, y = z m o d  ~. 

(4) 
(5) 
(6) 

2.4. Lemma. An algebraic specification P~(x, y) on f determines uniquely a ratio 
specification. A ratio specification F~(x,y) on 3{' determines an algebraic 
specification up to equivalence. 

Proof Let P~(x,y) be an algebraic specification on f .  Define F~(x,y) 
=P~(x,y)/P~(y,x). Then (4) follows from (1) while (6) follows from (1) and (3). 
Also (5) follows from (1) and (2). To prove the second part we select an dement 
z(c~, x) from each equivalence class {x}~, i.e. z(a, x )=x  rood c~ and x = y  rood 
implies z(a, x)=z(~, y). Now given the ratio specification F~(x, y), define P~(x, y) 
=F,(x, z(:~, x)) for x = y m o d  c~. Then (1) and (2) follow from this definition and 
(4). We have P~(x,y)/P~(y,x)=F~(x,y) by (5), so (6) then implies (3). It is not 
difficult to verify that different choices of z(c~,x) give equivalent algebraic 
specifications and that equivalent algebraic specifications yield the same ratio 
specification. 

Now we come to the basic problems. Assume that we are given ~ c d and a 
function P,(x,y) satisfying (1) and (2) for all ~E~ and x = y m o d  e. Does there 
exist an extension of P~(x, y) which is an algebraic specification on 5F? Can there 
be nonequivalent extensions? We shall pose and answer these questions for ratio 
specifications because certain concepts from homological algebra arise naturally 
in this context. 

For any N e d  let C(N) denote the free abelian group generated by triples 
of the form (y,z,~) where a e ~  and y = z m o d a .  Let C(Xo) denote the free 
abelian group generated by the elements of X o. We define the boundary 
homomorphism 

~ :  c(~)-~ C(Xo) 
by 

where the ki's are integers. Elements in ker t?~ will be called cycles. Given a 
function F~(x,y) defined for eeN and x = y m o d ~  which satisfies (4), we can 
extend it to a homomorphism F~: C ( ~ ) ~ R  +, the positive real numbers under 
multiplication, by 

2.5. Lemma. F d is trivial on ker 0 d if and only if F~(x, y) satisfies (5) and (6). 

Proof Suppose F~ is trivial on cycles. When x = y m o d ~ ,  y = z m o d e  and ac f i ,  
we have the cycles (x, y, c 0 + (y, z, c 0 - (x, z, c0 and (x, y, c0-  (x, y, fi). Apply F~ to 
these cycles to obtain (5) and (6). Conversely suppose (5) and (6) hold for Fj(x, y). 

Cycles of the form ~ (xi, xi+l, cq) with x 1 = x , + l  generate ker @. By our basic 
i ~ l  
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assumptions on 5~ there is a , / ~ d  containing ~1,-.., %. Using this 7 and (5), it 
follows easily from (6) that F~, is trivial on cycles of this form. Since F d is a 
homomorphism and these cycles generate ker @, we have the desired result. 

2.6. Theorem. Let  F~(x, y) be a real valued function defined for  ~ and x 
=ymodc~ which satisfies (4). Then F~(x,y) is the restriction to ~ o f  a ratio 
specification on f i f  and only i f  F~ is trivial on ker ~ .  

Proof. Let i: C ( ~ ) ~  C(d )  be the natural inclusion homomorphism. Then 

Thus there exists a monomorphism 

given by k(a+ker  0e)= i(a)+ker @. Suppose that F~ is trivial on ker 0e. Then 
we have the induced homomorphism 

/~:  C(~)/ker ~ ? ~  R +. 

Since the positive reals under multiplication is a divisible abelian group and k is 
a monomorphism, there exists a homomorphism 

~,: C(sd)/ker @ ~ R  +. 

such that ~ = P d o  k (see Theorem 21.1 of Fuchs [4]). By combining Fd with the 
quotient homomorphism C(~ / )~  C ( d ) / k e r ~  we obtain a homomorphism 
Fd: C(~4)--~R +. By construction F d is trivial on ker @ and F~=F~o i. Lemma 
2.5 shows that restricting F~ to generators provides the required ratio specifi- 
cation on 5~. 

