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Summary. Let L be a continuous additive functional with support  C of a 
Hunt  process X = {X t; t > 0}. Let S = (S t;t > 0} be the inverse of L and put Yt 
= X s .  For  each time of discontinuity u of S, let Z ,  be the corresponding 
excursion of X outside of C. The conditional structure of the excursion 
process {Z,; u>0}  given the paths of Y={Y~; t>0}  is studied. It is shown 
that conditionally, given Y, the excursion process is a Poisson random 
measure. 

1. Introduction 

Consider a Hunt  process X = (t2, ~/ ,  ~fft, Xt, ~,, px) with statc space (E, ~) where 
E is a Borel subset of a compact  space and A is a point not in E. Let L 
= {L~; t>0}  be a continuous additive functional (CAF) of X so that t~Lt(co ) is 
continuous and nondecreasing for all o)~f2. Let C denote the support of L and S 
={St; t>0}  denote the inverse of L. If we put Yt=Xst, then Y={Y~; t>0}  is a 
strong Markov  process and is roughly speaking the restriction of X to the set C. 

Let J(co) be the closure of the set {t:Xt(co)sC }. If  I(co) is a contiguous 
interval of J(co) = (u, u + h), the mapping 

co)=fX~+,(a)) if 0=<s<h, Z(s, 
if s>h 

is called the excursion of X corresponding to I(co). Each contiguous interval 
corresponds to a time of discontinuity of S. If t is a jump time of S(oo) we will 
write Z~(co) for the excursion of X corresponding to the interval I(co) 
-(St_(co),St(co)); that is, Zt(s, co)=Xst_+s(co ) for O<__s<S~(o))--St_(co ) and 
Z,(s, co)=A for s>S,(co)-S,_(co). If  t is not a jump time of S, then we put Z~(c0) 
= [ A ]  where [A] is the constant mapping from IR+ into Ew(A} "-. C having the 
value A; ( (Eu{A}) \  C={xeEw{A}:  x(~C}). 
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The excursion process Z={Z t ;  t>0}  takes values in W, the collection of 
right continuous mappings from [0, Go) into Ew{A} that are absorbed at A. We 
will denote the a-algebra on W induced by the coordinate mappings by 

Let g be the random counting measure on [0, oe) x W induced by the times 
of discontinuity of S and the corresponding excursions. # is called the excursion 
counting measure induced by L. If C = {a}, then /~ is related to the excursion 
point process defined by It6 [9]. He showed that # is a Poisson random measure 
in this case. For arbitrary C, g is no longer Poisson because the excursions are 
no longer independent. 

The structure of the process of excursions from a general Borel set B not 
necessarily the support of a CAF has been studied recently by Getoor  and Sharpe 
[6, 7], Gzyl [8], and Maisonneuve [11]. In [11] Maisonneuve also considers the 
excursion process as defined here and obtains L6vy system type results for it. 
Our results differ from these in that we will study the conditional structure of 
the excursion process given the paths of I1; more precisely, given oU which is the 
completion of a(Y~; t>0)  with respect to the family of measures {P~: v is a finite 
measure}. (a(.) denotes the a-algebra generated by (.).) The results have appli- 
cations to the boundary problem of Markov processes; in particular to the 
problem of determining the class of all possible Hunt processes whose stopped 
process at the hitting time of a fixed set is a given one. They also have 
applications to the study of a Hunt process in the neighborhood of a fixed set. 

In the next section we state the problem more precisely and show that there 
exists a regular version P~o of P(.  [ • )  on a(Yt, S t, Zt; t>0).  Further, the excur- 
sions are conditionally independent given 2C and, if T is a time of discontinuity 
of S, then the conditional distribution of the excursion Z r given 2C depends 
only on Yr- and Yr. 

