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1. Qualitative representations and ILP 

Qualitative modeling and reasoning is a most interesting area for applying and experi- 
menting with machine learning techniques. Qualitative reasoning tasks of interest where 
machine learning can be applied include modeling, diagnosis, control, discovery, design, 
and knowledge compilation. This paper reviews examples of recent research into some 
of these applications areas. In particular, the examples given illustrate how Inductive 
Logic Programming (ILP; Muggleton 1990, 1992) applies naturally to these tasks when 
qualitative representations are used. 

Let us first consider the nature of descriptions that we typically encounter in qualitative 
reasoning. Consider the process of filling a container with water. Table 1 shows some 
examples of quantitative descriptions and their corresponding qualitative abstractions. In 
row (a) of  the table, $1 and t2 denote some time points that we know exist, but the 
exact times are not given, z e r o  and top correspond to two levels, 0 and the top of the 
container, where we know that z e r o  < top, but the exact value of top  is not known 
or given. In row (b) of the table, the qualitative description is read as " A m o u n t  is 
monotonical ly  increasing function of L e v e l . "  

Table 1. Quantitative and qualitative descriptions 

Quantitative Qualitative 

(a) 

Time Level 

3 sec. 0.01 m 
4 sec. 0.23 m 
5 sec. 0.31 m 

Level (be tween( t1 ,  t2 ) ) = 
(be tween(zero ,  top), increas ing)  

(b) A m o u n t  = 2.5 • Level  + 0.7 * Level  2 A m o u n t  = M + (Level)  
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The descriptions shown in the qualitative column of the table are typical of Qualita- 
tive Differential Equations (QDEs). QDEs also allow one to state arithmetic and time 
derivative relationships among variables. A well known simulation algorithm for QDE 
models is QSIM (Kuipers, 1986). 

QDEs can be best viewed as an abstraction of ordinary differential equations in which 
variable values are described qualitatively in terms of symbolic landmark values. Of 
course, qualitative descriptions in general do not have to be so closely related to differ- 
ential equations. Dol~ak (1991) designed qualitative descriptions of the geometry and 
topology of physical structures (machine parts) in terms of relations like: 

usual_length(Edge) 
short(Edge) 
loaded(Edge) 
two_side_fixed(Edge) 
neighbor_xy(Edgel, Edge2) 

The last relation says that Edgel and Edge2 are neighbors in the x-y plane. Yet another 
style of qualitative descriptions can be found in KARDIO (Bratko, MozetiG & LavraG 
1989), where signals are described in terms of their (qualitative) rates, durations, delays, 
shapes, ordering, presence, omission, regularity or irregularity, distortions and so on. 

The qualitative descriptions in the examples above were either stated in logic or they 
could be easily expressed in logic. Machine learning techniques that use logical descrip- 
tions can be expected naturally to suit domains with such representations. Therefore, 
Inductive Logic Programming (ILP) is a natural framework for learning in qualitative 
domains. 

The basic formulation of the ILP problem is: Given examples E and background 
knowledge B, find a hypothesis H such that/3 A H F- E, where B and H are logic pro- 
grams, and E is normally a set of ground facts. This formulation nicely stiits problems of 
qualitative modeling. In particular, we can specify background information known prior 
to learning as background knowledge B. Here are some possible roles for background 
knowledge B: 

• B may specify the mathematical basis for modeling, for example, the primitives of 
Qualitative Differential Equations. 

• B may specify the structural relations, for example, the topology of the particular 
domain of application. 

• B may specify existing, known models and laws that can be used in composing a 
new model. 

2. Automated modeling 

In automated modeling we assume the following setting. There is an unexplored domain 
that we want to model. We can perform experiments in the domain. As a result of 
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modeling, we expect a theory of the domain that explains the observed behaviors. The 
process of modeling can consist of iterative (re)formulations of the model, repeating the 
following main cycle: 

1. Perform experiments in the domain, obtaining examples of behavior. 

2. Input the observed examples into a learning program, possibly using some back- 
ground knowledge. The result is a new model of the domain of observation. 

3. Submit the model to a domain expert. The expert then assesses the model, possibly 
using a simulator, and decides whether the model is acceptable or further experiments 
and refinements are needed. 

An ILP program can be conveniently used as the learning module in Step 2, because it 
can easily accommodate relevant background knowledge. 

An early example of automated modeling according to this scenario is QuMAS (Mozeti~ 
1987a, b; Bratko, Mozeti~ & Lavra6, 1989). QuMAS contains an ILP learning program, 
although the phrase ILP did not exist at the time it was written. Mozeti~'s approach to 
ILP became "officially" a member of the ILP community only later when it was redone 
as LINUS (Lavra~, D~eroski & Grobelnik, 1991). QuMAS learned, by experimenting, a 
significant part of the KARDIO model of the heart. Considering the complexity of the 
learned model and the way the learning task was structured into subproblems and an ab- 
straction hierarchy, QuMAS has probably been the most interesting automated modeling 
system until now. 

