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Abstract. A comparative study is presented of language biases employed in specific-to-general learning systems 
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in three well known systems: CLINT, GOLEM and ITOU, and evaluate both conceptually and empiilcNly their 
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in which blas is a parameter. Two different types of biases are considered: syntactic bias, which defines 
the set of well-formed clauses, and semantic bias, which imposes restrictions on the behaviour of hypotheses 
or clauses. NINA is also able to shift its blas (within a predefined seiles of biases), whenever its current 
bias is insufficient for finding complete and consistent concept definitions. Furthermore, a new formalism for 
specifying the syntactic bias of inductive logic programming systems is introduced. 
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1. I n t r o d u c t i o n  

Inductive Logic Programming (ILP) (see (Muggleton, 1992), (Muggleton & De Raedt, 

1994)) is a research area that recently emerged at the intersection of Logic Program- 
ming and Machine Learning. It focuses on logical theories for induction, on efficient 

implementations of inductive algorithms, and on practical applications, see e.g. King et 

al., 1992, Muggleton et al, 1992, and Lavraß et al., 1993. Benefiting from the results 
achieved in both inductive learning and logic programming, it aims at overcoming the 

limitations of early inductive systems and at extending the deductive logic programming 
paradigm towards the use of induction. 

Most ILP systems address the problem of concept learning from examples (see Muggle- 

ton & De Raedt, 1994)). The main difference from classical concept learning techniques 

is that an expressive first order formalism is used instead of a limited attribute value 
representation. Additional advantages are that it is easy to use background knowledge, 
and that the results are usually transparent to humans. 

In this paper, we focus on the language blas issue in inductive logic programming. 
Language blas determines the way hypotheses are restricted, both in their syntax and in 

their behaviour, Language bias is of crucial importance for inductive logic programming, 

* This paper extends the papers (Adé & Bruynooghe, t992) and (Rouveirol et al., 1993). 
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because the hypothesis spaces of logic programs are usually much larger (often infinite) 
than those of attribute value representations. 

In the first part of this paper, we develop a conceptual framework for declarative 
language bias specification. Two types of biases are distinguished: syntactic bias, which 
imposes restrictions on the form of clauses in hypotheses, and semantic blas, which 
imposes restrictions on the behaviour of induced hypotheses. Furthermore, a new general 
framework for declarative (syntactic) bias specification is presented. It integrates the 
formalisms by Bergadano (Bergadano, 1993) and the MOBAL team (Emde et al., 1983), 
(Kietz & Wrobel, 1992). 

In the second part of the paper, we study important biases employed in specific-to- 
general inductive logic programming systems such as ITOU (Rouveirol & Puget, 1989), 
(Rouveirol, 1991), GOLEM (Muggleton & Feng, 1990), and CLINT (De Raedt, 1992), 
(De Raedt & Bruynooghe, 1992). As for other concept learning systems (Mitchell, 1982), 
(De Raedt & Bruynooghe, 1992), specific-to-general search is one of the two most com- 
mon strategies. In this second part, we first present the generic specific-to-general ILP 
system NINA. In NINA, the semantic and syntactic bias are parameters. Crucial in this 
respect will be a generic procedure that turns positive examples into so-called starting 
clauses, which are most specific clauses (for a given bias and background theory) cover- 
ing a given positive example. Starting clauses corresponding to several positive examples 
are later generalized using the 199 operator of (Plotkin, 1970), (Plotkin, 1971), which is 
also employed in Muggleton and Feng's GOLEM. NINA is also able to shift its bias 
within a predefined series of language biases (syntactic or semantic) using a bias shift 
operator as in CLINT. This allows the NINA system to modify its current language bias 
whenever it proves to be insufficient. Secondly, we use NINA to empirically and con- 
ceptually evaluate the biases employed in three well-known specific-to-general systems: 
ITOU, GOLEM and CLINT. In particular, we evaluate the determinacy restriction of 
GOLEM, the shift of bias of CLINT and the use of non-factual evidence in ITOU. This 
comparison results in a better understanding of the effects of various types of biases, 
which may then help to determine which biases are suited for which types of learning 
tasks. 

This paper is organised as follows: in Section 2, we introduce some inductive logic 
programming concepts; in Section 3, we present a conceptual framework for bias and its 
specification; in Section 4, an overview of the NINA system is provided; in Section 5, 
we evaluate different biases for inductive logic programming; finally, in Section 6, we 
conclude. 

2. Terminology and problem specification 

We first introduce some standard (inductive) logic programming concepts. 

Definition 1. A definite clause is an implicitly universally quantified logical formula 
h +- bi, ..., bh, where h and the be are atoms. 
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Notation 1 The background theory T and the hypotheses H am sets of definite clauses. 
T ~ e denotes that c is logically entailed by the theory T. 
[] denotes the empO, cIause, which is always inconsistent. 

The large majority of ILP approaches derive logical theories from positive and negative 
examples formulated as true and false ground facts, and from background knowledge. 
Following (De Raedt, 1992), (De Raedt & Bruynooghe, 1992), we use a more expressive 
form of evidence. Positive evidence is represented as definite clauses while negative 
evidence is represented as denials. 

Definition 2. A denial is an implicitly universally quantified logical formula 
+-- b i , . . . ,  bh, where the bi a r e  atoms. 

Roughly speaking a denial means that not all of the bi can be true at the same time. 
We will require (as (Muggleton & De Raedt, 1994)) that the positive evidence P is 

logically entailed by the union of the background theory T and the hypothesis H, i.e., 
TU H ~ P; and that the union of the background theory and the hypothesis is consistent 
with the denials N, i.e., T U H U N ~= •. 

Checking whether a theory T is consistent with a denial +-- bi,..., b~, i.e., to determine 
whether T U {+- bi, ..., b~} ~ n, can be done with a theorem prover. Using PROLOG, 
one can use T as a program, and execute the query +--- bi, ..., bh. Consistency is indicated 
by finite failure. Success with a substitution 0 allows one to locate the inconsistency. 

Each false ground fact n can be represented as a denial +- n, and each true ground 
fact p can be represented as a definite clause p +-. So our representation of evidence 
generalizes that of most other ILP approaches. An advantage is that one denial can 
replace many false ground facts. For instance, the denial +-- father(X,Y), younger(X,Y ) 
replaces all negative examples for Iather(X,Y) where X is younger than Y. Similarly, 
definite clauses as positive evidence may replace several true ground facts. We therefore 
argue that the representation of evidence is also a form of language bias, and we evaluate 
the use of definite clauses and denials (which do not correspond to ground facts) as 
examples separately. This is relevant for Rouveirol's ITOU system, cf. Section 5, where 
we show that definite clauses may help to overcome some problems with the syntactic 
and semantic language bias. 

We find it convenient to distinguish between syntactic bias £ and semantic bias /3. 
The former determines the set of syntactically well-formed clauses that constitutes the 
hypothesis language, whereas the latter imposes restrictions on the behaviour of the in- 
duced hypotheses, such as determinacy restrictions (Muggleton & Feng, 1990), coverage 
requirements or efficiency constraints. 

Formally speaking, we have: 

Notation 2 A syntactic bias £ denotes a set of definite clauses. 
A semantic bias/3(H, T, P, N)  denotes a funetion that inputs a hypothesis H, a theory 
T, positive evidence t 9, and negative evidence N, and that returns true or faIse. 

The alm of ILP as studied in this paper is to start from a theory T, positive and negative 
evidence t9 and N, together with blas restrictions £ and/3, and to induce a hypothesis 



122 H. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE 

H that is complete (it covers all positive evidence), and consistent (it does not violate 
any of the denials). 

This can be formalised as follows: 

Given 

• the set of syntactically well-formed clauses £ (the syntactic bias), 
• a semantic bias 13(H, T, P, N),  

• a background theory T (represented as a set of definite clauses), 
• positive evidence P (represented as a set of definite clauses), 
• negative evidence N (represented as a set of denials), 

Find: a hypothesis H such that 

1. H C_ 12 (syntactic bias) 
2. 13(H, T, P, N)  is true (semantic bias) 
3. T U H ~ P (completeness) 
4. T U  H U N ~ [] (consistency) 

Our problem specification is illustrated below. Note that predicates are mentioned to- 
gether with their arity. E.g., male/1 indicates the predicate maie  that is of arity 1. 

Example  1 Assume that T defines the relations male/l, female/1, tall/1, small/1, 
younger/2, parent/2, father/2 and mother/2 of the family displayed in Figure ! of 
Section 4.4. Let 12, 13, P and N be defined as follows: 

12 = {grandparent(X,Y) , -  Bodfl I the only variables in Body are X,Y,Z} 

13(H, T, P, N)  = true if and only if all clauses c E H cover at least 5 ground facts 
for the grandparentJ2  predicate. 

P ={grandparent(X,Y) ~- male(X), father(X,Z), male(Z), father(Z,Y), male(Y), tall(Y), 
small(X)} 

N ={~- grandparent(X,X); ~ grandparent(X,Y), younger(X,Y)} 

Given this setting, each of the hypotheses H1 and H2 are in 12 and are complete and 
consistent. 

