
Machine Learning, 20, 119-154 (1995)
© i995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Declarative Bias for
Specific-to-General ILP Systems*

HILDE ADÉ

LUC DE RAEDT

MAURICE BRUYNOOGHE
Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

hilde@cs.kuleuven.ac.be

lucdr@cs.kuleuven.ac.be

maurice@ cs.kuleuven.ac.be

Editor: M. des Jardins and D, Gordon

Abstract. A comparative study is presented of language biases employed in specific-to-general learning systems
within the Inductive Logic Programn'fing (ILP) paradigm. More specifically, we focus on the biases employed
in three well known systems: CLINT, GOLEM and ITOU, and evaluate both conceptually and empiilcNly their
strengths and weaknesses. The evaluation is carried out within the generic framework of the NINA system,
in which blas is a parameter. Two different types of biases are considered: syntactic bias, which defines
the set of well-formed clauses, and semantic bias, which imposes restrictions on the behaviour of hypotheses
or clauses. NINA is also able to shift its blas (within a predefined seiles of biases), whenever its current
bias is insufficient for finding complete and consistent concept definitions. Furthermore, a new formalism for
specifying the syntactic bias of inductive logic programming systems is introduced.

Keywords: inductive logic programming, declarative bias, specific-to-general learning systems, shift of blas,
generic framework

1. I n t r o d u c t i o n

Inductive Logic Programming (ILP) (see (Muggleton, 1992), (Muggleton & De Raedt,

1994)) is a research area that recently emerged at the intersection of Logic Program-
ming and Machine Learning. It focuses on logical theories for induction, on efficient

implementations of inductive algorithms, and on practical applications, see e.g. King et

al., 1992, Muggleton et al, 1992, and Lavraß et al., 1993. Benefiting from the results
achieved in both inductive learning and logic programming, it aims at overcoming the

limitations of early inductive systems and at extending the deductive logic programming
paradigm towards the use of induction.

Most ILP systems address the problem of concept learning from examples (see Muggle-

ton & De Raedt, 1994)). The main difference from classical concept learning techniques

is that an expressive first order formalism is used instead of a limited attribute value
representation. Additional advantages are that it is easy to use background knowledge,
and that the results are usually transparent to humans.

In this paper, we focus on the language blas issue in inductive logic programming.
Language blas determines the way hypotheses are restricted, both in their syntax and in

their behaviour, Language bias is of crucial importance for inductive logic programming,

* This paper extends the papers (Adé & Bruynooghe, t992) and (Rouveirol et al., 1993).

120 H. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

because the hypothesis spaces of logic programs are usually much larger (often infinite)
than those of attribute value representations.

In the first part of this paper, we develop a conceptual framework for declarative
language bias specification. Two types of biases are distinguished: syntactic bias, which
imposes restrictions on the form of clauses in hypotheses, and semantic blas, which
imposes restrictions on the behaviour of induced hypotheses. Furthermore, a new general
framework for declarative (syntactic) bias specification is presented. It integrates the
formalisms by Bergadano (Bergadano, 1993) and the MOBAL team (Emde et al., 1983),
(Kietz & Wrobel, 1992).

In the second part of the paper, we study important biases employed in specific-to-
general inductive logic programming systems such as ITOU (Rouveirol & Puget, 1989),
(Rouveirol, 1991), GOLEM (Muggleton & Feng, 1990), and CLINT (De Raedt, 1992),
(De Raedt & Bruynooghe, 1992). As for other concept learning systems (Mitchell, 1982),
(De Raedt & Bruynooghe, 1992), specific-to-general search is one of the two most com-
mon strategies. In this second part, we first present the generic specific-to-general ILP
system NINA. In NINA, the semantic and syntactic bias are parameters. Crucial in this
respect will be a generic procedure that turns positive examples into so-called starting
clauses, which are most specific clauses (for a given bias and background theory) cover-
ing a given positive example. Starting clauses corresponding to several positive examples
are later generalized using the 199 operator of (Plotkin, 1970), (Plotkin, 1971), which is
also employed in Muggleton and Feng's GOLEM. NINA is also able to shift its bias
within a predefined series of language biases (syntactic or semantic) using a bias shift
operator as in CLINT. This allows the NINA system to modify its current language bias
whenever it proves to be insufficient. Secondly, we use NINA to empirically and con-
ceptually evaluate the biases employed in three well-known specific-to-general systems:
ITOU, GOLEM and CLINT. In particular, we evaluate the determinacy restriction of
GOLEM, the shift of bias of CLINT and the use of non-factual evidence in ITOU. This
comparison results in a better understanding of the effects of various types of biases,
which may then help to determine which biases are suited for which types of learning
tasks.

This paper is organised as follows: in Section 2, we introduce some inductive logic
programming concepts; in Section 3, we present a conceptual framework for bias and its
specification; in Section 4, an overview of the NINA system is provided; in Section 5,
we evaluate different biases for inductive logic programming; finally, in Section 6, we
conclude.

2. Terminology and problem specification

We first introduce some standard (inductive) logic programming concepts.

Definition 1. A definite clause is an implicitly universally quantified logical formula
h +- bi, ..., bh, where h and the be are atoms.

S P E C I F I C - T O - G E N E R A L ILP SYSTEMS 121

Notation 1 The background theory T and the hypotheses H am sets of definite clauses.
T ~ e denotes that c is logically entailed by the theory T.
[] denotes the empO, cIause, which is always inconsistent.

The large majority of ILP approaches derive logical theories from positive and negative
examples formulated as true and false ground facts, and from background knowledge.
Following (De Raedt, 1992), (De Raedt & Bruynooghe, 1992), we use a more expressive
form of evidence. Positive evidence is represented as definite clauses while negative
evidence is represented as denials.

Definition 2. A denial is an implicitly universally quantified logical formula
+-- b i , . . . , bh, where the bi a r e atoms.

Roughly speaking a denial means that not all of the bi can be true at the same time.
We will require (as (Muggleton & De Raedt, 1994)) that the positive evidence P is

logically entailed by the union of the background theory T and the hypothesis H, i.e.,
TU H ~ P; and that the union of the background theory and the hypothesis is consistent
with the denials N, i.e., T U H U N ~= •.

