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Summary. Let L be a continuous additive functional with support C of a
Hunt process X ={X,; t=0}. Let S={S,; t =0} be the inverse of L and put ¥,
= Xj,. For each time of discontinuity u of S, let Z, be the corresponding
excursion of X outside of C. The conditional structure of the excursion
process {Z ;u=0} given the paths of Y={V;t=0} is studied. It is shown
that conditionally, given Y, the excursion process is a Poisson random
measure.

1. Introduction

Consider a Hunt process X =(Q, .#, %At, X,, 0,, P*) with statc space (E, &) where
E is a Borel subset of a compact space and 4 is a point not in E. Let L
={L,; t=0} be a continuous additive functional (CAF) of X so that t—L (w) is
continuous and nondecreasing for all weQ. Let C denote the support of L and §
={S,; t=0} denote the inverse of L. If we put Y,=Xg, then Y={Y;r=0} is a
strong Markov process and is roughly speaking the restriction of X to the set C.

Let J(w) be the closure of the set {t: X,(w)eC}. If I(w) is a contiguous
interval of J(w)=(u, u+ h), the mapping

X, () if 0Zs<h,

Z =
(5. ) {A it s>h

is called the excursion of X corresponding to I(w). Each contiguous interval
corresponds to a time of discontinuity of S. If 7 is a jump time of S(w) we will
write Z,(w) for the excursion of X corresponding to the interval I(w)
=(S,_(w), S(w)); that is, Z(s,w)=X, _,(w) for 0Zs<S(w)—S,_ (w) and
Z.(s,0)=A4 for szS(w)—S8,_ (o). If t is not a jump time of S, then we put Z,(w)
=[4] where [4] is the constant mapping from R | into Eu{4}~ C having the
value 4; (Eu{d})~ C={xcEu{d}: x¢C}).
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The excursion process Z={Z,;t=0} takes values in W, the collection of
right continuous mappings from [0, ov) into Eu{4} that are absorbed at A. We
will denote the g-algebra on W induced by the coordinate mappings by #.

Let p be the random counting measure on [0, co) x W induced by the times
of discontinuity of S and the corresponding excursions. y is called the excursion
counting measure induced by L. If C={a}, then u is related to the excursion
point process defined by 1t6 [9]. He showed that p is a Poisson random measure
in this case. For arbitrary C, y is no longer Poisson because the excursions are
no longer independent.

The structure of the process of excursions from a general Borel set B not
necessarily the support of a CAF has been studied recently by Getoor and Sharpe
[6, 7], Gzyl [8], and Maisonneuve [11]. In [11] Maisonneuve also considers the
excursion process as defined here and obtains Lévy system type results for it.
Our results differ from these in that we will study the conditional structure of
the excursion process given the paths of ¥; more precisely, given " which is the
completion of o(Y,; t=0) with respect to the family of measures {P”: v is a finite
measure}. (o(+) denotes the g-algebra generated by (+).) The results have appli-
cations to the boundary problem of Markov processes; in particular to the
problem of determining the class of all possible Hunt processes whose stopped
process at the hitting time of a fixed set is a given one. They also have
applications to the study of a Hunt process in the neighborhood of a fixed set.

In the next section we state the problem more precisely and show that there
exists a regular version P, of P(+|4") on o(Y, S,, Z,; t 20). Further, the excur-
sions are conditionally independent given " and, if T is a time of discontinuity
of S, then the conditional distribution of the excursion Z, given # depends
only on Y;_ and Y.

In Section 3 we study the conditional structure of the excursion counting
measure u given 4. We show that y is an additive random measure with respect
to P,; that is, u(4,), ..., u(4,) are conditionally independent random variables
given 2 whenever A,, ..., 4, are disjoint measurable subsets of [0, co) x W.
Further, p=p’ + p¢ where p/ and p are independent additive random measures
with respect to P,. In addition, ¢/ is a Poisson random measure.