In Section 3 we study the conditional structure of the excursion counting 
measure g given 5((. We show that # is an additive random measure with respect 
to Poe; that is, #(A1) . . . . .  #(A,) are conditionally independent random variables 
given X whenever Aa, ..., A n are disjoint measurable subsets of [0, oo)x W. 
Further, # = y + /~  where #Y and #a are independent additive random measures 
with respect to P~. In addition, #d is a Poisson random measure. 

We then obtain results concerning # in the case in which, roughly, excursions 
start and end at only countably many points of C. As an example of the type of 
results we are interested in, suppose the support set of L consists of two points a 
and b. In this case, with respect to P~, #Y is the additive random counting 
measure induced by those excursions {Zrj } for which Y r j - ~  Yrj and #d is the 
Poisson random measure induced by excursions {ZT~ } for which Y r j - =  Yrj. 
Further, #d= #a + #b where #a and #b are independent Poisson random measures 
with respect to P~o. For i=a, b, the mean measure m~ of #i is such that m~([0, t] 
xB)=lAt(co)Ni(B) for B ~ K  and t > 0  where /~= {/~t; t>0}  is the local time of Y 
at the point i and N ~ is a possibly a-finite measure on (W, ~/U). 

Finally, I would like to thank the referee for his helpful remarks. 

2. The Conditional Distribution of the Excursion Process 

In this section we will show the existence of a conditional distribution for the 
excursion process given the paths of Y We will first introduce some notation. 
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Let IR+=[0,  oe), R + = [ 0 ,  +oe ]  and .~+ (respectively, ~+),  be the Borel 
subsets of 1R+ (respectively 1R+). Let (F, ~ )  be a measurable space. I f f  is a real 
valued measurable function on (F, Y)  we will write f ~ g .  If further, f is bounded 
(respectively positive), we will write feb~-f (respectively f o p S ) .  For each x~F, 
let ex denote the Dirac measure that puts its unit mass at x. By a transition 
kernel N from (F, ~ )  into a measurable space (G, f#) is meant a mapping N: F 
x f# ~IR+ such that the mapping A ~N(x ,  A) is a a-finite measure on ff for each 

fixed xeF and that x---rN(x, A) is in p~- for each fixed A~f#. 
Let E be a Borel subset of a compact space/~ and # be the Borel subsets of 

E. Let A~E be a point not in E. Put E~=Eu{A}  and write #~ for the o--algebra 
in Ea generated by #. We will write N* (respectively N~), for the o--algebra of 
universally measurable sets over (E, g) (respectively (EA, Na)). 

Let X = (f2, J~, ~ t ,  Xt, gt, W) be a Hunt process with state space (E, g) and 
infinite lifetime. Let s = {/'t; t > 0} be a CAF of X so that t--, Lt(co ) is continuous 
and nondecreasing for all coef2. Let C~#* denote the support of L; that is, if R 
= i n f { t : L t > 0  }, then C = { x : P ~ ( R = 0 ) = I } .  Let S t= in f{u :L ,> t} ,  Yt=Xs~, 0 t 
=Os~, and M~=_Ms. Then Y=(f2, J//, ~ t ,  Yt, 0t, W) is a strong Markov process 
taking values in the state space (C,~)  where c g = C ~ N * ;  (cf. [2], ChapterV, 
(2.11)). Y is roughly speaking the X process restricted to the set C. We will put 
C~= Cu{A} and c g a = c ~ C ~ .  It is not hard to show that the following result 
holds. 

(2.1) Proposition. (Y, S)=(O,_,/~, ~ t ,  (Y t, St), Ot, PY) is a Markov additive process 
(MAP) with state space (C • cg x.~+) in the sense of CinIar [3]; that is, 

a) (0, -~, J~ ,  Y. Or, pr) is a Markov process on (C, cg); 
b) the mapping t~St(co ) is right continuous, has left-hand limits, and satisfies 

So(u))=O, St(co)=S;(co ) for all t=>~=inf{u: Y~=A} W-almost surely for each 
yeC," 

c) for each telR+, S t is .~t-measurable; 
d) for each teN+, AeCg, B e ~ + ,  the mapping y~PY{Y~A ,  SteB } of C into 

[0, 1] is in c~ ; 
e) for each t, seN+, St+~=St+S~oO t almost surely PY, yeC; 
f) for all t, se[O, ov), y~C~,A~Cg~, and B ~ +  

W(Y~ o Ore & S, o OteB l /#t)= pr~(Y~eA, S~B). 

