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Summary. Solutions of systems of stochastic differential equations are shown 
to be stable in ~ut~P under 24 ~p perturbations of semimartingale differentials. 
Analogous results are obtained in 5 Pp when the solutions are not semi- 
martingales but are only cadlag, adapted processes. Also, the solutions are 
shown to be stable under almost sure perturbations. These results are 
contrasted with the lack of stability under n o n - ~  p perturbations, a result 
originally obtained by Wong and Zakai. 

1. Introduction 

Solutions of stochastic differential equations have long been assumed to be 
unstable under a small change in the (random) driving term. In 1965 Wong and 
Zakai [141 revealed instability by an a.s. approximation of a standard Brownian 
motion B by processes B n which had piecewise continuously differentiable paths. 
If one restricts the approximations of Brownian motion to local martingales, 
however, a consequence of the results presented here is that the solutions are 
stable. Consider equations of the form 

t 

(1.1) X ~ = X o +  Z ~F~X~_dZ~ 
i = l , m  0 

where the driving terms Z i are semimartingales. We show that if the driving 
terms of equations of the form (1.1) satisfy a technical uniformity condition and 
converge weak-locally in an ~ norm for semimartingales, then the solutions 
converge, also weak-locally in 2/f p, to the solutions of the limiting equation 
(weak-local convergence and the ~ P  norm are defined in Section 2). 

M. Emery [3,4] has extended to semimartingales the ~ v  norm ( l < p < c ~ )  
for martingales. In Section 2 we recall some of the definitions and two lemmas of 

* This research was supported in part by NSF Grant No. MCS77-00095 

0044-3719/78/0044/0337/$03.20 



338 P. Protter 

Emery. In Section 3 we consider equations of the form 

t 

(1.2) X~=X~o+ ~ ~F~X~_dZ~ '~ 
i = l , m  0 

t 

(1.3) Xt=Xo+ ~ SFiXs dZ~. 
i =  l , r a  0 

We show that if (1)X~ converges to X 0 in L p, (2)Z i'~ are semimartingales 
satisfying a technical uniformity condition, (3)Z" converges weak-locally in 3 f  p, 
then X" converges to X weak-locally in YfP. The main results are Theorem (3.3), 
Theorem(3.8) and Theorem(3.19). We show by example (3.12) that in general 
one cannot dispense with the uniformity condition (2)above. We also consider 
equations where X~ and X 0 in (1.2) and (1.3) are replaced with adapted, cadlag. 
processes (Jf)~>= o and (Jr)t>= o respectively, and we obtain analogous results. 

In Section4 we employ a technique due to Stricker [13] and the results of 
Section 3 to obtain almost sure convergence. This pertains particularly to the 
results of Wong and Zakai: if local martingales L " converge a.s. to a local 
martingale L in the sup norm (i.e., if lim ( / 2 -  L)* = 0 for each t), then for some 

n---~ oo 

subsequence, solutions of Equations (1.4) below converge a.s. in the sup norm to 
the solution of (1.5): 

t t 

(1.4) Xt=Xo+SFX ~_ d/2s+~GX ~_ ds, 
0 0 

t t 

(1.5) X~=Xo+yFXs_dL~+yGX~_ds. 
0 0 

The main result of Section 4 is Theorem (4.16). In Comment (4.17) we exhibit the 
relationship of this result to those of Wong and Zakai. 

I wish to thank M. Emery and P.A. Meyer for their careful reading of the manuscript and for 
their helpful suggestions. In particular Emery found a mistake in the original version which lead to 
example (3.12). I also wish to thank E. Bombieri for helpful discussions concerning example (3.12). 

2. Preliminaries 

We assume the reader is familiar with the theory of stochastic integration as set 
forth in Meyer [7]. (In view of [12], however, all of our results hold as well for 
the stochastic integrals of E.J. McShane [6], provided the appropriate processes 
are "KA t after small amendments".) Our notation will be that of Meyer [7]; we 
recall in this section the recent definitions and results of M. Emery [3, 4] which 
are not contained in [7]. 

We assume throughout that (f2, ~,, P) is a fixed underlying complete proba- 
bility space and that (~t) is a right-continuous filtration, where ~ contains all 
the ~ -nu l l  sets. 

An ~4 ~p norm (l__<p__< oo) has been proposed for semimartingales in [3,4]. 
Meyer [8] has generalized the norm and further developed the properties of ~4 ~ 



~t ~v Stability of Solutions of Stochastic Differential Equations 339 

A process A is a VF process if (At)t>=o is finite valued, adapted, and has right 
continuous paths which are of bounded variation on compact sets. For  a local 
martingale N and a VF process A, we denote 

co 

(2.1) jv(N,A)= [N,N]~2 +J_IdA~I 
LP 

where S tdA~l is the random variable of the total variation of the paths of A, 
o -  

including the point mass at 0. 