We then obtain results concerning p in the case in which, roughly, excursions
start and end at only countably many points of C. As an example of the type of
results we are interested in, suppose the support set of L consists of two points a
and b. In this case, with respect to P,, u/ is the additive random counting
measure induced by those excursions {Z; } for which Y; Y, and u? is the
Poisson random measure induced by excursions {Z;} for which Y; =Y.
Further, p®=p,+ p, where p, and g, are independent Poisson random measures
with respect to P,. For i=a, b, the mean measure m;” of y, is such that m{([0, ¢]
x B)=L,(w) N'(B) for Be#" and ¢ =0 where L={L,; t >0} is the local time of ¥
at the point i and N* is a possibly o-finite measure on (W, #").

Finally, I would like to thank the referee for his helpful remarks.

2. The Conditional Distribution of the Excursion Process

In this section we will show the existence of a conditional distribution for the
excursion process given the paths of Y. We will first introduce some notation.
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Let R ={0, ), R +=[0, +oo] and Z#_ (respectively, # ) be the Borel
subsets of R, (respectively R ,). Let (F, %) be a measurable space. If f is a real
valued measurable function on (F, %) we will write fe#. If further, f is bounded
(respectively positive), we will write febF (respectively fepF). For each xeF,
let ¢, denote the Dirac measure that puts its unit mass at x. By a transition
kernel N from (F, #) into a measurable space (G, %) is meant a mapping N: F
x % —TR . such that the mapping 4 — N (x, 4) is a o-finite measure on ¢ for each
fixed xeF and that x > N(x, A) is in p# for each fixed A%.

Let E be a Borel subset of a compact space E and & be the Borel subsets of
E. Let AeE be a point not in E. Put E,=Eu{A} and write &, for the g-algebra
in E, generated by &. We will write &* (respectively &%), for the g-algebra of
universally measurable sets over (E, &) (respectively (E ,, & ).

Let X =(Q, .4, /i, X,, 0,, P*) be a Hunt process with state space (E, &) and
infinite lifetime. Let L= {L,; t>0} be a CAF of X so that t - L (w) is continuous
and nondecreasing for all weQ. Let Ce#* denote the support of L; that is, if R
—1nf{t L >0}, then C={x: P*(R=0)=1}. Let S,=inf{u: L ,>1}, Y,= X, 0,
=0, and M,=Mg. Then Y=(Q, M, M, Y,, 0, Px) is a strong Markov process
taking values in the state space (C, %) where E=CnE*; (cf. [2], Chapter V,
(2.11)). Y is roughly speaking the X process restricted to the set C. We will put
C,=Cu{d} and ¥ ,=%¥nC,. It is not hard to show that the following result
holds.

(2.1) Proposition. (Y, S)=(Q, 4, 4,,(Y,,S), 0,, P*) is a Markov additive process

(MAP) with state space (C xR _, ¥ x Z_) in the sense of Cinlar [3], that is,

a) (Q, .4, H4,,7,0,, P’ isa Markov process on (C, %),

b) the mapping t—S,(w) is right continuous, has left-hand limits, and satisfies
So(w)=0, S(w)=S,(w) for all t={=inf{u: Y, =4} P’-almost surely for each
veC;

c) for each teR _, S, is 4 -measurable;

d) for each teR ,, Ae¥, Be R, the mapping y —P*{Y,cA, S,eB} of C into
[0,1]isin &;

e) for each t, seR ., S, ;=S,+5 00, almost surely P’, yeC;

f) for allt,se[0, c0), yeC,, Acb ,, and BEX,

P¥(Y,00,€4,S,00,eB|.M4)=P"(YeA,S.eB)

We will assume throughout this paper that S is quasi-left-continuous: that is,
lim Sy =S; almost surely P?, yeC, for any increasing sequence of {.Z,}-

n— 0O

stopping times {7} so that lim T, =T This assumption implies that the Markov

process Y is also quasi-left-continuous. It follows from Theorem (2.23) and
Corollary (4.19) of Cinlar [3] that S has this property in the important special
case in which Y is a regular pure jump process.