Conversely, suppose F~(x, y) is the restriction to ~ of a ratio specification on 
f .  We have the following commutative diagram: 

c ( ~ )  ~ + c(si) 

Hence to show that F~ is trivial on ker c~ it is sufficient to show that F~ is 
trivial on ker @. However, F d comes from a ratio specification on f ,  so by 
Lemma 2.5 it is trivial on ker @. 

The next theorem describes all extensions of Ee to ratio specifications on Y'. 
First we need 

2.7. Definition. For ~ r  we say that x is connected to y m o d . ~  if there exist 
x o, x 1, ..., x , ,~Xo,  131 . . . . .  f i , ~  with Xo=X, x , = y  and x i = x i _  1 modfii , l<_i<_n. 

Being connected mod N is an equivalence relation on X0; we shall write {x}~ 
for the class of elements connected to x mod ~.  Note that the requirements on 
~ imply that x = y  mod J if and only if there exists c ~ / w i t h  x = y  rood c~. 
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Choose a single representative from each .~ equivalence class and let the set 
of these chosen elements be denoted X~. We can choose representatives of the 
d equivalence classes so that X~ c X~. 

2.8. Definition. We denote by N the set of all positive real valued functions on 
X~. Two functions f gEN are called equivalent if f(x)/ f(y)=g(x)/g(y) for all 
x , y ~ X ~  with x = y m o d  d .  We use ~ to denote the equivalence classes of ~q 
under this relation. 

2.9. Theorem. Let I~(x, y) be a positive real valued function defined for s e n  and 
x = y  rood ~. Suppose F~ defined by (8) is trivial on ker ~ .  Then there is a one-to- 
one correspondence between ~Xf and extensions of Ee which come from ratio 
specifications on YY. 

Proof. Any extension of E~ to a ratio specification will satisfy certain conditions. 
In particular if x = y m o d N  ~, then there is some ~ e d  with x=ymodc~ and 
F~(x, y) is uniquely determined. Thus we can assume without loss of generality 
that we are given F~(x, y) satisfying (6) wherever x = y  mod N and x = y mod ~. 
Now given f e n  and (w, z, ~ )eC(d)  we define 

F~(w, z)=F,(w, x)F~(y, z) f (x)/f (y) (9) 

where x, y eX~ ,  w = x  modN', y = z m o d ~ ,  c~c7, w = x m o d 7 ,  y = z m o d T .  Note 
that (9) is independent of the choice of 7 satisfying the above. It is straightfor- 
ward to verify that F~(w, z) so defined satisfies (4), (5) and (6) and thus gives a 
ratio specification on 2F which extends that given. From the defining formula (9) 
it follows that equivalent elements of N yield the same ratio specification, while 
nonequivalent elements of N yield distinct ratio specifications. 

Finally given a ratio specification F~(x, y) we define f e n  by 

f (x) = F~(x, y) (10) 

where x e X e ,  y e X ~  and x = y  rood e. Since the y in X~ equivalent to x is unique 
and (6) holds, (10) is well defined. A calculation shows that the f so defined 
satisfies (9). 

Note that W consists of a single element exactly when {x}d = {x}e for each 
x ~ X  o. 

2.10. Corollary. Assume F~ is trivial on ker ~ .  Then the extension of Ee to a 
ratio specification on f is unique if and only if {x}~ = {x}.~ for all x~Xo,  i.e. if 
and only if whenever x, y are connected rood sd, they are connected rood ~. 