In QuMAS, when learning the heart model, time was not explicitly mentioned in 
the qualitative descriptions. Instead, time was effectively handled implicitly by other, 
equivalent time-related descriptions. Time is handled more explicitly in QDE models 
(Qualitative Differential Equations). However, assuming the QSIM simulation algorithm 
(Kuipers 1986) as a model interpretation algorithm, time can again be eliminated from 
the learning task, as shown in (Bratko, Muggleton & Vargek, 1991) and applied also 
by some other researchers. So the learning task is reduced again to one that does not 
explicitly involve time. 

Coiera's GENMODEL (Coiera, 1989) is probably the first program that learns QDE- 
type models. GENMODEL can be viewed as a specialized ILP program that has fixed 
background knowledge (namely QDE constraints) and a specialized learning algorithm 
that does not generate new variables. GENMODEL induced some simple qualitative 
models from given examples, but as it is constrained to use its special learning algo- 
rithm, it cannot learn more interesting models. The program MISQ described in (Krann, 
Richards & Kuipers, 1991) is essentially a re-invention of GENMODEL and is thus 
subject to similar limitations. A more recent version of MISQ (Richards 1992) does 
introduce new variables and is therefore capable of inducing more interesting models. 
However, it relies on a strong heuristic assumption that drastically limits the space of 
learnable models. 

Bratko, Muggleton & Vargek (1991) used a general ILP system, whereby the QDE 
constraints were introduced as (replaceable) background knowledge. This approach has 
the advantage of allowing easy reformulation of background knowledge or changing the 
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modeling language, and also permits the use of any general ILP system. For this reason 
this approach does not fall under the same limitations as GENMODEL and MISQ. 
GOLEM (Muggleton & Feng, 1990), LINUS (Lavra6, D2eroski & Grobelnik, 1991), 
FOIL (Quinlan, 1991) and mFOIL (D2eroski, 1990) have been used in experiments. 
Typical simple qualitative models were induced with GOLEM. Morales (1992) also 
applied a general bottom-up ILP system to learning qualitative models, but he employed 
a somewhat different representation of the learning problem. 

Zitnik (1991), and D~eroski & Bratko (1992) analyze through detailed experiments 
some problems in learning qualitative models with general ILP systems. Although not 
limited in principle, it has not been possible to apply general ILP systems to learning in 
more interesting domains because of the combinatorial complexity of the learning task. It 
seems that ideas from QuMAS (Mozeti6, 1987b), to alleviate the problem of complexity, 
can be imported to learning more complex QDE models. 

An interesting variation of ILP learning of qualitative models is Vargek's QME (1991), 
which uses a genetic algorithm to induce a qualitative model again expressed as a Horn 
clause. QME has also learned typical small scale QDE models, but again difficulties 
appeared in scaling its application to more interesting problems. 

3. Control 

In control problems, the goal is to synthesize a rule for controlling a dynamic system. The 
conventional control theory procedure involves constructing a quantitative (differential 
equations) model of the system to be controlled. A control strategy is then derived from 
that model. This may be problematic when the model is difficult to construct, or when 
the model is not linear. Using machine learning together with a qualitative model may 
alleviate these difficulties. 

A frequently used problem for studying various approaches to synthesising control 
is the inverted pendulum problem, usually presented as the pole-and-cart system. The 
problem is sufficiently simple to allow controlled experiments and comparison between 
various approaches, and at the same time sufficiently complex to illustrate the difficulties. 

Although the problem is not very difficult to handle with conventional control the- 
ory approach (e.g. Eastwood, 1968; Kwakernaak, 1972), the corresponding differential 
equations are still quite complex, and it would be nice if they could be avoided. Also, 
the differential equations are nonlinear, and the derivation of the "classical" control rule 
relies on their linear approximation. 

Within machine learning, the problem has been used as an experimental domain for 
various approaches, reviewed, for example, by Sammut (1988) and Var~ek et al. (1992). 
These approaches include the "classical" BOXES program (Michie & Chambers, 1968), 
neural nets, genetic algorithms, and so on, exemplified by the papers (Barto, Sutton & 
Anderson, 1983; Connel & Utgoff, 1987; Anderson, 1987; Odetayo & McGregor, 1989; 
Urban6i~ & Bratko, 1992; Urban~i~ et al., 1992). Comparing the speed of learning and 
the robustness of learning with respect to the changing operational conditions of the 
system reported in the several papers, it appears that there is a kind of Heisenberg law 
for machine learning: increasing the speed of learning causes a decrease in robustness 
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and vice versa. Speculatively, the product of speed and robustness cannot exceed some 
magic threshold. 