We will now turn our attention to the excursions of X outside of C. If t is a
jump time of S(w), let

X, @) for 0=5<S,(w)=5,_ (@)

7z -
(5 ) {A for s28,(c)—S,_ ();
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that is, Z,(w)={Z,(s, w); s=0} is the excursion of X corresponding to the
interval (S,_(w), S,(w)). If ¢ is not a jump time of S{w) put Z,(w)=[4].
t

Fix e and put 8] = (170 Z,dS,; (where 1.(x)=1 if xeI’ and 0 otherwise).
0

={ST;t=0} is a right continuous nondecreasing process and jumps at
those times of discontinuity of S for which the corresponding excursion is in I';
the height of the jump is the same as that of S. We have the following result:

(2.2) Proposition. (Q,.#, .#,, Y, (S, S,),0,, P*) is a MAP with state space (C
xR2, € x #2).

Proof. Note that Z,00,=Z,_,. Hence, by (2.1e) ST, —ST' =800, almost surely
P’, yeC. Since S, is a {.4}-stopping time, the result now follows from Pro-

position (2.1) and the strong Markov property for X.

We now give some more notations. Let ;°=a(Y, s<t) PP=q(Y,
LT =0(Y..S,,5T: s<1), FO=0(X ; s<S), 0 =a(Y,

8282

5 S5 8=1),
W SLZ;sSt), A= \/Jfo
FO= \/ L, FoN= \/ FAUD), F°= \/ F° and 9°= \/ go Let A4 (respec—
t1ve]y 3 YT G F), denote the completlon of A°° (respectlvely Z°, £TI), 9°,
F9), with respect to the family of measures Z={P":v is a finite measure on
(E4, 6} Let A, (respectively &,, L[, 4,, #), denote the completion of #;°
(respectively £, L), 4°, #.°), in A" (respectively &, 7, 4, F), with respect
to 2.

By Proposition (2.20) of Cinlar [3] there exists a regular version P of P¥(- |
A’y on £* which is further independent of ye C,. By (2.22) and (2.23) of Cinlar
[31, (2, £7, #I,S,, Pf) is a process with independent increments so that

(2.3) S,=A,+S/+5¢
where ¢(S7; t=0) and ¢(S%; t=0) are conditionally independent given X with
respect to P?, ye C,. Further, the following hold:

a) ' A={A,; t=0} is an additive functional of Y;
b) §/={S/; t=0) is a pure jump process;

(Y, 87) is a quasi-left-continuous MAP; there exists a sequence of (#;)-stopping
times which exhausts the jumps of S7;

¢) §?={S%; =0} is a pure jump process;
(Y, 8% is a MAP; §¢ is a stochastically continuous process with independent
increments over (@, #7, PI).

(2.4) Lemma. There exists a decomposition (2.3) such that A is a CAF.

Proof. Consider any decomposition (2.3) and put

A=A4,— Y (A4,—A, ), S/ =S/+4,—4,.
st

Then S=A'+S7+8% A is a CAF of Y; and S’/ has properties (2.3)b. [

By the last result, we need only to consider times of discontinuity of S due to
ST and §% We will now establish the existence of conditional probability laws
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t

for the individual excursions. To this end let V/={1;0Z,dS! and U'
t 0

={1;0Z,dS? We will first consider the process V= {V!; t>0}.
o

(2.5) Proposition. There exist transition probability kernels F and K from

(C2, %% into (R,,#.) and from (C3xR,, €2xA.) into (W, W) respectively,
such that F(y, y, *Y=¢, for ye C, and for an arbitrary fixed jump time T of VT

Py =Vi_eA|A)=| K(Yy_, Yp,5: 1) F(Yy_, Yp;ds)
A

for Ae®, and yeC,.

Proof. 1t follows from Theorem (4.8) of Cinlar [3] that there exists a transition
probability kernel F from (C3, ¢7) into (R, , #.) with F(y, y, *)=e¢, such that, if
T is a jump time of S/, then

PYS;—S; eA|A)=F(Y;_,Y; A), AeZ,, yeC,.

