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1. Introduction 

The last ten or so years have produced an explosion in the amount of research on machine 
learning. This rapid growth has occurred: largely independently, in both the symbolic 
and connectionist (neural network) machine learning communities. Fortunately, over the 
last few years these two communities have become less separate, and there has been an 
increasing amount of research that can be considered a hybrid of the two approaches. 
This extended abstract reviews some of the research that combines the symbolic and 
neural network approaches to artificial intelligence. 

We will not attempt to define precisely the essential differences between the symbolic 
and connectionist approaches, as that would lead to a lengthy debate far beyond the scope 
of this report. If some distinction is needed, we can make the coarse approximation that 
symbolic approaches focus on producing discrete combinations of features, while neural 
approaches adjust continuous, non-linear weightings of their inputs. However, we will 
assume that understanding the fundamental differences between the two paradigms is a 
future research issue, and we will focus on some of the research that incorporates what 
traditionally might be considered aspects of both camps. 

There are a large number of ways to combine symbolic and connectionist AI. For 
example, Utgoff (1988) developed an algorithm that closely integrates decision trees and 
perceptrons. One could also have a loosely-coupled hybrid system in which "high" level 
decisions are made symbolically, while "low" level ones are made by neural networks 
(e.g., Gallant, 1988; Pomerleau, Gowdy, & Thorpe, 1991). Recent special issues of 
journals (Hendler, 1989; Hinton, 1990) present additional approaches. However, rather 
than attempting a comprehensive review of all the symbolic/connectionist hybrid methods 
explored, we will focus on the framework that Figure 1 illustrates. 

In this framework, the learner first inserts symbolic information of some sort into a 
neural network; it is becoming increasingly clear that a learner must make effective use 
of prior knowledge in order to perform well (Geman, Bienenstock, & Doursat, 1992). 
Once in a neural representation, it uses training examples to refine the initial knowledge. 
Finally, it extracts symbolic information from the trained network. The research of 
several groups fits nicely into this framework, and promising results have been achieved. 
The remainder of this paper discusses some of this research and points out open issues 
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Figure 1. A framework for combining symbolic and neural learning 

in each of the three phases. But before continuing, it should be noted that these three 
steps are somewhat independent and researchers have studied various combinations of 
them. 

The remainder of this article is organized around four questions. We first consider 
why one should use neural networks for symbol-oriented learning tasks. We then re- 
view research that addresses questions about each of Figure l 's three phases: insertion, 
refinement, and extraction of symbolic information. 

2. Why use neural networks for symbol-oriented learning tasks? 

Should one avoid using connectionist methods to learn tasks that inherently deal with 
symbols? Are not neural networks primarily applicable to "low-level", perceptual tasks? 
We will argue in this section that the answer to these related questions is "no." 

Over the last few years, starting with three papers published simultaneously at IJCAI- 
89 (Fisher & McKusick, 1989; Mooney et al., 1989; Weiss & Kapouleas, 1989) and 
followed by other studies (e.g., Atlas, 1990; Dietterich, Hild, & Bakiri, 1990), sev- 
eral groups have empirically compared symbolic learning algorithms, such as Quinlan's 
(1986) ID3 decision-tree algorithm, to connectionist approaches, such as Rumelhart, Hin- 
ton, and Williams's (1986) backpropagation method for training neural networks. These 
studies did not produce consistent results, but their coarse summary is that trained neural 
networks have at least comparable accuracies to induced decision trees on tasks that can 
be considered symbol oriented. Hence, it appears worthwhile to investigate using neural 
learning methods to produce and refine symbolic information. 
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In addition, neural network approaches have proven successful on a wide range of "real 
world" tasks, such as speech understanding (Lippmann, 1989), handwritten-character 
recognition (Le Cun et al., 1989), control of dynamic systems (Jordan & Rumelhart, 
1992), gene finding (Uberbacher & Mural, 1991), and language learning (Touretzky, 
1991). These experiments strongly suggest that connectionist learning is a powerful 
approach, and the use of neural networks with symbolic knowledge merits exploration. 

Finally, it is important to note that there are connectionist architectures beyond the sim- 
ple, feed-forward, single-hiddenqayer neural networks. In particular, recurrent networks 
(Elman, 1990; Jordan, 1986), with their feedback loops and "memory", are especially 
appealing for application to symbolic tasks that have a sequential nature. 