All these programs learn to control the system without any prior knowledge of the 
system. This suggests combining the learning of a control strategy with learning a model 
of the system. For that purpose, a qualitative model would appear promising, because 
it would alleviate the above-mentioned difficulties with a detailed differential equations 
model. Of course, this idea rests on the conjectures that (a) a qualitative model is easier 
to learn than a quantitative one, and (b) that a qualitative model is sufficient for deriving 
an adequate control rule. Experiments in automated qualitative modeling mentioned 
previously are relevant with respect to conjecture (a). The crucial remaining question 
is whether such an abstract model is sufficient to derive an adequate control rule. For 
the pole-and cart system this has been studied by Makarovi~ (1991) and Bratko (1989, 
1991). Makarovi~ was able to derive an elegant decision tree for controlling the system 
by qualitative reasoning, starting with the differential equations model and simplifying 
the model by qualitative abstraction, until it reduced to an obvious control strategy. In 
Bratko (1991, 1993), a control rule was derived from a QDE model of the pole-and-cart 
system. This rule was shown to be a qualitative abstraction of the "classical" control rule 
derived from a full-detail differential equations model. This result adds to the motivation 
for attempting the automated qualitative modeling discussed above. 

Another interesting approach to synthesizing control was developed and experimented 
with in the pole-and-cart domain by Var~ek, Urban6i6 & Filipi~ (1992). They combined 
in an interesting way genetic learning and symbolic learning. Their approach exploits 
the power of genetic algorithms for optimization, and the ability of symbolic learning 
to induce comprehensible rules. Their approach also suggests how one might connect 
symbols to signals. 

4. Mesh design 

Application of ILP to a design problem, using qualitative descriptions, is illustrated by 
Dolgak's experiments with the problem of finite element mesh (FEM) design. This prob- 
lem is defined as follows: given the geometry of and forces acting on a physical structure 
(a machine part), find a numerically adequate partition of the structure into finite ele- 
ments, called a FE mesh. The problem is to determine the density of the mesh in various 
regions of the structure. A fine mesh produces small error, but needs lengthy compu- 
tation, and vice versa. A good mesh is a compromise between density and coarseness. 
There is no general method for determining good meshes. In (Dolgak, 1991; Dolgak 
& Muggleton, 1991), the GOLEM program (Muggleton & Feng, 1990) was applied to 
learn how to determine suitable mesh density. The program was given, as background 
knowledge, a qualitative description of the geometry and topology of the structure and 
the forces. Information from known good meshes was used as examples for learning. 
GOLEM induced a definition of the relation mesh(Edge, N) that determines the number 
N of finite elements along an edge in the structure. The induced definition was exper- 
imentally shown to perform better for the targeted family of cylindrical structures than 
commercially available mesh generating programs. 
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5. Towards knowledge synthesis 

A largely unexplored question is: Whether what has been induced from examples can be 
called "knowledge"? If the result of learning is to be used by humans as new knowledge, 
then the accuracy of the induced rules is not the only criterion of success. 

Clearly, whether learned rules represent symbolically meaningful information for the 
expert is a highly pertinent question. The machine learning community has been aware of 
this aspect. For example, Michie (1988) included it into his criteria for machine learning. 
In spite of this awareness, the aspect of meaningfulness of machine-synthesised descrip- 
tions has remained largely unexplored. Only some rather preliminary ideas and results 
exist; for example, the KARDIO project (Bratko, Mozetie & Lavrae, 1989) produced 
examples of medically interesting machine-synthesised qualitative descriptions of certain 
physiological phenomena. 

On the other hand, cognitive psychology has given us some strong suggestions about 
the type of information that humans find hard to understand--namely passages/entities 
which are inconsistent, incomplete, and where unknown/unfamiliar concepts are used 
(Langer, 1987). One could speculate that these same criteria would apply to descriptions 
generated by a (machine learning) system. 

Interestingly, however, the suggestions from cognitive psychology are practically use- 
less as criteria for assessing cognitive relevance of machine-synthesised descriptions. We 
may find that in the context of machine synthesis of knowledge, these suggestions are 
in fact misleading. At the least, they emphasise features that appear not to be critical. 
When studying the "meaningfulness" of machine-synthesised descriptions in the KAR- 
DIO experiments, the surprising finding was the following: the human experts often 
found consistent and complete machine-generated descriptions less "meaningful" than 
occasionally inconsistent, incomplete or redundant human-generated descriptions of the 
same phenomena published in the expert literature. Properties that the experts were often 
missing in the machine-generated descriptions include: redundancy, natural connection to 
background knowledge, simplification, and approximation. Michie (1989) discusses how 
the user's viewpoint also affects the user's preferences regarding induced descriptions. 
However, these criteria for knowledge synthesis have not been integrated and formalized 
sufficiently to provide guidance for a learning program. Thus the question, what makes 
induced rules acceptable to the human expert, remains an important research problem. 

6. Conclusions 

Inductive logic programming provides a natural framework for learning in qualitative 
domains. This has been illustrated, at least in principle, by a number of experiments. 
However, there are some serious practical limitations in applying ILP to larger scale prob- 
lems. Among the features of various ILP systems that have been found to cause practical 
difficulties are inefficiency, limitation to determinate literals, inability to introduce new 
variables, use of an encoding length heuristic, lack of facilities for the user to control the 
induction process (e.g. specify constraints on refinement operators), instability of results 
(sensitivity to parameter settings, mode declarations etc.). 
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