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Summary. Let (f2,J,P) be a measurable space, and {~} be a filtration on 
(f2, J) .  Then, given a fixed honest time L a new filtration {(~t} is defined, the 
smallest containing {~} and for which L is a stopping time, and the 
martingales, semimartingales and stopping times of this new filtration are 
characterised. 

O. Introduction 

This paper presents a martingale approach to work on the decomposition of a 
process into its 'past '  and 'future' relative to an honest random time. (See Millar 
1-11], for a survey of the Markovian theory of such decompositions.) 

Let (O,J,,P) be a complete probability triple, and {~,  t>0} be a filtration 
consisting of sub-a-fields of J,, satisfying the 'usual conditions': that is, the 
filtration is right-continuous and increasing, and J0 contains every P-null set in 
J.  A random time on (f2, J )  is any J-measurable map L: f2--, [,0, 0o]; a random 
time L is honest if for s_< t 

{L<s}=Fs~C~{L<t } for some Fs,~ ~ .  

This definition is equivalent (for a right-continuous filtration) to that given by 
Meyer, Smythe and Walsh in [,,10 3. Most of the random times studied in 
connection with splitting-time theorems are honest: in particular optional, 
cooptional, and randomised coterminal times are all honest (see Millar [11]). 

Let L be a fixed honest time, and for t~lR + define 

~#,={A~J:  A=(Ec~{L<t} )w(F~{L>t} )  for some E, Fe4} .  

Then ~___ ~q,, L is a {Nt}-stopping time, and {N,} satisfies the usual conditions. 
We shall study the properties of the filtration {Nt}, and in particular of its 
martingales. 

Let At=I{ t>L} ,  and let A ~ and A denote the optional and dual optional 
projections of A relative to {~}. In Section2 we shall establish a few basic 
results concerning these processes. Section3 is devoted to a study of {~} and 
{fq,} martingales: here is the main results of the section. 
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Theorem A. Let M be a square integrable {~}-martingale, and M' be defined by 

t 

M~=Mt+S[( I_As_) ( I_AO_)-~  o -1 -A ,_(As_)  ]d (M,A~ 
0 

Then M' is a square integrable {Nt}-martingale. 

As a corollary we show that  every {~}-semimart ingale  is a {N}- 
semimartingale, providing a complement  to a recent theorem of Stricker [12]. 

In  Sect ion4 we investigate the 'measurab le '  structure of  {fCt}-progressive 
processes. 

Theorem B. Let T be a {~t}-stopping time. Then there exists a sequence (Sn) of 
disjoint {Jt}-stopping times such that 

[[ T ]] c [[L ]] w 0 [IS,I]. 
i = 1  

In Section 5 and 6 we prove a martingale representat ion theorem for {fq,}- 
martingales. 

Theorem C. Suppose that {Mi: i6I} is a finite collection of continuous {~}-local 
martingales, such that if Y is any continuous {~}-local martingale then there exist 
{~}-previsible processes C i, i6I such that 

= Z i 
i ~ I  0 

Then, if Z is any continuous {~t}-local martingale, there exist {~t}-previsible 
processes D i, iEI, such that 

t 

Zt= 2 ~D~d(Mi); �9 
i ~ I  0 

To represent the jumps  of  {fqt}-martingales we must  use Jacod 's  theory of  
stochastic integrals relative to r andom measures. 

Acknowledgements. I wish to thank my supervisor, Professor D. Williams, for suggesting this 
problem, and for various improvements to the style of this paper. Lemma 3.1 short-circuits a rather 
involved argument, leading to essentially the same results. 

Note. Some of  the results of  Section 2 appear  in Az6ma [-1]. T. Jeulin and M. 
Yor, in [8] and [13], written at the same time as this paper, have obtained most  
of  the results of  Sections 3 and 4, and go further in certain respects. The 
representat ion results in Sections 5 and 6 have not  appeared before. 

1. Notation and Preliminaries 

It is not  possible to give here more  than a very brief account  of  the general 
theory of  processes and martingales on which this paper  is based: see the books  



Study of a Filtration 309 

by Dellacherie and Meyer [2, 3], and [93, for details. Any unexplained notation 
and terminology will be found in Meyer [91, or Jacod and Yor [7]. 

If T is an optional time (that is, a stopping time) and X is any process we 
denote the stopped process by X r, so that Xt r = X t,, r. If cg is a class of processes 
we define the classes cgc, C~1oo by 

cgc = {XeCg: X.(co) is continuous for almost all co}, 

~gloc={X: there exists an increasing sequence (Tn) of optional times, with 
lim T, = + ~ ,  such that x r " e ~  for each n}. 

n 

Let sg be the class of uniformly integrable martingales M with M o =0, and, 
for p >  1, let JgP be the set of M~d/l with E I M J <  oo; when we wish to discuss 
martingales relative to the filtrations {~} and { f#~}, we shall write Jg(d) ,  Jg(~), 
and so forth. Note that this is a slight departure from the usual notation, since 
we require every element of Jg to be null at the origin. 

Let s~ '+ be the collection of right-continuous, increasing, adapted processes 
A with A o = 0  , and A t < ~  a.s. for each t<oo.  Let ~ 4 = d + - d  +. I f A - A 0 e d  , 
and A 0 < oo a.s., we shall say that A is a process of finite variation, or a VF 
process. Define • to be the subclass of d consisting of those processes A for 

which ESldAs[<~.  If A - A o ~ ,  and ElAo[<O% we shall say that A is of 
0 

integrable variation, or a VI process; if A-Aoe~U~oo, and E [A0] < oo, that A is 
locally integrable, or an LI process. 