We will assume throughout this paper that S is quasi-left-continuous: that is, 
l i m S r = S  r almost surely PY, yeC a for any increasing sequence of {J t}-  

n ~ o o  

stopping times {T,} so that lira T, = T. This assumption implies that the Markov 
n ~ o o  

process Y is also quasi-left-continuous. It follows from Theorem (2.23) and 
Corollary (4.19) of ~inlar [3] that S has this property in the important special 
case in which Y is a regular pure jump process. 

We will now turn our attention to the excursions of X outside of C. If t is a 
jump time of S(co), let 

co)=fXs,_+~(o)) for O<s<St(o9)-S t_(co), zds, 
for s>S~(co)-st_ (co); 
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that is, Zt(co)={Zt(s, co);s>O } is the excursion of X corresponding to the 
interval (S t_ (co), St(co)). If t is not a jump time of S(co) put Zt(co ) = [A]. 

t 

Fix F ~ K  and put S r = ~ 1 r o Z ,  dSu; (where lr(x ) = 1 if x e F  and 0 otherwise). 
o 

s r =  S r. { t ,  t>0} is a right continuous nondecreasing process and jumps at 
those times of discontinuity of S for which the corresponding excursion is in F; 
the height of the jump is the same as that of S. We have the following result: 

(2.2) Proposition. (0, J l , / g t ,  Yt, ( Sr, S~), Ot, W) is a M A P  with state space (C 

St+ s-S~ - S  s o 0 t almost surely Proof Note that ZsoOt=Zs+ r Hence, by (2.1e) r r _  r 
PY, ysC.  Since S t is a {~ATt}-stopping time, the result now follows from Pro- 
position (2.1) and the strong Markov property for X. 

We now give some more notations. Let ~/~t~ = a(Ys; s<t), &o~ = o-(Ys, S~; s<t), 
Sf ; s<=t), s<=St), s<=t), V 

t 

&oo= ~/&oo, &OO(F ) = V &O~ ~ o =  ~ / ~ o  and fr ~/f~o. Let ~ (respec- 
t t t t 

tively &O, &or, ~, y ) ,  denote the completion of S ~ (respectively &oo, &OO(F), f~o, 
~~ respect to the family of measures ~ = { W :  v is a finite measure on 
(E~, s Let ~ (respectively &or, &or, ~t, ~ ) ,  denote the completion of JC~t ~ 
(respectively &or ~ &off(F), ~o, ~to), in ~ (respectively &O, &or, ~, y ) ,  with respect 
to ~ .  

By Proposition (2.20) of Cinlar [3] there exists a regular version Pf  of PY(. [ 
S )  on &or which is further independent of y~ Cz. By (2.22) and (2.23) of ~inlar 
[-3], (~2, &or, &ort, S ,  Pf) is a process with independent increments so that 

(2.3) S t = A t + S { + S  ~ 

where a(S{; t > 0) and ~(S~; t > 0) are conditionally independent given Jr" with 
respect to W, yEC A. Further, the following hold: 

a) "A = {A t; t > 0} is an additive functional of Y; 
b) S f={S{ ;  t>O) is a pure jump process; 

(Y, S f) is a quasi-left-continuous MAP; there exists a sequence of (~f~t)-stopping 
times which exhausts the jumps of sT, . 

c) Sd={S~; t>0} is a pure jump process; 

(Y,, S d) is a MAP; S d is a stochastically continuous process with independent 
increments over (s &or, pf). 

(2.4) Lemma. There exists a decomposition (2.3) such that A is a CAF. 