2.11. Definition. The length of the cycle k (z ,y, ,)eker is Ik,I. 
i = 1  i ~ l  

2.12. Remark. Let C(~) be the free abelian group generated by pairs (x, y) where 
x = y mod ~ for e e l .  We have the mapping ~b: C (N)--, C(~) with 

4) k~(xl, Yl, c~i) = k~(xi, yi). 
i - -  i = l  

Thus we have the boundary operator ~ :  C(N)~  C(Xo) satisfying O~=~oqS. 
The homomorphism q5 is onto and thus induces an isomorphism from ker ~ /  
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ker q5 to ker 0e. A set of generators for ker ~e thus provides a set of generators 
for ker 0e/ker ~b. We can pick representatives for these in ker 0~ in such a way 
that the cycle length is preserved. These representatives, together with a generat- 
ing set ker ~b will generate ker c?~. Finally we note that ker ~b is generated by 
cycles of the form (x, y, c~i)-(x, y, ~2). 

3. Application to Random Fields 

We now relate the algebraic formalism of the previous section to the model 
originally introduced. Recall that S is a countably infinite set, Y a finite set and 
X = ys. There is very little additional effort required to allow a different Y at 
each site, but for simplicity of notation we shall not do this. The set of allowed 
configurations for which we want our conditional probabilities positive is 
denoted X o. In most cases considered in the literature X 0 is obtained from X by 
exclusion rules which involve sites at finite distances from each other. The set d 
is the set of all finite subsets of S. For  ~ d  and x,y~Xo, x = y m o d  ~ if xJ=y J 
for all j~S\c~. We use superscripts to denote components. 

For  a given X o and ~ c ~r we wish to know whether conditional probabili- 
ties given for e ~  determine the finite set conditional probabilities (i.e. those for 
~/) and a set of generators for ker d e so we may express consistency conditions. 
For  the case X o = X  , if ~ contains all singletons {j},j~S, corresponding to one 
point conditional probabilities, then the finite set conditional probabilities can 
be computed (see [9]). Also cycles of length 4 are sufficient (see [9]). One needs, 
in addition, some regularity conditions; we shall express one form of these in a 
result below. 

When S is a lattice in Euclidean space and X o is determined by finite range 
constraints, it can be quite a difficult combinatorial problem to determine, for a 
given ~,  the connectedness and cycle structure. For  systems with one dimen- 
sional geometry and constraints of finite range we can give a reasonable 
geometric expression of the algebraic criteria of the preceding section. By 
considering aggregates "along the line" the constraints can be considered to be 
nearest neighbour. 

Specifically we consider the case in which S = Z, the integers, and Y is a finite 
set. We assume a function M: Yx Y ~ R  with M(a,b)>__O. Then we define 

Xo= {xe yS: M (xi, xi + l) > O for all i~S}. 

Spaces of this type have received considerable study (see [12]). The one point 
conditional probabilities will, in general, not be sufficient to determine the finite 
set conditional probabilities. We shall show that under a certain condition the j- 
adjacent point conditional probabilities are sufficient. 

3.1. Theorem. Let ~ denote the collection of all subsets of S which consist of j 
adjacent integers. Assume the matrix M has the following property: 

MJ+~(a,c)>O, M(b,c)>O= >m~(a,b)>O (11) 

for all a,b,c~Y. Then 
(i) I f  x, y~X  o are connected rood ~r they are connected rood N, 

(ii) ker c~ 'is generated by the set of cycles of length <j + 3. 
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Proof. (i) Suppose x, y e X  o and x = y m o d d .  Let l ( x , y ) = n - m  where m and n 
are respectively the first and last coordinates where x and y differ. If  l(x,y)<j 
- 1 ,  then x and y differ by at most j adjacent coordinates so x = y m o d M .  
Otherwise, as M J+l(x "-j ,  x"+X)>0, M(y", x"+l )>0 ,  we have M~(x "-j, y")>0. 
Thus we can find %, w2 . . . . .  w j _ l ~ Y  so that 

z = (  .... xm- l , x  m, .... x"-J, w> ..., w~_> y",x "+1, ...) 

is an element of X 0. Now x and z differ on at most j adjacent sites, and 
l(z, y) < l(x, y). Iteration of the procedure at most l(x, y ) - j  + 1 times connects 
x to y mod M. 