A process X is a semimartingale [respectively: semimartingale (r)] if X has a 
decomposition of the form X = X 0 + M + A, where M e Jg~o~, 
A~4EM~J/[  2, A~V, E IXol < oo]. This decomposition is not unique, but M ~, the 
continuous martingale part of M, is unique, and is denoted X ~. If M, N e  Jg(oo, we 
may define (M, N) ,  the previsible variance process associated with M and N. 
For  any pair X, Y of semimartingales we define E x ,  Y]t = ( X~, Y~)t + ~ AXs A Y~. 

s ~ t  

If M, NeJElo ~ and EM, N] e~llo~, then we define ( M , N )  to be the dual previsible 
projection of [M, N]. In particular, if M, NE ~1o~, then MN - (M, N)~Jglo ~. 

If X is a semimartingale and H a previsible process, we denote the stochastic 
integrals ~H~dX,, ~Hs dX ~ by H.X ,  H _ . X ,  when they exist. If M e ~ o  
[respectively: M e J g  2] define L]or ) [L2(M)] to be the set of previsible pro- 
cesses H such that H2.(M,M)~'fio~[H2.(M,M)~"K']. If Me~12o~ and 
H~L]oo(M ), then H- M ~ / 2 ~ ;  and if M e J i  2 and HeL2(M), then H.  M e ~  2. 

If X is any bounded process (not necessarily adapted ) we may take the 
optional and previsible projections of X relative to {~}, and will denote them 
by X ~ X ~ respectively. If X has increasing paths (or is the difference of two such 
processes) we may in addition define the dual optional and previsible pro- 

c 

jections, denoted by Jf and )? respectively. We shall write X = X ~  J~=X ~ 
c 

-)~. Note that if X has right-continuous paths, then X and 32 are martingales. 
(This follows at once from the definition of these processes; see Dellacherie [2].) 
Set A = IlL ' ~)). The processes A ~ and A will prove to be of great importance. 
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Let us recall 'Dellacherie's formula', which we shall use frequently: 

~ s  * s 

In Section 6 we shall make  use of the theory of stochastic integrals with 
respect to random measures, which we require to discuss the representation of 
purely discontinuous martingales. We shall not use it elsewhere. For a full 
account of this theory see the papers by Jacod [4] and [5], and for a summary 
[6] or [7]. 

Let E be a Lusin space, g its Borel a-field. Set f2 = ~2 x [0, oo) x E, ~ = # |  
(} = (9 |  where # and (9 are the previsible and optional a-fields on ~2 x [0, ~). 
A random measure #(co;dt, dx) is a positive transition measure from (f2,J) to 
((0, oo) x E, N((0, oo)) | For a function U: ~ ~ IR + let 

(U,#),(co)= j" U(co, t,x)#(co;dt, dx) 
( 0 , t l x E  

if this is finite, +oo otherwise. We say that # is optional 
[respectively:previsible] if U*# is optional [previsible] for all positive (9- 
measurable [~-measurable] functions U. The random measure # is said tO be 
integer-valued if # takes its values in N u { + oo} and #(co; {t} x E)< 1 for each 
t~(0, c~). Define the measure M,  on ~ by setting M , ( X ) = E ( X , # ) ~ .  From now 
on we shall take # to be optional and integer-valued, with M,  N-a-finite. Then # 
is of the form 

#(co; dt, dx) = ~ ID(s, co) e( .... (o~))(dt, dx), 
s > O  

where e is an E-valued optional process, and D is an optional subset of f2 
x [0, oe). Also, # has a dual previsible projection v. We may identify a space 

N2oc(#), of ~-measurable functions, and define, for U~N2oc(#), the stochastic 
integral U .  (#-v),  a purely discontinuous local martingale in ~12o. 

Suppose that {Mi: i~I} is a collection of continuous elements of d/dl2or162 
Then we shall say that {Mi: ieI; # - v }  has the martingale representation proper- 
ty for (~2,J,{~},P), and write { M i : i e l ; # - v } ~ J d ( J ) ,  if, whenever 
Z~dg2o(J), (Z,  Mi)=O for every i~1, and ( Z , U . ( # - v ) ) = O  for every 
U~N2oo(p, J ) ,  then Z is null. 

A more intuitive account of martingale representation is given by the 
following theorem. 

Theorem 1.1 (Jacod, [6]). The following are equivalent: 

(i) {M': i~I; # - v } e ~ d / / ( j ) .  
(ii) For any NeJ/[2oc(30 there exist U ~ o o ( # , J ) ,  an increasing sequence (J,) 

of finite subsets of I, and elements ui~eL2oc(Mi ) such that for each {~}-optional 
time T reducing N 

N r = N o + U* (g - v) T + lim ~ (uin �9 Mi)r 
n i ~ J n  

(where the limit is taken in L2(~2, J ,  P)). 
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Finally, let us note a few results which will be of use later. As a simple 
consequence of It6's Lemma for semimartingales (see [9, IV, 211) we have 

Lemmal .2  (Meyer [9, IV, T23]). I f  X, Y are semimartingales, then X Y  is a 
t t 

semimartingale, and X, Yt= S Xs_ d Y~ + ~ Y~_ dX, + IX, Y]t. I f  further, X is a VF 
0 0 

t t 

process, then X t Yr= S Xs_ dYs + ~ Y~dX s. 
0 0 

Lemma 1.3. I f  X is a continuous semimartingale, and XC=0, then X is in ~1oc. 

