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1. Introduction 

Let (X, 5 , / 0  be a measure  
= L  I(X, 5, #), satisfying 

~ f dl~= ~ r f  dll f ~L+l. 

space and T a posit ive linear opera to r  on L 1 

(1.1) 

Such an operator ,  necessarily a contract ion of L1, is called Markovian. The 
relat ions below are often defined only modu lo  sets of  measure  zero;  the words  a.e. 
m a y  or m a y  not  be omitted.  

We consider a sequence of Ui functions (f0, f~, f2, -..), and denote  their par t ia l  
sums by s,: 

s~=fo+...+f,_l, n > l ;  s0=0 .  (1.2) 

(f,) is called a superadditive sequence or process, and (Sn) a superadditive sum, iff 

Sk+,>Sk+ Tks,, k,n>O, (1.3) 

or equivalently 

k + n - - 1  

f~> Vks,, (1.3') 
i = k  

and 

y = s u p  ~ _1 s dkt< oo. (1.4) 
n n n 

7 is the time constant of the process. (1.1) and (1.3) imply that  

1 
hence lira ~ s, d # - -  y (see e.g. [8], p. 244). 

n n 
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(f,) is called subadditive iff ( - f , )  is superadditive; additive iff it is both 
superadditive and subadditive. J.F.C. Kingman developed in a series of articles (see 
[9, 10, 11]) the theory of subadditive processes, in particular proving the ergodic 
theorem in the case when #(X)= 1 and T is induced by a measure-preserving 
invertible point-transformation z by the relation 7 f = f  ~ ~. Other proofs were given 
by Burkholder who used the theorem of Komlos (cf. contribution to the discussion 
of [10]), Del Junco [4], and Derriennic [5]. Here we consider superadditive rather 
than subadditive processes for the following simple reason: A not necessarily 
positive superadditive process (f,) obviously dominates the additive sequence 
(T"fo). If this sequence is subtracted from (f,), then the problem of convergence is 
studied in the pleasing context of positive operators acting on positive, rather than 
negative, functions. Thus e.g. maximal lemmas remain maximal rather than 
becoming "minimal". But the two theories, superadditive and subadditive, are of 
course entirely equivalent. 

In Section 2 we prove that (f,) is dominated by an additive process (T" 6) with 
6 d/z = 7, where 7 is the time constant of(f,), c5 is called an exact dominant for (f,) or 

n - - 1  

(s,). In Section 3 we show that the asymptotic behavior o f ~  T i c5 determines that of 
0 

(s,), and we derive from this a ratio ergodic theorem generalizing at the same time 
Kingman's theorem, the Chacon-Ornstein theorem, and Chacon's ratio Theorem 
[3] (case T > 0). 

Kingman's elegant proof of this ergodic theorem depends on weak* compact- 
ness of L* (hence on the Hahn-Banach theorem), which appeared natural to 
Professor Kingman but was much deplored by authors of alternate proofs. The 
main arguments given below are measure-theoretic rather than functional- 
analytic 1. We also give an elementary version of Kingman's original proof. 

Kingman's theory is remarkable for its beautiful applications. We do not have 
as yet any probabilistic applications of our generalization; the most applicable 
seems Corollary 1 to Theorem 3.2, since conservative and ergodic Markovian 
operators arise naturally in the theory of nullrecurrent Markov chains, and Harris 
processes (cf. e.g. Orey [14]). But one also obtains a superadditive process if one 
restricts any additive (or superadditive) process to the conservative part of the space 
(cf. (3.7) below). Theorem 2.1 may therefore be used to extend the fundamental 
Chacon-Ornstein theorem from the conservative case, where the proof is easier (cf. 
Neveu [13]), to the general case. In fact, the superadditive ratio theorem in 
Section 3 depends only on the conservative case of Chacon-Ornstein, but implies 
the general case, and the case T > 0 of the Chacon ratio theorem. 

2. Existence of Exact Dominants 

An exact dominant of a super-additive process (f,) is an U i function 6 such that 
6 d # = y and 

n - - 1  

T~g)>s, n=  1, 2, .... (2.1) 
i = 0  

1 They depend on the countable axiom of choice, but not on the stronger maximum ideal principle, 
required for the proof of the Hahn-Banach theorem 
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Theorem 2,1. Let Tbe a Markovian operator. A superadditive process admits at least 
one exact dominant. 