(2.2) Definition. Let X be a semimartingale. For  1 < p <  ~ ,  define the norm 

IIXII#p-- inf jp(N,A) 
X = N + A  

where the infimum is over all possible decompositions X = N + A. The space ~ v  
is the space of those X such that [IXll#p < ~ .  

We refer the reader to Meyer [8] for properties of the semimartingale ~ v  
norm. We observe that if X is a martingale then the usual ~ P  martingale norm 
is equal to the ~ v  semimartingale norm. If X ~ " ,  1 =<p = ~ ,  then X is a special 
semimartingale and so has a unique decomposition X = N + A ,  where A is a 
predictable VF process. Meyer shows that jv(N,A) gives a norm equivalent to 

57* j IdA~l L- IlXll~ep for l < p < o e .  This then implies that + also gives an 

equivalent norm (1 <p  < oe). 
If a process X has paths which are right continuous with left limits it is said 

to have cadlag, paths. For  X with cadlag, paths we denote 

(23) xL =suplXsl, x~ = h m X  s. 
s < t  s ~ t  

s > t  

so that t-~ Xt* is again cadlag. 

(2.4) Definition. Let X be an (adapted) cadlag, process. For  1 ~ p ~  ~ ,  let 

X* 

X is said to be in 5 pp if IIXIl~, < ~,  
One easily checks that the ~ v  norm is a stronger norm than the YP norm; 

i.e., j j . l l~ ,<% JJ" Jl~ for some universal constant cv, 1 < p <  ~ .  
The following elementary lemma is due to Emery [-4], and is also proved 

(and extended) in Meyer [8]. 

1 1 1 
(2.5) Lemma. Given l < p < ~ ,  l < q < o v ,  - + - = - ,  let H be predictable and X 

p q r 
be a semimartingale. Suppose the stochastic integral H. X exists. Then 

IIH Xll~e~ < IlHlls~p IlXlljeo, 

I]HXII~<G IlHll,z~ Ilxll~e~. 
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In the theory of stochastic integration and differential equations the cus- 
tomary way theorems hold is locally; that is, on stochastic intervals W0, T]I 
={(t,r 0_< t_< T(o)}, where T is a stopping time. One stops a process at a 
stopping time T in the following way: 

X r = X, lifo, Tif "3V XT lifT, oo[" 

Kazamaki [5], in defining weak martingales, pointed out the usefulness of 
stochastic intervals [[0, TV. We will call a process X weak-stopped at a stopping 
time T if (Nt)t>=o=(NT-)t>=o, where X T- is given by: 

(2.6) x T -  = Xt lt[O, TI[ + X T -  lifT, oop 

Note that X T- is continuous at T. If M is a local martingale then the weak- 
stopped process M T -  need not be a local martingale (unless T is a predictable 
stopping time). However, no such pathology occurs with semimartingales: if X 
is a semimartingale then so is the weak-stopped process X r - .  

(2.7) Definition. A result (R) is said to hold weak-locally for a cadlag, process X 
if there exists a sequence of stopping times (Tn)ne 1 increasing to oo a.s. such that 
(R) holds for the weak-stopped process X rn- for each n. 

We caution the reader that results that hold weak-locally need not hold 
locally, where locally is used in the customary sense; that is, the result (R) is said 
to hold locally if it holds for the stopped process X w~, rather than for X r~-. 

For simplicity of notation in stating results which hold weak-locally we 
introduce the notation (for 1 <p  = oo): 

(2.8) IlXl[gp(r)= IIX T-llse, 

IIXlls~p<r)--II N r -  Ils~,. 

The following definition and Lemma (2.11) are due to Emery [4]. 

(2.9) Definition. Let ~>0,  X be a semimartingale, and (T o . . . . .  Tk) be a finite 
sequence of increasing stopping times. This sequence is said to carve X into 
slices smaller than ~ if X e Y f  ~, X = X  Tk-, and 

(2.10) HA~T,,T,+,r (l__<i<k), 

where A~S,T~N=(x--xS)T- .  For a>0 ,  we say that X can be carved into slices 
smaller than a, and we write 

NeD(e) 

if there exists a finite sequence (T o . . . . .  Tk) of increasing stopping times with T o 
= 0 that carve X into slices smaller than a. 

(2.11) Lemma. Let X be a semimartingale. For each c~>0 there exists a stopping 
time T arbitrarily large such that X T- is bounded and in D(c O. 