Ht = {grandparent(X,Y) +- father(X,Z), mother(Z,Y); 
grandparent(X,Y) ~- father(X,Z), father(Z,Y); 
grandparent(X,Y) ~ mother(X,Z), mother(Z,Y); 
grandparent(X,Y) ~ mother(X,Z), father(Z,Y)} 

H2 = {grandparent(X,Y) +- parent(X,Z), parent(Z,Y)} 
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Hypothesis H2 satisfies the semantic bias but H1 does not since the first clause does not 
cover 5 facts. [] 

Throughout the paper we employ Plõtkin's well-known O-subsumption framework 
among clauses as the notion of generality. Considering clauses as sets of literals, a 
clause cl is more general than a clause c2 (or cl O-subsumes c2) if and only if there 
exists a substitution 0 for which elO C_ e2. For example, the clause father(X,Y) +-- par- 
ent(X,Y) is more general than father(jef,paul) ~- parent(jef,paul), male(jef) because 
{ father(X, Y),~parent(X, Y) } O c {father(jef,paul),~parent(jef,paul),-~male(jef)} where 
0 = {X = jef, Y = paul}. For more information on 8-subsumption, we refer to 
(Plotkin, 1970), (Plotkin, 1971), (Muggleton & De Raedt, 1994). 

3. Bias 

In this section, we elaborate on three different aspects of blas: syntactic bias, semantic 
bias, and shifting the blas. In particular, we define a new formalism to declaratively 
define the syntactic blas of ILP systems, and present some important forms of semantic 
bias. We argue that declaratively specifying the bias is advantageous for two reasons. 
First, declarative bias specifications allow us to easily port the blas from one system 
to another, hence facilitating comparisons and evaluations of different biases. Second, 
by making declarative bias explicit, it becomes possible to reason about the bias at the 
meta-level. This is particularly important when the given blas is insufficient for the 
leaming task and the bias has to be shifted. 

3.1. Syntactic bias 

3.1.1. A new framework for specifying syntactic bias 

Within inductive logic programming, four fundamental formalisms exist to specify syn- 
tactic bias (see (Muggleton & De Raedt, 1994) and (Tausend, 1994) for an overview). 
These are: the attribute description grammars of Cohen (Cohen, 1994), the schemata 
of Ernde et al. (Emde et al., 1983), (Kietz & Wrobel, 1992) and their variants (see e.g. 
(Tausend, 1994)), the predicate sets of Bergadano et al. (Bergadano & Gunetti, 1993), 
(Bergadano, 1993), and the parameterized languages of De Raedt and others (De Raedt, 
1992), Muggleton & Feng, 1990). It is generally agreed that the attribute description 
grammars of Cohen are the most flexible and expressive. However, predicate sets and 
schemata are more declarative because there is a direct correspondence between them and 
the clauses they represent. In contrast, attribute description grammars are more procedu- 
ral (as they specify a procedure to generate clauses) and are often harder to understand. 
Parameterized languages are specified by a number of parameters, which determine the 
complexity of the syntactic language bias, implying that they are rather procedural. Some 
important parameters are presented in the hext subsection. 

Schemata and predicate sets are complementary in the sense that syntactic biases that 
are easy to represent in one formalism are hard to represent in the other formalism (as we 
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will show below). This motivated us to design a straightforward integration of schemata 
and predicate sets. The resulting formalism approaches the expressive power of Cohen's 
formalism while retaining the declarative spirit of  the other two representations. We 
introduce our framework here, and then show how it relates to the other formalisms. 

A syntactic bias /2 is specified as a set of  clause models. A clause model is an 
expression of the form Head +-- Body, BodySet; where 

• Head is either an atom or a variabilized atom A; 

• Body is of the form A1, .-., An (n _> 0) where the A~ are either atoms or variabilized 
atoms; 

• BodySet  is a set {A1 , . . ,  An} (n > 1), where the Ai are atoms; 

• an atom is of the form p(tx,...,t,~) (n _> 0) where p is a predicate and the ti are 
terms or term-sets; 

• a variabilized atom is of  the form P(t l ,  ..., t~) where P is a predicate variable and 
the ti are terms or term-sets; 

• a term is a constant, a variable or the application of  a functor symbol f to the terms 
tl ,  ..., tn yielding the term f ( t l ,  ..., th); 

• a term-set {t l , . . . ,  t,~} is a set of terms; 

Following Bergadano, further syntactic sugar could be added to this language. A full 
discussion of these further extensions is outside the scope of this paper. 

The language specified by a clause model Head +-- Body, BodySet  is defined as 
follows: 

1. The language specified by a clause model Head +-- Body, BodySet  where Head, 
Body and BodySet  do not contain term-sets is: 

2. 

{Headl9 ~-- BodyO U B ] (9 is a second order substitution that substitutes all 
predicate variables in Head +-- Body with predicate names; and B C_ BodySet} 

The language specified by a clause model Head +-- Body, BodySet,  
where BodySet = {bi, ..., bn} contains an atom bi = p(T1, . . ,  Tk) with Tj a term-set 
{tl ,  ..., tl} is the language specified by the clause model 

Head +-- Body, BodySet '  where 

3. 

BodySet '  = (BodySet - {p(T1, ..,TÆ)}) U {p(T1, . . ,T j - I , t ,  Tj+I,. . . ,Tk) ] t E 
{tl,.. . ,tz}} 

The language specified by a clause model Head +-- Body, t3o@Set where Body 
= bt, ...,bn contains an atom (or variabilized atom) bi = p(T1, ...,Tk) with Tj a 
term-set {tl ,  .-., tz} is the language specified by the set of clause models: 
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{Head +- bl , . . . ,b~-~,p(T1,. . ,Tj_~,t ,  Tj+~,.. ,Tk),b~+l,. . . ,bn, BodySet  t ~ E 
{ t l ,  ..., ~z}} 

4. The language specified by a set of clause models consists of the union of the languages 
specified by the clause models in the set. 

Example 2 Assume that the predicates in the background theory are male/7, female/1, 
parenV2.  Consider the following clause model (P and Q are predicate variables): 

£ = {granclfather(X,Y) ~- P({X,Y}), Q(X,Z), {parent({X,Z},Y)}} 

Using (3) we obtain: 

£ = {grandfather(X,Y) ~ P(Y), Q(X,Z), {parent({X,Z},Y)}; 
grandfather(X,Y) +- P(X), Q(X,Z), {parent({X,Z},Y)}} 

Using (2), we obtain: 

£ = {grandfather(X,Y) +-- P(Y), Q(X,Z), {parent(Z,Y),parent(X,Y) }; 
grandfather(X,Y) +-- P(X), Q(X,Z), {parent(Z,Y), parent(X,Y) }} 

Using (1), we obtain: 

£= {grandfather(X,Y) +- male(Y), parent(X,Z); 
grandfather(X,Y) ~ female(Y), parent(X,Z); 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 
grandfather(X,Y) 

~- male(X), parent(X,Z); 
,-- female(X), parent(X,Z); 

male(Y), parent(X,Z), parent(Z,Y); 
female(Y), parent(X,Z), parent(Z,Y); 

,-- male(X), parent(X,Z), parent(Z,Y); 
+- female(X), parent(X,Z),parent(Z,Y); 
,-- male(Y), parent(X,Z), parent(X,Y); 

female(Y), parent(X,Z), parent(X,Y); 
~- male(X), parent(X,Z), parent(X,Y); 
+- female(X), parent(X,Z),parent(X,Y); 
+- male(Y), parent(X,Z), parent(Z,Y), parent(X,Y); 
+-- female(Y), parent(X,Z), parent(Z,Y), parent(X,Y); 
+-- male(X), parent(X,Z), parent(Z,Y), parent(X,Y); 
+-- female(X), parent(X,Z),parent(Z,Y), parent(X,Y)} 

which is the set of definite clauses specified by the initial syntactie bias. [] 

Schemata (as used in MOBAL) and predicate sets (as used in the FILP system of 
Bergadano) are special cases of our formalism. Schemata are clause models in which 
neither predicate sets nor term sets occur, and Bergadano's inductive logic programming 
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language contains - in essence - clause models without predicate variables. Schemata 
and predicate sets are complementary in that schemata can easily represent fixed length 
clauses, whereas predicate sets can easily represent variable length clauses. Furthermore, 
representing variable length clauses using MOBAL's formalism requires many schemata, 
while representing fixed length clauses, which differ only in predicate names, using 
Bergadano's formalism requires many clause models. Therefore it is advantageous to 
integrate both frameworks. 

Example 3 The syntactic bias F_. of the previous example can be formulated in Bergadano ~ 
inductive logic programming language as follows: 

£. = {grandfather(X,Y) ~- male({X,Y}), parent(X,Z), {parent({X,Z},Y)};  
grandfather(X,Y) ~- female({X,Y}), parent(X,Z), {parent({X,Z},Y)}}  

With MOBAL's schemata, Fo can be represented as: 

l: = {grandfather(X,Y) 
grandfather(X,Y) ,-- P(Y), 
grandfather(X,Y) +- P(Y), 
grandfather(X,Y) ~- P(Y), 
grandfather(X,Y) , -  P(X), 
grandfather(X,Y) ~- P(X), 
grandfather(X,Y) ~- P(X), 
grandfather(X,Y) ~ P(X), 

P(Y), Q(X,Z); 
Q(X,Z), parent(X,Y) ; 
Q(X,Z), parent(Z,Y) ; 
Q(X,Z), parent(X,Y), parent(Z,Y); 
Q(X,Z)  ; 
Q(X,Z), parent(X,Y) ; 
Q(X,Z), parent(Z,Y) ; 
Q(X,Z), parent(X,Y), parent(Z,Y)} 

This shows that our approach allows a concise and elegant declaration of the syn- 
tactic bias. The expressivity could be further enhanced by limiting the range of predicate 
variables, by generalizing term sets, by introducing compound atoms, etc. [] 

3.1.2. Important parameters in syntactic bias 

Whereas the above formalism can be used to declaratively specify the syntactic bias, the 
computational complexity of the learning task is determined by a number of parameters, 
employed also in the parametric approaches to bias specification, see (De Raedt, 1992), 
(Muggleton & Feng, 1990), (Buntine, 1987). These parameters will be systematically 
varied in the experiments of Section 5. 