Checking whether a theory T is consistent with a denial +-- bi,..., b~, i.e., to determine
whether T U {+- bi, ..., b~} ~ n, can be done with a theorem prover. Using PROLOG,
one can use T as a program, and execute the query +--- bi, ..., bh. Consistency is indicated
by finite failure. Success with a substitution 0 allows one to locate the inconsistency.

Each false ground fact n can be represented as a denial +- n, and each true ground
fact p can be represented as a definite clause p +-. So our representation of evidence
generalizes that of most other ILP approaches. An advantage is that one denial can
replace many false ground facts. For instance, the denial +-- father(X,Y), younger(X,Y)
replaces all negative examples for Iather(X,Y) where X is younger than Y. Similarly,
definite clauses as positive evidence may replace several true ground facts. We therefore
argue that the representation of evidence is also a form of language bias, and we evaluate
the use of definite clauses and denials (which do not correspond to ground facts) as
examples separately. This is relevant for Rouveirol's ITOU system, cf. Section 5, where
we show that definite clauses may help to overcome some problems with the syntactic
and semantic language bias.

We find it convenient to distinguish between syntactic bias £ and semantic bias /3.
The former determines the set of syntactically well-formed clauses that constitutes the
hypothesis language, whereas the latter imposes restrictions on the behaviour of the in-
duced hypotheses, such as determinacy restrictions (Muggleton & Feng, 1990), coverage
requirements or efficiency constraints.

Formally speaking, we have:

Notation 2 A syntactic bias £ denotes a set of definite clauses.
A semantic bias/3(H, T, P, N) denotes a funetion that inputs a hypothesis H, a theory
T, positive evidence t 9, and negative evidence N, and that returns true or faIse.

The alm of ILP as studied in this paper is to start from a theory T, positive and negative
evidence t9 and N, together with blas restrictions £ and/3, and to induce a hypothesis

122 H. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

H that is complete (it covers all positive evidence), and consistent (it does not violate
any of the denials).

This can be formalised as follows:

Given

• the set of syntactically well-formed clauses £ (the syntactic bias),
• a semantic bias 13(H, T, P, N),

• a background theory T (represented as a set of definite clauses),
• positive evidence P (represented as a set of definite clauses),
• negative evidence N (represented as a set of denials),

Find: a hypothesis H such that

1. H C_ 12 (syntactic bias)
2. 13(H, T, P, N) is true (semantic bias)
3. T U H ~ P (completeness)
4. T U H U N ~ [] (consistency)

Our problem specification is illustrated below. Note that predicates are mentioned to-
gether with their arity. E.g., male/1 indicates the predicate maie that is of arity 1.

Example 1 Assume that T defines the relations male/l, female/1, tall/1, small/1,
younger/2, parent/2, father/2 and mother/2 of the family displayed in Figure ! of
Section 4.4. Let 12, 13, P and N be defined as follows:

12 = {grandparent(X,Y) , - Bodfl I the only variables in Body are X,Y,Z}

13(H, T, P, N) = true if and only if all clauses c E H cover at least 5 ground facts
for the grandparentJ2 predicate.

P ={grandparent(X,Y) ~- male(X), father(X,Z), male(Z), father(Z,Y), male(Y), tall(Y),
small(X)}

N ={~- grandparent(X,X); ~ grandparent(X,Y), younger(X,Y)}

Given this setting, each of the hypotheses H1 and H2 are in 12 and are complete and
consistent.

Ht = {grandparent(X,Y) +- father(X,Z), mother(Z,Y);
grandparent(X,Y) ~- father(X,Z), father(Z,Y);
grandparent(X,Y) ~ mother(X,Z), mother(Z,Y);
grandparent(X,Y) ~ mother(X,Z), father(Z,Y)}

H2 = {grandparent(X,Y) +- parent(X,Z), parent(Z,Y)}

SPECIFIC-TO-GENERAL ILP SYSTEMS 123

Hypothesis H2 satisfies the semantic bias but H1 does not since the first clause does not
cover 5 facts. []

Throughout the paper we employ Plõtkin's well-known O-subsumption framework
among clauses as the notion of generality. Considering clauses as sets of literals, a
clause cl is more general than a clause c2 (or cl O-subsumes c2) if and only if there
exists a substitution 0 for which elO C_ e2. For example, the clause father(X,Y) +-- par-
ent(X,Y) is more general than father(jef,paul) ~- parent(jef,paul), male(jef) because
{ father(X, Y),~parent(X, Y) } O c {father(jef,paul),~parent(jef,paul),-~male(jef)} where
0 = {X = jef, Y = paul}. For more information on 8-subsumption, we refer to
(Plotkin, 1970), (Plotkin, 1971), (Muggleton & De Raedt, 1994).

3. Bias

In this section, we elaborate on three different aspects of blas: syntactic bias, semantic
bias, and shifting the blas. In particular, we define a new formalism to declaratively
define the syntactic blas of ILP systems, and present some important forms of semantic
bias. We argue that declaratively specifying the bias is advantageous for two reasons.
First, declarative bias specifications allow us to easily port the blas from one system
to another, hence facilitating comparisons and evaluations of different biases. Second,
by making declarative bias explicit, it becomes possible to reason about the bias at the
meta-level. This is particularly important when the given blas is insufficient for the
leaming task and the bias has to be shifted.

3.1. Syntactic bias

3.1.1. A new framework for specifying syntactic bias

Within inductive logic programming, four fundamental formalisms exist to specify syn-
tactic bias (see (Muggleton & De Raedt, 1994) and (Tausend, 1994) for an overview).
These are: the attribute description grammars of Cohen (Cohen, 1994), the schemata
of Ernde et al. (Emde et al., 1983), (Kietz & Wrobel, 1992) and their variants (see e.g.
(Tausend, 1994)), the predicate sets of Bergadano et al. (Bergadano & Gunetti, 1993),
(Bergadano, 1993), and the parameterized languages of De Raedt and others (De Raedt,
1992), Muggleton & Feng, 1990). It is generally agreed that the attribute description
grammars of Cohen are the most flexible and expressive. However, predicate sets and
schemata are more declarative because there is a direct correspondence between them and
the clauses they represent. In contrast, attribute description grammars are more procedu-
ral (as they specify a procedure to generate clauses) and are often harder to understand.
Parameterized languages are specified by a number of parameters, which determine the
complexity of the syntactic language bias, implying that they are rather procedural. Some
important parameters are presented in the hext subsection.