Proof By [9, IV, T32] X is a special semimartingale, and so has a decom- 
position X = X o + M + A  for which A is previsible, and locally integrable. 
Consequently M is previsible, and so, as M c is null, it follows that M is null. 

Lemma 1.4. I f  {~}, {fqt} are two filtrations on (f2,J,P),  and X is a semi- 
martingale relative to both, then IX, X] is independent of the filtration. 

Proof By [9, VI, T4], for each t, IX, X]t is the limit in probability of a sequence 
of random variables depending only on the path of X. Hence [ X , X ] ( J ) t  
= I-X, X] (f#), a.s., using an obvious notation. IX, X] is right-continuous, increas- 
ing, so it follows that [ X , X ] ( J ) =  [X,X](f#) a.s. 

Lemma 1.5. Suppose that J is the P-completion of a countably generated a-field 
jo .  Then, if ~ f  is any sub-a-field of ~ there exists a countably generated a-field 
j f o  such that ~ is the P-completion of ~o .  (This result is well known.) 

Proof A a-field J is the P-completion of a countably generated a-field j o  if and 
only if the function space L2(f2, J ,  P) is separable. But if(4 ~i)~= t is a dense subset 
of L2(f2, J,, P), and t h =E(4i] ~ )  then (t/i)i~176 1 is dense in L2(f2, ~ ,  P). 

Let us recall the Burkholder-Davis-Gundy inequalities: if 1 <p  < m there 
exist two constants, c v and Cp with 0 < % <  Cp< oo such that, if MeJr 

cp E [M, M]~ 2 ~ E sup IM, I p < Cp g EM, M] p/2. 
(t) 

Lemma 1.6. I f  M is a local martingale, and for any p > 1, E lM,  M]~2< o% then 
M is a uniformly integrable martingale, and MEJ/[ p. 

Proof Let ~=sup IMt] p. If T is any optional time IMrIP< 4, and so IMr[ < r + 1. 
(t) 

Hence M is of class (D), and consequently a uniformly integrable martingale, 
- s ee  Meyer [9,IV,4c]. 

We see that M E ~ f  p, since E [M~IP <E 4 < ~ .  

2. The Projections of A 

For each t~[0, oe), define 

Nt= { A ~ J :  A=(Ec~ {L < t } )u (F  c~ {L > t}) for some E, F e 4 } .  
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Lemma2.1. (a) For each t>0 ,  f~t is a o-field, {L <t}~f~t, and ~ c_f# t. 

(b) The filtration {fgt, t > 0} satisfies the usual conditions. 

The proof is not hard. Note, however, that the honesty of L is necessary if 
{fgt} is to be increasing. 

For the rest of this section let p, q, r denote generic rationals. Since L is 
honest, we can choose sets Fpq, for O<p<q, such that 

(i) Fpq6Jq; 
(ii) {L<p}=Fpq~{L<q}; 

(iii) Fpv=f2. 

By setting Fpq=p=~qFrq we see that the Fpq may be chosen so that they are 

increasing in the first argument and decreasing in the second. 
Now define Cv(o9 ) = inf{q <p:  cO~Fqp}. It is readily seen that Cp is Jp measur- 

able, that Cp(co)<p A L(co), and that (Cv) is increasing. Define Ct= inf Cp: C is 
p > t  

then a right-continuous, increasing, {~}-adapted process. Furthermore we have 

L=sup{ t :  Ct=t}, (2.1) 

{ L < s } = { C , < u  for all u~(s,t]}c~{L<t}, for s<t. (2.2) 

Remark. If L(co)<t then Ct(co)=L(co), so that C t is the value L must have if L is 
less than t. 

The following lemma is a consequence of (2.2): 

Lemma 2.2. Suppose that T is {~}-optional. Then 

(i) f~r= {A~J :  A = ( E ~  {L< T}) u(Fc~ {L> T}) for some E,F~JT}, 
(ii) fqr-  = {AEJ:  A =(Ec~ {L < T})w(Fc~ {L >T}) for some E,F~JT_}. 

The projections A ~ and A contain most of the probabilistic information 
about L which we will require. The next few results clarify the behaviour of 
these processes. 

Lemma 2.3. I f  T is {~}-previsible, then A~ =E(A r_ [J r - ) .  

Proof Since T is previsible there exists a sequence (T,) of {~}-optional times 
increasing to T, and J r - =  ~/ J r . .  Therefore it is enough to show that, given 

n > l  

e>0,  we can find an n0(e) such that ]EA r_ Ir-EA~ IF[<e for all F~Jr .  with 
n >no(e ). But this holds if we choose no(e) such that, whenever n > no(e ), 

o o 1 EIAT--Ar_[<~e,  and EIAT_-Ar~I<�89 

By Dellacherie [2,V, T14,T15],  it is immediate that A ~ is the previsible 
projection of A . 

Lemma 2.4. For P-almost all o~, we have At > 0, A~_ > 0 whenever t > L(o)). 

Proof Let u, v~lR +, with u < v, and put T = inf{se(u, v] : A ~ = 0}, S = inf{se(u, v] : 
o o _ {T<  oo}, that S is previsible, and that As_ =0  on A s_ =0}. Note that AT--0 on o 

{S < oo}. 
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But 

P ( L < u , T < ~ ) <  ~ A T d P =  ~ A~ 
{T< oo} {T< oo} 

and 

P(L<u,S<oo}= y As_de= y ALdP=0. 
(S < co) {S < m} 

Lemma 2.5. I f  T = i n f { t  >O:A~ = 1 or A~_ = 1} then the processes A ~ and (A~ r are 
indistinguishable. 