Definition 3. The depth d(V) of a variable V is 0. The depth d(c) of a constant c is 1. 
The depth d(f( t l ,  ...,tr~)) of a term f ( t l ,  . . , t~) is 1 + max {d(t,) ..... d(t~)}. The depth 
of a clause is the maximum of the depth of its terms. 

Limiting the depth of terms in hypotheses to 1 con'esponds to working with functor-free 
clauses. 
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Definition 4. The level l(t) of a term t in a clause c is 0 if t occurs as an argument in 
the head of c; and 1 + min{l(s)  I s is an argument of a literal in c which also has t  as 
an argument }. The level of a clause is the maximum of the level of its terms. 

Definition 5. A clause is linked if the level is defined for all arguments in all of its 
literals. 

Note that we consider only linked clauses in this paper. 

Example 4 The variable F in father(F) +--- male(F), parent(F,C) has level O, the vari- 
able C has level 1, the variable G in grandfather(F) +- male(F), parent(F,C), pa- 
rent(C,G) has level 2, etc. [] 

The level of a term corresponds to Muggleton and Feng's i parameter (Muggleton & 
Feng, 1990) and De Raedt's level of existential quantification (De Raedt, 1992). The 
level and the depth are especially important in the context of specific-to-general ILP sys- 
tems such as ITOU (Rouveirol & Puget, 1989), (Rouveirol, 1991), GOLEM (Muggleton 
& Feng, 1990), CLINT (De Raedt, 1992) and PGA (Buntine, 1987), because this class 
of learners starts learning from so-called starting clauses, i.e., maximally specific clauses 
covering the example with regard to the background theory, cf. Section 5.1. 

3.2. Semantic bias 

Whereas syntactic bias imposes restrictions on the form or syntax of hypotheses, semantic 
bias imposes restrictions on the behaviour of the hypotheses. Various forms of semantic 
bias have been considered in inductive logic programming, including mode and type 
declarations, number of covered examples (Muggleton & Feng, 1990), De Raedt et al., 
1993), determinacy restrictions (Muggleton & Feng, 1990), (Quinlan, 1991), significance 
tests, and encoding length heuristics (Quinlan, 1991). In this paper, we focus on the 
determinacy restriction because it is widely employed in and characteristic of inductive 
logic programming, see for instance Muggleton & Feng, 1990, Quinlan, 1991 and Lavra6 
& D2eroski, 1994. Furthermore, type and mode restrictions are well understood and can 
also be enforced syntactically, cf. Lavra6 & D2eroski, 1994 and Pazzani & Kibler, 1992. 
The other restrictions are not characteristic of inductive logic programming. 

Below we define the determinacy restriction, adopting the simplified definition of 
D2eroski et al, 1992 instead of the original orte by Muggleton & Feng, 1990. 

Definition 6. (adapted from D2eroski et al, 1992) A definite clause h +-- ll, ...,l~ is 
determinate (with respect to background theory T and factual examples E)  if and only 
if for every substitution 0 for h that unifies h to a gTound instance e E E, and for all 
i = 1 , . . ,  n there is a unique substitutiõn 0i such that (ll A ... A li)OO~ is both ground 
and T ~ (ll A ... A l~)OOi. 

Example 5 Consider the following background theory T: 

T = {parent(jef,paul) +-; parent(jef,ann) +-; male(paul) +-; female(ann) +-} 
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The clause has-father(Y) ~ parent(F,Y) is determinate since given a Y there is a 
unique instantiation of  F that is true. On the other hand, the clause is-father(F) +- 
parent(F,Y) is not determinate since there exist two instantiations of  Y given F. [] 

In the GOLEM system this determinacy restriction is enhanced with a parameter j ,  
called the degree of determinacy. 

Definition 7. A clause is j-determinate if it is determinate, and if the maximal degree 
of determinacy of its body literals is j .  
A literal in a clause has degree j of determinacy if the number of different variables 
occurring in the literal, that have occurrences to the left of the literal, is j .  

By fixing the value of the parameter j one can impose an upper bound on the degree 
of determinacy of clauses. 

Example 6 The clause mult(A,B,C) +-- successor(B',B),  mult(A,B',C'), plus(A,C',C) 
is determinate. The literal successor(B' ,B) is determinate with degree 1, and the Iit- 
erals plus(A,C',C), mult(A,B',C) are determinate with degree 2. So the cIause is 2- 
dete rminate. [] 

Determinate clauses are one way to get around some of the problems in syntactic 
languages that can have large starting clauses (cf. below), or more than one starting 
clause for one example. Indeed, some of the results in computational learning theory 
show that certain classes of deterrninate clauses can be learned efficiently (cf. D~eroski 
et al, 1992). This, however, comes at the cost of losing completeness (cf. also Section 
5.3). 

3.3. Shift o f  bias 

One advantage of specifying the bias explicitly is that it becomes a tunable and portable 
parameter of inductive systems. Moreover, systems can reason about their biases at the 
meta-level, cf. (Russell & Grosof, 1990), (Russell, 1989), (Utgoff & Mitchell, 1982), 
(Utgoff, 1986), (De Raedt, 1992). This is especially useful for shifting the learning bias. 
Within our framework for bias specification, shifting the bias is the process whereby the 
system is given a series of semantic and syntactic biases (£o,/3o), ..., (£~,/3~) and can 
detect when the current bias (/2i,/3~) is insufficient for the learning task. Shifting the 
bias then involves trying the next bias (£i+1,/3i+1) in the learner. Although advanced 
approaches might reason about the cause of the learning failure and dynamically select 
the next bias for learning, our NINA system assumes a predefined sequence of biases as 
De Raedt's CLINT system, cf. Section 5.1. 

4. A generic specific-to-general ILP learner : NINA 

In this section we present the NINA system. As already mentioned in the introduction, 
NINA is a generic framework, containing a number of parameters that taust be instanti- 
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ated in order to obtain a real algorithm. The most important parameters are the syntactic 
and the semantic criteria discussed in Section 3.1 and 3.2. The main advantages of 
separating those criteria and specifying them declaratively is that this enables us to shift 
the bias of the system (see Section 3.3) and to experimentally compare the frequently 
employed biases of GOLEM, ITOU and CLINT (see Section 5). 

4.1. The top level algorithm 

The algorithm in Table 1 describes the overall NINA algorithm. 
At the top-level NINA abstracts the way in which specific-to-general ILP-learners 

proceed in general. Given area background theory T, positive evidence P and negative 
evidence N, and an initially empty hypothesis H. Note that in NINA we use the above 
described generalized notions of positive and negative evidence. 

The system handles the elements of P incrementally, splitting up the treatment of one 
element into two phases. 

Table 1. The Generic Algorithm NINA 

procedure NINA( E,Æ,P,N,T) 
H : = O  
for all p E P 

i f T u H  ~io 
then c := startin9_clause(p, T U H, £, 13) 

i f T U H U { c } U N ~ = [ ]  
then H := generalize(c,H,T,P,N) 
endif 

endif 
endfor 
post_process H 
output H 

endproc 

The first phase (see the starting clause generation in Section 4.2) is a constructive 
induction step. Taking into account the syntactic and semantic restrictions, the system 
uses the available background knowledge in order to compute the starting clause, 1 i.e., 
to replace the example by a most specific description, that implies the given example, 
and that is consistent with the negative evidence. Of course, if the positive example 
is already covered by the current hypothesis, the system simply proceeds with the next 
example. 

In the second step (see Section 4.3), the generalization operator takes the computed 
starting clause and the current hypothesis, and generalizes them into a new hypothesis that 
covers all previously handled examples, and the new example. For our blas evaluation 
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purposes, this generalization step is less important than the starting clause generation. It 
is basically a simplification of the GOLEM strategy (Muggleton & Feng, 1990). 

Notice also that - in contrast to systems such as FOIL (Quinlan, 1990) and GOLEM 
(Muggleton & Feng, 1990) - NINA performs correct (intensional) coverage tests. The 
problems with extensional systems, i.e., systems using a ground model as background 
theory, are well-known (see for instance (Bergadano & Gunetti, 1993), (De Raedt et al., 
1993)). Problems arise because the test for coverage may yield incorrect results. To 
test whether a clause p(X) +-- q(X) covers an example p(e), extensional systems would 
check whether q(e) is in the model. This may lead to problems when learning recursive 
predicates or multiple predicates, as discussed in (De Raedt et al., t993), (Bergadano & 
Gunetti, 1993) and (Cameron-Jones & Quinlan, 1993). 

Finally the hypothesis is post-processed by removing redundant literals in the clauses 2 
and removing redundant clauses in the hypothesis a. 

4.2. Computing starting clauses 

In order to implement bias as a parameter, we introduce hefe the notion of a starting 
clause. As the expression itself indicates, this is a clause that forms a starting point for 
the learning system. For specific-to-general learning systems, such a clause has to be 
a lower bound in the space of possible hypothesis clauses, with respect to the is more 
general than relation. 

More formally, within the settings presented in Section 2 and Section 3, a starting 
clause can be defined as follows: 

Definition 8. A starting clause sc E starting_clause(e, T, Z2, B) with respect to a (posi- 
tive) example e, a theory T, a language £ and a semantic bias/3 is a maximal!y specific 
clause se in £ such that T U {sc} ~ e and B(se, T, P, N)  is true. 

According to this definition, a starting clause for a positive example e is thus a most 
specific clause within the syntactic bias, that satisfies the semantic bias, and that covers 
the example e given the background theory T. 