Schemata and predicate sets are complementary in the sense that syntactic biases that
are easy to represent in one formalism are hard to represent in the other formalism (as we

124 H. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

will show below). This motivated us to design a straightforward integration of schemata
and predicate sets. The resulting formalism approaches the expressive power of Cohen's
formalism while retaining the declarative spirit of the other two representations. We
introduce our framework here, and then show how it relates to the other formalisms.

A syntactic bias /2 is specified as a set of clause models. A clause model is an
expression of the form Head +-- Body, BodySet; where

• Head is either an atom or a variabilized atom A;

• Body is of the form A1, .-., An (n _> 0) where the A~ are either atoms or variabilized
atoms;

• BodySet is a set {A1 , . . , An} (n > 1), where the Ai are atoms;

• an atom is of the form p(tx,...,t,~) (n _> 0) where p is a predicate and the ti are
terms or term-sets;

• a variabilized atom is of the form P(t l , ..., t~) where P is a predicate variable and
the ti are terms or term-sets;

• a term is a constant, a variable or the application of a functor symbol f to the terms
tl , ..., tn yielding the term f (t l , ..., th);

• a term-set {t l , . . . , t,~} is a set of terms;

Following Bergadano, further syntactic sugar could be added to this language. A full
discussion of these further extensions is outside the scope of this paper.

The language specified by a clause model Head +-- Body, BodySet is defined as
follows:

1. The language specified by a clause model Head +-- Body, BodySet where Head,
Body and BodySet do not contain term-sets is:

2.

{Headl9 ~-- BodyO U B] (9 is a second order substitution that substitutes all
predicate variables in Head +-- Body with predicate names; and B C_ BodySet}

The language specified by a clause model Head +-- Body, BodySet,
where BodySet = {bi, ..., bn} contains an atom bi = p(T1, . . , Tk) with Tj a term-set
{tl , ..., tl} is the language specified by the clause model

Head +-- Body, BodySet ' where

3.

BodySet ' = (BodySet - {p(T1, ..,TÆ)}) U {p(T1, . . ,T j - I , t , Tj+I,. . . ,Tk)] t E
{tl,.. . ,tz}}

The language specified by a clause model Head +-- Body, t3o@Set where Body
= bt, ...,bn contains an atom (or variabilized atom) bi = p(T1, ...,Tk) with Tj a
term-set {tl , .-., tz} is the language specified by the set of clause models:

SPECIFIC-TO-GENERAL ILP SYSTEMS 125

{Head +- bl , . . . ,b~-~,p(T1,. . ,Tj_~,t , Tj+~,.. ,Tk),b~+l,. . . ,bn, BodySet t ~ E
{ t l , ..., ~z}}

4. The language specified by a set of clause models consists of the union of the languages
specified by the clause models in the set.

Example 2 Assume that the predicates in the background theory are male/7, female/1,
parenV2. Consider the following clause model (P and Q are predicate variables):

£ = {granclfather(X,Y) ~- P({X,Y}), Q(X,Z), {parent({X,Z},Y)}}

Using (3) we obtain:

£ = {grandfather(X,Y) ~ P(Y), Q(X,Z), {parent({X,Z},Y)};
grandfather(X,Y) +- P(X), Q(X,Z), {parent({X,Z},Y)}}

Using (2), we obtain:

£ = {grandfather(X,Y) +-- P(Y), Q(X,Z), {parent(Z,Y),parent(X,Y) };
grandfather(X,Y) +-- P(X), Q(X,Z), {parent(Z,Y), parent(X,Y) }}

Using (1), we obtain:

£= {grandfather(X,Y) +- male(Y), parent(X,Z);
grandfather(X,Y) ~ female(Y), parent(X,Z);
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)
grandfather(X,Y)

~- male(X), parent(X,Z);
,-- female(X), parent(X,Z);

male(Y), parent(X,Z), parent(Z,Y);
female(Y), parent(X,Z), parent(Z,Y);

,-- male(X), parent(X,Z), parent(Z,Y);
+- female(X), parent(X,Z),parent(Z,Y);
,-- male(Y), parent(X,Z), parent(X,Y);

female(Y), parent(X,Z), parent(X,Y);
~- male(X), parent(X,Z), parent(X,Y);
+- female(X), parent(X,Z),parent(X,Y);
+- male(Y), parent(X,Z), parent(Z,Y), parent(X,Y);
+-- female(Y), parent(X,Z), parent(Z,Y), parent(X,Y);
+-- male(X), parent(X,Z), parent(Z,Y), parent(X,Y);
+-- female(X), parent(X,Z),parent(Z,Y), parent(X,Y)}

which is the set of definite clauses specified by the initial syntactie bias. []

Schemata (as used in MOBAL) and predicate sets (as used in the FILP system of
Bergadano) are special cases of our formalism. Schemata are clause models in which
neither predicate sets nor term sets occur, and Bergadano's inductive logic programming

126 H. ADÉ. L. DE RAEDT, AND M. BRUYNOOGHE

language contains - in essence - clause models without predicate variables. Schemata
and predicate sets are complementary in that schemata can easily represent fixed length
clauses, whereas predicate sets can easily represent variable length clauses. Furthermore,
representing variable length clauses using MOBAL's formalism requires many schemata,
while representing fixed length clauses, which differ only in predicate names, using
Bergadano's formalism requires many clause models. Therefore it is advantageous to
integrate both frameworks.

