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Abstract. This empirical study provides evidence that machine learning models can provide better classification 
accuracy than explicit knowledge acquisition techniques. The findings suggest that the main contribution of 
machine learning to expert systems is not just cost reduction, but rather the provision of tools for the development 
of better expert systems. 
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1. Introduct ion  

Can machine learning offer anything to expert systems? B.G. Buchanan (1989) raised this 
important question in an interesting article under this title in Machine Learning. "The 
commercial world of expert systems at large seems unconvinced that machine learning has 
anything to offer yet. I strongly disagree," he wrote five years ago. Despite of the progress 
which has been made since, Buchanan's observations are still quite valid. Perhaps the 
main reason for the skeptic attitude toward machine learning (ML) in commercial circles 
stems from the fact that the academic world has not presented yet sufficient evidence which 
justifies abandoning older, relatively well established, methods in favor of  ML models. 
Surprisingly many firms are involved now in expert systems (Ansari & Modarress, 1990). 
How can one convince a company which currently develops or uses expert systems (ES) 
that ML can be of substantial benefit? Developers of expert systems mainly use explicit 
knowledge acquisition (EKA). EKA is known as very costly and time consuming, mainly 
since experts frequently find it difficult to explain how they make their decisions (Hays- 
Roth, 1983; Nazareth, 1989). Learning from example (LFE) paradigms, on the other hand, 
do not require the experts to specify how they make their decisions. When applied to ES, 
LFE models function as implicit knowledge acquisition (IKA) tools, where the required 
knowledge is implicitly embedded in the examples. For this reason it is relatively easy 
to show that ML-based expert systems are usually less expensive than their EKA-based 
counterparts. But what about the relative performance? Most importantly, do the cheaper 
construction costs of  ML-based expert systems imply poor accuracy? 

There is currently very little scientific evidence of  experiments which compare ML models 
vs. EKA methods in terms of  classification accuracy. Although ML models have been 



1 1 0  A. BEN-DAVID AND J. MANDEL 

successfully used in an increasing number of real-world applications, most of the reports so 
far compare the performance of various LFE models with statistical models (for example: 
Tam, 1992; Thrun et al., 1991), but not with EKA methods. An exception to this statement 
can be found in the pioneering work which was done by Michalski and Chilausky (1980). To 
their surprise, M&C, have found that the AQ 11 ML model did better in terms of classification 
accuracy than the explicit rules they derived from domain experts. However, as far as we 
know, their experiment was not repeated in different contexts, such as by using other 
machine learning models, different problem domains, and other subjects. Furthermore, the 
AQ11 in M&C's experiment included prior domain knowledge, which was derived from 
experts. Consequently, M&C's comparison was actually between a ML model which was 
already using EKA techniques versus a pure EKA method. We are interested mainly here 
in comparing LFE methods which do not include any prior domain knowledge with EKA 
methods in terms of classification accuracy. The main contribution of this experiment is the 
provision of more evidence that ML can well compete with EKA in terms of classification 
accuracy. In this respect, the two ML models, neural networks and the OLM, which were 
used in this experiment, outperformed the explicit rules which were provided by the subjects. 
The experiment and its results can, thus, assist in resolving the debate whether ML can offer 
anything to expert systems. 

2. The experiment 

The subjects of the experiment were undergraduate Business Administration students. They 
were presented with a problem they all have been familiar with--lecturer evaluation. In 
Part I of the experiment, the students were asked to grade hypothetical lecturers. In Part II 
they were requested to explicitly express how they have made these grades. The lecturers' 
attributes were: (A) Teaching of important concepts and tools, (B): Teaching methodology, 
(C): Ability to raise interest of students, and (D): Attitude towards the students. The four 
selected attributes summarized a more detailed questionnaire which is routinely distributed 
among all the students at the conclusion of every course they attend. The subjects were not 
experienced decision-makers. However, as mentioned above, they all were experienced in 
rating lecturers. To simplify the problem domain, each attribute, as well as the final grade, 
had only five possible ordinal (i.e., ordered) symbolic values. 