Proof Consider any decomposition (2.3) and put 

A t = A  t - Z ( A s - A ~ _ ) ,  S~ f r , ' =St + A t - A  t. 
s < t  

Then S = A ' + S ' f + S d ;  A is a CAF of Y; and S 'I  has properties (2.3)b. [] 

By the last result, we need only to consider times of discontinuity of S due to 
S f and S e. We will now establish the existence of conditional probability laws 
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for the individual excursions. To this end let Vtr=~ l r o Z ,  dS ~ and Uf 
t 0 

= ~ 1 r o Z, dSau. We will first consider the process v r=  ~(Vf't , t>0}. 
o 

(2.5) Proposition. There exist transition probability kernels F and K from 
2 2 (CA, cga) into (IR+ ~+) and from (C 2 x lR+, c~2 x ~+)  into (W, ~tU) respectively, 

such that F(y, y, .)= s o for y~ C A and for an arbitrary fixed jump time T of V r 

S K(YT_, s; r) ds) 
A 

for A ~ +  and y~C a. 

Proof It follows from Theorem (4.8) of Cinlar [31 that there exists a transition 
probability kernel F from 2 2 (Ca, c~) into (IR+, ~+)  with F(y, y, . )=% such that, if 
T is a jump time of S r then 

PY(ST--ST s A I ~ ) = F ( Y T _ ,  YT;A), Ae~+,  y~C A. 

By the definition of V r and Proposition (2.2), (Y,, V r) is a MAP with the same 
properties as (Y,, SI). Thus, there exists a transition probability kernel F r such 
that for any jump time T of V r 

Fr(YT-, YT; A)=W(VT r -- V r_ ~ A I ~ )  

=P'(ZT~F, SST--SST_ ~ A I X )  

< F(YT-, rr; A), A ~  +. 

Hence, by the Radon-Nikodym theorem and the special natures of (C, cg) and 
(1R+, N +)there exists a nonnegative measurable function (x, y, s )~K(x ,  y, s;F) 
on (C 2 x 1R+, c~J x ~+)  such that 

Fr(YT_, YT; A)=~ K(YT_, YT, S; F) F(YT_, Yr; ds). 
A 

W is the complement of an analytic set in a compact metric space; (cf. 
Maisonneuve [11]). Since F~W ~ is arbitrary we can further choose K so that the 
mapping F ~ K ( x , y , s ; F )  is a probability on (W,~K) for fixed x ,y~C a and 
sE1R+. [] 

We will now consider the process u r =  {Uf; t>O}. 

(2.6) Proposition. There exists a continuous additive functional B of Y and a 
transition probability kernel H from (CA, Cg A) into (~  + x W, ~ + x r such that 

E '[exp{- )~Uf} i~{ ' ]=exp{  - i  ~o(o,o~l(1-e-~)H(Y~;dzxF)(zA1)-xdBs} 

for y~C~, t>O and 2>0. 

Proof Since S a is an increasing process, Corollary (2.25) of ~inlar [3] yields 

E'[exp{-2S~}]3f f]=exp{-~(1-e-Z~)D~(dz)} ,  y~C A, 
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for any 2 > 0  where, for coco fixed, the measure 

B,(CO, A)= ~(z A 1) Dt(dz , co) 
A 

is finite; Bt(co, {0})=0; and where, if 

Bt(co)= Bt(co, N +), 

then B=(B3t>=o is an increasing CAF of Y. Since (Y,, U r) is a M AP of the same 
type as (Y,, Sd), the same result holds with U r,  D r, Btr(co, A) and B r replacing 
S~, D ,  B,(co, A) and B, respectively. Further, for fixed A e ~ + ,  {Br( ", A); t>0} is a 
CAF of Y 