Example 3 The syntactic bias F_. of the previous example can be formulated in Bergadano ~
inductive logic programming language as follows:

£. = {grandfather(X,Y) ~- male({X,Y}), parent(X,Z), {parent({X,Z},Y)};
grandfather(X,Y) ~- female({X,Y}), parent(X,Z), {parent({X,Z},Y)}}

With MOBAL's schemata, Fo can be represented as:

l: = {grandfather(X,Y)
grandfather(X,Y) ,-- P(Y),
grandfather(X,Y) +- P(Y),
grandfather(X,Y) ~- P(Y),
grandfather(X,Y) , - P(X),
grandfather(X,Y) ~- P(X),
grandfather(X,Y) ~- P(X),
grandfather(X,Y) ~ P(X),

P(Y), Q(X,Z);
Q(X,Z), parent(X,Y) ;
Q(X,Z), parent(Z,Y) ;
Q(X,Z), parent(X,Y), parent(Z,Y);
Q(X,Z) ;
Q(X,Z), parent(X,Y) ;
Q(X,Z), parent(Z,Y) ;
Q(X,Z), parent(X,Y), parent(Z,Y)}

This shows that our approach allows a concise and elegant declaration of the syn-
tactic bias. The expressivity could be further enhanced by limiting the range of predicate
variables, by generalizing term sets, by introducing compound atoms, etc. []

3.1.2. Important parameters in syntactic bias

Whereas the above formalism can be used to declaratively specify the syntactic bias, the
computational complexity of the learning task is determined by a number of parameters,
employed also in the parametric approaches to bias specification, see (De Raedt, 1992),
(Muggleton & Feng, 1990), (Buntine, 1987). These parameters will be systematically
varied in the experiments of Section 5.

Definition 3. The depth d(V) of a variable V is 0. The depth d(c) of a constant c is 1.
The depth d(f(t l , ...,tr~)) of a term f (t l , . . , t~) is 1 + max {d(t,) d(t~)}. The depth
of a clause is the maximum of the depth of its terms.

Limiting the depth of terms in hypotheses to 1 con'esponds to working with functor-free
clauses.

S P E C I F I C - T O - G E N E R A L ILP SYSTEMS 127

Definition 4. The level l(t) of a term t in a clause c is 0 if t occurs as an argument in
the head of c; and 1 + min{l(s) I s is an argument of a literal in c which also has t as
an argument }. The level of a clause is the maximum of the level of its terms.

Definition 5. A clause is linked if the level is defined for all arguments in all of its
literals.

Note that we consider only linked clauses in this paper.

Example 4 The variable F in father(F) +--- male(F), parent(F,C) has level O, the vari-
able C has level 1, the variable G in grandfather(F) +- male(F), parent(F,C), pa-
rent(C,G) has level 2, etc. []

The level of a term corresponds to Muggleton and Feng's i parameter (Muggleton &
Feng, 1990) and De Raedt's level of existential quantification (De Raedt, 1992). The
level and the depth are especially important in the context of specific-to-general ILP sys-
tems such as ITOU (Rouveirol & Puget, 1989), (Rouveirol, 1991), GOLEM (Muggleton
& Feng, 1990), CLINT (De Raedt, 1992) and PGA (Buntine, 1987), because this class
of learners starts learning from so-called starting clauses, i.e., maximally specific clauses
covering the example with regard to the background theory, cf. Section 5.1.

3.2. Semantic bias

Whereas syntactic bias imposes restrictions on the form or syntax of hypotheses, semantic
bias imposes restrictions on the behaviour of the hypotheses. Various forms of semantic
bias have been considered in inductive logic programming, including mode and type
declarations, number of covered examples (Muggleton & Feng, 1990), De Raedt et al.,
1993), determinacy restrictions (Muggleton & Feng, 1990), (Quinlan, 1991), significance
tests, and encoding length heuristics (Quinlan, 1991). In this paper, we focus on the
determinacy restriction because it is widely employed in and characteristic of inductive
logic programming, see for instance Muggleton & Feng, 1990, Quinlan, 1991 and Lavra6
& D2eroski, 1994. Furthermore, type and mode restrictions are well understood and can
also be enforced syntactically, cf. Lavra6 & D2eroski, 1994 and Pazzani & Kibler, 1992.
The other restrictions are not characteristic of inductive logic programming.

Below we define the determinacy restriction, adopting the simplified definition of
D2eroski et al, 1992 instead of the original orte by Muggleton & Feng, 1990.

Definition 6. (adapted from D2eroski et al, 1992) A definite clause h +-- ll, ...,l~ is
determinate (with respect to background theory T and factual examples E) if and only
if for every substitution 0 for h that unifies h to a gTound instance e E E, and for all
i = 1 , . . , n there is a unique substitutiõn 0i such that (ll A ... A li)OO~ is both ground
and T ~ (ll A ... A l~)OOi.

Example 5 Consider the following background theory T:

T = {parent(jef,paul) +-; parent(jef,ann) +-; male(paul) +-; female(ann) +-}

128 H. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

The clause has-father(Y) ~ parent(F,Y) is determinate since given a Y there is a
unique instantiation of F that is true. On the other hand, the clause is-father(F) +-
parent(F,Y) is not determinate since there exist two instantiations of Y given F. []

In the GOLEM system this determinacy restriction is enhanced with a parameter j ,
called the degree of determinacy.

Definition 7. A clause is j-determinate if it is determinate, and if the maximal degree
of determinacy of its body literals is j .
A literal in a clause has degree j of determinacy if the number of different variables
occurring in the literal, that have occurrences to the left of the literal, is j .

By fixing the value of the parameter j one can impose an upper bound on the degree
of determinacy of clauses.

Example 6 The clause mult(A,B,C) +-- successor(B',B), mult(A,B',C'), plus(A,C',C)
is determinate. The literal successor(B' ,B) is determinate with degree 1, and the Iit-
erals plus(A,C',C), mult(A,B',C) are determinate with degree 2. So the cIause is 2-
dete rminate. []

Determinate clauses are one way to get around some of the problems in syntactic
languages that can have large starting clauses (cf. below), or more than one starting
clause for one example. Indeed, some of the results in computational learning theory
show that certain classes of deterrninate clauses can be learned efficiently (cf. D~eroski
et al, 1992). This, however, comes at the cost of losing completeness (cf. also Section
5.3).