Starting clauses need not be unique, as shown below: 

Example 7 Consider the following background theory T, and language £.: 

T = {parent(jef,paul) ~-; parent(jef,ann) ~-; male(paul) ~-; female(ann) ~-} 

£ = {is-father-of-son(X) , -  parent(X,Y),{male(Y), female(Y)}} 

£. is thus a language of depth 0 (only variables are alIowed as arguments) and level 1. 

Now the starting clauses for is-father-of-son(jef) are: 
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is-father-of-son(X) ~- parent(X,Y), male(Y); 
is-father-of-son(X) ~- parent(X,Y), female(Y). [] 

Before presenting the algorithm in Table 2, we introduce a notion of a refinement 
operator (cf. (Shapiro, 1983))4: 

Definition 9. A refinement operator p for a language £ is a function from £ to 2 L such 
that for all c E t;: p(c) = {c' [ c ~ is a proper maximally general specialization of c in 
B}. 

Notice that according to this definition, the refinement operator is uniquely determined 
by the syntactic bias and the notion of generality employed (in our case this is 0- 
subsumption). 

The algorithm in Table 2 shows how refinement operators can be used to compute 
starting_clause(e,T,£,B). The idea is to initialize the starting clause with a variabilized 
version of  e, and then repeatedly apply the refinement operator p until no further refine- 
ment can be found that satisfies the bias B(c, T, P, N) and that covers e. In this way a 
most specific clause is found that satisfies the syntactic and the semantic bias, and that 
covers the given evidence e. 

Table 2. The function starting_c[ause(e,T,£,13) computes a most specific ctanse that satisfies the syntactic 
and the semantic bias, and that covers the given evidence e. 

function starting_clause(e,T,£,/3) 
p := e where all constants are replaced by variables 5 
8C := p 

if U(sc, T, P, N) 
then 

while ~c E p(sc) : B(c, T, P, N) and T U {c} ~ e 
do sc := c 
endwhile 
return sc 

else return fall 
endif 

endfunction 

In the remainder of this section, we present some properties of this algorithm. This 
part of the paper may be skipped without problems by the casual reader. 

The properties rely on a notion of monotonic semantic bias. 

Definition 10. A semantic bias B is monotonic with regard to £ if and only if Vc 
£,n, sc E pn(c),P,N : B(sc, T ,P ,N)  --+ 3c' E p~-l(c) such that B(c' ,T,P,N).  

Roughly speaking, monotonicity requires that if one starts from positive evidence c and 
computes a starting clause sc from c, there taust exist a path (in the refinement graph) 
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from c to se for which all intermediate clauses satisfy the semantic bias. Consider for 
instance a semantic bias enforcing a minimum number of covered positive examples. 
Such a blas is clearly monotonic because if a clause satisfies this restriction, all gener- 
alizations will also satisfy this restriction. Similarly, one can prove that determinacy is 
monotonic (although not all generalizations need to be deterrninate). 

Claim I The algorithm for the function starting_clause(e,T,12,Æ) is sound and complete 
if the semantic bias is monotonic and if the initial starting cIause p satisfies the semantic 
bias. 

Soundness means that ctauses generated by the algorithm will be true starting clauses, 
i.e., they will satisfy Definition 8; completeness means that all starting clauses will be 
generated. 

Claim 2 If e E £ then all clauses sc E starting_ciause(e, T, 12,13) will be logical!y 
equivalent to e with regard to T, i.e., T ~ (sc +-+ e). 

Under the conditions of this claim, generated starting clauses are always consistent 
with the negative evidence (unless the evidence itself is inconsistent) and therefore the 
(syntactic) bias will never be shifted. This is the case in the original GOLEM and tTOU. 
In NINA, starting clauses are always of depth 0 (i.e., all arguments are variables). So 
e ~ 12, and shifting the bias is a useful operation. 

4.2.1. Starting clauses in a series of languages 

Süppose that the system is given a series of biases (each composed of a syntactic and a 
semantic blas). When building a starting clause for a given example, NINA starts using 
the first bias in the series. When unable to construct a consistent starting clause, NINA 
shifts its bias to the next bias in the series. This process of computing starting clauses 
and shifting the blas is repeated until a consistent starting clause is found, or all biases 
are tried. 

Enhancing the computation of starting clauses with this feature results in the algorithm 
of Table 3. 

In the algorithm in Table 1 the catl to the function starting_cIause should then be 
replaced by a call to the function starting_clause_with3hift_of_bias. 

The final algorithm is able to handle languages where more than one starting clause 
can be generated. For this purpose backtracking is introduced. 

4.3. The generalization procedure 

The generalization function is shown in Table 4. 
Since most specific-to-general ILP-learners use an 199-1ike operator, we based the 

generalization operator in NINA on Plotkin's framework (Plotkin, 1970), (Plotkin, 1971). 
Our system loops over the clauses in the current hypothesis, each time computing the 
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Table 3. The function starting_clause_with_shift_of_bias (p,T,(L;o, Bo),. . ,  (£m, Bin)) computes a starting 
clause for the given evidence e, within a predefined series of language biases. 

function starting_clause_with_shift_of_bias (p,T,( £o, 13o),.., ( £,~ , B,~ ) ) 
i := 0 {i denotes the bias index } 
repeat 

sc := starting_clause(p, T, £i,B~) 
if T u  H U {sc} u N ~ [] 
then / f  alternative starting clauses exist 

then backtrack on sc 
e l s e i : = i +  1 
endif 

endif 
until T U H U  {sc} U N  [/: [] or i = m + 1 
i f i < _ m  
then return sc 
else return fall 
endif 

endfunction 

Table 4. The generalization algorithm. 

Bnction generalize( c , H , T , P , N )  
i fgc' E H: TU HUlgg(c,c')U N ~ [] 

and B(T, H U lgg(c, c'), P, N )  
then output H - {c'} U lgg(c, c') 
else output H U {c} 
endif 

endfunction 

least general generalization of  the starting clause and a clause of  the hypothesis, until a 
consistent 199 is found, or until all clauses in the hypothesis are tried. I f  NINA finds a 
consistent lg 9, the corresponding clause in the hypothesis is replaced by the 199. If  not, 
the starting clause is added to the hypothesis. 

4.4. An example  

In this section, we demonstrate NINA on a simple example.  

Given are: 
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jef  & mia 

jan & ~r~ 

piet & miet bart & els 
/ ' x  /",, 

inge lieve hans tine 

joos t  

Figure ]. The family tree : jef, jan, piet, bart, joost and hans are male; mia, an, eis, miet, lieve, inge and 
tine are female; and & denotes the relation married/2. Partners of children are in italic. 

III. T: background knowledge containing the relations female/1, male/l ,  minor/1 and 
parent/2 defined on the family presented in Figure 1. inge, iieve, hans and tine 
are minor; jef, jan, bart, pier, joost and hans are male; and the others are female~ 

{(12o, B),(£d, B)}: a series of biases, where 

- /20 = {has-a-son(X) ~ {male(X), fernale(X), minor(X), parent(X,X)}} 

i.e., £0 is the language of completely bound DATALOG Horn clauses6; 

£1 = {has-a-son(X) +-- {male(X), female(X), rninor(X), parent(X,X), par- 
ent(X,Y), parent(Z,X), parent(Y,Z) , parent(Z,Y), parent(Y,Y), parent(Z,Z), 
female(Y), male(Y), female(Z), male(Z), minor(Y), minor(Z)}} 

i.e., 121 is nearly the language of DATALOG Horn clauses with maximum level 
17; 

/3 = true, i.e., there are no semantic restrictions. 

Positive evidence: P = {has-a-son(bart)~-; has-a-son(X)~ female(X),parent(X,Y) 
male(Y); has-a-son(jef)~} 

Negative evidence: N = {~- has-a-son(piet); +-- has-a-son(X), minor(X) } 

Below we give a trace of NINA. Comments are given in italics. 

? -  nina. 

Handling the example has-a-son(bart) ... 

Found the following starting clause in bias (/20,/3) 

has-a-son(X) :- male(X). 
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ù . checking for consistency ... 

the negative evidence +-- has-a-son(piet) is violated ! 

. . shifting the bias to (~]~13) ... 

Since there are no alternative starting clauses in (£o, t3), the system shifts its 
bias. 

Found the following starting clause in bias (~i~~) : 

has-a-son(X) :- male(X) , parent(X,Y) , parent(Z,X), minor(Y), 

female(Y), female(Z). 

At this point, there are three other possible starting clauses: 

has-a-son(X) :- male(X), parent(X, Y), parent(Z,X), minor(Y), male(Y), 
female(Z) 

has-a'-son(X) :- male(X), parent(X, Y), parent(Z,X), minor(Y), female(Y), 
male(Z) 

has-a-son(X) :- male(X), parent(X, Y), parent(Z,X), minor(Y), maie(Y), 
male(Z) 

ù . checking for consistency .~. 

the negative evidence +-- has-a-son(piet) is violated ! 

ù . looking for alternatives in (~i~13) --- 

Found the next starting clause in bias (~i~13) : 

has-a-son(X) :- male(X), parent(X,Y), parent(Z,X), minor(Y), 

male(Y), female(Z) 

ù . checking for consistency ... 

It is consistent [ 

ù . generalizing the hypothesis and the starting clause .. 

Impossible to find a consistent igg. 

The starting clause is added to the hypothesis. 

Because the hypothesis H is empty no (consistent) lgg can be computed. There- 
fore the starting clause is added to H. 

Handling the example has-a-son(X):-female(X),parent(X,Y),male(Y) ... 