In Part I, the students were requested to assign final grades to one hundred hypothetical 
lecturers, whose attribute values were selected at random beforehand. In Part II of the 
experiment, it was recommended that the students use IF (attribute values) THEN (final 
grade) rules. One site assistance was available during the whole experiment. Neither Part I 
nor Part II were limited in time. Participation was voluntary, and anonymity was strictly kept. 
The fact that the lecturers were hypothetical may have been working against the subjects. 
However, they were not judged against any normative decision-making model. The subjects 
were only requested to match the rules in part II with their own actual classifications of Part 
I. The purpose of the experiment was explained to the students both orally and in writing. 
The task was presented as an intellectual challenge. The students were told that usually 
it is not an easy task to match the rules of Part II with the judgements they have made 
in Part I (Larichev et al., 1988). They were encouraged, however, to try and achieve this 
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goal as much as they could. From the sixty students who heard the initial explanations, 39 
participated in Part I. Only 14 of them were filling out Part II of the questionnaire to their 
satisfaction. The findings of this research, to be shortly presented, refer to those fourteen 
students. Most of the subjects finished Part I in less than twenty minutes. The last one 
finished in half an hour. Part II required more than an hour for most subjects. The last one 
finished Part II in about ninety minutes. 

The questionnaires ofPart I and Part II were processed as follows: The attribute-score pairs 
of Part I were randomly partitioned to training sets (70% of the examples) and holdout sam- 
ples (30%). Fourteen pairs of training sets and holdout samples were, thus, available. Back 
propagation neural networks (Rumelhart, 1986) were selected to represent non-symbolic 
LFE models, since they are well known to provide relatively good classification accuracy 
(Tam, 1992: Thrun et al., 1991). The training sets were used to train fourteen feed forward 
neural networks. In order to accelerate convergence, nonlinearity was introduced at the 
input level through the introduction of second order cross products and periodic functions 
of inputs (Details of this method can be found in the description of N-Net, 1990). Once the 
neural networks were trained, they were used for predicting the respective holdout samples. 

The same training sets and holdout samples were used by the OLM (Ben-David et al., 
1989; Ben-David, 1992), which is an exemplar-based LFE model (Kibler & Aha, 1987). 
The OLM was used since all the lecturers' attributes, as well as the final grades, were 
ordinal symbols. Unlike neural networks and TDIDT algorithms, (Quinlan, 1983; 1987), 
the OLM uses the order within the domains. Neural networks enforce numeric scales on 
ordinal symbols, and TDIDT models ignore them altogether. The OLM's predictions are 
consistent with each other, in the sense that monotonicity among subsequent classifications 
(with respect to each attribute) is always kept. This property prevents situations in which a 
lecturer all of whose attributes are better than another's will receive a lower grade during 
classification. Fourteen regression equations were also derived using the training sets, and 
predictions were made on the holdout samples to serve as a benchmark. 

3. Results 

The attribute data were composed of integers (ranging from 0 to 4) with mean close to 
2 and standard deviation of 1.45. The mean score of the lecturers performance was 1.75 
with standard deviation of 0.99. The consistency within the subjects' judgements was also 
checked in the sense of monotonicity. Each attribute-score pair was compared with all the 
other pairs which were provided by the same subject. An attribute-score pair was considered 
inconsistent with another if all its attribute values were higher or equal (lower or equal) than 
those of the other, while its score was strictly lower (higher). More details can be found in 
Ben-David et al. (1989; 1992). Each subject classified 95 lecturers on the average. The 
average number of inconsistent attribute-score pairs was 84.57 (per subject) with standard 
deviation of 21.04. This number is quite reasonable, considering that 4465((952 - 95)/2) 
pairwise comparisons are needed for checking the consistency of 95 attribute-score pairs 
(see also Larichev et al. (1988)). The average inconsistency rate detected in Part I was 
1.92 percent with standard deviation of 0.34. The average number of rules provided by 
each candidate was 12.79 with standard deviation of 5.25. The average inconsistency rate 
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Table 1. Mean square error of various IKA and EKA meth- 
ods. 