3.3. Shift o f bias

One advantage of specifying the bias explicitly is that it becomes a tunable and portable
parameter of inductive systems. Moreover, systems can reason about their biases at the
meta-level, cf. (Russell & Grosof, 1990), (Russell, 1989), (Utgoff & Mitchell, 1982),
(Utgoff, 1986), (De Raedt, 1992). This is especially useful for shifting the learning bias.
Within our framework for bias specification, shifting the bias is the process whereby the
system is given a series of semantic and syntactic biases (£o,/3o), ..., (£~,/3~) and can
detect when the current bias (/2i,/3~) is insufficient for the learning task. Shifting the
bias then involves trying the next bias (£i+1,/3i+1) in the learner. Although advanced
approaches might reason about the cause of the learning failure and dynamically select
the next bias for learning, our NINA system assumes a predefined sequence of biases as
De Raedt's CLINT system, cf. Section 5.1.

4. A generic specific-to-general ILP learner : NINA

In this section we present the NINA system. As already mentioned in the introduction,
NINA is a generic framework, containing a number of parameters that taust be instanti-

SPECIFIC-TO-GENERAL ILP SYSTEMS 129

ated in order to obtain a real algorithm. The most important parameters are the syntactic
and the semantic criteria discussed in Section 3.1 and 3.2. The main advantages of
separating those criteria and specifying them declaratively is that this enables us to shift
the bias of the system (see Section 3.3) and to experimentally compare the frequently
employed biases of GOLEM, ITOU and CLINT (see Section 5).

4.1. The top level algorithm

The algorithm in Table 1 describes the overall NINA algorithm.
At the top-level NINA abstracts the way in which specific-to-general ILP-learners

proceed in general. Given area background theory T, positive evidence P and negative
evidence N, and an initially empty hypothesis H. Note that in NINA we use the above
described generalized notions of positive and negative evidence.

The system handles the elements of P incrementally, splitting up the treatment of one
element into two phases.

Table 1. The Generic Algorithm NINA

procedure NINA(E,Æ,P,N,T)
H : = O
for all p E P

i f T u H ~io
then c := startin9_clause(p, T U H, £, 13)

i f T U H U { c } U N ~ = []
then H := generalize(c,H,T,P,N)
endif

endif
endfor
post_process H
output H

endproc

The first phase (see the starting clause generation in Section 4.2) is a constructive
induction step. Taking into account the syntactic and semantic restrictions, the system
uses the available background knowledge in order to compute the starting clause, 1 i.e.,
to replace the example by a most specific description, that implies the given example,
and that is consistent with the negative evidence. Of course, if the positive example
is already covered by the current hypothesis, the system simply proceeds with the next
example.

In the second step (see Section 4.3), the generalization operator takes the computed
starting clause and the current hypothesis, and generalizes them into a new hypothesis that
covers all previously handled examples, and the new example. For our blas evaluation

130 H. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

purposes, this generalization step is less important than the starting clause generation. It
is basically a simplification of the GOLEM strategy (Muggleton & Feng, 1990).

Notice also that - in contrast to systems such as FOIL (Quinlan, 1990) and GOLEM
(Muggleton & Feng, 1990) - NINA performs correct (intensional) coverage tests. The
problems with extensional systems, i.e., systems using a ground model as background
theory, are well-known (see for instance (Bergadano & Gunetti, 1993), (De Raedt et al.,
1993)). Problems arise because the test for coverage may yield incorrect results. To
test whether a clause p(X) +-- q(X) covers an example p(e), extensional systems would
check whether q(e) is in the model. This may lead to problems when learning recursive
predicates or multiple predicates, as discussed in (De Raedt et al., t993), (Bergadano &
Gunetti, 1993) and (Cameron-Jones & Quinlan, 1993).

Finally the hypothesis is post-processed by removing redundant literals in the clauses 2
and removing redundant clauses in the hypothesis a.

4.2. Computing starting clauses

In order to implement bias as a parameter, we introduce hefe the notion of a starting
clause. As the expression itself indicates, this is a clause that forms a starting point for
the learning system. For specific-to-general learning systems, such a clause has to be
a lower bound in the space of possible hypothesis clauses, with respect to the is more
general than relation.

More formally, within the settings presented in Section 2 and Section 3, a starting
clause can be defined as follows:

Definition 8. A starting clause sc E starting_clause(e, T, Z2, B) with respect to a (posi-
tive) example e, a theory T, a language £ and a semantic bias/3 is a maximal!y specific
clause se in £ such that T U {sc} ~ e and B(se, T, P, N) is true.

According to this definition, a starting clause for a positive example e is thus a most
specific clause within the syntactic bias, that satisfies the semantic bias, and that covers
the example e given the background theory T.

Starting clauses need not be unique, as shown below:

Example 7 Consider the following background theory T, and language £.:

T = {parent(jef,paul) ~-; parent(jef,ann) ~-; male(paul) ~-; female(ann) ~-}

£ = {is-father-of-son(X) , - parent(X,Y),{male(Y), female(Y)}}

£. is thus a language of depth 0 (only variables are alIowed as arguments) and level 1.

Now the starting clauses for is-father-of-son(jef) are:

SPECIFIC-TO-GENERAL ILP SYSTEMS 131

is-father-of-son(X) ~- parent(X,Y), male(Y);
is-father-of-son(X) ~- parent(X,Y), female(Y). []

Before presenting the algorithm in Table 2, we introduce a notion of a refinement
operator (cf. (Shapiro, 1983))4:

Definition 9. A refinement operator p for a language £ is a function from £ to 2 L such
that for all c E t;: p(c) = {c' [c ~ is a proper maximally general specialization of c in
B}.

Notice that according to this definition, the refinement operator is uniquely determined
by the syntactic bias and the notion of generality employed (in our case this is 0-
subsumption).

The algorithm in Table 2 shows how refinement operators can be used to compute
starting_clause(e,T,£,B). The idea is to initialize the starting clause with a variabilized
version of e, and then repeatedly apply the refinement operator p until no further refine-
ment can be found that satisfies the bias B(c, T, P, N) and that covers e. In this way a
most specific clause is found that satisfies the syntactic and the semantic bias, and that
covers the given evidence e.