The proof is essentially the same as that  of Lemma2.4.  F rom now on we 
shall take A ~  (A~ r. 

Lemma 2.6. Let  T be any {~}-opt ional  time. 

(i) I f  T>=L a.s. on {T<oo} then A ) = I  a.s. on { T <  oo}. 

(ii) I f  T < L a.s. on { T <  oo} then A~ A A r  a.s. on {T<oo}.  

Proof  (i) is an immediate consequence of Dellacherie [2,V, T15]. 

(ii) Set B , = l { t =  T}. Then if ~ J r ,  by Dellacherie's formula, 

oo 

E   BsdAs:E r 
0 0 

so that  E (I {L = T} I J r )  = A/I t ,  proving (ii). 

Lemma 2.7. ~ is constant  on ((L, oo)). 

Proof  The process t -  C, is {~}-optional,  so, by Dellacherie's formula, 

oo 

E I (t - Ct) dA t = E S (t - Ct) dA, = E(L - CL) = O. 
0 0 

Since t -  C t is nonnegative, A is constant  whenever t -  C t > 0, and in particular 
on ((L, oo)). 

3. {Jr} and {~,}  martingales 

Lemma 3.1 (Williams). Let  M be a {.~}-adapted process, whose paths are right- 
continuous with left limits. Suppose that, for  each t, E IMt[ < oo. Then M is a {~t}- 
martingale if  and only if  the following conditions are satisfied." 

(i) E(M,  I J s )=E(MslJs )  for  s<=t. (3.1) 

(ii) E(A s M t IJ~) = E(As M s J Js) for  s < t. (3.2) 

Proof  This is immediate from the definition of ffs- 

Lemma3.2.  Suppose that M is {fft}-adapted, that E IM, I < o9 for each t~lR + and 
that the paths o f  M are right-continuous with left limits. I f  M is zero on [[0, L~,  or 
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constant on ((L, oo)), then M is a {fgr}-martingale if and only if 

E(M, IJ=)=E(MsIJ=) for s<t.  (3.3) 

Proof The necessity of (3.3) is immediate  from Lemma  3.1. 

Suppose first that  M is constant on ((L, oo)). Then  AsMt=AsML=A=M S for 
every co, so that M satisfies (3.2). 

Now let M be zero on ]]-0,L-I, so that A, M t = M  r. Fix s<t,  and set T 
= i n f { u > s :  C,=u}. Then, since T < L  on { T < o v }  we have M r I { T < o o } = O .  
Note  that  since IM r ̂  rl = IMr I {t < T}I < IMrl we have that  M r ̂  r is integrable. Set 
M ~ to be the optional  project ion of M with respect to {Jr}: then since M 
satisfies (3.3) M ~ is an {Jt}-martingale. To show that M is a {fft}-martingale it is 
enough to show that M satisfies (3.2). However,  A==A r I{t  < T}, so we have 

E(A s Mr [ J=) = E(A r I {t < T} M r l J=) = E(At Mr^ r I or = E(M r ̂  rlJ=) 

=E(M~^ T[ J=)=E(M~ 

completing the proof. 

Corollary 3.3. A - A  is a {fqt}-martingale. 

Proof The process A - / I  is constant  on ((L, Go)), so it is enough to show that 
A - A satisfies (3.3). But, by Dellacherie's formula E(A r - A=[J=) = E(/I, - A, lJs). 

L e m m a  3.4. Let J be a previsible element of ~/'(d;). 
t 

(i) I f  SI {A ~ = 1} ]dJs] = 0  a.s., then 
0 

r 

E ~(1 - A=_)(1 - A ~  -1 dJ s =E J,. 
0 

r 

(ii) I f  SI{A ~ =0} ]dJ=] = 0  a.s., then 
0 

t 

E ~A~_(A~ -1 d J= = E J  t. 
0 

Proof Recall from Lemma  2.3 that  the previsible project ion of A_ is A ~ . The 
process J is the difference of two right-continuous,  previsible, increasing pro- 
cesses: we may therefore take J to be increasing. 

(" t " ~  

Un=(I-A~176163 The process U" is boun-  Now set 

.,{o ded, so has a previsible projection, and it is clear that  ( U ) = - I  As_<l- 

Hence, by Dellacherie's formula, 

E U;dJ==E~(U")VdJ==E I A~ dJ s. 
0 0 0 
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A monotone convergence argument now completes the proof of (i), and (ii) is 
proved in a similar fashion. 

Define cg(j_) to be the class of M ~ J / 2 ( J )  such that 
oo 

32 (i) A_~L2(M): i.e. E ~ s d ( M , M ) s < O %  
0 

(ii) E I A t M t l < ~  for each t>0.  

The following is an immediate consequence of Lemma 1.2 and Dellacherie's 
formula. 

Lemma3.5. Suppose that M~Cg(A_). Then if s<t ,  

E ( M t A t - M s A s I J s ) = E  M,  dA, =E M,  dA, 
s s 

= E((At - As) ML I Js)- (3.4) 

Corollary3.6. Let mscg(.4 ). Then, if M is a {f#t}-martingale, (M,  ~t' )=0 .  

Proof It is enough to show that MA is an {~}-martingale. But 

E~t' " ( t M t - A s  M s l J s ) = E ( A t M t - A s M s l J s ) - E ( A t M t - A s M s l J s )  

= E(A,(M t - ML) -- As(M s - ML) I Js) , 

by Lemma3.5. The last term is E ( ( M t - M ~ ) - ( M s - M ) ) I J , ) ,  which is zero since 
M and M L are {Nt}-martingales; 

If M ~ ( J ) ,  so that (M, A ) exists, define the {Nt}-optional process M' by 
setting 

' t ( 1 - A s -  A~o-~ M "  (3.5) 
As_i"< ,A>s 

Proposition 3.7. I f  M~cg(.4 ) then M' is a {fqt}-martingale. 