3. How can we get symbolic information into neural networks? 

Assuming one is convinced of the merit of Figure l 's framework, techniques for inserting 
symbolic information into a neural network are needed. One can think of this preexisting 
information as prior knowledge about the task at hand, and the question is: how can 
neural networks effectively use these "hints" (Abu-Mostafa, 1990)7 

One answer, the KBANN approach (Towell, Shavlik, & Noordewier, 1990; Tow- 
ell, 1992), creates knowledge-based artificial neural networks by producing neural net- 
works whose topological structure matches the dependency structure of the rules in an 
approximately-correct "domain theory" (a collection of inference rules about the current 
task). Figure 2 contains a simple example. KBANN has been applied to successfully 
refining domain theories for real-world problems such as gene finding (Towell et al., 
1990), protein folding (Maclin & Shavlik, 1993), and the control of a simple chemical 
plant (Scott, Shavlik, & Ray, 1992) 

Various groups have found that knowledge-based neural networks train faster than do 
"standard" neural networks (Berenji, 1991; Oliver & Schneider, 1988; Omlin & Giles, 
1992; Shavlik & Towell, 1989), presumably because the initial information is used to 
choose a good starting point for the network. More importantly, though, experiments 
have shown that knowledge-based networks generalize better to future examples than do 
standard networks, as well as several other methods for inductive learning and theory 
refinement (Omlin & Giles, 1992; Maclin & Shavlik, 1993; McMillan et al., 1992; 
Roscheisen, Hofmann, & Tresp, 1992; Scott et al., 1992; Towell, 1992; Towell et al., 
1990; Tresp, Hollatz, & Ahmad, 1993). One can attribute this improved generalization to 
two aspects of the insertion process. The domain theory produces a useful inductive bias 
by (a) focusing attention on relevant input features and (b) indicating useful intermediate 
conclusions (which suggest a good network topology). 

Towell (1992) has shown that KBANN's knowledge-based networks better refine a 
domain theory than do purely symbolic theory-refinement systems. This holds even when 
one compares the rules extracted from the trained network to the refined rules produced 
by the symbolic theory-refinement systems; these results provide a justification for the 
complex representational shifts in Figure l 's framework. One can convert the rules that 
KBANN extracts to disjunctions of conjunctive rules (usually with a great increase in the 
number of rules), so that the two approaches are searching the same hypothesis space. 
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Figure 2. A sample application of the KBANN rule-insertion algorithm. Frame (i) contains a simple domain 
theory, while frame (ii) shows the dependency structure of these rules. The third frame shows the network 
KBANN creates. The thick lines in (iii) correspond to the dependencies in the rules; KBANN sets the weights 
on these links in such a manner that nodes are highly active only when the domain theory supports the 
corresponding deduction. Thin lines in frame (iii) represent zero-weighted links that KBANN adds to the 
network to allow refinement of the domain theory during neural training. 

While Towell's empirical results may well be problem-specific, a broader conclusion is 
that searching the continuous weight space of neural networks is better on "real-world" 
problems than searching the combinatorial space of discrete rules - complex concepts 
in one representation may be much simpler in the other. A deeper understanding of 
the relative merits of the symbolic/connectionist and the purely symbolic approaches to 
theory refinement is an important open research issue. 

In addition to the simple, propositional rules shown in Figure 2 and used in much of 
the early KBANN work, researchers have produced techniques for mapping several other 
forms of prior knowledge into networks. Fu (1989) and Mahoney and Mooney (1993) 
map rules containing certainty factors. Berenji (1991) and Masuoka et a1.(1990) map 
fuzzy-logic rules, while McMillan, Mozer, and Smolensky (1992) use gating networks 
(Jacobs et al., 1991) to map production rules. Scott et a1.(1992) and Roscheisen et al. 
(1992) map mathematical equations, demonstrating that the KBANN approach does not 
require logic-oriented domain theories. Finally, several groups have mapped (generalized) 
finite-state grammars into recurrent neural networks (Fransconi et al., 1991; Maclin 
& Shavlik, 1993; Omlin & Giles, 1992; Scott et al., 1992). Generalized finite-state 
grammars are particularly interesting to the theory-refinement community, as one can 
view them as state-dependent domain theories, a richer type of domain theory than 
is usually studied in this subfield of machine learning. These approaches differ from 
KBANN to various degrees, but the essential idea is the same: use prior knowledge to 
decide how to initialize a neural network. 