Theorem 2.1 in terms of subadditive processes may be stated as a decom- 
position theorem: A subadditive process is a sum of an additive process and a 
positive purely subadditive process: one which does not dominate any positive 
additive process. Thus this theorem generalizes Kingman's decomposition (Theo- 
rem 1.6 [11]). In the case when T is generated by a measure-preserving point- 
transformation, the following lemma is due to Kingman. 

Lemma 1. There exists a sequence (~om) of L] functions such that ~ (om dl l < 7 for all 
re>l, and for l <n<m, 

T ~q0~> 1 -  s,. (2.2) 
i = 0  

Proof. Let 

1 'm 
(s~- Ts~_ O. 

i =  = 1  

By (1.3), Tsi_i~si, hence q~m>0. Also, 

1 ~ 1 
~q~md#=: E ~(si-Tsi-Od#=m~Smd#<=7 

" ~  i =  1 

by (1.1). Finally, if 1Nn<_m, then 

n - 1  r n - I  n - 1  

m E r'  = T E s, + Z T' 
i = 0  i = 1  i = 0  

= s ~ + ( m - n ) s . +  y~ "-~ r s i > ( m - n + l ) s  ~. [] 
i = 1  i = 1  

We will now assume that # is a a-finite measure and ~ is generated by a 
countable class ~ .  Routine arguments show that this is no loss of generality. Let 
heL+l be a fixed function such that h>O a.e. Let (q~) be the sequence defined in 
Lemma 1. We may assume, if necessary choosing a subsequence of (q~m) by the 
diagonal procedure, that 

lira ~ [(T ~ (Ore) A (jh)] d# 

exists for each A s ~  and for each integer i,j>O. For a fixed j, the sequence 
((T i (ore) A (j h)) is dominated by the integrable functionjh. Since sJ generates 5, this 
means that for each i,j > 0 there is an L~-function )w such that w-lira (T i ~om)A (jh) 
= 2is, where w-lim denotes the weak limit in L 1 . For a fixed i > 0, the sequence ()@ is 
non-decreasing in j and, therefore, lira 1"2~s=2~ exists a.e., and also in the strong 

j ~ o o  

topology of L1, since ~ 2~ d# =< sup ~ q)m d# =< 7. Now (2.2) implies that if n < m, 

n - - 1  n 1 r - -  1 1 - ~  

[(T ~Pm) A (jh)] ~ T go m s. Ajh, 
i =  0 i =  L J \ m l  0 
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which shows that  for each n > 1 

n - - l .  

2 , j ~ S n A  j h ,  
i=O 

hence 

n - 1  

hi>s . for all n > l .  (2.3) 
i = O  

We now claim that  T2, =< 4, + 1 for each i > 0. To show this, it is enough to show 
that  T)~ij < 2~ + 1 for each j > 0. For  a fixed j > 0 and for a given c > 0 we can find an 
integer k>_0 such that  T(jh)<kh+g,  where g~L~ and ~ g d # < c .  Now T is 
cont inuous in the  strong, hence also weak, topology of L 1, and therefore 

T2i j=  r{w- l im (Titp,~ Ajh)} " ' = w-hm T[(T ~om) ajh] 

< w-lim [(T '+ ~ rpm) A T(jh)] 

< w-lira [ ( r  ~0,,) A (kh + g)] 

_-< w-lira [ ( r '  + 1 r ~) A (k h) + ( r  i + ~ (p~) A g] 

<2(/+ 1),k+g, 

which shows that  T2,j < 2 i + 1. 
Hence  we have 

2 i ~--- ( 2  i - -  T2, _ 1) + T(2, _ 1 - T2, _ 2) '1- " " " JF T i - 1 ('~1- T)~o) + Ti 2 o 

with all the summands positive. Now 

7 >_- ~ zt, d # = ~ [(2, - TJi,_ 1) + ()~,-a - T2,_ 2) + " "  + (21 - T2o) + 20] d #. 

Define 

6 --20+ ~j (2,+ 1 - T,~,), (2.4) 
, = 0  

n - 1  

then ~ 6 d # < 7 ,  and ~ T' f>)~o+21+. . .+)~ ,_ l>s ,  by (2.3). This shows that 
i = 0  

j 6 d # > ~ s , d #  for each n >  1. Since J~ s, d#--~ 7, ~6 d # = 7 .  6is  an exact 
4 

dominant  

for the process. [ ]  

We also give another  p roof  of Theorem 2.1. Consider  at first the case T f = f o z  
where ~ is an invertible, measure-preserving point- t ransformat ion of (X, ~, #). We 
show that  there exists an elementary version of  Kingman's  original argument  (cf. 