Proof Set 

t A L  

X t = M ' t ^ L = M t A r  + ~ ( 1 - A ~  d (M,  ft'),,, 
0 

t 

~ o - 1  Y ~ = A , ( M t - M L ) . = A t ( M t - M I ) - ~ ( A u _  ) d(M,A'),, .  
L 

We will use Lemma 3.2 to prove that X and Y are {~t}-martingales. 
Note that EA t [ML[ < E  supMs< 0% by Doob's inequality, since MEdg2(J).  
N O W  s--<t 

E(Mt ,, L - Ms ,, L I Js) = - E(At (Mr - M L) -- As (Ms - ML) [ ~ )  

= - E(A~ M , -  A o Msl~s) + E(A~ M , ~ -  As ML I~s) 
t !  i t  

= - E ( A t M t - A s M s ] J s )  by Lemma 3.5 
t !  t t  

= - E ( ( M ,  A L -  ( M ,  A )  s I~s). 
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Consequently, 

E ( X , - X ,  IG)= 

(!, o _, " , 4  . . . .  E 1-A,_) (1-A,_)  d(M,A) ,  - E ( ( M , A ) t - ( M , d ) ~ I J ) ,  

and a similar equation holds for Y. To complete the proof it is therefore enough 
to show that (M, ~') satisfies the conditions of Lemma 3.4: that is, if Us--I {A ~ 

t t 

=0}, and V~ =I{A ~ = 1}, that ~ U s ]d(M, A')~[ = 0  a.s., and that ~ V~ Id(M, A')~[ = 0  
a.s. o o 

By Lemma2.4, the previsible process U is zero on ((L,~)), so that the 
martingale U . M  is 
{~}-martingale, and 

= ( U .  M,.~')~=0 for 

Let T = i n f { t > 0 :  
constant on ((T, oo)), 
constant on ((T, oo)). 

--0. It follows, as in 

constant on ((L, oo)). Thus by Lemma3.2, U.M is a 
by Corollary 3.6, (U.M,A')=O. However, U.(M, A')~ 

t 

all s, and hence ~U~ d(M,A)~ =0. 
o 

o A~=I}. Then, by Lemma2.5, A t - 1  if t=>T, and A is 
since T>L. The martingale V. A' is zero on ((0, T)), and 

it o __ But if VT= 1 then A T_ - 1 ,  so that AAT=O; therefore V-A 
t 

the case of U, that ~V~]d(M,A')~[=O. 
0 

Theorem3.8. If  M~/[2(J) then M ' ~ 2 ( ~ ) .  

Proof The process d has jumps bounded by 1, so, if we set S,=inf{t=>0: At>=n}, 
then MS"eCg(A_). Thus, by 3.7, (MS")'=(M') s" is a {ff~}-martingale, and M' is a 
{~}-local martingale. 

We may decompose M as follows: M=U+V, where U, V E j { 2 ( J ) V  is a 
purely discontinuous martingale and jumps only at previsible times, and U 
jumps only at totally inaccessible times. Then [U, V] = 0, since U and V have no 
common jumps, and VC=0. See [9,II,8-11] for details. 

For notational convenience set 

o - {A,_<I}_A,_(Au_) I{A,_>0} .  H,=(1-A,_) (1-A,_)  11 o o -1 o 

Then H.(U,  Jt'), H.(v,A') are VF processes, so that U and V are {Nt}- 
semimartingales, since U' and V' are {fgt}-local martingales. 

Now U jumps only at totally inaccessible times, so (U,  A') is continuous, and 
hence H. (U,A') is continuous. Thus [U, U] =[U', U']. 

Let T be {~}-previsible. Then T is {fft}-previsible, and E(AV~lffr_)=O. 
But A V~=AVr+HTA(V,A') r, and therefore E((AV~)ZI~r_)=E((AVr)2[~qr_) 
-- (H r A ( V, ft') T) 2, SO that E(A VT) 2 ~ E(A V T )  2. 

However, the jumps of V' are contained in the jumps of V, and V' is purely 
discontinuous, so it follows that 

EEV', V']~=E ~ (A V~') 2 < E  ~ (AVe) 2 =E[V, V],. 
S ~ t  S ~ t  
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We now see that E[M',M'],<E[M,M]~ for t>0.  Since M is square integr- 
able E[M,M]~ < o% and the proof is concluded by applying Lemma 1.6. 

Corollary3.9. I f  M6~12c(3) then ' 2 M e~,oo(N ). 

Theorem 3.10. I f  X is an {Jt}-semimartingale then X is a {(~t}-semimartingale. 

Proof. We can write X = X o + M + B  , where MEd//loc(J ) and B ~ C ( J ) ,  and M o 
=Bo=0 .  It is enough to show that X r~ is a {N~}-semimartingale, for some 
sequence T~ of {Nt}-optional times, with sup T~= + oo; see [9,IV, T33]. 

n 
Recall the decomposition of Gundy, [9, IV, T8] : there exists a sequence (T~) 

of {~}-stopping times with lim T,= + o% such that M T ~ = u n + v  n, where 
U"~jC[2(J) and V~C/~(J). Thus we may write 

x T n =  Xo-]  - Un-}- V" + B= Xo +(U')' + (V" + B -  H. ( u~,Jt') ) 

completing the proof. 