By the definition of V" and Proposition (2.2), (¥, V') is a MAP with the same
properties as (Y, S/). Thus, there exists a transition probability kernel F, such
that for any jump time T of VT

Fr(Yp_, Yps A)=P* (Vi —=Vi_eA|X)
=PY(Zel, Sk —Sh_ecA|X)
SF(Y, , Y A), AeZ,.
Hence, by the Radon-Nikodym theorem and the special natures of (C, %) and

R, % ,) there exists a nonnegative measurable function (x, y, s)—>K(x, y, s; I')
on (C2xR ,,%3x %) such that

FF(YT—= YTaA)= jK(YT_a YTa S5 F) F(YT_a YTadS)
A

W is the complement of an analytic set in a compact metric space; (cf.
Maisonneuve [11]). Since I'e #” is arbitrary we can further choose K so that the
m@ping I'->K(x,y,s;T) is a probability on (W, #") for fixed x,yeC, and
seR_.. O

We will now consider the process Ul ={U; t=0}.

(2.6) Proposition. There exists a continuous additive functional B of Y and a
transition probability kernel H from (C,, €,) into (R, x W, #, x ') such that

t
E[exp{—AiU} | J{]:exp{—f [ (l1—e "™ H(Y;dzxI)(zA1)~* dBS}
0 (0, w]
Jor yeC,, t=20 and 120.

Proof. Since $? is an increasing process, Corollary (2.25) of Cinlar [3] yields

E'lexp{—4S{} | # T=exp{—[(1—e*)D,(dz2)}, yeC,,
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for any 420 where, for weQ fixed, the measure

B,(w, A)= {(zA1) D,{dz, w)

is finite; B,(w, {0})=0; and where, if
B(w)=B,(»,R,),

then B=(B,),, is an increasing CAF of Y. Since (Y, U’) is a MAP of the same
type as (Y, 59, the same result holds with U’, D¥, B'(w, A) and B! replacing
S D,, B,(w, A) and B, respectively. Further, for fixed 4e# s {Bf (-, A);t=0} isa
CAF of Y.

By the definition of U¥, DI (4, w) is conditionally, given #, the expected
number of jumps of S that take place before time ¢ whose heights are in set A4
and whose corresponding excursions are in set I'. Thus DY (4, w)<D,(4, w) for
all AeZ . Hence, B! (0, A) < B,(w) for t 20. By the “Radon-Nikodym” theorem
for CAF’s (Benveniste and Jacod [1]) there exists a nonnegative measurable
function y—H(y; A xI) on (C,, €,) such that

Bl (w, A)=ftH(YS; A xT)dB(w).

By the special natures of (R ., %) and (W, #), H can further be chosen so that
for fixed yeC,, D—H(y; D) is a probability on (R, x W, Z_, x #").

Let {U} be the finite or countable collection of jump times of S. The proof of
following result shows that the conditional distribution of the excursion Z,
given the process Y depends only on ¥ and Yy .

(2.7) Proposition. The random variables {Z,} are conditionally independent
given A

Proof. Propositions (2.5), (2.6) and the proof of Theorem (2.2) of Cinlar [4] imply
that there exists a continuous additive functional A of Y and a transition kernel
Q from (C,, %,) into (C, ><IE+ x W, €, x %, x W) such that for any fep(%, x €,
xR, x#)and yeC,

Ey[Zf(Ys_a Ys’ Ss_Ss—’ Zs) I{Ys_ =Y} u{Ss— ¢ss}:|

s=t

=Ey[jdfis | Q(YS;dx,ds,dz)f(Ys,x,S,z)].
0

CxR+ xW

Fix ¢>0 and let t=inf{u: S,—S,_>¢}. Since S is quasi-left-continuous by
assumption, 1 is a totally inaccessible {.#,}-stopping time. Let Mep.#._, fep W,
and Gep.#. By the results of Weil [12] on conditioning on the strict past, for
veCy

E'[M(Ge0)feZ]

=B [M(f-Z)E*[G]]
=B [ME[f-Z E*[G]|.#,_]]
=F'[M | Q,Y,_;dx,dz) f(z) E*[G]]

CaxW
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where
Q(x; D x(s, 0] xT)
Q(x; C,x(g, 0] x WY’

Q.x;DxIN= De¥%, and I'e¥.