By the definition of U r, Dr(A, co) is conditionally, given ~ ,  the expected 
number of jumps of S that take place before time t whose heights are in set A 
and whose corresponding excursions are in set F. Thus Dr(A, co)<D,(A, o)) for 
all A ~N +. Hence, Br(e), A) < Bt(co ) for t > 0. By the '"Radon-Nikodym''  theorem 
for CAF's (Benveniste and Jacod [1]) there exists a nonnegative measurable 
function y~H(y;  A x F) on (CA, ~A) such that 

t 

Sffco, A)= IU(g; A • r) dB,(co). 
0 

By the special natures of (~,.+, ~+ )  and (W, ~#/~), H can further be chosen so that 
for fixed Y~CA, D~H(y;  D) is a probability on (~+  x W,, ~ +  x r 

Let { Us} be the finite or countable collection of jump times of S. The proof of 
following result shows that the conditional distribution of the excursion Zvj 
given the process Y depends only on Yvj- and Yvj 

(2.7) Proposition. The random variables {Zvj } are conditionally independent 
given X. 

Proof Propositions (2.5), (2.6) and the proof of Theorem (2.2) of ~inlar [41 imply 
that there exists a continuous additive functional A of Y and a transition kernel 
(~ from (CA, cgA) into (C~ x ~ +  x W, (g~ x ~ +  x ~Y) such that for any f~p(CgA x(g~ 
x ~ +  x ~#2) and y~ C A 

E'[ ~ f (Ys - ,  Y~, S,-S~_, Z~)I(rs_ . r ,~s ._  .s~] 
s<t  

=EY ~dA, ~ dx, ds, dz) f(Y~,x,s ,z) .  
L 0  C x l R +  x 

Fix e > 0  and let z=inf{u:  S , - S , _  >e}. Since S is quasi-left-continuous by 
assumption, z is a totally inaccessible {dgt}-stopping time. Let M6pJt~_, f~p~,, 
and G~p~/r By the results of Weil [121 on conditioning on the strict past, for 
y~CA 

E y [M(G o 0~) fo Z~] 
= E y [M(fo  Z~) E r= [G11 

= EY[MEY[f o Z~Er~[G1 [ J//~_]] 

=Er[M ~ Q~(Y~_;dx, dz)f(z)EX[G33 
C A X W  
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where 

Q(x;Dx(~ '~176  D~% and FE~U.. 
Q~(x; D x V ) = ~  C~ x (e, ool • W ) '  

Let K~(x;B)=Q~(x;BxW). Note that P{Y~eBI~_}=K~(Y~_;B ). By the 
Radon-Nikodym theorem and the special nature of (C, cd), for fixed F e ~  there 

2 2 exists a nonnegative measurable function (x, y)~q~(x, y; F) on (CA, Cdj) such 
that 

Q~(x; B x C)= ~q~(x, y; F) g~(x; dy). 
B 

By the special nature of (W,, ~K) we can further choose q~ so that the mapping 
F~q~(x, 3:; F) is a probability on (W,, ~K) for fixed x, yeC a. Now 

EY [M(G o O~)f o Z~] 

=EY[M~ ~ q~(Y,_, y; dz) f(z) K(Y~_ ; dy) E'[G]] 
c w 

=E" [M ~ q~(r~_, r,; dz) f(z) E r" [G]] 
w 

=EY[M(GoO~) ~ q~(Y~_, Y:; dz) f (z)]. 
w 

Since ~ is generated by sets of the form M(GoO~), it follows that the con- 
ditional distribution of Z~ given ~ depends only on Y~_, Y~. Since for each jump 
time of S there exists e > 0 such that the jump time is of the form of ~ or one of 
its iterates, the result follows. 

We now come to the result concerning the existence of a conditional 
probability law for the excursion process given ~r 

(2.8) Theorem. There exists a regular version of PY(" n x )  on ~ which is further 
independent of y~ C A . 

Proof Let {T(j)} (respectively {Tf(j)}), be the finite or denumerable collection of 
jump times of S d (respectively S:). Put AS(j)=Sr(i)-Sr(j)_ and Z(J)=Zr(j)  
(respectively A S:(j) = St:o) - Sr:(j )_ and Z:(/) = Zr:(j)). 