The system checks this deßnite clause, and finds out that it beIongs to the lan- 
guage £1. Next it tries to add literals to the clause, that are in L1, and that 
cover all the instances covered by the given clause. Given the original knowI- 
edge base, no Iiteral can be added. However, if the clause mother(X,Y) +-- 
female(X), parent(X,Y) were present in the original knowledge base, the IiteraI 
mother(X,Y) could be added to complete the example. 
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Found the following starting clause in (~i~~): 

has-a-son(X) +-- female(X), parent(X,Y), male(Y) 

ù . checking the consistency ... 

It is consistent ! 

. . generalizing the hypothesis and the starting clause ... 

Found a consistent igg: 

has-a-son(X) :- parent(X,Y), male(Y) 

Handling the example has-a-son(jef) ... 

It is already covered by the current hypothesis. 

No more positive evidence. 

ù . removing redundancies ... 

The following definition was learned : 

has-a-son(X) :- parent(X,Y) , male(Y) [] 

5. Bias evaluaüon 

In this section, we aim at establishing a three-way relation between the background 
knowledge, the bias and the performance of the learner, which is measured in terms of 
accuracy as well as efficiency. In order to achieve this aim, we performed experiments 
with NINA with a number of biases that are typically employed in specific-to-general 
systems: the shift of bias as used in CLINT (De Raedt, 1992), the determinacy restric- 
tion of GOLEM (Muggleton & Feng, 1990) and the use of definite clauses as positive 
examples as in ITOU (Rouveirol, 1991). Tuning NINA's bias parameters allowed us 
to emulate the syntactic and semantic biases of these three systems. It is important to 
realize that it was never our intention to reproduce the same learning behaviour as the 
original systems. Rather we focussed in on the biases they employ. Furthermore, the em- 
ulated versions, incorporating NINA's general framework, have a number of abilities that 
go beyond the original systems. One important difference between ITOU and GOLEM 
and their emulations is that we restrict the languages to depth 0, i.e., only variables 
are allowed as arguments in the clauses. In the original GOLEM and ITOU systems, 
constant and functor symbols are allowed in the hypothesis language. The motivations 
for this assumption are that it makes starting clauses in NINA not necessarily logically 
equivalent to the positive examples for which they are derived (cf. also Claim 2), and 
that it makes a bias shift relevant. Finally, at the procedural level, the NINA emulations 
also differ from the original systems. E.g. CLINT works interactively and generates its 
own examples. GOLEM uses extensional coverage tests, whereas all tests for coverage 
in NINA are done intensionally. However, these differences are not important for us as 
we focus on bias here. 

The emulations will also clearly demonstrate the generality and power of the NINA 
approach as a general framework for specific-to-general learning and for comparing lan- 
guage bias. In a sense, NINA is to specific-to-general learning what Cohen's GRENDEL 
(Cohen, 1994) is for general-to-specific learning. 
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Table 5. Biases in NINA. 

Syntaetic Bias Originally in : Difference 

Series of languages with increasing GOLEM 
level of variables 

Series of  languages with increasing 
level of variables and extra 
restrictions on the new variables 

CLINT 

Language dependent on the positive ITOU 
evidence 

In GOLEM the level 
(the/-parameter) is fixed 

Semantic Bias Originally in : Difference 

No extra restriction CLINT, ITOU 

Series of  j-deterrninate languages GOLEM In GOLEM the j-parameter 
with variable j is fixed 

5.1. Typical biases in specific-to-general ILP learners 

We analyzed the biases of three typical ILP learning systems: CLINT, GOLEM and 
ITOU. Table 5 summarizes the biases we incorporated in our NINA-system. Each of 
these features is explained in more detail in the discussion of the biases of the systems 
they originated from. 

5.1.1. The bias of CLINT 

In the CLINT system of De Raedt and Bruynooghe, the syntactic criteria are explic- 
itly formulated by defining a series of parameterized concept description languages, 
ordered according to growing expressiveness. Typically the languages have a depth of 
0. By varying the level, one obtains a series. Several series of languages are defined 
in (De Raedt, 1992), each varying different parameters. As a full presentation of these 
alternatives would lead us too far, we illustrate here the series recommended to users 
of CLINT. We do not go into further detail on the actual syntactic properties of these 
languages, since they are less important than the fact that there is a series of languages 
that is ordered according to growing expressiveness. 

Example 8 Suppose the arity of the target predicate is 2, and the predicates in the 
background theory are male/l ,  [emale/1, parent/2. Then CLINT's ~ßo, £1, £2 are: 

£o = { P(X,Y) ~ {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y})}}  
£o is the language of completely bound functor free Horn clauses. 

£1 = {P(X,Y) ~- {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y}), parent(X,Zl), 
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parent(Y, ZJ, parent(Z3,X), parent(Z4,Y)}} 
£'t allows for the introduction of variables at level 1, with the extra restriction that each 
literal can contain at most one such variable, and that each such variable can only 
appear onee in the cIause. Note that it is due to this last restriction that no male- or 
female-literals concerning the Zi are allowed. 

£2 = {P(X,Y) *-- {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y}), parent(X,ZJ, 
parent(Y, Z2), parent(Z3,X), parent(Z4,Y), {X,Y, ZI,Z2,Z3,Z4} = {X,Y, Zl,Z2,Z3,Z4}} 
£.2 imposes the same restrictions as L1, however there is an =/2 predicate, which can 
unify existing variables, but cannot introduce new variables. This explicit use of a 
unification predicate is due to the actual implementation of the CLINT system. [] 

No restrictions other than syntactic ones are employed by CLINT, i.e., B(H, T, P, N)  is 
always true. 

5.1.2. The bias of GOLEM 

The GOLEM system of Muggleton and Feng uses the notion of ij-determination, which 
includes both syntactic and semantic criteria. The syntactic restriction is basically the 
/-part of GOLEM. It corresponds to the tevel parameter introduced in Definition 3.1.2. 
Originally GOLEM allowed clauses up to any depth. In the emulation of GOLEM's bias 
with NINA however, we restrict the syntactic bias to depth 0. The reason is two-fold: 
with infinite depth, a shift of bias is useless (cf. the properties of Algorithm 3), and 
for ease of comparison with CLINT's bias. The semantic restriction corresponds to j -  
determinacy (Definition 3.2 and 3.2), i.e., B(c, T, P, N)  is true if c is determinate with 
degree at most j in T. The syntactic restrictions are illustrated in Example 9. 

Example 9 Suppose the predicate to be Iearned is of arity 2, and the predicates in 
the background theoo, are male / l ,  female/1,  parent/2. Then the emuIated GOLEM's 

£o, £1 are : 

£o = P(X,Y) ~ {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y})} 
£o is the language of completely bound functor free Horn clauses (as in CLINT). 

£~ = P(X,Y) +-- {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y}), parent(X,Zj, 
parent(Y, ZJ,parent(Z3,X),parent(Z4,Y),male({Z1 ,Z2,Z3,Z4 }),female({Zl ,Z2,Z3,Z4})] 
£1 allows for new variables in the body of clauses up to level 1. 

In general £~ allows for clauses with depth 0 and maximum level {. [] 

5.1.3. The bias of lTOU 

For Rouveirol's ITOU system, it is harder to clearly separate the syntactic and semantic 
criteria. One of the main differences between ITOU and the previous systems is that 
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ITOU accepts (as NINA) definite clauses as positive evidence. ITOU completes the body 
with literals logically entailed by the ftattened example and the flattened background 
theory, i.e., /3(c,T, P, N) is true if the body of c is logically entailed by the body of 
the flattened initial definite clause. Because we do not want to go into details about 
flattening, we reformulate this bias into NINA, while assuming range-restricted clauses s. 
In ITOU the language /2 depends on the positive example. In particular, ITOU is not 
able to introduce arguments in the starting clause which are not present in the positive 
example. 

As for GOLEM's and CLINT's emulations, we assume the depth to be 0. Therefore, 
in NINA's emulation of ITOU, positive examples that are ground facts always have 
starting clauses in the language of completely bound clauses. However, as indicated in 
Example 1 and discussed in Section 5.3, this restriction can be overcome by providing 
definite clauses with a non-empty body as positive evidence, rather than with an empty 
body. The terms introduced in the body of the definite clause help ITOU to introduce 
relations on terms that are not in the head. 

The semantic bias for ITOU can be considered to be always true. ITOU is illustrated 
in the next example. 

Example 10 Suppose the predieate to be learned is of ariß, 2, and the predicates in 
the background theory are male/ l ,  female/1, parent]2. Suppose the given example is 
brother0eff,paul) +-- parent(ann, jeff) .  Assuming depth = O, we then have as syntactic 
blas: 

£ = P(X,Y) +- {male({X,Y,Z}),  female({X,Y,Z}), parent({X,Y,Z},{X,Y,Z})}  

£ is obtained by first flattening the original cIause, which yields brother(X,Y) +- par- 
ent(Z,Y), jeff(X), paul(Y), ann(Z). Applying saturation on the flattened clause (cor- 
responding to the example), ITOU ean never introduce new variables. As the only 
predieates are male/ l ,  female/1, and parent/2, the only literals that can be introduced 
by ITOU for this example are those occurring in the language £ above. Note that in 
the original ITOU system after saturation the example is unflattened by foIding on the 
(temporaty) predicates jeff/1, paul/1 and arm/1. In out emulated version, we just drop 
the literals jeff(X), paul(Y) and ann(Z) since we require clauses to be of depth O. 

The language used thus depends on the example. Since there are three terms in the 
example, we have three variables in the clauses of £. D 

The emulation of ITOU appears to be somewhat unconventional in the sense that the 
semantic restrictions of ITOU (imposed by the flattening and completion operators) can 
be described in our framework as syntactic restrictions. 