Let K, (x; B)=0Q,(x; Bx W). Note that P{Y.eB|.#,_}=K,(Y,_;B). By the
Radon-Nikodym theorem and the special nature of (C, %), for fixed I'e#” there
exists a nonnegative measurable function (x, y)—q,(x, y; I} on (C3,%3) such
that

Q.(x; BxI={q,(x, y; T') K,(x; dy).

By the special nature of (W, #") we can further choose ¢, so that the mapping
I'—gq.(x,y; I is a probability on (W, #") for fixed x, yeC,. Now

E*[M(Go0)f>Z.]
=E'[M] [q,(Y,_,y;d2) f(&) K(Y,_; dy) E’[G]]
cCw

=E'[M [q,(Y,_, Y,;d2) f(2) E**[G]]
w

—s 4

=Ey[M(G001)£,4£(Yz_> Y;dz) f(2)]

Since A" is generated by sets of the form M(Go0,), it follows that the con-
ditional distribution of Z_ given " depends only on Y,_, ¥,. Since for each jump
time of S there exists ¢>0 such that the jump time is of the form of t or one of
its iterates, the result follows.

We now come to the result concerning the existence of a conditional
probability law for the excursion process given 4.

(2.8) Theorem. There exists a regular version of P*(*| ") on 4 which is further
independent of yeC,.

Proof. Let {T(j)} (respectively {T7(j)}), be the finite or denumerable collection of
jump times of S (respectively S/). Put AS(j)=S;;,—Sr;. and Z()=Z
(respectively AS7(7)=Sps;—Szsy— and Z7()=Z ;).

Let N be the collection of all counting measures on (R2 x W, %2 x #7) that
are finite on compact sets. N is metrizable and we write A for the Borel subsets
of N. Let v/ and v* be mappings from (2, %) into (N, .4") such that for gep(%2
x W)

fgdvi=% g(TI(j), AS'(j), Z7(j))

and

[8dv'=2 g(T(j), 45G), Z(}));

(%))

that is, v/ (respectively %), is the random counting measure induced by the times
of discontinuity of S' (respectively S?), and the corresponding magnitudes of the
jumps and excursions.
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Fix weQ and let K, F, H, and B be as in Propositions (2.5) and (2.6). By
results concerning the construction of probabilities on (N, A7) (cf. Jagers [10]),
there exist probabilities P} and P2 on (N, /") such that for any gep(#2 x #")

Ei[EXP{—fgdm}]
= 1 Texp{=g(T’(.0).5,2)} K(Yrs()- (@), Yrs)(0) 53 d2)

Tf]w

 F(Yrsg5- (), Tf(j)(w)a ds)
and

Ej[exp {—[gdm}]
=exp {— [ (1—e7#“*?) H(Y,(w); ds, dz)(s A1) ! dB,(w))}.
Thus, there exists a probability on (2, %) such that for I' and A in A
P,(vel,vieA)=BY(I') P(A).

Propositions (2.5), (2.6), and (2.7). [J

When deleting the @ we will simply write P for the version of P’(-|¢") in
Theorem (2.8).

That F, is a version of P¥(-|X") on ¢ for all yeC, follows from (2.3) and

3. The Excursion Counting Measure

In this section we will study the structure of the excursion counting measure u.
We will first give some definitions.

Let (G, %) be a measurable space and (Q, .#, P) be a probability space. The
mapping v: 9 xQ—»]R is said to be a random measure on (G, %) provided:
a) A—>v(4,w) is a measure on (G, %) for fixed weQ; and b) w —>v(4, ) is in A
for fixed Ae%. v is said to be an additive random measure over (2, ., P) if
v(4)),...,v(4,) are independent random variables whenever 4,,..., 4, are dis-
joint sets in %.. An additive random measure v is said to be a Poisson random
measure (PM) with mean measure n if for each 4% with n(A4)< o, v(4) has a
Poisson distribution with parameter n(A4); (if n(A4)= oo, then v(4)=00 as.). An
easy characterization of a PM is given by the following result whose proof will
be omitted.