Let F be an operator mapping adapted cadlag, processes into adapted 
cadlag, processes and let Z be a semimartingale. Consider the following stochas- 
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tic integral equation in which J is adapted and cadlag.: 

t 

(2.12) X t = J t + ~ F X  ~_ dZ~. 
o 

Existence and uniqueness of solutions of (2.12) have been demonstrated in 
[1,2, 10], and [11] under various additional hypotheses on F and/or J. Meyer 
has observed that the techniques used in the proofs essentially only use the fact 
that F~Lip(K), as defined below. The Lip(K) definition is taken from Emery 
[4]. 

(2.13) Defnition. Let K be a constant and F be an operator that maps adapted, 
cadlag, processes into adapted, cadlag, processes. F is said to be in Lip(K) if the 
following two conditions are satisfied" 

(2.14) for each stopping time T, x T - =  y r -  implies (FX) r -  =(FY) T-. 

(2.15) ( F X - F Y ) * < K ( X -  Y)* as processes. 

Note that if f(co, t, x) is left continuous in t for fixed co and x, is ~-measurable 
for fixed t and x, and is Lipschitz in the space variable, and if F is given by 
(FX)t(o)) =f(co, t, Xt(co)) +, then F~Lip(K). 

3. ~ v  Stability of Solutions 

Fix p with l < p < o o .  Suppose that for l<_i<m, (Z~'")n>=l and Z ~ are semi- 
martingales, all locally in 2/Y p. Let F~ satisfy the Lip(K) conditions. Let (Xn),>1 
and X be the unique solutions respectively of 

t 

(3.1) X~=X'~+ • yF~X~ dZ~'" 
i = l , m  0 

t 

(3.2) X t = X o +  Z IF~Xs-dZ~. 
i =  1 , m  0 

That such unique solutions exist with each F~ satisfying the Lip(K) conditions 
was implicitly established in [1, 2] and [11], but it is first explicitly formulated 
by M. Emery in [4]. 

(3.3) Theorem. Suppose for l <i<m,  (zi'"),>=l, Z i are semimartingales and that 
lim Z ~'"= Z ~ weak-locally in YFP, 1 <_i < m. Let F~ satisfy the Lip(K) conditions for 

n ~  oo 

l <-i<_m, and let (X"),>=I and X be given by (3.1) and (3.2) respectively. Let 
lim ]IX~o--Xo]IL,=O. Further, assume each F i is bounded. Then l i m X " = X  weak- 

n ~  oo n ~  oo 

locally in 2/g p. 

Proof We prove the lemma for m = l  and for an arbitrary fixed p, 1 < p <  oo. The 
proof for arbitrary m<oo is analogous. Let c = c ;  be a constant such that 
[l']]s~.< cl[.I]~ep. Let K be the Lipschitz constant for F, and choose c~ such that 
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O<c~<(1/cvK ). By Lemma (2.11) we know there exist stopping times (Tk)k>=l 
increasing to oe a.s. such that Z r -  eD(7) for each k. We fix k and implicitly stop 
(Zn)n_>l and Z at Tk; that is, we write Z instead of Z rk-.  Thus Z~D(cO, and we 
let 0=Ro____R 1 __<-.-__<Rt= T k be the stopping times such that 

liAr Zll~e~ = I I (Z-Z  R~- 1)R~-I1~ --< ~. 

Observe that IIX"-XIIs~,<c IIX-Xnll~ep and also 

IIX-X"ll~e,_- < IlXo--X"ol[e,+ Ilflloo I I / - / " l l~e ,  

+ g  IIg-X"l[s~ I lZl l~ .  

We conclude that X"--*X weak-locally in 2/f p if and only if X" ~ X weak-locally 
in 5 pp, when F is bounded. 

Since our results are interpreted weak-locally, by weak-stopping if necessary 
we can assume without loss of generality that (X-X")~2~P(R~), 1 <i<l, for all 
n>  1. Then 

(3.4) IIX-X"lls~p<R~)<cp llX~o-Xoll~+cv IIFII~ IlZ-Z"ll~rp 

+cpK IIX"-XIIso,~RI)IIA1 ZII~r~ 

< hl(n,p) + r [IXn-- Xlls~(R~) 

where O<r<cpKc~< 1, and lim hl(n,p)=O. Since r < l  and IIX"--XIIs~,<R~)< o% 
n ~ o o  

iterating the inequality (3.4) yields 

(3.5) [IS--S"lls,~(R~) <ha(n,p)(1/(1--r)). 