Let N be the collection of all counting measures on (~2+ x W, -2 ~ +  x ~/U) that 
are finite on compact sets. N is metrizable and we write Jff for the Borel subsets 
of N. Let vz and v ~ be mappings from ((2, N) into (N, ~V') such that for gep(~2 
• ~ )  

g dr: = E g(r:(j), AS:(/), z:(j)) 
) 

and 

S g d~d= ?. g(r(/), AS(j), Z(j)); 
J 

that is, vY (respectively va), is the random counting measure induced by the times 
of discontinuity of S: (respectively Sa), and the corresponding magnitudes of the 
jumps and excursions. 
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Fix coe~2 and let K, F, H, and B be as in Propositions (2.5) and (2.6). By 
results concerning the construction of probabilities on (N, Jg') (cf. Jagers [10]), 
there exist probabilities P2 and/52 on (N, JV) such that for any gGp(~ 2 x ~#/) 

/ ~  [exp { - ~ g dm}] 

= I~ ~ exp{ -g ( r l ( J ,  co),s,z)}K(Yrfo)-(co), gr• 
TY (j, •) 

F(YTso)_ (co), YTI0)(co); ds) 
and 

/~2 [exp - ~ g dm}] 

=exp { -~ (1  - e  -g(t . . . .  l) H(yt(co); ds, dz)(s A 1) i dUt(co))}. 

Thus, there exists a probability on (f2, N) such that for F and A in Jff 

n~(.I~r, v%A) =/52 (r) P2(A). 

That Po, is a version of PY(.[J/f) on fr for all yGC~ follows from (2.3) and 
Propositions (2.5), (2.6), and (2.7). [] 

When deleting the co we will simply write P for the version of W(. 12//) in 
Theorem (2.8). 

3. The Excursion Counting Measure 

In this section we will study the structure of the excursion counting measure #. 
We will first give some definitions. 

Let (G, ~) be a measurable space and (~2, J//, P) be a probability space. The 
mapping v: ~ x f 2 ~ N +  is said to be a random measure on (G, ~)provided:  
a) A ~ v ( A ,  co) is a measure on (G, N) for fixed cosf2; and b) co~v(A, co) is in Jr 
for fixed AG#. v is said to be an additive random measure over (f2, ~ ,  P) if 
v(A1), ..., v(A~)are independent random variables whenever A 1 . . . . .  A, are dis- 
joint sets in ~q., An additive random measure v is said to be a Poisson random 
measure (PM) with mean measure n if for each A ~ #  with n(A)< 0% v(A) has a 
Poisson distribution with parameter n(A); (if n(A)--0% then v(A)= oo a.s.). An 
easy characterization of a PM is given by the following result whose proof will 
be omitted. 

(3.1) Lemma. A random measure v is a PM with a-finite mean measure n if and 
only if 

E[exp { - S f d v } ]  =exp { -S(1 - e- l )  dn} 

for all f Gp(~. 
Recall that {TO)} (respectively {TI(j)}), are the times of discontinuity of S a 

(respectively S I) and Z(j) (respectively ZI(j)), is the excursion correspondingto 
T(j) (respectively TI(j)). Let #~" and #6 be the random counting measures on (N+ 
x W, ~ +  x ~K) such that for any g~p(~+ x r 

g d# s = 2 g(Tl(J), Zr and ~ g d# ~ = ~ g(T(j), Z(j)). 
J J 
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Then # = y + # a  is the random counting measure induced by the times of 
discontinuity of S and the corresponding excursions. The next result follows 
from Theorem (2.8) and Lemma (3.1). 