Corollary3.11. I f  T is totally inaccessible relative to {~} then T is totally 
inaccessible relative to {N~}. 

Proof. Set Y~=I{t>_ T}. The dual previsible projection of Y relative to {Nt} is 
given by Y - H .  (~]~) ,  which is continuous. 

Note. Stricker [121, has proved that if {~} is any filtration, and {J4~} is a 
subfiltration of {~}, then any {~}-semimartingale adapted to {~}  is an {~'Y~t}- 
semimartingale. 

4. Structure of {Nt}-Progressive Processes 

In this section we establish some results which will be used in the proof of the 
representation theorem for {Nt}-martingales. 

Define {~}-optional times %m, fi,m, fi,m for n>  1, m>0,  and and some fixed 
r > 1, as follows 

/~nO ~ 0 ,  

{ o ft,* = inf  t>~nm. At < 

fin,, =fi~* A inf{t > %m: A~t>0  }. 

By Lemma 2.6(ii), and Lemma 2.7, we see that 

fi,m=fi*mAinf{t>%m'AAt>=~--~r }. 

Since A is increasing, and bounded for almost all co, A A t > - - ~  for only 

finitely many t, a.s. Thus, for each n, fl,m=fi~* for all but finitely many m, a.s. 
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Now A ~ is right continuous, so that %m>fl . . . .  1 whenever fl . . . .  1 =fi . . . .  1 and 
fl*m>enm' Consequently, because A ~ has left limits, the sequences (C%m)2=1, 
(fln~)2= 1, have no accumulation point in [-0, oo). 

Define a sequence 7, of {Nt}-optional times by setting 7 , = i n f t t > L : A ~ > l  t .  

L e m m a 4 . 1 .  (i) Suppose that T is an {~}-optional time, that T < L  [respectively: 
T <L] on {T< oo}, and that r > ~ , m [ T > c % ,  ]. Then r >  fl, m. 

(ii) g > fin,, on {L > %m}" 

(iii) [l-?,-I-~ U [[~,m]]. 
m>l  

(iv) ((L, oo)) _ Q) lie%m, fi~m))" 
n >  l , m >  l 

Proof (i) By Lemma2.6(ii) A~ on {T<c~}. The definition of fl,m now 
o _ { r < oo }, and hence ensures that T>fl ,~ .  If T < L  on {T<oo} then A r - O  on 

r > O;nm a.s. 
(ii) Set r= in f{u>a ,m:  C,=u}.  Then T < L  on { r <  oo}, so that A~ on 

{T < oo}. The right-continuity of A ~ now ensures that T > C~,m, and by (i) we have 
L>-_T>__fi,,~ on {L>%,,}. 

(iii) Choose co~f2, n >  1. By (ii) L(co) does not lie in any interval of the form 
((c%~,fln~)), so that for some m>0,  fl~,~_l(co)_-<L(co)<e,m(co). Consequently ?,(co) 

(iv) This follows from Lemma 2.4, and the inclusion 

We now turn our attention to the structure of {Nt}-optional processes, and 
{N~}-optional times. 

Lemma4.2. Let T be an {~}-optional time, and ~ a Nr measurable random 
variable. Then there exist d r measurable random variables t 1 and v such that for 
every co 

r = AT(CO ) t/(co) + (1 --AT(co)) V(co). 

Proof This is a simple consequence of Lemma 2.2. 

Proposition4.3. Let X be a right-continuous {~t}-progressive process. Then there 
exist {Jt}-progressive processes H and K, such that the processes X and (1 -A)  H 
+ A K  are identical. 

! ! i i Proof For p > 0  we may choose Hp, Kp such that X p = ( 1 - A p ) H p + A p K p .  
�9 �9 t ! . Define H and K by setting H t = l l m l n f H  p, Kz= l imin fK  p. H and K are then 

p ~ t  p ; I  

{~}-progressive, by [3, IV, T17]. It is easily verified that for every (t, co) 
X,(co) = (1 - A~(co)) H~(co) + A,(co) K~(co). 

Remark. It is not always possible to choose H and K to be {~}-optional, even if 
X is {N~}-optional. Consider the following example. Let B be Brownian motion, 
with Bo=0, r = i n f { t > 0 :  [Bt[--1}, and L be the last exit from 0 of the process BL 
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Let X t = I {t >L} sgn(B~). Then X is right-continuous, and {Cgt}-adapted, so {N~}- 
optional. We can choose H, K as follows: H is 0, and K~=sgn(B~+), if this exists, 
0 otherwise. If an{G}-optional choice of K existed then a previsible choice of K 
would exist (F2,V, T22]), so that A X L = K  L would be -~L- measurable, con- 
tradicting the fact that X is a {Nt}-martingale. 

All the trouble here arises at L, so that we do have the following positive 

result. Let r n = i n f { t > 0 : A ~ > l - ~ } .  

Lemma 4.4. Let X be a right-continuous {(qt}-optional process. 

(i) I f  X is constant on [[%, oo)), then H can be chosen to be right-continuous. 

(ii) I f  X is zero on ~_0, e~m)), and constant on [flnm, 00)), then K may be chosen 
to be right-continuous. 

Proof (i) We may take H to be constant on [[z,~, oo)). Define the {~}-progres- 
sire processes H', H" by setting H't=limsupH,,  H"=liminfHp,  and set T 

p i t  p,Lt 

=inf{t>O:H~'<H't}. Then T is the debut of an {~}-progessive set, and is 
therefore an {~}-optional time. For each co the path H.(co) follows X.(co) up to 
L(co), so that, by the right-continuity of X, we have T>=L. But then, by 
Lemma2.5(i), A~ so that T>z~. Since H is constant on [[%, oo)), it follows 
that H is right-continuous. 