Neural Explicit 
Subject Networks OLM Regression Rules 

1 0.159 0.300 0.133 0.467 
2 0.384 1.200 0.333 2.233 
3 0.403 0.733 0.367 0.677 
4 0.490 0.500 0.567 1.600 
5 0.505 0.500 0.567 2.068 
6 0.466 0.433 0.167 1.000 
7 0.165 0.533 0.333 1.800 
8 0.345 0.433 0.300 0.677 
9 0.256 0.933 0.333 1.933 
10 0.405 0.800 0.600 2.733 
11 0.569 0.100 3.400 0.967 
12 0.115 0.367 0.100 0.800 
13 0.221 0.700 0.267 0.600 
14 0.305 0.733 0.533 1.500 

Average 0.319 0.551 0.533 1.269 
Variance 0.025 0.090 0.618 0.560 

of  the rules, checked as explained above, was 4.3 8 percent with standard deviation of  4.81. 
Clearly, in this respect, the actual classifications of Part I were more consistent with each 
other than the rules which were expressed in Part II. 

Table 1 shows the mean square error (MSE) of the predictions over the holdout samples 
for each subject. 

Figure 1 shows the cumulative distributions of the holdout samples MSEs. 
A paired T test of  the MSE distributions is given in Table 2 with their corroesponding 

2-tailed probabilities. 

4. Discussion and conclusions 

The results of the empirical experiment show that the LFE models used here, both symbolic  
and numeric, had better classification accuracy than the explicit  rules. Although significant 
statistical advantage of  LFE models over explicit  knowledge acquisition was demonstrated 
here, major simplifying assumptions were made: 

(1) The problem domain was simple, with only four attributes, and with no clear demon- 
stration that expertise was actually needed. This fact could have been biased the results in 
favor of the ML models. (2) Both the actual classifications, we well as the set of  rules which 
represented EKA-based  expert systems referred to hypothetical lecturers. This could have 
been the reason why the subjects did not spend more time on writing down more accurate 
rules. (3) The subjects were undergraduate students. Although they were all experienced 
with actual lecturer ratings, they are clearly cannot be considered as experienced decision- 
makers. (4) The first version of the rules was considered final. This is unlike typical expert 
systems which are built interactively over a long period of  time. 
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Figure 1. Cumulative distribution of MSE of various IKA and EKA methods. 

Table 2. Pairwise T tests of MSE distributions. 

Neural Explicit 
Networks OLM Regression Rules 

Neural networks - -  2.85;p < .014 1.13;p < .279 5.50;p < .001 
OLM - -  0.07 p < .944 4.78; p < .0001 
Regression - -  2.26; p < .020 
Explicit rules 

The number of  subjects was also quite modest. So was the number of  examples each 
subject provided. For these reasons, caution must be taken while interpreting the results of 
this experiment. It will be incorrect, for example, to conclude from these results that ML 
models are always superior to EKA methods. More empirical research is clearly needed. 

However, were the results of  this experiment expected? It is well known that humans 
poorly solve multiattribute decision-making problems. They are typically very biased (see 
Tversky & Kahneman, 1985; Einhorn, 1971; Ganzach, in press), and resort to various 
simplifying problem-solving techniques. The fact that linear (or almost linear) regression 
models human decision-making quite well is also well known. It was reported by decision- 
making researchers during the Seventies (Dawes, 1974; Wainer, 1976). Furthermore, ma- 
chine learning models have been often shown to be more accurate then well established 
statistical techniques (Tam, 1992; Thrun et al., 1991), in particular, when compared with 
various regression models. One could, therefore, expect ML to excel in the modeling of 
human decision-making. However, we think that more scientific evidence is net needed. 
In particular, in relation with the comparison between the prediction accuracy of  ML vs. 
EKA methods. 
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