(3.1) Lemma. A random measure v is a PM with o-finite mean measure n if and
only if

Efexp{—{ fdv)]=exp{~[(1—e ¥)dn}

for all fep%.

Recall that {T(j)} (respectively {T/(j)}), are the times of discontinuity of $*
(respectively §7) and Z(j) (respectively Z7(j)), is the excursion corresponding to
T(j) (respectively T7(j)). Let ' and p? be the random counting measures on (R
x W, &, x #’) such that for any gep(R.xW)

jgdyf=Zg(Tf(j),ZfU)) and jgdud=Zg(TU),ZU))-
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Then p=u’+u¢ is the random counting measure induced by the times of
discontinuity of S and the corresponding excursions. The next result follows
from Theorem (2.8) and Lemma (3.1).

(3.2) Theorem. The random measures p’ and p* are independent additive random
measures over (Q, 9, P,). Further, yi* is a PM with mean measure M, such that for
t=0and I'eW

([0, t]xr=}°joH (Y.(); dzxT) (z A1)~ " dB,(0).
00

Assume for the moment that Y is a regular pure jump process. By Corol-
lary (4.8) of Cinlar [3]

SI=2 (SI=S{ )1y, sy,
s=t
Since t — 8¢ is stochastically continuous over (Q, %, B,), the jump times of S* and
Y do not coincide P’-almost surely for ye C. Hence, in this case, almost surely,
u is the counting measure induced by the times of discontinuity of S and the
corresponding excursions {Zy } for which Y, +Y;; u* is the counting measure
induced by the times of discontinuity of S and the corresponding excursions
{Zy,} for which ¥, =Y.

We will now study p? more closely. Unless otherwise stated we will put S
=S? throughout the remainder of the paper. Thus pu= . Let D be the support
of the additive functional B. We will not assume that Y is a regular pure jump
process. However, we will make the assumption that D is discrete.

(3.3) Lemma. For each xeD there exists a possibly o-finite measure A — N*(A)
n (W, #7) such that

M ([0, ]x =Y LE(w)N*T), t20, TeW, we,

xeD
|
where I¥={L%; t 20} is the local time at x for Y; (that is, IF is a CAF of Y with
support {x} such that, if R=inf(t: I{>0}, then E'[e=*]=F"| [ ¢ *dE5] for
0
ye C).

Proof. Let M(I', ®)=M ([0, t]xI) for I'e#" and weQ. Then I'->M,(T, w)
is a possibly o-finite measure on ¢ Let A,={weW:w(l)*4} and 4,

1
{weW w ( )#:A w (n 1) A} for n=2,3,.... Then {A,} is countable
collection of disjoint sets in #” so that W—[A4]= U A, and M,(4,)< oo for t=0.

Put MI(I')=M,(I'nA,) for F'e# and let M= M”(W) Note that {M[(I'); t=0}
is a CAF of Y for each fixed I'e#. Since M= M](I")+ M*T*), by the “Radon-
Nikodym” theorem for CAF’s there exists a transition probability G, from
(D, ) into (W, #7) so that

M:(r):}c; (Y, I)dM"= jG , 1) 1,(Y) dM?
0



334 P.A. Jacobs

t
where 9 =Dn%. For each xeD, [ 1,,(Y)dM} is a CAF of Y with support {x};
0

hence it is a multiple of I¥. Therefore, there exist nonnegative constants c,, xeD,
so that

ML o)=Y, ¢,G,x, INE(w), Te¥, wel.

xeD

Let N(x, 'nA,)=c, G,(x, I'). Put

N¥(N)=Y N(x, 'nA,).