(ii) By Remark  2.12 it is sufficient to show that ker 3~ is generated by cycles 
of length < j + 3 .  Now since ker ~ is generated by cycles of the form 

c= i (xi, x~+l) where x i e X  o, l<<_i<_n; xl =x,+ 1 and x i, xi+ 1 differ on at 
i=1 

most j adjacent sites, it suffices to prove the result for such cycles. For 
x, yeXo,  x =y rood sr let 

F(x, y )= t he  first site where x and y differ; 

T(x ,y)=the  last site where x and y differ; 

f ( c ) =  rain F(xi,xi+l); 
l<_i<_n 

t(c) = m a x  T(xi, xi+ 1); 
l<=i~n 

P (c) = least i for which f (c) = F (xi, x i + 1); 

Q(c)=largest  i for which f ( c )=F(x  i, xi+ 1). 

The aim is to write c as a sum of cycles of length < j  + 3 plus a cycle d with 

f(c) < f(d) < t(d) < t(c). (12) 

After a finite number of iterations of this procedure we have c expressed as the 
sum of cycles of length _<j + 3. 

First we consider the case in which t ( c ) - f ( c ) < j - 1 .  Then each pair (xl, xk) , 
2 < k < n  is equivalent m o d e  for some e e ~  so 

n--1 

C = ~ {(XI' Xi)-I-(X i, Xi+l)-}-(Xi+ 1, X1)} 
i=2 

expresses c as the sum of 3 cycles. 
When t ( c ) - f ( c )> j  we proceed to reduce this difference in two stages. We 

have P(c)<Q(c) and x{(C)=x{ (c) for 1 <i_<P(c) or Q(c)<i<n, since the least site 
which changes must eventually return to the original value. The first stage is to 
write c as the sum of a cycle of length j + 3 or less and a cycle d with Q (d) 
-P(cl )<Q(c)-P(c) .  We repeat this until Q(d)-P(d)= 1. The second stage is to 
express a cycle c with Q ( c ) - P ( c ) = l  as the sum of a 3 cycle and a cycle d 
satisfying (12). 

We now consider this second stage, i.e. t ( c ) - f ( c )> j  and Q ( c ) - P ( c ) = l .  
There is no loss of generality in assuming P(c)= 1. Then 
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C={(X1, X2)-~(X2, X3)-~(X3, X1) }-r-(xl,X3)@ ~ (Xi, X i+l )  
i=3 

gives the required representation, since Xl and x 3 differ at most on j-adjacent 
sites. This completes stage two. 

For  stage one, i.e. Q ( c ) - P ( c ) > l ,  we have two cases to consider. For 
simplicity of notation we assume that f ( c )=0 .  

Case  (a). f(x2, x3)>=jq- 1. 

Set z=( .  -1 o ... x 2 x j + l ,  x j+2 " '~Xl ~Xl~ ~ 17 3 3 ~ "")" 
Then z s X  o and there exist c~,/?~N with z = x  I modcq z = x  2 modfi. Then 

d = (x ~, z) + (z, x 3) + ~ (xi, x i + i ) 
i=3 

satisfies Q (d) - P(d) < Q (c) - P(c) and 

c = d - ~ ( X l ,  X2)-J-(X2, X3)-~-(X3, Z)-~ (Z, Xl) , 

i.e. c is the sum of d and a four cycle. 

Case  (b). F ( x 2 ,  x3) <j. 