Table 2. The function starting_c[ause(e,T,£,13) computes a most specific ctanse that satisfies the syntactic
and the semantic bias, and that covers the given evidence e.

function starting_clause(e,T,£,/3)
p := e where all constants are replaced by variables 5
8C := p

if U(sc, T, P, N)
then

while ~c E p(sc) : B(c, T, P, N) and T U {c} ~ e
do sc := c
endwhile
return sc

else return fall
endif

endfunction

In the remainder of this section, we present some properties of this algorithm. This
part of the paper may be skipped without problems by the casual reader.

The properties rely on a notion of monotonic semantic bias.

Definition 10. A semantic bias B is monotonic with regard to £ if and only if Vc
£,n, sc E pn(c),P,N : B(sc, T ,P ,N) --+ 3c' E p~-l(c) such that B(c' ,T,P,N).

Roughly speaking, monotonicity requires that if one starts from positive evidence c and
computes a starting clause sc from c, there taust exist a path (in the refinement graph)

132 H. ADÉ. L. DE RAEDT. AND M. BRUYNOOGHE

from c to se for which all intermediate clauses satisfy the semantic bias. Consider for
instance a semantic bias enforcing a minimum number of covered positive examples.
Such a blas is clearly monotonic because if a clause satisfies this restriction, all gener-
alizations will also satisfy this restriction. Similarly, one can prove that determinacy is
monotonic (although not all generalizations need to be deterrninate).

Claim I The algorithm for the function starting_clause(e,T,12,Æ) is sound and complete
if the semantic bias is monotonic and if the initial starting cIause p satisfies the semantic
bias.

Soundness means that ctauses generated by the algorithm will be true starting clauses,
i.e., they will satisfy Definition 8; completeness means that all starting clauses will be
generated.

Claim 2 If e E £ then all clauses sc E starting_ciause(e, T, 12,13) will be logical!y
equivalent to e with regard to T, i.e., T ~ (sc +-+ e).

Under the conditions of this claim, generated starting clauses are always consistent
with the negative evidence (unless the evidence itself is inconsistent) and therefore the
(syntactic) bias will never be shifted. This is the case in the original GOLEM and tTOU.
In NINA, starting clauses are always of depth 0 (i.e., all arguments are variables). So
e ~ 12, and shifting the bias is a useful operation.

4.2.1. Starting clauses in a series of languages

Süppose that the system is given a series of biases (each composed of a syntactic and a
semantic blas). When building a starting clause for a given example, NINA starts using
the first bias in the series. When unable to construct a consistent starting clause, NINA
shifts its bias to the next bias in the series. This process of computing starting clauses
and shifting the blas is repeated until a consistent starting clause is found, or all biases
are tried.

Enhancing the computation of starting clauses with this feature results in the algorithm
of Table 3.

In the algorithm in Table 1 the catl to the function starting_cIause should then be
replaced by a call to the function starting_clause_with3hift_of_bias.

The final algorithm is able to handle languages where more than one starting clause
can be generated. For this purpose backtracking is introduced.

4.3. The generalization procedure

The generalization function is shown in Table 4.
Since most specific-to-general ILP-learners use an 199-1ike operator, we based the

generalization operator in NINA on Plotkin's framework (Plotkin, 1970), (Plotkin, 1971).
Our system loops over the clauses in the current hypothesis, each time computing the

SPECIFIC-TO-GENERAL ILP SYSTEMS 133

Table 3. The function starting_clause_with_shift_of_bias (p,T,(L;o, Bo),. . , (£m, Bin)) computes a starting
clause for the given evidence e, within a predefined series of language biases.

function starting_clause_with_shift_of_bias (p,T,(£o, 13o),.., (£,~ , B,~))
i := 0 {i denotes the bias index }
repeat

sc := starting_clause(p, T, £i,B~)
if T u H U {sc} u N ~ []
then / f alternative starting clauses exist

then backtrack on sc
e l s e i : = i + 1
endif

endif
until T U H U {sc} U N [/: [] or i = m + 1
i f i < _ m
then return sc
else return fall
endif

endfunction

Table 4. The generalization algorithm.

Bnction generalize(c , H , T , P , N)
i fgc' E H: TU HUlgg(c,c')U N ~ []

and B(T, H U lgg(c, c'), P, N)
then output H - {c'} U lgg(c, c')
else output H U {c}
endif

endfunction

least general generalization of the starting clause and a clause of the hypothesis, until a
consistent 199 is found, or until all clauses in the hypothesis are tried. I f NINA finds a
consistent lg 9, the corresponding clause in the hypothesis is replaced by the 199. If not,
the starting clause is added to the hypothesis.

4.4. An example

In this section, we demonstrate NINA on a simple example.

Given are:

134 rI. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

jef & mia

jan & ~r~

piet & miet bart & els
/ ' x /",,

inge lieve hans tine

joos t

Figure]. The family tree : jef, jan, piet, bart, joost and hans are male; mia, an, eis, miet, lieve, inge and
tine are female; and & denotes the relation married/2. Partners of children are in italic.

III. T: background knowledge containing the relations female/1, male/l , minor/1 and
parent/2 defined on the family presented in Figure 1. inge, iieve, hans and tine
are minor; jef, jan, bart, pier, joost and hans are male; and the others are female~

{(12o, B),(£d, B)}: a series of biases, where

- /20 = {has-a-son(X) ~ {male(X), fernale(X), minor(X), parent(X,X)}}

i.e., £0 is the language of completely bound DATALOG Horn clauses6;

£1 = {has-a-son(X) +-- {male(X), female(X), rninor(X), parent(X,X), par-
ent(X,Y), parent(Z,X), parent(Y,Z) , parent(Z,Y), parent(Y,Y), parent(Z,Z),
female(Y), male(Y), female(Z), male(Z), minor(Y), minor(Z)}}

i.e., 121 is nearly the language of DATALOG Horn clauses with maximum level
17;

/3 = true, i.e., there are no semantic restrictions.

Positive evidence: P = {has-a-son(bart)~-; has-a-son(X)~ female(X),parent(X,Y)
male(Y); has-a-son(jef)~}

Negative evidence: N = {~- has-a-son(piet); +-- has-a-son(X), minor(X) }

Below we give a trace of NINA. Comments are given in italics.

? - nina.

Handling the example has-a-son(bart) ...

Found the following starting clause in bias (/20,/3)

has-a-son(X) :- male(X).