5.2. Important issues in bias 

in this section we identify a number of important questions concerning different syntactic 
and semantic biases for inductive logic programming. As all of these questions are 
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complex, we do not expect to formulate a full and definite answer to these questions. 
Nevertheless, our experiments indicate some plausible answers to them. 

Question 1 What is the influence of the semantic restriction of determinacy? 

Given the success of the inductive logic programming systems GOLEM and FOIL 
(Quinlan, 1990), which both employ the determinacy restriction and which are both very 
efficient, it would be interesting to know whether it is always justified to impose the 
determinacy restriction, and if not, when it should be avoided. From another perspective it 
would be interesting to find out whät the influence of determinacy is on the computational 
resources needed for learning. 

Question 2 What is the use of the shift of bias? 

When shifting the bias with regard to a fixed sequence of biases which are ordered 
according to growing expressiveness, one may wonder whether it is easier (or more 
efficient) to learn immediately in the largest language without a need for shifting the 
bias. 

Question 3 How do non-factual examples, i.e., denials and definite cIauses, compare 
with factual examples ? 

In other words, is the more expressive form of evidence (as in NINA and ITOU) 
useful? Does it indeed reduce the number of needed examples, and what is the tradeoff 
for this? 

Question 4 What is the influence of the background theory on the learning result? 

Within inductive logic programming and other forms of concept learning, researchers 
have always argued that background theory is very important. Usually the effect of the 
background theory is evaluated in terms of accuracy. From a blas perspective it is also 
useful to measure its effect on the efficiency of the learner. In particular, in inductive 
logic programming, what is the influence of the number of predicates on the resources 
consumed by the learner? 

5.3. Experimental results 

In this section we describe a number of experiments to provide insight into the above 
questions. We applied our system NINA on two different domains: the first one is a 
relatively small domain, involving family relations. The second domain is a larger one, 
namely that of "Finite Element Mesh Design" as described in Dolgak, 1991. 

5.3.1. Learning Family Relations 

Although family relations is a toy domain, it is sufficiently complex to contribute to 
an improved understanding of bias. First, the background knowledge can contain many 
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relations, not all of which are relevant for a certain learning problem. Second, some 
relations that are very well understood by people turn out to be surprisingly complex. 
Consider for example the relation uncle/2. The exact definition consists of  4 clauses, 
containing variables up to depth 2, as shown in Table 6. 

Table 6. Definition of uncle/2. 

uncle(x,y) ~-- brother(x,z),father(z,y) 
uncle(x,y) ~- brother(x,z), mother(z,y) 
uncle(x,y) ~-- married(x,z), sister(z,t), father(t,y) 
uncle(x,y) ~-- married(x,z), sister(z,t), mother(t,y) 

Finally, the way the knowledge is expressed will influence the learning result. For 
example the result of  learning g randparen t /2  will be different when the parent-relation 
is expressed by parentJ2 or by father/2 and mother/2.  

Figure 1 (see Section 4.4) contains the family tree that is used in our experiments. 
In the experiments we performed in this domain, we concentrated on learning the 

following four relations : brother/2, grandparent/2, sibling/2 and parent_in_law/2. 
Table 7 gives the number of positive and negative instances for each of  these relations 
in the given family. 

In tables 9 and 12 that present results of  our experiments with NINA on this domain, 
the following parameter instantiations are listed for each run: 

BT (Relations in the background theory): the predicates available in the back- 
ground theory, that can be used by the system in order to build starting clauses. 

P (Positive evidence): the selected positive instances and/or the definite clauses that 
are given to the system. P:all means that all positive instances are used. 

N (Negative evidenee) : CWA means closed world assumption, i.e., the use of all 
possible negative instances as negative evidence; in case denials are used, they are 
explicitly mentioned. 

Bias : we use three different combinations of  biases: 

1. a series {(£o, B),(£1, B),(£2, B)}, with the syntactic language blas as in Exam- 
ple 8, and the semantic bias/3(c, T, P, N)  always true. In the table this bias is 
referred to as CLINT. 

Table Z Size of the example sets in the family relations domain 

brother/2 grandparent/2 sibling/2 parent_inJaw/2 

number of positive instances 5 14 10 6 
number of negative instances 164 155 159 163 
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2. a series {(£0,13),(£1, B),(£2, B)}, where the subscript of the syntactic languages 
denotes the maximal level of its clauses (as in Example 8), and the semantic 
bias 13(c, T, P, N) is true if the clause c is determinate with degree at most 1. 
This bias is referred to as GOLEM in the table. 

3. the blas of ITOU, i.e., requiring logical entailment from the flattened positive 
evidence and the flattened background theory. So the syntax of the hypothesis 
clauses is determined by the syntax of the positive evidence and the background 
theory (cf. Example 10). 

Tables 9 and 12 list the following results : 

se-literals: the number of literals in the starting clauses. For each bias we list all 
the numbers that occurred in our experiments. E.g., £2:12-13-14, means that when 
searching in the language £2, NINA found starting clauses with 12, 13 or 14 literals 
(where different numbers of course concern different examples). 

H-elauses: the number of clauses in the hypothesis (after post-processing). 

Time : expressed in cpu-seconds on a Sparc Sun4. We split the result in two parts: 
the time needed for inducing a hypothesis (1.), and the time needed for reducing 
(post-processing) this hypothesis (r.). 

Aeeuraey: the number of correctly and incorrectly classified positive and negative 
instances, ep is the number of covered positives, up the number of uncovered 
positives, en the number of covered negatives and ue the number of uncovered 
negatives. 

Finally, fails in the table means that the system was unable to construct consistent 
starting clauses within the given bias settings. 

5.3.2. Learning Finite Element Mesh Design 

As a larger domain we chose the "Finite Element Mesh Design"-domain, as described in 
Dol~ak, 1991 and Dolgak and Muggleton, 1992. We will not go into detail about finite 
element (FE) methods. We just mention hefe that the problem involves the partitioning of 
physical structures into a finite number of elements for the purpose of analyzing stresses. 
For deciding how to partition a structure a number of parameters including the shape of 
the structure, the loadings and the boundary conditions should be taken into account. 

Table 8 describes the FE domain. Positive examples have the form mesh(Edge, 
Number), meaning that a particular Edge is partitioned in Number parts. Example : 
mesh(a23,2). The set of possible numbers of finite elements is {1,2,3,4,5,7,8,9,10,11, 
12}, and for the negative examples the closed world zssumption is made, i.e., N = { 
mesh(Edge,  Number) I Edge ~ {al . . . . .  e96}, Number ~ {1 . . . . .  12} } - P, where P 
is the set of positive examples. 

We first describe the general setup of the experiments and list the results. We divided 
the task of learning rules for the predicate mesh/2, into the subtasks of learning rules 
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Table 8. The Finite Element Mesh Domain. 

Structures a (a cylinder) 
b (a hydro) 
c (a paper mill) 
d (a roller) 
e (a bearing box) 

Labeling of the edges a l , a2 , . . , a55  
bl,b2 . . . .  ,b42 
cl,c2 . . . .  ,c28 
dl,d2 . . . .  ,d57 
e l , e 2 , . . , e 9 6  

Backgreund predicates 
structure 

loadings 
boundary conditions 

short/1, circuit/1, half_circuit/1, quarter_circuit/1, short_for_hole/1 
long_for_hole/1, circuit_hole/l, half_circuit_hole/1, not_important/l 
not_loaded/1, one_side_loaded/l, two_sideßoaded/1, cont_loaded/1 
free/1, one..side_fixed/1, two_side_fixed/1, fixed/1 
neighbour/2, opposite/2, equal/2 

for mesh(_,l), mesh(_,2), mesh(_,3), mesh(_,4), mesh(_,5), mesh(_,6), mesh(_,7), 
mesh(_,8), mesh(_,9), mesh(_,lO), mesh(_,11) and mesh(_,12). 

In order to prevent the system from just stopping when it does not succeed in con- 
structing a consistent starting clause for a certain example, we make the system add the 
example to the hypothesis. By doing so, we obtain a hypothesis containing a number 
of clauses, and a number of ground facts. This allows us to determine the number of 
examples covered by the hypothesis and the number of examples for which the system 
is not able to find a starting clause, and thus also no covering hypothesis. (This can be 
due to an overly-restrictive blas, or to noise present in the data.) 

The application of GOLEM to this domain is described in Dolgak & Muggleton, 1992 
and Dol~ak, 1991. However, to obtain more determinate clauses, the background knowl- 
edge was adapted. Dolgak et al. added suffixes _xy, _yz and _zx to the predicate neigh- 
bour/2, and suffixes J and J to the predicates equal/2, opposite/2 and to the extended 
neighbour predicates. However, using the learned rules for deciding on the FE-mesh 
design of new structures, these suffixes are not needed. FE methods apparently do not 
need the division into three planes in the xyz-space, nor do they need the symmetry 
information contained in the _r- and _•-suffixes. Therefore we removed these suffixes, 
and removed also all the information doubly contained in the background knowledge. 

In the experiments, the structures b, c, d and e are used as the training set, and 
the structure a is used as the test set. The reason for this is that for our purposes it is 
more interesting to discuss in detail one experiment, than to summarize the 5 experiments 
which would be obtained applying cross-validation. This is particularly true since starting 
clauses and cpu-times are compared. 

In the Tables 10 and 11 that present the results of our experiments in this domain, the 
headline indicates the blas instantiation. Each table presents the following results: 
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Accuracy on the training set: the total number of edges of the structures b, c, d 
and e that were not handled by NINA. There are no covered negative examples, 
since NINA is designed such that both starting clauses and hypotheses are required 
to be consistent with the negative evidence. 