Suppose now we have shown that lim I I X - X " l [ s ~ , ) = 0 ,  for some i, 1 < i<  I. We 
t l ~ c o  

then have 

(3.6) IIX--X"IIs~,~R,+,) < IlX--X"IIs~R~) + IIX"R --XR, IIL~ 

+% IIFIIoo ]lz--znll~ep 

+cvK [IX-X"lls~,tR,+,)lIAr+ x Z IlJr~ 
_ X n <hi(n,p)+r IIX- IIs~,r 

We wish to show lira hi(n,p)=O. By assumption, lira IIX-X"lls~r and by 
n ~ c o  n ~ c o  

hypothesis it suffices to show that lira ]IX~,-X~,II~--O. For a process (Ytt),=>o 
n ~ o o  

and stopping time R, we denote 6YR=YI~--YR_, the jump at R. If Y is a 
semimartingale and Y=M + A is a decomposition, we observe that 

I~I<=I~MsI+I~A~I 
s 

< [M, M]]/2 + [. [dA,I 
o 

<=joo(M,A), a.s. 
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Thus a.s. ]6YR] < I[YII~e= for any stopping time R. Using the above observation 
and notation we have 

n X n i H X R i - - X R i l [ L p ~  II R l -  - - X R i  IlL p ~ -  H(FX"R,-)(~Z"R,--(FXR,-)c~Z~ ][L~ 

<= ][X"-Xlls~p(R,) +c p [[FI]~ 116Z"- 6Zll~p 

X . + % K  [I R,---XR~-IIZ' , I lJ l l~  
< IIX"-Xlls~,(R~)+2% IlFll~ II/"-Zlls~ 

+%K II2[1~ IrX ~-xl/s~(R,) 

which tends to 0 as n tends to oo. Therefore lim h~(n,p)=O, where h~(n,p) is given 
in (3.6). We conclude "~ | 

X n (3.7) lira I IX -  IlS~(R,)--O, l <i<_I. 

Since R z = T k we deduce that (3.7) is equivalent to 

lim IIX" - X ][5pp (T k) = 0 
n ~ o o  

and since F is bounded and T k tends to ~ a.s. as k tends to oQ, we have the 
result for weak-local JC p convergence, and Theorem (3.3) is proved. 

(3.8) Theorem. Let the hypotheses of Theorem(3.3) be satisfied, except that the 
restriction that F i be bounded ( l < i < m )  is removed. Then there exists a sub- 
sequence {nt} such that lim X "~ = X  weak-locally in 9 f  p. 

n l~  oo 

Proof Once again, we only give the proof for m = 1. The proof for arbitrary 
m <  oo is analogous. Let Fk=F/x  k. Then FkeLip(K) when F is. Define (X"(k)),>~ 
and X (k) as solutions respectively of 

t 

(3.9) x~(k)=X"o+ fFky"(k) dZ" 3 ~-s - -  -" s 
0 

t 
y ( k )  : X 0 _~ f l:;'k "v-(k) A N  ~ 1  .r ~ s" - ' t  

0 

For each choice of k define 

(3.10) Tk= in f{ t : [X t l>k  }Ak 

T"'k=inf{t:  ]XtJ >k}. 

Let k > 2 be fixed. For  notational simplicity, define 

y~ = X"(2k). 

By the uniqueness of the solution of (3.9) it follows that yn=xn(2k)-=xn(k+ 1) on 
~0, T"'k+l]]. By Theorem(3.3), for each k, lim X"(2k)=x (2k) weak-locally in 

n ~ c o  
~P .  But X n(2k) "r~(2 k) -~-  sep(rk+2)-I[yn-x[]~p(rk+2), which implies that lira Y" 
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= X  r~§ weak-locally in Jf'P. Hence there exist stopping times Qm increasing to 
oo a.s. such that l~0,e,~((Y~-X)r"+2-)* tends to 0 in probability as n tends to 
~ ,  for each fixed m. Since for any e > 0  we can choose m so large that 
P({Q" < T*+2})< e, we have that sup [gt"-X~[ 1~o ' rk+2~ tends to 0 in probability 

t 

as n tends to oo. 
Let e k tend to 0 as k tends to oo, and let ~ be such that 0 < 6 < 1. Then there 

exists an n z such that 

e({sup I (~" ' -  x,)r"+~- i > ,~}) < (~d2'). 
t 

This implies that P({T'"k+I< Tk})<~k/2 l, where T "''~+~ is as defined in (3.10). 
Let ~ = i n f T  "''k+ ~ and define Sk=min(~ ,  Tk). Then 

l 

(3.11) P{S~<r~)}<~ 

and furthermore X"~= Y"' and X = X  (2k) on [[0,Sa[[ -. Thus since lira Y" '=X (2k) 
n l ~ o o  

weak-locally in ;/:p(SX), also lira X ~ = X  weak-locally in ~P(Sk). Since T k tends 
n l ~  co 

to oo a.s. as k tends to 0% (3.11) implies that S k does also. This completes the 
proof of Theorem (3.8). 