SYMBOLIC AND NEURAL LEARNING 325 

There are several open questions regarding the knowledge-insertion process. We would 
like to know what other types of prior knowledge can be inserted into networks. For 
example, methods are lacking for inserting first-order theories. The last few years have 
seen much progress in inductive logic programming (Muggleton, 1992; Quinlan, 1990), 
and it would be useful to see if (and how well) neural networks can refine rules containing 
variables. To do so, one needs to devise methods for dealing with unbounded symbolic 
structures in neural networks (whose size is usually fixed following training). Recur- 
rent networks provide one method of dealing with unbounded structures, and Pollack's 
(1990) recursive auto-associative memories provide another. Also relevant is research on 
teaching networks to recognize context-free grammars by having them learn how to use 
a stack (Das et al., 1993; Giles et al., 1990; Mozer & Das, 1993). Unbounded structures, 
such as stacks, can be handled in fixed-size networks by somehow altering resolution (in 
some sense) so that the product of the information being stored and its resolution equals 
a constant. 

Towell (1992) has shown that knowledge-based networks are good at deleting irrelevant 
information in approximately-correct domain theories, but do not handle "impoverished" 
domain theories as well. Hence, another open issue is how to deal with domain theories 
that are incomplete. We will return to this topic in the next section. 

Converting symbolic information to a neural-network representation, followed by con- 
nectionist learning, has been shown useful by several research groups. This leaves us 
with the central question about the insertion phase: 

How can we re-represent symbolic knowledge and learning tasks so that powerful 
numeric-optimization search methods are applicable? 

4. How can network refinement be guided by symbolic knowledge? 

Once prior knowledge is inserted into a network, it has to be refined and enhanced. A 
simple way of doing this is to run backpropagation, or some other standard connectionist 
training procedure, on the training examples. However, there are two ways to use 
symbolic information to improve training: (1) one could use symbolic learning methods 
and ideas to focus the adjustment of the network, both its weights and topology, and (2) 
one might alter backpropagation to better match the symbolic nature of a given problem. 
In this section we discuss both of these approaches. 

One might ask, where is the symbolic learning in the approaches presented so far? 
One answer is that domain-theory refinement, which is what knowledge-based networks 
do, addresses the incorrect-theory problem of explanation-based learning. In fact, this 
perspective was the initial motivation for the KBANN research (Shavlik & Towell, 
1989). (Recently, Mitchell and Thrun (1993) proposed an explanation-based, though 
non-symbolic, method for training neural networks for reinforcement learning tasks.) 

But what about performing symbolic inductive learning in conjunction with neural 
learning? As mentioned above, Utgoff's (1988) perceptron trees are one method for 
doing so, but his algorithm is not applicable to the refinement of prior knowledge. 
Recall that in knowledge-based networks, input features fall into two classes: those that 
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are mentioned in the domain theory and those that are not. Since the domain theory 
can be imperfect, one cannot ignore the unmentioned input features; they are typically 
connected to other units with low-weighted links. Towell and Shavlik (1992) proposed 
a technique that uses symbolic inductive learning to identify good input features, which 
are then weighted more heavily. They found this preprocessing of the network led to 
better generalization. 

Also, as mentioned, a domain theory may be missing a number of rules. Hence, it 
will be mapped into a network that is too small. In order to learn these missing rules, 
additional nodes will have to be added to the network during training. Opitz and Shavlik 
(1993) developed an algorithm that interprets networks symbolically to decide where to 
add new nodes. 

There have been several changes to standard connectionist learning motivated by sym- 
bolic problems. Rather than minimizing mean-squared error, the cross-entropy error 
function (Hinton, 1989) is a better choice for knowledge-based networks (see Towell 
(1992) for an explanation). Refining rules with certainty factors requires the use of a 
different activation function for nodes (Fu, 1989; Mahoney & Mooney, 1993). One may 
wish to constrain weight changes to maintain the symbolic interpretation of the network 
(McMillan et al., 1992). Finally, networks often decay their weights toward zero during 
training (Hinton, 1986). Weights in knowledge-based networks should decay toward their 
initial values (Hinton, personal communication; Tresp et al., 1993), thereby encouraging 
the network to preserve the knowledge in the initial domain theory. 

There are several open questions regarding the use of symbolic information to aid the 
refinement step. How can one detect that extra nodes are needed to generalize well, and 
where are the best places to add them? Folk wisdom says that backpropagation does 
not work well in networks with many layers of hidden units, because the error signal 
becomes too diffuse. Can one use symbolic information to focus the back-propagated 
error signal, especially in deep networks? Deep networks often occur when basing 
the network topology on the dependency structure of a rule base, so this problem is 
exacerbated in knowledge-based networks. Finally, do we need to prevent distributed 
representations (Hinton, 1986) from evolving during training? Since hidden units in 
knowledge-based networks initially have a symbolic meaning, it seems that distributed 
representations are undesirable; however, there could be some way to take advantage of 
distributed representations. 