(3.2) Theorem. The random measures #: and #a are independent additive random 
measures over (f2, ~, P~). Further, #a is a P M  with mean measure Mo~ such that for 
t >O and F e ~  

t o o  

Mo~([0, t] x F )=  ~ y H(Y~(co); dz x F)(z  A 1) -~ dBs(CO ). 
0 0 

Assume for the moment that Y is a regular pure jump process. By Corol- 
lary (4.8) of ~inlar [3] 

s ~ t  

Since t--,S~ is stochastically continuous over (Q, ~f, P~), the jump times of S a and 
Y do not coincide W-almost surely for y~ C. Hence, in this case, almost surely, 
#:  is the counting measure induced by the times of discontinuity of S and the 
corresponding excursions { Z@ for which Yvj- # Yv~; #a is the counting measure 
induced by the times of discontinuity of S and the corresponding excursions 
{ Z @  for which Yvj- = Yv~. 

We will now study #a more closely. Unless otherwise stated we will put S 
= S a throughout the remainder of the paper. Thus # =  #a. Let D be the support 
of the additive functional B. We will not assume that Y is a regular pure jump 
process. However, we will make the assumption that D is discrete. 

(3.3) Lemma. For each x~D there exists a possibly a-finite measure A ~ N~(A) 
on (W, ~ )  such that 

M.frO, t] xF)= ~, L~(~) NX(F), t >_O, F ~ ,  e;~f2, 
x ~ D  

( - -  g x �9 where U -  { ~, t > 0} is the local time at x for Y," that is, U is a CAF of Y with 

support {x} such that, if R=in f { t :  L~>0}, then E ' [ e - R ] = E  ' [ ~ e  t dI~[ for 

y e C ) .  
L0 A 

Proof Let Mt(F, co)=M,o([O,t]xF ) for F~#/" and coef2. Then F ~ M t ( F ,  co ) 
is a possibly a-finite measure on ~"'-. get A l = { w e W :  w(1)#A} and A, 

{ Then countable = w e W : w  4=A, w ~ - 1  .... 

collection of disjoint sets in ~/K so that W -  [A] = Q) A, and Mt(A,)< oo for t>0 .  
n 

Put M~(F)=Mt(Fc~A,) for F ~ K  and let M2=Mg(W).  Note that {M~(F); t>0} 
is a CAF of Y for each fixed F~CK. Since M~=M~(F)+M2(FC), by the "Radon- 
Nikodym" theorem for CAF's there exists a transition probability G, from 
(D, @) into (W, Yr so that 

M;'(F)- G.(rs, r) dM2=j F) 1D(rs) 
0 0 
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where N=DnCg. For each x~D, ~ I{~}(Y~) dM~' is a CAF of Y with support {x}; 
0 

hence it is a multiple of U. Therefore, there exist nonnegative constants % xsD,  
so that 

Mr(C, co)= Z c~ G,(x, r) L~(co), r e f ,  coe~. 
x~D 

Let _N(x, F~A , )  = cx G,(x, F). Put 

N~(r)= Z ~7(x, r n & ) .  
n 

Since Mt({[A]},co)=O, F--*N~(F) is a possibly a-finite measure on (W,~/K) 
satisfying the conditions of the Lemma. [] 

For each xED, let 5~'= ~ (S~-S,_) l{~}(Ys), {T~ ~} be the collection of jump 
s<t  

SX ,  Jr  times of { t, t>0},  Z j - Z r ; ,  and #~ be the random counting measure on 
( N + x W , ~ + x " W )  induced by {(Tjx, Zy)}; that is, for g e p ( ~ +  x~##), Sgd#~ 

T ~ = 2 g (  j ,  Z~). Since S,= 2 S~, P-almost surely, p =  2 #~ P-almost surely. 
j xeD xeD 

(3.4) Proposition. a ) /~ ,  xeD,  are independent PM's over (Q, if, P~o); tz~ has mean 
measure m~ where m~([0, t] x F) =L~(co) N~(F) for cosf2, FeCU ; 

b) Let ~x =i2r ~ and v~ be the random counting measure on (~,+ x W, ~+ x r 
induced by {(U~ x, ~j.)}. Then v x is a P M  over (Q, ~, P~,) with mean measure n'~ where 

n~([0, t] x r) = (t A e.(co)) UX(r); 

c) Given E~, v~ is independent of ~ for all PY, y~C. 
d) Given a(IYoo; xeD), {v~; x eD} are conditionally independent. 