+oo  

[11-]). Let  d '  be a countable  algebra generating ~ and set d = U z- i  ~r Re- 
'-= -- oO 

placing if necessary ~0,, by a subsequence and using diagonal procedure,  we may 
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assume that 

lira ~ (pmd#=O~(A) i=0 ,  +1 ,_+2 , . . .  (2.5) 
z - i A  

exists for each A c ~ .  Now recall the Yosida-Hewit t  theorem ([16], [6]): If ~b is a 
charge (a finite, finitely additive, non-negat ive set-function) on an algebra ~r tfien 
there exists a unique maximal  measure dominated  by ~b, denoted rn (~), and given by 

[m(tp)](A)=inf~ ~(A~), A~d, (2.6) 

where the infimum is taken over all countable  part i t ion {Ai} of A, {A~} c ~' .  ~ = ~ 
- m(0 ) is necessarily a pure charge, i.e. ~z does not  dominate  any non-null  measure. 
As may be surmised from (2.6), there exist completely elementary proofs of  this 
result: it is easy to check directly that re(O) defined by (2.6) has the announced  
propert ies (see e.g. [15]). It also easily follows from (2.6) that  if ~,o, ~1, ..., ~ ,_  ~ are 
arbi t rary charges, n > 1, then 

H2(ff/0-~-"" ~-if/n_ a ) =  m(Oo)--~ - --. ~- m(@n_ a). (2.7) 

Iff~L+~, denote  by f./~ the measure defined by 

(f. #)(A)= ~fd#. 
A 

Let t)~ be given by (2.5), 2~ = mop ), then (2.6) and the invariance of d imply that  2 i 
= z - i 2 o  for all i. F r o m  (2.2) it follows that for each n >  1 

n--1 

0 

hence by (2.7) 

n--1 n--1 n--1 

m(~o Oi)=~/ti=~2~176 o on ~ ' , h e n c e o n ~ .  

Therefore  

l n - 1  
2o (X)= l im  n ~ ~ ( 2 o ~  �9 

d)~o 
But ~o (X) < 7 implies 2 0 (X) __< 7. Hence  2 o (X) = 7, o = ~ is an exact dominant  for 
S n �9 

It appears that there is no "e lementa ry"  opera tor  version of this argument.  A 
non-e lementary  one may go as follows: Let  L be a Banach limit (cf. [6]), and set 

4,o(A) = C[(~om �9 #)(A)] ,  ~ t ~ 8 .  

(0o is of course a weak* limit point  of L *  .) Let  T** be the second adjoint  of T. Let  qo 
= m(~o), ~o = 0o - qo; then r/o = s 1 �9 #. Let  t/a = re(T** ~o), 7cl = T** rc o - q~; then t/o 
+ T~lo+th >s2. #. In general, given re, let t/,+~ = m ( T * *  re,), ~,+a = T * * r c , -  t/,,+ a. 
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co n - -1  n - -1  n - - 2  

Set t / = E r h ,  then for each n, E Tirl > E Ti rlo + E Ti rll +" 
0 0 0 0 

foIIows that ~/(X)=% Set ~5=dtl/d#. 

+ ~ _ 1  >s~.#.  It  

3. Ratio Ergodic Theorem 

We consider in this section sub-Markovian operators: positive linear contractions 
o fL  t . Recall some known facts: The space X decomposes into the conservative part  
C and the dissipative part  D: 

oo 

I f f e L l , f > O  , then ~, T~f= co on C, < co on D. Under T no mass escapes from 
C to D; hence o 

T"()~cf)<_)~cT" f feL+l, n=0 ,1 , . . . .  (3.1) 

If T is conservative, i.e. X = C, then the subsets B of C such that T* 1B = 1~, called 
invariantfor T, form a a-algebra 3;. The Chacon-Ornstein theorem (see e.g. [7], p. 41 
or [12]) then asserts that for any two functions g, h~L~, the ratio 

n - 1  

Tig 
0 

n - 1  =R,,(g,h) (3.2) 
Tih 

0 

converges on the set T~h > 0 to a finite limit R (g, h), measurable with respect to 

3;. The mapping g~R(g,h) .h  is a Markovian operator on L1, and 

yR(g,h).hdl.t=ygdl~ for each B~3;. (3.3) 
B B 

Theorem 3.1. Let T be a conservative operator and let s. be superadditive sums with an 
exact dominant ~. Then 

lira n - - - T ~ :  i a.e. on Ti,5>O . 