SPECIFIC-TO-GENERAL ILP SYSTEMS] 35

ù . checking for consistency ...

the negative evidence +-- has-a-son(piet) is violated !

. . shifting the bias to (~]~13) ...

Since there are no alternative starting clauses in (£o, t3), the system shifts its
bias.

Found the following starting clause in bias (~i~~) :

has-a-son(X) :- male(X) , parent(X,Y) , parent(Z,X), minor(Y),

female(Y), female(Z).

At this point, there are three other possible starting clauses:

has-a-son(X) :- male(X), parent(X, Y), parent(Z,X), minor(Y), male(Y),
female(Z)

has-a'-son(X) :- male(X), parent(X, Y), parent(Z,X), minor(Y), female(Y),
male(Z)

has-a-son(X) :- male(X), parent(X, Y), parent(Z,X), minor(Y), maie(Y),
male(Z)

ù . checking for consistency .~.

the negative evidence +-- has-a-son(piet) is violated !

ù . looking for alternatives in (~i~13) ---

Found the next starting clause in bias (~i~13) :

has-a-son(X) :- male(X), parent(X,Y), parent(Z,X), minor(Y),

male(Y), female(Z)

ù . checking for consistency ...

It is consistent [

ù . generalizing the hypothesis and the starting clause ..

Impossible to find a consistent igg.

The starting clause is added to the hypothesis.

Because the hypothesis H is empty no (consistent) lgg can be computed. There-
fore the starting clause is added to H.

Handling the example has-a-son(X):-female(X),parent(X,Y),male(Y) ...

The system checks this deßnite clause, and finds out that it beIongs to the lan-
guage £1. Next it tries to add literals to the clause, that are in L1, and that
cover all the instances covered by the given clause. Given the original knowI-
edge base, no Iiteral can be added. However, if the clause mother(X,Y) +--
female(X), parent(X,Y) were present in the original knowledge base, the IiteraI
mother(X,Y) could be added to complete the example.

136 H. ADÉ~ L. DE RAEDT, AND M. BRUYNOOGHE

Found the following starting clause in (~i~~):

has-a-son(X) +-- female(X), parent(X,Y), male(Y)

ù . checking the consistency ...

It is consistent !

. . generalizing the hypothesis and the starting clause ...

Found a consistent igg:

has-a-son(X) :- parent(X,Y), male(Y)

Handling the example has-a-son(jef) ...

It is already covered by the current hypothesis.

No more positive evidence.

ù . removing redundancies ...

The following definition was learned :

has-a-son(X) :- parent(X,Y) , male(Y) []

5. Bias evaluaüon

In this section, we aim at establishing a three-way relation between the background
knowledge, the bias and the performance of the learner, which is measured in terms of
accuracy as well as efficiency. In order to achieve this aim, we performed experiments
with NINA with a number of biases that are typically employed in specific-to-general
systems: the shift of bias as used in CLINT (De Raedt, 1992), the determinacy restric-
tion of GOLEM (Muggleton & Feng, 1990) and the use of definite clauses as positive
examples as in ITOU (Rouveirol, 1991). Tuning NINA's bias parameters allowed us
to emulate the syntactic and semantic biases of these three systems. It is important to
realize that it was never our intention to reproduce the same learning behaviour as the
original systems. Rather we focussed in on the biases they employ. Furthermore, the em-
ulated versions, incorporating NINA's general framework, have a number of abilities that
go beyond the original systems. One important difference between ITOU and GOLEM
and their emulations is that we restrict the languages to depth 0, i.e., only variables
are allowed as arguments in the clauses. In the original GOLEM and ITOU systems,
constant and functor symbols are allowed in the hypothesis language. The motivations
for this assumption are that it makes starting clauses in NINA not necessarily logically
equivalent to the positive examples for which they are derived (cf. also Claim 2), and
that it makes a bias shift relevant. Finally, at the procedural level, the NINA emulations
also differ from the original systems. E.g. CLINT works interactively and generates its
own examples. GOLEM uses extensional coverage tests, whereas all tests for coverage
in NINA are done intensionally. However, these differences are not important for us as
we focus on bias here.

The emulations will also clearly demonstrate the generality and power of the NINA
approach as a general framework for specific-to-general learning and for comparing lan-
guage bias. In a sense, NINA is to specific-to-general learning what Cohen's GRENDEL
(Cohen, 1994) is for general-to-specific learning.

S P E C I F I C - T O - G E N E R A L ILP SYSTEMS 137

Table 5. Biases in NINA.

Syntaetic Bias Originally in : Difference

Series of languages with increasing GOLEM
level of variables

Series of languages with increasing
level of variables and extra
restrictions on the new variables

CLINT

Language dependent on the positive ITOU
evidence

In GOLEM the level
(the/-parameter) is fixed

Semantic Bias Originally in : Difference

No extra restriction CLINT, ITOU

Series of j-deterrninate languages GOLEM In GOLEM the j-parameter
with variable j is fixed

5.1. Typical biases in specific-to-general ILP learners

We analyzed the biases of three typical ILP learning systems: CLINT, GOLEM and
ITOU. Table 5 summarizes the biases we incorporated in our NINA-system. Each of
these features is explained in more detail in the discussion of the biases of the systems
they originated from.

5.1.1. The bias of CLINT

In the CLINT system of De Raedt and Bruynooghe, the syntactic criteria are explic-
itly formulated by defining a series of parameterized concept description languages,
ordered according to growing expressiveness. Typically the languages have a depth of
0. By varying the level, one obtains a series. Several series of languages are defined
in (De Raedt, 1992), each varying different parameters. As a full presentation of these
alternatives would lead us too far, we illustrate here the series recommended to users
of CLINT. We do not go into further detail on the actual syntactic properties of these
languages, since they are less important than the fact that there is a series of languages
that is ordered according to growing expressiveness.

Example 8 Suppose the arity of the target predicate is 2, and the predicates in the
background theory are male/l , [emale/1, parent/2. Then CLINT's ~ßo, £1, £2 are:

£o = { P(X,Y) ~ {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y})}}
£o is the language of completely bound functor free Horn clauses.