Accuracy on the test set: 

- a correc t  pos i t i ve  is an edge of the structure a that is partitioned into the correct 
number of patts by the mies induced on the training set. The correct nurnber is 
the number as indicated in the positive exainple for this edge. 

- a c o v e r e d  negat ive  is an edge of the structure a that is partitioned into the wrong 
number of parts by one or more of  the rules induced on the training set. A 
wrong number is a number that occurs in one of the negative examples for this 
edge. 

- no  value  means that the edge is not classified by any of the mies induced on the 
training set. 

- correc t  + w r o n g  means that the edge is covered by more than one h i e  induced 
on the training set. One of these rules gives the correct partitioning, the others 
divide the edge into a wrong number of parts. 

Time: the times in cpu seconds on a Sparc Sun4. We give separate times for inducing 
a hypothesis (learn) and post-processing the hypothesis (reduce). 

Literais in starüng clause: for each language bias all numbers of literals that oc- 
curred in our tests are listed. E.g., /Z2:12-13-14, means that in £2 NINA found 
starting clauses with 12, 13 and 14 literals. In case there is only one blas in the test, 
the language is not explicitly mentioned. Note also that we detailed these "-sults 
for the different subrelations of  the relation mesh(_,_). For the relation mesh(_,11) 
there are no results, since there are no edges in the training set that should be divided 
into 11 patts. 

Note that both the accuracy and the time results concern the entire mash /2  relation, i.e., 
all subrelations together. 

5.3.3. Par t ia I  a n s w e r s  to the ques t i ons  

In this section we discuss a number of specific experiments which indicate partial answers 
to some of the questions posed in Section 5.2. 

D e t e r m i n a c y  

To answer the first question, i.e., to determine the influence of the semantic restriction 
of determinacy on the learning results, we ran two experiments, one in mesh-design and 
one in familv relations. 
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The results of  the tests in family relations are shown in Table 9. We start the discussion 

with the first two tests on the brother/2 relätion. The second of  these shows that with 
the determinacy restriction starting clauses are shorter, and learning takes less time. The 
first test, however, shows that the determinacy requirement can be too restrictive. With 
the GOLEM bias NINA cannot build consistent starting clauses since the p a r e n t  relation 
is not determinate (a person has 2 parents), although the definition for bro ther /2  belongs 
syntactically to £1 of  the GOLEM bias. With the CLINT bias on the other hand, NINA 
identifies a correct definition, since it belongs to £2 of  the CLINT bias, and there are no 
semantic restrictions. These two experiments suggest the following trend: 

T r e n d  1 The determinacy restriction efficiently prunes the search space, but at the risk 
of losing solutions. 

At first sight, the second test on the grandfather/2 relation seems to contradict this 
trend, as the GOLEM bias seems to be much less efficient than the CLINT bias. This is 
due to the fact that with the CLINT bias, the system only needs to introduce variables 
at level I, and to perform unification between those variables. With the i j -determinate  
languages, however, it was in some cases necessary to shift to a language introducing 
variables at level 2, thus making the starting clauses unnecessarily complex. 

Notice also that in these four tests, when the determinacy restriction is employed,  the 
system produces shorter starting clauses than when using no semantic restrictions. 

Table 9. Influence of determinacy in the family relations domain. 

brother/2 P: all, N: CWA, BT: male/l, female/1, patent/2 
Bias sc-literals H-clauses Time (1.+r,) Accuracy 
CLINT £2:5-6-7 1 3.00 + 0.53 cp:5 cn:0 up:0 un:164 
GOLEM fails 

P: all, N: CWA, BT: male/l, female/1, father/2, mother/2 
Blas sc-Iiterals H-clauses Time (I.+r.) Accuracy 
CLINT £2:8-10 1 6.27 + 0.67 cp:5 cn:0 up:0 un:164 
GOLEM £2:8 1 5.41 + 0.24 cp:5 cn:0 up:0 un:164 

grandparent/2 P: all, N: CWA, BT: male/l, female/1, patent/1 
Bias sc-literals H-clauses Time (1.+r.) Accuracy 
CLINT £2:5-6 1 2.57 + 0.27 cp:14 cn:O up:0 un:l r " 
GOLEM falls 

P: all, N: CWA, BT: male/l, female/1, father/2, mother/2 
Bias sc-literals H-clauses Time (l.+r.) Accuracy 
CLINT £2:6-7-8 4 12.22 + 2.17 cp:14 cn:O up:0 un:155 
GOLEM £1:7 £2:10-16 4 84.32 + 1.38 cp:14 cn:0 up:0 un:155 

We also tested our hypothesis with regard to determinacy on the larger domain of  finite 
element mesh design. The results of these experiments are shown in Table 10. In these 
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specific experiments, we ran NINA with a language allowing for level ! (i = 1), and 
this both with and without the determinacy restriction. The results of  these experiments 
confirm our earlier hypothesis, i.e., with the determinacy restriction, starting clauses 
tend to be smaller and the cpu-time required shorter. However, the hypothesis derived 
under the determinacy restriction has a slightly lower accuracy, which confirms the fact 
that with determinacy certain solutions may be lost. The latter effect seems to be less 
important in the finite element mesh domain. 

Table t0. Influence of determinacy in the FE domain 

i = 1 i = 1 and determinacy (degree 1) 

Accuracy on training-set 33 uncovered positives 95 uncovered positives 
Accuracy on test-set 16 correct 15 correct 

14 wrong 15 wrong 
20 no value 23 no value 
5 correct + wrong 2 correct + wrong 

Time (learn+reduce) 2248.52 + 8045.02 secs 1788.58 + 877.50 secs 
Length of starting clauses 

mesh(_,l) 12-13-14-16q7-20 4-8-9-12-13 
mesh(_,2) 8-12-13-16-17-21-22-29 4-8-9-12-13-16 
m e s h ( _ ~ 3 )  12-13-14-16-22 8-12-16 
mesh(_,4) 12-13 - 16 
mesh(_,5) 16-22 12 
mesh(_,6) 16-22-27 8-12-13-18-23 
mesh(_,7) 17-21 12-13-16 
mesh(_,8) 21-22-26-27 12-13 - 16-17-19-22-27 
mesh(_,9) 19-21-22-23 8-12 

mesh (_, 10) 12 4 
mesh(_, 11) 
mesh(_, 12) 12-18-23 4-18-23 

Shift of bias 

To test whether a shift of bias is useful or not, we ran NINA on the finite element 
meshes, once without a shift of bias (employing CLINT's  123), and once with a shift 
of  bias (employing CLINT's  12o, ..-, 123). In both experiments the global expressivity of 
hypotheses was the same, as the last language in both sequences was £3- The results 
of this experiment are shown in Table 11. In both runs, the hypothesis derived was the 
same; however, using a shift of  bias proved to be much more economic. For this specific 
run, the cpu-time was reduced by nearly 50 per cent. A possible explanation is that with 
a shift of  bias the average length of the starting clauses is much shorter. Of course, if 
NINA had to shift its bias for all positive examples to the last language in the series (in 
order to find a consistent starting clause), the resources consumed by the test with the 
shift of  bias would be larger than without the shift of  bias. This situation is however 
rather unlikely, unless the sequence is chosen badly with regard to the application. 

We observed the following trend: 
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Trend 2 Using a sequence of  languages and shifting the bias can be more economic 
than learning in the union of the languages in the sequence. 

Table i l .  Shift of bias in the FE domain 

Z2o, 121, £2, /23 £3 

Accuracy on training-set 33 uncovered positives 33 uncovered positives 
Accuracy on test-set 16 correct 16 correct 

14 wrong 14 wrong 
20 no value 20 no value 
5 correct + wrong 5 correct + wrong 

Time (learn+reduce) t292.16 + 7535.55 secs 2248.52 + 8045.02 secs 
Length of starting clauses 

mesh(_,l) £0:4 121:7 £a:12-13-16 12-13-14-16q7-20 
mesh(_,2) /2o:4 £1:7-8 £2:7 /23:12-16-17-21 8-12-13-16-17-21-22-29 
mesh(_,3) £1:7 123:16-17 12-13-14-16-22 
mesh(_,4) 123:12-13-16 12-13-16 
mesh(_,5) £3:16-22 16-22 
mesh(_,6) Eo:4 £1:10 /223:16-25-27 16-22-27 
mesh(_,7) /2o :4 Z23:17 -21 17-21 
mesh(_,8) /2o:4 121:8-9 12a.26 21-22-26-27 
mesh(_,9) 12o :4 19-2 t -22-23 

mesh(-, 10) £o :4 12 
mesh(_, l l) 
mesh(_,12) £0:4 128:18-23 12-18-23 

Non-factual evidence 

The influence of non-factual evidence, i.e., of definite clauses as positive examples and 
denials as negatives, was tested in the family relations domain. The results on learning 
brother are shown in Table 12. The results for the other predicates and for larger 
databases (containing 10 predicates or more) are very similar. No results for the GOLEM 
bias are included here, because of the determinacy restriction. 