(ii) We may take K to be zero on ~-0, %m)), and constant on ~]~m, ~)). Define 
K', K" and T as in (i). Now T < L, and T > c%~, hence, by Lemma 4.1, T > fi,m. 
Thus K is right-continuous. 

Theorem 4.5. Let T be a {fqt}-stopping time. Then there exists a sequence (S~)n~ 1 of 
disjoint {~}-stopping times such that 

~_T~ ~_ [[_L~ u 0 IS.I]. 
n = l  

Proof Let T~, T~ be the restrictions of T to {T<L}c~{T<%}, 
{ T > L} c~ {%~ < r < fi~m} respectively. Then by Lemma 4.1 (iv) 

n> l n> l , m >  l 

Set X=l~r,,oo)) , and choose H as in Lemma4.4(i). If R~=inf{ t>0:  H~= 1} then 
R~ is {~}-optional, and [[T~]] _c ~R~]]. Similarly, if Y=I~r . . . .  )) then K may be 
chosen as in Lemma4.4(ii), and if R ~  = in f{ t>0 :  K t=  1} then ~T~,,]] _ [ [ R , J .  

A suitable non-disjoint sequence (S~) therefore exists and by [2, IV, T17] a 
disjoint sequence can be found. 

5. Representation of Continuous {~t}-Martingales 

We make the following assumption: there exists a family {Mi: i~I} of con- 
tinuous elements of ~ 2 ( j )  with the martingale representation property for 
continuous {~}-martingales. By this we mean that if Z is a continuous element 
of Jg12oc(J), and (Mi, Z )  =0 for every i~I, then Z = 0 .  
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Theorem 5.1. The family {Mi': i~I}, consists of continuous elements of j~2(~), and 
has the martingale representation property for continuous { ~t}-martingales. 

We shall need the following simple application of It6's lemma for semi- 
martingales. 

LemmaS.2. Suppose that X, Y, Z are optional processes, that X and Y are 
semimartingales (r), and that X =  YZ. Let T = i n f { t > 0 :  Yt<~}. Then, if Yo>0, and 
A Z y I {T< ~}  is integrable, Z T is a semimartingale (r). 

Proposition5.3. Let Z be a continuous element of jgz(ff). I f  Z is zero on [O,L]], 
and (Z,  M i') =0 for every i d ,  then Z is null. 

Proof. Recall the definitions of the random times (~,m), (ft,,,), and (~,) 
from Section4. Define {~r times (6,s), n > l ,  s > l ,  by setting 6,s 

= i n f t t > v , : A ~ < ~ n ~ .  Since Z is continuous, it is sufficient to prove that 
k - - . /  

I((~,,~,s r Z is null for every n > l ,  s > l .  Fix n and s, and take the r in the 
definitions of (~,m) and (flnm) to be s. To simplify the notation we shall drop the 
subscripts n and s, and refer to 7, 3, (%), (tim): we shall also assume that 
Z = I((~, ~l' Z. 

By Lemma4.1 we have [I-7]]_~ U [[%]]. Set u tm=I{ t>7}I{7=%},  a {fft}- 
m__>l 

previsible process, and Zm= Um. Z. Then Z =  ~ Z m, and for each m, Z"  is a 
m > l  

continuous {ff~}-martingale, constant except on [[%, flm]l, and ( Zm, M ~') = U m 
�9 (Z,M~')  =0. 

We may now apply Lemma4.4 to Z'~: there exists a right-continuous {~}- 
optional process K", zero on [[0, am]] and constant on [[tim, ~)), such that Z m 
=AKm. An argument similar to that in Lemma4.4(ii) shows that if T is the time 
of the first jump of K", then T>=flm. K m is {~}-optional; so taking optional 
projections we have (zm)~ = A ~ Km. Now (Z~) ~ and A ~ both have left limits at tim, 

1 
o > " thus K"  also has a left limit at tim' Since Z m is continuous we and A~m_=2n s. 

may take K~" = K ~ ' _  for t >  tim, ensuring that K m is continuous everywhere. 
It follows from the equation (zm)~ ~  m, and Lemma5.2, that K m is an 

{~}-semimartingale (r). However K"  is also a {fqt}-semimartingale, by Theo- 
rem3.10. Consider the process [Km, M~]. Now zm=I{7=C~m} K m, and so, on the 
set {~ = C~m}, we have 

[K", M'] = [K' ,  M"] = [Z m, M"] = < Z", M " )  = O. 

Set T=inf{s_>__0: [Km, Mi]~>O}. Then T < L  on {T< oo}, and T>ct m, so that 
by Lemma 4.1(i), T>flm. But K"  is constant on [[flm, OO)), and [Km, M i] is 
continuous, and therefore T =  oo a.s., and [K m, M i] =0. 

As K ~ is an {~}-semimartingale (r) we may write K = N + B ,  where 
N~M/Z2(J) and BacK(J). Now <N~,Mi)=[K, Mi]=O, for every imI, therefore, 
since {M~: ieI} has the martingale representation property for {~}-martingales, 
N~=0. Consequently, by Lemma 1.3, KmEvIIo~(,,r 
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However Z m =AKIn: it follows that Z~e~or162 and therefore that Z m is null, 

since Z"  is a continuous {fq~}-martingale. Now Z = ~ Z% so that Z is also null, 
completing the proof. ~--> ~ 

Proposition 5.4. Let Z be a continuous element of jr I f  Z = Z  L, and (Z, Mi'> 
=0  for every i6I, then Z is null. 