Since M,({[4]},w)=0, '->N*(I') is a possibly o-finite measure on (W, #")
satisfying the conditions of the Lemma. [
For each xeD, let Sf=3 (S,—S,_) 14(Y), {T;*} be the collection of jump

st

times of {S7;t=0}, Z7= ZTx, and u, be the random counting measure on
R, xW, %, x¥W) 1nduced by {(T7, Z%)}; that is, for gep (R, xW), [gdu,
=) g(T}, Zf) Since S,= Y, S7, P-almost surely, u= ) . P-almost surely

j

xeD xeD

(3.4) Proposition. a) u_, xeD, are independent PM’s over (€, 9, ), u, has mean
measure m® where m2([0, t] x I')=LX(w) N*(I') for weQ, I'eW";

b) Let U =L and v, be the random counting measure on (R, xW, R, xW)
induced by {(Ux, Z*)} Then v, is a PM over (2,9, B,) with mean measure ny where

ng([0, t] x I)=(t A Ly (@) N¥(I);

c) Given I, v, is independent of A~ for all P*, yeC.
d) Given o(L; xeD), {v*; xeD} are conditionally independent.

Proof. Let fep(R, x #). For xeD
Efexp{—{ fdu1=Elexp{-2 f(T(), Z()) Ly(Yr)}]
=exp{—[(1—e /") dLi N*(dz)}

by Lemma (3.1), Theorem (3.2), and Lemma(3.3). a) now follows from
Lemma (3.1). b) is proved in a similar fashion and ¢) and d) are immediate)
from b). O

Note that if IX_ = oo for all xeD, then v,, xeD, are independent PM’s.
We will now turn our attention to the measure N*, xeD. For each xeD, let
h.(z)=P*(Y,=x) for zeE. Put
1
K3 (z, duy=1 (2
0

(So>t, X,edu)h ) if h (2)>0,

otherwise.
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Then {K7; 1= 0} is a semigroup. For ve EX C, let K?(v, -) be a regular version of
the conditional distribution of the excursion Z, starting at time 0, given Y, = X_
=y for the measure P”; that is, I'— K*(», I') is a probability on (W, #") for fixed
veE~ C and yeD; for fixed I'e ¥, (x, v)» K*(v, I') is measurable with respect to
2 x &*; and

(3.5)  PY(Z.elY)=K%(u,I) Te#.

(3.6) Proposition. Let T=inf{t: S,—S,_ >c} for fixed ¢>0. T is an {&,}-
stopping time and U=S8;_ +c is a {#,}-stopping time. For ['e ¥ and veE

P(Zyo Oyl My~ H) =K' (X, T).

Proof. Let 48*, (respectively #2) be the completion of 6(T, Y,; u< T) (respectively
o(Yy, s u=0), in 4 with respect to 2 Let A be the completion of ¢(%#*, #?)
in 4 with respect to Z. The proof of (2, Chap. I1i, (4 20)) shows that # °c &
and hence # = #. The inclusion is strict since Te#". Let 0<u, <---<u, and
Ay, ..., A,%€. There is GebA so that Gof, is the 1nd1cator functlon of
{YT+u,-EAi; i=1,...,n}. Let Reb./#, and feb#. By the strong Markov property
for X and (3.5)

EX[R{G(f > Zo)} » 0] = E*[RE**[GK (X ; f)]]
=E*[R(G o 0p) K¥*(Xy3 f)]
for xeE. Since #' < ./, functions of the form R(G o fy) gencrate .47, v A,
E*[foZyo Oyl dly v A 1=K""(Xy; B).
The result now follows. [

For weW, w={w; s=0}, let 5(w)=inf{t>0:w,=4}, and O, w,=w,,, for s,
t20. Put V(w)=w,

(3.7 Theorem. {V,; t>0} is a Markov process over (W, #, N*) with transition
Sunction {K7; t=20} for xeD.

Proof. For fixed ¢>0 and xeD let T=inf{z: S,—S,_>¢, ¥,=x}. Let Z
={Z(s); s=0} denote the corresponding excursion Z,. By Proposition (3.4), for
Be# and a measurable set AcE~ C.

N*(V,eA, Vo0 eB)

P(Z(c)eA,Z - (,eB)= NG

Letting B=W in the above expression we obtain
N*(V.eA)=N*(6>c) P(Z(c)eA).
Hence, by Proposition (3.6)

N*(V,cA, Vo 0,eB)=| N*(V.edy) K*(y, B
A

The result now follows by an induction argument. [
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