We now give an example which shows that the hypotheses of Theorem (3,8) 
do not imply, in general, that the solutions converge weak-locally in ~:P. In 
Theorem(3.19) we impose an additional condition on the convergence of the 
semimartingales Z" to Z which then guarantees the weak-local JfP converge of 
X" to  X. 

(3.12) Example. We wish to exhibit semimartingales (Z") ,~  and Z such that 
lim Z ' =  Z weak-locally in YfP, some p > 1, but lira X " +  X weak-locally in YfP. 
n-~ oo ~ o9 

We will do this for p = 1. Here Y~Lip(K), and X" and X satisfy (3.1) and (3.2) 
respectively, with m=  1. Let f2= [0, i] ,  P be Lebesgue measure on [0, 1], and 
be the Lebesgue sets, for 0_<t_< oo. Let (p(t)=rain(t, 1) for t>0 .  Let f~>0,  and let 
A~(co)=qo(t)f,(co), r We let FELip(K) be given by F X = X ,  and for 
simplicity we choose X"o=Xo = 1. Thus X" satisfies 

t 

(3.13) X~=I+~X"~dA'~ 
0 

and hence X~'---exp(A~'). Suppose that lim E [ f J  = 0, but lim E [f,P] @ 0. Then for 
t t ~ o o  n ~ o o  

each t, lim E[eAV]@l. However, a priori there may exist stopping times T k 
n ~ o o  

tending to oo such that lira E[ea%] = 1. We will need the following lemma. 
t l ~ o D  

(3.14) Lemma. There exist nonnegative functions on [0, 1] such that 

1 

(3.15) lim yf,(co)dco=0, 
n ~ o o  0 
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(3.16) limsup ~s + 
t t ~  a 

for all p > 1, and all Lebesgue sets A such that P(A)> O. 

Let us for the moment assume the truth of Lemma(3.14). Let AT(co)= 
q)(t)f,(co) be such that the functions {f,},_>_l satisfy (3.15) and (3.16). Let T be 
any stopping time (which in this framework is merely a nonnegative random 
variable) which is not a.s. equal to 0. Then there exists a constant ( <  1 such that 
if A =  {T>(},  then P(A) -= t/ > 0. We then have, for p >  1, 

(3.17) EEe~I_>_E/(A~)V] 

> ~[1~ ~(T)"(L)q 

> ~v E[1A(L)p]. 

The inequalities (3.17) shows that limsupE[eA~]=o% by property (3.16). But 
n ~ x 3  

property (3.15) shows that lira []A~l[~e~ =0, and so we conclude that lim A"=0  in 
n ~ o o  / l ~  or3 

J(~, but X ~ as given in (3.13) does not converge to 1 weak-locally in ~,~. 

Proof of Lemma (3.14). Let e~ =(1/log(m+ 1)), for m~lN. For each m; k = 1, 2,.. . ,  
m; and toE[0, 1], define 

fm'k(CO)={oSm otherwiseif k-1/m<co<k/m 

Put the fm, k into a sequence: fl,o, f l , t ,  f2,o, .... Then E[f,,,k ] =e,, which implies 
l imsupE[f~,k]=0.  Now define, relative to a given Lebesgue set A with P(A) 

m ~ c o  

=t />0 ,  

A,,,k-=- A ~ ] k -  1/m, k/m[. 

For each m there exists at least one k=k(m) such that P(Am, k(m))>Um. Taking 
p > 1 we have 

E[1A ( f,,,k(m)) p] =(m s,~)P P( A,,,k(m)) 
> mp i (~m)v ~l 

and limsup rap-1 ~m p ~/= oo since ~,~ =(1~log(m+ 1)). This completes the proof of 
r t t ~  oo 

Lemma (3.14). 

(3.18) Definition. A family of semimartingales {MP}~B is said to be uniformly in 
D(~) if there exist increasing stopping times {T }i~, a stopping time T with 
T i<  Tfor  all i, and a constant C= C(~), such that for all/~eB: (1) (M~) r -  =MP; 
(2) NM~Hse~__< C; and (3) A~T, r ~ M ~ l l ~ = < ~  for each ieN. 

(3.19) Theorem. Suppose for l <i<_m, i,, ( Z ) , ~ 1  are weak-locally uniformly in 
D(e) with c~<(1/CpK). Let F i satisfy the Lip(K)conditions, and let (X"),>_I and X 
be given by (3.1) and (3.2). Suppose further that l i m Z ~ = Z  weak-locally in JC'P 
(p>l) .  Then l i m X ~ = X  weak-locally in JfP. ,~oo 

n ~  o9  
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Proof By weak-stopping at T for a large stopping time T, we can assume 
without loss of generality that :"(1) (Z~"),>= 1 are uniformly in D(e), (2) lim Z ' =  Z 

n-~oo 

in Wp, (3) IIFX[I:= < C1, for some constant C 1. We only give the proof for m 
----1. 