. . . .  ~ T ~  
0 

1 
Lemma 1. Let ak == S k, then 

k 

n- -1  

~,, Tiak <=s~+k for all n>=l. 
i = 0  

(3.4) 
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Proof We have 

n-1 l n - 1  
E r~ak=; E risk 

i=0 i=0 
1 " - I  l n+k-1 1" 1 

i=0 i= i=0 

where the first inequality follows from (1.3) and the last inequality from the fact that 
(s,) is a non-decreasing sequence. 

Proof of the Theorem. The right-hand side of (3.3) remains unchanged when g is 
replaced by r ig ;  hence R(Tig, h) =R(g, h) on the set {h > 0}. More generally, R(g, h) 

=R(g',h') whenever g '=  ~ cqTig, h'= ~ ~iTih, where cq, fli are constants >0, 
i=0 i=0 

with ~, c~ i = ~ fll = 1. It follows that 

n--k 
E Tig 

R(g, h) = lim i= o (3.5) 

" ~  ~ Tih 
i=O 

whenever k is a fixed integer, positive or negative. Now let s = ~ el Ti 6 with ei > 0, 
~ i  = 1. For  each k we have by (3.4) and (2.1) i=o 

n--l--k n--1 
r iG<s.  < ~ Ti6. (3.6) 

i=0 i=0 

?f Let R and/~ be, respectively, lira inf and lim sup of s, T i 6, then by (3.5) and 
/ i = O  

(3.6) 

R (ak, 6') <--_R _</~ <R(6, E). 

Finally, again by (3.3), 

, , < , < - , < , ~akd#=~R(ak, 6)6 d#=SR6 d#=yR6 d#=f6 d#. 

But limSakd#=7=56'd #. Hence R = / ~ =  1 a.e. on the set 
k 

{6'>0} = (  o~ Ti6 >0}.  D 

Given a set A ~  let T A be the operator defined by TAf=ZA" T(X A,f), f~L  1. 
Note that T c is conservative; let 3; be the a-algebra of its invariant sets. 

Theorem 3.2. Let s. and s'. be superadditive sums with respect to the same sub- 
Markovian operator T. Then limsn/s' n exists (and is finite) a.e. on Cc~E where E 
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= {sup s', > 0}. I f  in addition either 
n 

a) T is Markovian or 
n - - 1  

b) on Dc~E s, is of the form ~ Ti 6 for some 6~L+1, then lim(s,/s',) also exists on 
D c~E. o 

Proof lim(s,/s',)=(lim~s,)/(limTs',) clearly exists on D ~ E  and is finite, if 
lim ]" s, < oQ on D, which holds if T is Markovian by Theorem 2.1. 

It now suffices to consider C. By (3.1) and (1.3') 

rk(zc �9 s,) < Zc( Tks,) < Zc , (3.7) 
. =  
t k 

hence the sums ZcS, are superadditive with respect to T c (and T). Therefore we may 
assume without loss of generality that X = C. Now apply Theorem 3.1. 

Corollary 1. Let X = C and suppose ~ trivial. I f  s, and s', are superadditive sums with 
time-constants 7 and 7', ? '>0,  then s,/s',~7/?' a.e. on X. 

Proof 7' > 0 implies that E = {sup s', > 0} = X. Let 6 and 3' be exact dominants for s, 

and s',. (3.3) implies that R(6, 6') = ~ 6 d#/~ 6'd# = ?/?'. [] 

We note that the argument following formula (1.4) shows that 

lim-1 [ s,d# = sup 1 S s,d# = a(B), (3.8) 
n ~  n n B  

exists for each Be~:. The proof of Theorem 2.1 applied to T c shows that if ~c is an 
exact dominant for Zc.S,, then 

a(B)=~6cd # B ~ .  (3.9) 
B 

The identification of the limit of s,/s', in the general non-ergodic case becomes 
however more transparent if we assume g(X) = 1, which by the following standard 
argument does not involve any essential loss of generality: Since # is a-finite, 
L 1 (X, ~, g) is isomorphic to L 1 (X, ~, fi), where f i(X)= 1. Under this isomorphism 