By the method of proof of part (i) we can find z 1 . . . . .  z k E X  o with z 1 = x l ,  z k = x  3 
and z i differing from zi+ ~ at most on j-adjacent sites. Also F(z i ,  z~+l)>O for 
l = < i < k - 1  and T(zi ,  zi+l)<=t(c) for l<_i<_k. We can do this with 
2 <_ k <_ F ( x 2 ,  x3) + 2. Then with 

k-1 
d= (z, ,z,+l)+ 

i=1 i=3 

we have c = d + ( x  1 , xz) + (x 2, z k ) + ( z  k, Zk_a)+ ... + ( z  2 , Zl). 
So c can be expressed as the sum of d and a cycle of length k + 1 < j  + 3. For 

this d we have Q ( d ) - P ( d ) <  Q ( c ) - P ( c ) .  This completes the proof. 

3.2. Rem ark .  Essentially the same proof can be carried out when S is the positive 
integers instead of all integers. 

3.3. Remark .  Condition (11) of Theorem 3.1 can be replaced by 

M J + l ( a , c ) > O ,  M ( a , b ) > O ~ M J ( b , c ) > O ,  (13) 

with the proof simply reversing the order of certain operations. Any homo- 
geneous finite Markov chain without transient states will satisfy conditions (11) 
and (13) for sufficiently largej. These conditions and the proof can be adapted to 
inhomogeneous Markov chains with state spaces varying from site to site. 

3.4. Example .  get  Y be the set of j digit numbers in an arbitrary fixed integer 
base. Define M ( [ d l d  2 ... dj], [d2d 3 ... d je])  = 1 and M ( a ,  b)=0  otherwise. Since 
M J ( a , b ) = l  for all a , b ~ Y ,  Theorem 3.1 shows that a ratio specification is 
uniquely determined by its N values, with ~ the collection of j-adjacent point 
subsets of S. Two distinct elements of X 0 must differ by at least j sites so 
knowledge of the ratio specification for sets with j -  1 and fewer elements gives 
no information about the ratio specification for other sets; the j - 1  point 
conditional probabilities are trivial. 
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W e  now give an i l lus t ra t ion  of  how the a lgebra ic  techniques  above  can be 
app l ied  in terms of ac tua l  cond i t iona l  probabi l i t ies .  W e  use the no t a t i on  of 
Theo rem 3.1. The  topo logy  of X = ys  is expla ined  in [9], to which we refer the 
reader  for an exp lana t ion  of  the no t a t i on  l~(O)--x on A[ c o = y  on AC). X o is a 
closed subspace  of X with the subspace  topology .  

3.5. Theorem.  Let the hypothesis of Theorem 3.1 be satisfied. Assume that the real 
valued continuous function P~(x, y),is given for each ~ . ~  and x = y  rood ~ which 
satisfies (1) and (2) and ~ P~(x, y ) = l  for each ~ . ~  and yeXo ,  with the sum over 

X 

those x which are equivalent to y rood c~. Define F~(x, y)=P~(x,  y)/P~(y, x) and F~ on 
C(N) by (8). Assume F~ is trivial on all elements of ker  0~ of length <j + 3. I f  X o 
is nonempty, then there is a probability measure I ~ on X o such that 

l z (o)=xonA[co=yonAC)=PA(x ,y)  #. a.e. 

for each A s N  and x = y m o d A .  

Proof. By Theorems  2.6 and  3.1 F~  has a unique  extension to a ra t io  specifi- 
ca t ion  on 5F. By L e m m a  2.4 we have an equivalence class of a lgebra ic  specifi- 

cat ions  co r respond ing  to F~.  By the r equ i rement  that  ~ P~(x, y ) =  1 we have a 
X 

uniquely  defined a lgebra ic  specif icat ion on ~ co r respond ing  to F~  which 
coincides for c ~ N  with that  or ig inal ly  given. W e  have cont inui ty  for P~(x, y) 
since only a finite number  of e l ementa ry  opera t ions  are  needed  to compu te  it 
f rom the given values. By L e m m a  5.1 of  [7], the P~(x, y) are consistent.  The  
existence of the requi red  g follows f rom Theo re m 3.1 of [7]. 
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