As always, [IX" - X l[:p < Cp IIX" - X [Ixep. In the above situation we also have 

IIX"-Xll~e~_- < IlXo - X"ollL, + IIFX l[:~ I IZ-  Z"ll~e, 

+ K t I X -  X"ll~. iIZ"]l~e~ 

<= [IXo- X"ollL, + C1 [IZ- Z"llje, + K C(~) I[X- X"tl:, 

and so we conclude that lim X" = X weak-locally in Jt ap if and only if l i m X " = X  
n--+ oo 

weak-locally in 5 pP, under the assumptions of Theorem(3.19). Since []FXI[:~<= C1 
and ][Z']lae=-< C independently of n, the rest of the proof is almost exactly the 
same as the proof of Theorem (3.3), so we omit it. 

The proofs of Theorem (3.3) and Theorem (3.19) carry over exactly (except for 
obvious modifications) to include what has become known as "the equations of 
C. Dol6ans-Dade'. We state here, without proof, the analogue of Theorem (3.3). 
The interested reader will easily do the same for the analogue of Theorem(3.19). 

(3.20) Theorem. Let (J"),~ 1 and J be adapted cadlag, processes. For 1 <_ i<_ m let 
i , n  Z i (Z)n>=l, be semimartingales such that l i m Z i " = Z  i weak-locally in 9 f  p, for 

n ~  oo 

1 <p < ~ .  Let (X"),>=I, X be respectively the unique solutions of (3.21) and (3.22) 
below: 

t 

n n N i t  i n (3.21) X t = J ; +  ~, ~F~ s dZ2 
i =  1 , m  0 

t 

(3.22) X t = S, + E ~ F~ X~_ dZ's 
i ~ l , m  0 

where F/ELip(K) and is bounded 1 < i <_ m. Assume either 

(a) (J'),~ l, J are semimartingales and lira J"=J  weak-locally in ~P;  or 
n ~ c o  

(b) (J'),>= 1, J are cadlag., adapted processes and lim J" =J weak-locally in 5 Pp. 
n ~ c~3 

I f  (a) holds then l i m X " = X  weak-locally in ~fv; if (b) holds then l i m X ' = X  
n ~  oo n---~ o3 

weak-locally in 5r 

We remark that the results of this s.ection and also those of Section 4 hold 
true for systems as well. If X =(X ~ . . . . .  X k) is a vector of semimartingales, define 

liXll~, = Z lIX~ll~p 
i = l , k  

and one can define IIX[l:. analogously. If one then has a system of equations 
of the form: 
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t 

i =  l , m  0 

for 1 <j<__q, the analogous theorems to Theorems(3.3), (3.19) and (4.16) can be 
proved in exactly the same fashion. 

�9 4. Almost Sure Stability of  Solutions 

In Section 3 we saw that if the semimartingale differentials converge in an JfP 
norm then the solutions converge along a subsequence in an YfP norm. One 
might ask if one can get similar stability results if one has only almost sure 
convergence of tile differentials. It was almost sure convergence that Wong and 
Zakai considered in [14] when they revealed a lack of stability. In this section 
we show that one does have almost sure stability, provided the semimartingales 
converge a.s. in an appropriate fashion. Our proof relies on an idea due to 
Stricker [13], the importance of which was emphasized by Meyer [9]. By a 
change to an equivalent probability we obtain ~ convergence. We then invoke 
Theorem(3.8) and get ~ 1  and hence a.s. convergence for a subsequence of the 
solutions. Since the probabilities are equivalent, the solutions must also con- 
verge a.s. for the original probability law. Let Y be a semimartingale and let Y 
= N + A be any decomposition of Y, where N is a local martingale and A is an 
adapted process whose paths are right continuous and of bounded variation on 

t 

compact sets. Let S [dA, I denote the random variable giving the total variation of 
0 -  

t h e  path up to time t. Let N*  be as defined in (2.3). For any stopping time T, 
define 

T 

(4.1) VT(N,A)=N* +S[dAs[. 
0 -  

W e  now prove a temma that is an adaptation of Stricker's theorem ([13] or 
[9]). 
(4.2) Lemma.  Let  i,. Z i (Z ), > 1, be semimartingales (1 < i < m), and let 

(4.3) Z i - z i , " = N i , ' + A i , " ( P )  

be some decomposition. Let T k be stopping times increasing to oo a.s. such that 

(4.4) ' i,, i , , _  l lmvrk(N ,A  ) - 0  a.s. ( l < i < m )  
n+oo 

for each k. Then for each k there exists a subsequence {n~} and a probability O k 
equivalent to P such that under Qk 

lim [IZ . . . . .  Z'[lae,(rk)= O. 
n l ~  oo 

Proof We point out that (4.4) need not hold for all decompositions; we merely 
require it to hold for some sequence of decompositions. We give the proof here for m 
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= 1. An obvious modification gives the proof for arbitrary m < oe. We separate the 
proof into three steps. 