Proof. Let f ~ p ( ~ +  x ~ ) .  For x~D 

E [exp { - ~ f d t~}]  = E [exp { - y '  f (T( j ) ,  Z(j)) l{~}(Yr~j))}] 
J 

= exp { - S (1 - e-  f(s, z)) dL~ NX(dz)} 

by Lemma(3.1), Theorem(3.2), and Lemma(3.3). a) now follows from 
Lemma (3.1). b) is proved in a similar fashion and c) and d) are immediate) 
from b). []  

Note that if Uoo = oo for all xeD, then v~, xeD, are independent PM's. 
We will now turn our attention to the measure N x, xeD. For each x~D, let 

hx(z)=PZ(Yo=X) for zeE. Put 

( 1  
1 ~  Pz(S o > t, -if 

K:[(z'du)=lho~(Z) Xtedu)hx(u) otherwise, hx(z) > 0, 
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Then {K~; t>0} is a semigroup. For v e E \  C, let KY(v, �9 ) be a regular version of 
the conditional distribution of the excursion Z 0 starting at time 0, given Y0 = Xso 
= y  for the measure W; that is, F~KY(v ,  F) is a probability on (W, 4-4/) for fixed 
w E ' . .  C and y~D; for fixed F~!g  ", (x, v)--, KX(v, F) is measurable with respect to 

x g* ; and 

(3.5) PV(Zo~FIYo)=KY~ r ~ .  

(3.6) Proposition. Let T=in f{ t :  S , - S , _ > c }  for fixed c>O. T is an {f~}- 
stopping time and U = S  T_ +c is a {~,}-stopping time. For F~lK and veE 

W(Zo~ Gu~rl ~ v ~ )=K~(X~ ,  r). 

Proof Let ~ ,  (respectively ~2) be the completion of a(T, Y,; u < T) (respectively 
a(Yr+,; U>0)), in JYd with respect to ~ Let ~F be the completion of a ( ~ l  ~2) 
in dg with respect to ~. The proof of (2, Chap. Iit, (4.20)) shows that j~ffoc~f 
and hence ~ .  The inclusion is strict since T~J~. Let 0 ~ u l < . . .  <u n and 
A~ . . . .  ,A,~Cd. There is Gab~,~ff so that GoO v is the indicator function of 
{Yr+,fiAi; i=1 .... , n}. Let R~bJ/[ v and f ~ b ~  By the strong Markov property 
for X and (3.5) 

E x [R {G( f  o Z0) } o ~ ]  = E ~' [RE x" [GK r~ f ) ] ]  

= E ~ [n(Go Or) K r~ (X v; f ) ]  

for x~E. Since N1 cd2v  functions of the form R(G o Or) generate Jr v v Jr', 

EX[f  o Zoo Ov]J] v v Js = Kr~(Xv; B). 

The result now follows. [] 

For wEW, w={w~; s=>0}, let 5(w)=inf{t>0:  wt=A}, and 6tw~=w~+ t for s, 
t>0 .  Put Vt(w)=w t. 

(3.7) Theorem. {Vt; t>0} is a Markov process over (W, ~ ,  N ~) with transition 
function {K~[, " t >= 0} for xsD. 

Pro@ For fixed c > 0  and xeD let T=inf{ t :  S t - S  t_ >c, Yt=x}. Let Z 
= {Z(s); s >0} denote the corresponding excursion Z T. By Proposition (3.4), for 
Bs~K and a measurable set A c E \  C. 

P(Z(c)~A, Z o AOc aB)=Nx(V~A,  Vo 

NX(~ > c) 

Letting B = W in the above expression we obtain 

Nx(V~A)  = NX(b > c) P(Z(c)cA). 

Hence, by Proposition (3.6) 

N~(V~A, V o O~eB)= ~ N~(V~edy) K~(y, B). 
A 

The result now follows by an induction argument. [] 
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