The proof is very similar in idea to that of 5.3, and is therefore omitted. 

Proof of Theorem5.1. Note that if Z e J ~ ( ( r  and <Z, Mi'>=O, then <Zr, Mi'> 
--0 for any {(r time T. The result now follows from Propositions 5.3 
and 5.4. 

6. Representation of Purely Discontinuous {N~}-Martingales 

In this section we shall assume that J is the P-completion of a countably 
generated a-field j 0 .  Let # be an {~}-optional, integer-valued random measure 
defined on (0, oo) x E, where E is a Lusin space, such that M,  is ~-a-finite. 

By Lemma 1.5 the a-field (r is the P-completion of a countably generated a- 
field ~L0: let (G,),~= 1 be a sequence of ~r ~ measurable sets generating ~r ~ Recall 
the definitions of D, an {~}-optional subset of f2 x [0, ~),  and c~, an {~}- 
optional E-valued process, from Section 1. Define the {Nt}-optional process fl on 
E' = E u 2 Is by setting fls(e)) = c~s(co ) if s # L(o)), and fiL(~o) = (IG,(~o)),~ 1 e2n~. Let D' 
=Dw[[L]I, so that D' is a {~r subset of O x[0,  oc). We may now 
define a {Nt}-optional random measure #' on (0, oo) x E' by setting 

if(co; dt, dx) = ~ ID,(s , co) e(S, ps(~))(dt , dx). 
s > O  

Note that #' is integer valued, and that M~, is ~(ff)-a-finite: consequently #' 
has a {fgt}-dual previsible projection v', and there exists the space fr , ~r of 
r162 functions such that if 2 , UE(qloo(p,N), the stochastic integral 
U.(# ' -v ' )  is a purely discontinuous element of J//laor162 

Theorem6.1. I f  {Mi: i r  has the martingale representation property for 
{ ~}-martingales, then { Mi' : i~ I ; # ' -v '}  has the martingale representation proper- 
ty for {Nt}-martingales. 

If X, Y~,/g12r162 and X is continuous, and Y is purely discontinuous, then 
<X, Y> =0. Theorem 6.1 is therefore an immediate consequence of Theorem 5.3 
and 6.2, since if (Z,  Mi'> = 0 for all i~1, then Z r 0, and if <Z, U*(#'-v')> = 0 for 
all U~(r , ~r then Zd=O. 

Theorem6.2. I f  #--v has the martingale representation property for purely 
discontinuous {~}-martingales, then # ' - v '  has the martingale representation 
property for purely discontinuous {Nt}-martingales. 

Lemma6.3 (Jacod [5]). Let T be a {Nt}-optionaI time. A necessary and sufficient 
condition for all purely discontinous elements M of j12(N) whose jumps are 

2 t contained in [[_r]] to be of the form M= U*(#'-v') for some U~Nlo~(#,~ ) is that 
~ T = ~ T _  V a(fiT).  
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Lemlna 6.4. Let S be an {~}-optional time. Then ~s = ~s -  v a(fls). 

Proof Set W=(~s_Va(f is):  it is clear that  5tf_~N s. N o w  { L N S } ~ f , ,  since 
{L < S} e ~ s - ,  and {L = S} = {fis~2 N} sa(fls). 

Let F~a(C~s): then F c~{S#:L}6a(fls), as fls=C~s on {S=t=L}. Now a(C~s)C_Js, 
so that  F c~ {S = L }  eNL- Thus  F ~ {S = L} = GA A, where Ge~7(flL), and P(A) = O, 
for ~L is the P-comple t ion  of cr(flL) by the definition of  ft. We also have 
G c~{S = L }  ~a(fis): hence F belongs to the P-comple t ion  of a(fls). 

Since # - v  has the martingale representation property with respect to {~}, 
we have, from L e m m a  5.2, that  J s  = i s - v  a(as). N o w  J s - - - N s - ,  and we have 
proved that a(C~s) ~_ Jo v a(fls), hence J s  -~ yr. Therefore, by Lemma 2.2(i), Ns - 2~. 

Proof of Theorem6.2. Suppose that  Ze~L2c(N), and that  (Z ,  U , ( # ' - v ' ) } = 0  for 
U~N~or162 If T is any {N,}-optional time the same is true of Z T, so we every 2 , 

may  take Z6Jgz((~). 
Let Y be the purely discontinuous {Nt}-martingale whose sole j ump  is AZ L at 

time L. By L e m m a  6.3, and the construct ion of fiE, Y = U * ( # ' - - v ' )  for 
2 some UENIoo(#,N). It is clear that  U can be taken to be zero off 2 ~. Then 

[Z, U ,  ( # ' - v ' ) ]  =A(AZL) 2, which implies that AZL=O a.s. 
The process Z is r ight-cont inuous with left limits, so we may  find a sequence 

(T/) of {Nt}-optional times which exhaust the jumps of  Z. Then, by Theorem 4,5 
there exists a disjoint sequence (S j) of  {~)-opt ional  times which also exhaust the 
jumps of  Z. Let Z J be the {~qt}-martingale generated by the jump  of Z at S s. By 
Lemma5.3  there exists USe 2 , Nlo~(#,N) such that Z J =  Ui,(# ' -v ' ) .  But 0 = ( Z ,  U s 
�9 ( # ' - v ' ) } = ( Z ,  ZS}=(Z~,ZS},  which shows that  Zs=O. Thus Z has no jumps, 
and is therefore null. 
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