Step 1. We construct a probability R equivalent to P such that for each n, Y" = Z 
- Z" is special under R. We let Y~ = M n + B ~ be its canonical decomposition, and we 
show that [Y", Y"], [M",M"] are in LI(dR). 

To establish step 1 fix k and without loss of generality assume (Z"),__> 1 and Z are 
oo 

implicitly stopped at T k. Then lim voo(N", A") = 0  a.s. Thus ~ IAA'~[ < ~ [dA~l and so 
lim ~(AA~)2=0. Let ,400 s o- 

n ~ o o  s 

(4.5) Gl=sup{vo~(N",A")2 + ~ (AA~)Z} 
n S 

G 2 = 1/(1 + G 1) 

G = G2/E(GZ). 

Define the equivalent probability R by 

(4.6) dR = GdP. 

Then ER{(N"*)2}<oc and so E{[N",N"]~}<oe for all n. Since [ Z - Z " , Z  
-Z"]~ < [N",N"]~ + ~ (AA~) 2, we have 

ER{[Y", Y"]oo} <0% 

where Y " = Z - Z " .  Thus Y" is an R-special semimartingale. Let 

(4.7) Y"=M"+B" 

be the canonical decomposition. For  any predictable stopping time S and all n, 
since Y" is special, ER{Au . Then Jensen's inequality implies 
E R {(AB}) z } _<_ E R {(A Ys")2 }. Since B" is predictable a countable number of predictable 
stopping times can be found which exhaust its jumps. Thus 

n n < n yn ER {[B ,B ]~}=E {[Y , ]~} < co. 

Since [M",M"] < 2([Y", Y"] + [B",B"~), also [M M"] ~ eL1 (dR). 

Step 2. We show that ~ IdB"~l tends to 0 in L~(dR), where B" is as defined by (4.7), and 
O -  

R is as given in (4.6). 
By Girsanov's theorem [-7, p. 377] we know one decomposition of the 

semimartingale Y" relative to R is 

(4.8) t l d[N,, ' G]s ) 
where Gt=Ev[G[o~], and N" and A" are as given in (4.3). Rewrite (4.8) as 

(4.9) y ,  = ~r, +/~,. 
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Then B ~ is the dual predictable projection of /~n, and if we show that lim 
n ~ c o  

[d/~[}=0, then also l i m E e t  ~ [dB~[}=0 (cf. [7, p. 257]). We know lim 
n ~ c o  

, ~  t o  t 1 
IDA'S] =0  by construction of R. Also ~ T d [ N  ~, G] s tends to 0 in LI(dR) by 

0 0 s  

an application of the Kunita-Watanabe inequality and the construction of G. 

Step 3. We construct a probability Q equivalent to R such that Y" is special for Q 
and if Y~ =L"+  C" is its canonical decomposition, then L"e~Vt ~ Ilg"lljel tends to 0 
(under Q), and the total variation of C" tends to 0 under Q. 

In step 2 we saw that ~ [dB"sl tends to 0 in L~(dR). Let {n~} be a subsequence such 
0 -  

co 

that ~ ]dB"~'[ tends to 0 a.s. Let 
0 -  

c o  

D 1 =sup 5 ldBZ'l, 
nl O -  

D 2 = 1/(1 +D1), 

D =D2/ER(D2). 

Define the equivalent probability Q by: 

dQ = D dR. 

By Girsanov's theorem the canonical decomposition for yn under Q is 

(4.10) + 
\ O -  s -  O -  s -  / 

=L] ~ + C~" 

where M n and B" are given in (4.7), and D t = E R {D[~}. 
We wish to show lim 1[ Y"'[I~I =0, under Q. As Meyer [8] has observed, it is 

equivalent to show that lim E {vco (L% Cng} = 0, since Y"~ = L "~ + C "~ is the canonical 
n l ~ c o  

decomposition for each n z. 