In summary, the central question about the refinement phase is: 

How can symbolic knowledge about the task at hand guide network refinement? 

5. How can we extract symbolic knowledge from trained neural networks? 

The third phase of Figure l's framework involves extracting symbolic information (e.g. 
rules) from a trained network, which need not originally be knowledge-based. Why is 
this important? Rule extraction can help one understand what the "black box" network 
has learned. If the network produced a scientifically-interesting discovery, it would be 
nice if this were made explicit. Also, one may wish that a trained system would produce 
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explanations of its future decisions. Finally, one may want to manipulate the results of 
learning in another system, such as a planner. 

Several people have developed methods for extracting rules from standard networks. 
Gallant (1988), Saito and Nakano (1988), and Fu (1991) proposed algorithms that con- 
sider various ways that a node's weighted input can exceed its threshold, and convert 
each of these situations into a rule. However, these approaches can require an exponen- 
tial number of rules (in terms of the number of network weights) to re-represent a node. 
Towell and Shavlik (1993) developed a method that produces about one "N out of M" 
rule for each node. They found their algorithm extracted comprehensible rules while 
maintaining the accuracy of the trained network. However, their approach only works 
well on knowledge-based networks, as it requires that weights cluster into a few groups; 
the "soft-weight sharing" technique of Nowlan and Hinton (1992) can improve the per- 
formance of Towell and Shavlik's algorithm on standard networks (Craven & Shavlik, 
1993). Finally, McMillan et al. (1992) simply project trained nodes to the closest valid 
rule, while Hayashi (1991) extracts a small number of fuzzy-logic rules from a trained 
network. 

The above methods analyze the weights going into nodes. Cleermans, Servan-Schreiber, 
and McClelland (1989) and Giles et al. (1992) have a different perspective. They investi- 
gate extracting finite-state automata from recurrent networks, and their methods focus on 
the activation patterns of the hidden units. Their approaches assume that these patterns 
represent some sort of internal state. The extraction algorithms cluster these patterns 
and view each cluster as a state in an automaton. The next step runs the training exam- 
ples through the trained network to obtain the state transitions, after which traditional 
algorithms minimize the automaton. 

A major question with rule extraction is: how does one measure comprehensibility? An 
extraction algorithm must produce reasonably comprehensible rules, but without a good 
measure it is hard to compare alternative approaches. A second open issue relates to the 
refinement phase: how should this task be altered in support of rule extraction? Possibly 
the network can be constrained to always lie in the "comprehensible" portion of weight 
space, whatever that might be. Related to this, the hidden units in knowledge-based 
networks generally have symbolic names attached to them, and if one is going to use these 
labels for the extracted rules, one needs to ensure that the symbol-node correspondence 
is not altered during training. This is one reason why the formation of distributed 
representations during training can be harmful. Finally, conceptually clustering hidden- 
unit activations is a promising research area for symbolic machine learning. Finding and 
describing clusters can provide insight into the distinctions made by the network. For 
example, Sejnowski and Rosenberg (1987) manually analyzed clusters developed on the 
NETtalk task, with some success. 

To wrap up this section, the central question about rule extraction is: 

How can we extract a small and comprehensible symbolic version of a trained 
network without losing (much) accuracy? 
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6. Conclusion 

Connectionist machine learning has proven to be a fruitful approach, and it makes sense 
to investigate systems that combine the strengths of the symbolic and connectionist ap- 
proaches to AI. Over the past few years, researchers have successfully developed a num- 
ber of such systems. This article summarizes one view of this endeavor, a framework that 
encompasses the approaches of several different research groups. This framework (see 
Figure 1) views the combination of symbolic and neural learning as a three-stage pro- 
cess: (1) the insertion of symbolic information into a neural network, thereby (partially) 
determining the topology and initial weight settings of a network, (2) the refinement of 
this network using a numeric optimization method such as backpropagation, possibly 
under the guidance of symbolic knowledge, and (3) the extraction of symbolic rules that 
accurately represent the knowledge contained in a trained network. These three compo- 
nents form an appealing, complete picture--approximately-correct symbolic information 
in, more-accurate symbolic information out--however, these three stages can be inde- 
pendently studied. In conclusion, the research summarized in this paper demonstrates 
that combining symbolic and connectionist methods is a promising approach to machine 
learning. 
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