T is mapped on T as follows. If~ = r. #, ~f=l_ T(f .  r) , f~L 1 (~). The identification of 
F 

the limit in terms of T on LI(~) gives one in terms of T on LI(#). 
We now identify the limit, and at the same time slightly extend our results so as 

to connect them with [3]. Call s, extended superadditive if it satisfies (1.3), but not 
necessarily the boundedness assumption (1.4). A sequence (f,) in L~ is called 
admissible ifffor each g in L~ and for each integer i, g <fi  implies Tg <fi+ 1. Chacon's 
theorem [3] in the case of positive operators asserts that s,/s', converges a.e. if s, is 
additive and s', is a partial sum of an admissible sequence. It is easy to see that a 
partial sum of an admissible sequence is extended super-additive. Therefore this 
theorem is a particular case of the following: 
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Theorem 3.3. Suppose that T is a sub-Markovian operator, s~ is super-additive, s', 
extended super-additive. Let  

s = sup~ n E (s~ Zc), sup n E (s, Zc) on C. 

The following limits exist a.e. on C: 

lim-1 E'~(s, Zc) = s < 0% (3.10) 
n 

lira 1 E.~(s, " Zc) = s' < oo. (3.11) 
n 

Let E = {sup s', > 0} ; then l im (s,/s') = s/s' a.e. on C n E. l im (sjs',) 
n 

= lira T s j l i m  ]" s', < vo exists also a.e. on D n E if either 

a) T is Markovian, or 

b) s n is additive on D. 

Proof. The convergence on D n E is p roved  as in Theo rem 3.2. Now consider C. The  
restriction of an (extended) super-addi t ive sum to an invar iant  subset of  C, in 
par t icular  to C itself, is again (extended) super-addi t ive;  therefore we may  and do 
assume in the p roof  that  X = C. N o w  T* 1B = 1B for each B in .~ implies E'~(Tf) 
= E'~f; therefore (1.3) implies (3.10) (cf. [8], p. 244). Similarly one proves  (3.11), and 
also the analogue for s', of  (3.8), with o-'(B) now < c o  for each Be.3. By Fa tou ' s  

l e m m a  ~ s dg  < ~(B) for B c .~; the inverse inequali ty also holds by (3.8). Thus a = s#  
B 

on .~, and  similarly o ' = s ' #  on .% Let  F ~ = { i - l < s ' < i }  for i =  1,2, . . . , F =  U F~, G 
= X -  F. I f  B is invar iant  and conta ined in G, then a'(B)= oo. The  appl icat ion of 
Theo rem 3.2 to the M a r k o v i a n  conservat ive opera tors  TFi shows that  lira (s,/s'n) 
exists a.e. on F~ c~ E, hence on F c~ E. To  identify this limit, we note  that  if3 is an exact 
dominan t  for s,, then by (3.9), s=E'~3. Proceeding similarly with TFi , s'n, a' and 
applying T h e o r e m  3.1, one identifies lim(sJs',) on Fr~E as s/s'. I t  remains  to 
consider  G c~ E. 

Let  a k =~Sk; by T h e o r e m  3.1, the p r imed  version of (3.6), and (3.5), one has 

n - 1  
T i(~ 

l i m ~ = < l i m  o E'~6 n - ~ - k  - -  .~ , ~ 0  a s  / c - - ~ o o  
n n ~ Tiak' E ak 

0 

on G c~ E. Hence  on this set lim (s,/s',)= O. [] 

We note  that  s,/s', need not  converge on D n E if s, is not  addit ive and T is not  
Markovian .  To  see this, it suffices to consider the case T = 0. 

Recent ly Y. Derr iennic  [5] gave a nice direct p roo f  of  K ingman ' s  theorem,  not  
based on the decompos i t ion  theorem (i.e., in our context, Theo rem 2.1). It is 
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s imi la r ly  poss ib le  to give a di rect  p r o o f  of  the  ra t io  T h e o r e m  3.3. W e  on ly  s tate  the  
essent ia l  p r o p o s i t i o n  which  we have  es tab l i shed  in  the  course  of  such a proof.  The  
detai ls  are n o t  given,  b e c a u s e  the  p r o o f  based  o n  T h e o r e m  2.1 seems shorter .  
A s s u m e  # ( X ) =  1. Le t  s a n d  s' be  as in  T h e o r e m  3.3. 

Proposition 1. Let  E ~ C and assume that l i m  sup  (s, - s',) > 0 a.e. on E. Le t  I (E) be the 
minimal invariant set in Z containing E. Then 

S s d # >  ~ s 'd#.  
I(E) I(E) 

P r o p o s i t i o n  1 m a y  be  cons ide red  as the  supe radd i t i ve  ve r s ion  of  Brune l ' s  

l e m m a  [2],  in  the  form g iven  to it in  [1].  
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