{J } We first show that l ifncoE e IdC"?l =0. Since IdB"21<DI~LI(dQ) and 
n O - -  

co co 

lim ~ [dB"fl[ =0  a.s., we have that ~ [dB"fl[ tends to 0 in LI(dQ). On the other hand, 
n z ~  co 0 - 0 - -  

D~_ [d(M%D)~I} 
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But (M"', D) is the dual predictable projection of [M"', D] and therefore 

{: } (4.12) ER{~ld(M%D)sl}<ER Id[Mn',D]sl 

and by Fefferman's inequality 

{J } (4.13) E R Id[M%D]sl <cg,{(M~) } I I D I I ~  

Combining (4.11)~ (4.12) and (4.13) yields 

(4.14) Ee{,D--~-,d(Mn',D)sl}<CER{Vo~(Nn',An')+ildB"~'I } 

where C is a constant. By (4.4) and the construction of R we know that lim 

ER{v~(Nn~,Anz)}=O, andwesawinstep2thatJimER{o~_[dB:,}=O.Sotheinequallty 

1 } and thus limEQt,ldC~'[}=O. (4.14) implies that lim E e t ~ D_~ [d ( M  n', D)~ [ = 0, ~o 

We next show lim EQ {(L"9* } =0. Observe that 

The second term on the right of(4.15) tends to 0 by (4.14). As for the first term on the 
right, 

EQ{(Mn9 *} = ~ {D(M~ *} 

< I]DI[L~ ER {(M"') *} 

{ <IIDIIL~ER v~(g"',An')+ dB~' 
o -  

which we have seen tends to 0 as n z tends to oo. This completes the proof of 
Lemma (4.2). 

(4.16) Theorem. Let (Z")n>_l, Z be semimartingales. Let Z - Z ' = N n + A  ~ be 
decompositions such that the/-e exists a sequence of stopping times ( Tk)k >= 1 increasing 
to oo a.s. and lim Yr,(N", A')=  0 a.s. Let (d")n>__ 1, d be cadlag, adapted processes such 

n ~  oo 

that l im((J"-J )*)  r~- =0, for each k. Let FeLip(K) and (X"),>=I, X be solutions 
n ~  o9 
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respectively of 

t 

(4.17) XT=J~+~FX~_ dZ"~, 
0 

t 

(4.18) X t = J t + y F X s _  dZ s. 
0 

Then there exists a subsequence {nt} such that lira ((X "~ - X)*) rk- = 0 a.s.,for each k. 
n i ~  oo 

Proof. We fix a k. By changing the choice ofG 1 in (4.5) in the proof of Lemma (4.2) to 

G 1 = sup {(J" - J ) *  + v~ (N", A") 2 + ~  (AA~) 2 } 
s 

we can conclude that there exists a subsequence {nz} and a probability Qk 
equivalent to P such that lira IrJ "'-Jl[s~l = 0  and lira HZ "'-Z[l~e~ =0, under Qk. 

n l ~  c~ nl--+ oo 

One can prove an analogous theorem to Theorem (3.8) for equations of the form 
given in (4.17) and (4.18), rather than (3.1) and (3.2) respectively. One then has the 
conclusion that there is a subsequence of {nl} such that lira X " =  X weak-locally in 
5p l  where the convergence is along the subsequence. Hence there exists yet a 
further subsequence along which ( (X"-X)*)  r~- tends to 0 a . s .  (Qk).  Since Qk and P 
are equivalent, the convergence is also a.s. (P). This completes the proof. 

(4.19) Comment. One might hope to circumvent the instability of Wong and Zakai 
by approximating Brownian motion with VF local martingales and then use the 
results of Theorems (3.3), (3.19), or (4.16). Unfortunately one cannot do so, as we 
show here. 

Suppose the filtration (~)t_>0 is large enough to admit a standard Brownian 
motion B and a sequence (M"),__> ~ of VF local martingales. Then for a stopping time 
T a n d  l < p <  oe 

[IB - M "  ][ ,g 'P(T)  = [[ [ -B  - -  M", B - M"I 1/2 H A T - -  IILP 

= ][([B, BIT + [M", M"]T_) i/2 I1~ 

since B and M" are orthogonal for each n. Since [B, B]T = T, the sequence (M~)~ ::_ 1 
cannot approximate B in ~r 

By using Lemma (4.2) and Girsanov's theorem one can even show that there 
cannot exist a sequence of VF local martingales (M"),_>_ 1 such that lira (B - M n ) ~  = 0 

a.s., where T is any stopping time not equal to 0 a.s. 
The preceding argument shows more generally that any semimartingale X with 

a non-zero continuous martingale part cannot be approximated in ~ P  by VF 
semimartingales. Indeed, X cannot even be approximated almost surely if the 
convergence is required to be of the form described in Lemma(4.2). 
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