In this table, the sets of examples are as follows: 

P1 = {brother(bart,joost) ~-; brother(bart,miet) ~-} 
P2 = {brother(bart,joost) ~- parent(jan,joost); brother(bart,miet)~-} 
P3 = {brother(hans,tine) ~-; brother(bart,joost) ~--; brother(bart,miet) ~ }  
P4 = {brother(hans,tine) , -  parent(bart,hans); brother(bart,joost) +-; 

brother(bart,miet) ~-} 
N1 = {~- brother(X,Y), female(X); ~-- brother(X,Y), parent(X,Y)} 

Observe that with only facts as positive examples (PI and P3), the bias of ITOU 
(which cannot introduce new constants or variables in clauses) makes NINA fail. With 
definite clauses, this bias produced the same results obtained with CLINT's bias, but 
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Table 12. Results on the use of non-factual evidence in the family relations domain. 

brother/2 P: P1, N: CWA, BT: male/l, female/1, parent/2 
Blas sc-literals H-clauses Time (1.+r.) Accuracy 
CLINT Z;2:6-7 1 2.16 + 1.02 cp:5 cn:0 up:0 un:164 
ITOU falls 

P: P2, N: CWA, BT: male/l, female/1, parent/2 
Blas sc-literals H-clauses Time (1.+r.) Accuracy 
CLINT /22:7 1 2.23 + 0.96 cp:5 cn:0 up:0 un:164 
ITOU 5 1 0.41 + 0.53 cp:5 en:0 up:0 un:164 

P: P3, N: N1, BT: male/l, female/1, parent/2 
Blas sc-literals H-clauses Time (1.+r.) Accuracy 
CLINT /22:7 1 1.76 + 0.13 cp:5 cn:0 up:0 un:164 
ITOU falls 

P: P4, N: N1, BT: male/l, female/1, parent/2 
Blas sc-literals H-clauses Time (1.+r.) Accuracy 
CLINT /2z:6 1 1.85 + 0.29 cp:5 cn:0 up:0 un:164 
ITOU 5 1 0.5 + 0.23 cp:5 cn:0 up:0 un:164 

much fasten The gain in speed can be explained by the fact that ITOU's  language is still 
less expressive than the corresponding one in CLINT, which results in shorter starting 
clauses for ITOU. These tests clearly show that definite clauses as examples can alleviate 
problems with the blas and problems with introducing new terms in starting clauses. If  
all terms are present in the evidence the learning task becomes easier. With regard to the 
negative evidence, it is easy to see that replacing CWA by a few denials has a positive 
influence on the computation time. We believe the trend in these experiments is very 
clear: non-factual evidence should be used whenever possible as it may simplify the blas 
and reduces both the learning time and the number of examples needed. 

We can identify the following trend: 

Trend  3 Non-factual evidence can reduce the number of exampIes needed and the learn- 
ing time, and can help to alleviate problems with the blas. 

Influence of the Background Theory 

To test the influence of  the background theory, we performed a number of  subsequent 
tests on the family relations domain,  in which we increased each time the number of 
predicates in the background knowledge.  In these tests the predicate grandparent/2 was 
learned, given 6 ground facts as positive evidence, CWA as negative evidence, and the 
series {£0, £1,/22,/23} as syntactic blas. No extra semantic restrictions were imposed. 

Table 13 shows the times needed for learning and postprocessing a hypothesis for the 
grandparent/2 relation. In Figure 2 the length of the starting clauses is plotted against 
the number of predicates in the background knowledge. Next to each plot, we indicate 
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Table 13. Results of learning the relation grandparent/2 with increasing number of predicates in the back- 
ground theory. 

Predieates in the baekground theory Time (learn+reduee) 

male/l, female/1, father/2, mother/2 3.6 + 0.75 secs 

23.77 + 0.83 

Test 1 

Test 2 male/l, female/1, father/2, mother/2 
sister/2, brother/2, married/2 

Test 3 male/l, female/1, father/2, mother/2 272.1 + 1.97 
sister/2, brother/2, married/2, uncle/2, aunt/2 

Test 4 male/l, female/1, father/2, mother/2 37167.29 + 1.95 secs 
sister/2, brother/2, married/2, uncle/2 
aunt/2, niece/2, nephew/2, cousird2 

also the average time needed for computing a starting clause. All starting clauses were 
found in the language £ »  

It is clear that the size of the starting clauses increases as the background knowledge 
grows larger. Indeed, the more predicates there are in the background theory, the more - 
possibly irrelevant - literals are included in the starting clause. Moreover, also the time 
needed for computing a starting clause increases significantly. As a consequence, the 
time needed for inducing a hypothesis, and post-processing it, will grow with the number 
of predicates in the background theory. 

We can identify the following trend: 

Trend 4 Both the size of the starting clauses and the computation time grow (exponen- 
tially) with the number of relations in the background theory. 

This trend may seem counterintuitive in the sense that one would expect that extra 
background knowledge would speed up the learning process. However, the trend for- 
mulated here is specific to the ILP approach and to the method of using the background 
knowledge as predicates in the search for a starting clause. The trend also points out the 
need for biases in order to make the learning process more efficient. 

6. Conclusions and related work  

We have presented several contributions concerning the declarative blas issue in induc- 
tive logic programming. First, we have formulated a conceptual framework for bias, 
that cleanly separates syntactic and semantic bias and that discusses the role of a shift 
of  bias. Second, we have introduced a new and attractive formalism for the declarative 
specification of syntactic blas in inductive logic programming systems. Third, we have 
presented the generic algorithm and system NINA that learns predicates from examptes, 
bias and background knowledge. NINA combines interesting abil{ties from several differ- 
ent systems, mostly from GOLEM, ITOU and CLINT, i.e., semanfic bias from GOLEM, 
non-factual positive evidence from ITOU, and shift of  bias from CLINT. Fourth, we 
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Figure 2. Computation of starting clauses with increasing background knowledge. E.g., with four predicates 
in the background theory, the number of literals in the starting clauses ranged from 6 to 8, and the average 
time needed for computing such a starting clause is 0.54 cpu-secs. 

have shown that NINA is appropriate for bias evaluation purposes. In particular, using 
NINA to experiment in the family relations domain and the finite element mesh domain, 
we have identified some important trends concerning bias. More specifically, these are: 
1) the determinacy restriction efficiently prunes the search space, but at the risk of  los- 
ing completeness; 2) using a sequence of  languages and shifting the bias can be more 
economic than learning in the union of  the languages in the sequence; 3) non-factual 
evidence can reduce the learning time and the number of  examples needed, and can help 
to alleviate problems with the bias; and 4) having too many predicates in the background 
theory can substantially reduce the performance of  the system. Finally, NINA has al- 
lowed us to show that the three seemingly disparate systems GOLEM, ITOU and CLINT 
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have rauch in common concerning the generation of starting clauses and the use of a 
syntactic blas. 

We believe this is the first experimental and general study of the influence of bias 
in specific-to-general ILR Although the experimental results were obtained on relatively 
few and simple domains, several interesting trends were identified. They seem to confirm 
the need for using strong biases in ILP (cf. the experiments with the family relations 
domain), and the possible impact of using a shift of bias mechanism. This puts some of 
the earlier work on the CLINT system (De Raedt, 1992) into a new perspective. Whereas 
in CLINT, a shift of bias was used to find a solution at all, it can now also be used to 
find solutions in a more efficient manner (cf. Trend 2). In this context, it would also be 
interesting to investigate the influence of predicate invention, when viewed as a bias shift 
operation (cf. (Stahl, 1994)). These and other experiments would be needed to provide 
stronger evidence for the trends we identified. However, as long as ILP lacks a real ex- 
perimental methodology, it remains hard to systematically justify eonjectures in this field. 

Concerning the bias representation formalism, we showed that our approach integrates 
earlier frameworks by Bergadano and the MOBAL team. Schemata as employed in 
MOBAL correspond to the subset of our framework without the set notations, and 
Bergadano's language is essentially ours without predicate variables. Other declara- 
tive bias specification formalisms have been introduced by Tausend (this is related to the 
MOBAL schemata, see (Tausend, 1994)) and Cohen (see (Cohen, 1994)). A comparative 
survey of these biases has been published by Tausend (see (Tausend, 1994)). Whereas 
our formalism focuses on specifying the syntax of clauses in hypotheses, some of the 
others have also addressed semantic issues such as types, modes, etc. We feel that such 
semantic aspects should be seen as complementary to the syntax. Syntax and semantics 
are therefore best handled separately, allowing for a clear understanding of both issues. 

As far as related work is concerned, we would like to mention William Cohen's GREN- 
DEL system (Cohen, 1994), which can be considered a generic framework for evaluating 
the bias of general-to-specific inductive logic programming systems. In spirit, NINA is 
for specific-to-general ILP what GRENDEL is for general-to-specific ILR 
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N o t e s  

1. For the time being, we assume here that starting_clause returns a single starting clause. The extension to 
the more general case consists of making starting_clause nondeterministic, and enumerating all solutions 
through backtracking. This extension is introduced in Section 4.2. 

2. A literal is redundant in a clause if the removal of this literal will not cause the clause to be inconsistent 
with the negative evidence. 

3. A clause is redundant if removing this clause will not harm the completeness of the concept definition. 

4. Varions other kinds of refinement operators exist, but a full discussion of these would be very tech- 
nical and contribute little to our bias evaluation method. We refer to (Muggleton & De Raedt, 1994), 
(van der Laag & Nienhuys-Cheng, 1993) for more information. 

5. Variabilizing the constants is done here because NINA assumes the depth of clauses in hypotheses is 0, 
i.e., NINA allows neither constants nor functors in its hypotheses. 

6. Completely bound DATALOG Horn clauses are Horn clauses in DATALOG - i.e., without constants or 
functors - in which all variables in the head also appear in the body, and vice versa. 

7. It is not exactly the language of clauses with maximum level 1, because in that language one could have 
several atoms of the same form, such as for instance parent(X,Y1) .. . . .  parent(X,¥~) where rz could be 
any positive integer, resulting in an infinite language. As this is impractical and in all specific-to-general 
systems excluded in one way or another (in GOLEM because of determinacy), we will work only with 
apprnximations of languages defined in terms of level. 

8. A clause is range restricted if all the variables appearing in its head also appear in the body. 
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