£1 = {P(X,Y) ~- {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y}), parent(X,Zl),

138 H. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

parent(Y, ZJ, parent(Z3,X), parent(Z4,Y)}}
£'t allows for the introduction of variables at level 1, with the extra restriction that each
literal can contain at most one such variable, and that each such variable can only
appear onee in the cIause. Note that it is due to this last restriction that no male- or
female-literals concerning the Zi are allowed.

£2 = {P(X,Y) *-- {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y}), parent(X,ZJ,
parent(Y, Z2), parent(Z3,X), parent(Z4,Y), {X,Y, ZI,Z2,Z3,Z4} = {X,Y, Zl,Z2,Z3,Z4}}
£.2 imposes the same restrictions as L1, however there is an =/2 predicate, which can
unify existing variables, but cannot introduce new variables. This explicit use of a
unification predicate is due to the actual implementation of the CLINT system. []

No restrictions other than syntactic ones are employed by CLINT, i.e., B(H, T, P, N) is
always true.

5.1.2. The bias of GOLEM

The GOLEM system of Muggleton and Feng uses the notion of ij-determination, which
includes both syntactic and semantic criteria. The syntactic restriction is basically the
/-part of GOLEM. It corresponds to the tevel parameter introduced in Definition 3.1.2.
Originally GOLEM allowed clauses up to any depth. In the emulation of GOLEM's bias
with NINA however, we restrict the syntactic bias to depth 0. The reason is two-fold:
with infinite depth, a shift of bias is useless (cf. the properties of Algorithm 3), and
for ease of comparison with CLINT's bias. The semantic restriction corresponds to j -
determinacy (Definition 3.2 and 3.2), i.e., B(c, T, P, N) is true if c is determinate with
degree at most j in T. The syntactic restrictions are illustrated in Example 9.

Example 9 Suppose the predicate to be Iearned is of arity 2, and the predicates in
the background theoo, are male / l , female/1, parent/2. Then the emuIated GOLEM's

£o, £1 are :

£o = P(X,Y) ~ {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y})}
£o is the language of completely bound functor free Horn clauses (as in CLINT).

£~ = P(X,Y) +-- {male({X,Y}), female({X,Y}), parent({X,Y},{X,Y}), parent(X,Zj,
parent(Y, ZJ,parent(Z3,X),parent(Z4,Y),male({Z1 ,Z2,Z3,Z4 }),female({Zl ,Z2,Z3,Z4})]
£1 allows for new variables in the body of clauses up to level 1.

In general £~ allows for clauses with depth 0 and maximum level {. []

5.1.3. The bias of lTOU

For Rouveirol's ITOU system, it is harder to clearly separate the syntactic and semantic
criteria. One of the main differences between ITOU and the previous systems is that

SPECIFIC-TO-GENERAL ILP SYSTEMS t 39

ITOU accepts (as NINA) definite clauses as positive evidence. ITOU completes the body
with literals logically entailed by the ftattened example and the flattened background
theory, i.e., /3(c,T, P, N) is true if the body of c is logically entailed by the body of
the flattened initial definite clause. Because we do not want to go into details about
flattening, we reformulate this bias into NINA, while assuming range-restricted clauses s.
In ITOU the language /2 depends on the positive example. In particular, ITOU is not
able to introduce arguments in the starting clause which are not present in the positive
example.

As for GOLEM's and CLINT's emulations, we assume the depth to be 0. Therefore,
in NINA's emulation of ITOU, positive examples that are ground facts always have
starting clauses in the language of completely bound clauses. However, as indicated in
Example 1 and discussed in Section 5.3, this restriction can be overcome by providing
definite clauses with a non-empty body as positive evidence, rather than with an empty
body. The terms introduced in the body of the definite clause help ITOU to introduce
relations on terms that are not in the head.

The semantic bias for ITOU can be considered to be always true. ITOU is illustrated
in the next example.

Example 10 Suppose the predieate to be learned is of ariß, 2, and the predicates in
the background theory are male/ l , female/1, parent]2. Suppose the given example is
brother0eff,paul) +-- parent(ann, jeff) . Assuming depth = O, we then have as syntactic
blas:

£ = P(X,Y) +- {male({X,Y,Z}), female({X,Y,Z}), parent({X,Y,Z},{X,Y,Z})}

£ is obtained by first flattening the original cIause, which yields brother(X,Y) +- par-
ent(Z,Y), jeff(X), paul(Y), ann(Z). Applying saturation on the flattened clause (cor-
responding to the example), ITOU ean never introduce new variables. As the only
predieates are male/ l , female/1, and parent/2, the only literals that can be introduced
by ITOU for this example are those occurring in the language £ above. Note that in
the original ITOU system after saturation the example is unflattened by foIding on the
(temporaty) predicates jeff/1, paul/1 and arm/1. In out emulated version, we just drop
the literals jeff(X), paul(Y) and ann(Z) since we require clauses to be of depth O.

The language used thus depends on the example. Since there are three terms in the
example, we have three variables in the clauses of £. D

The emulation of ITOU appears to be somewhat unconventional in the sense that the
semantic restrictions of ITOU (imposed by the flattening and completion operators) can
be described in our framework as syntactic restrictions.

5.2. Important issues in bias

in this section we identify a number of important questions concerning different syntactic
and semantic biases for inductive logic programming. As all of these questions are

140 I-I. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

complex, we do not expect to formulate a full and definite answer to these questions.
Nevertheless, our experiments indicate some plausible answers to them.

Question 1 What is the influence of the semantic restriction of determinacy?

Given the success of the inductive logic programming systems GOLEM and FOIL
(Quinlan, 1990), which both employ the determinacy restriction and which are both very
efficient, it would be interesting to know whether it is always justified to impose the
determinacy restriction, and if not, when it should be avoided. From another perspective it
would be interesting to find out whät the influence of determinacy is on the computational
resources needed for learning.

Question 2 What is the use of the shift of bias?

When shifting the bias with regard to a fixed sequence of biases which are ordered
according to growing expressiveness, one may wonder whether it is easier (or more
efficient) to learn immediately in the largest language without a need for shifting the
bias.

Question 3 How do non-factual examples, i.e., denials and definite cIauses, compare
with factual examples ?

In other words, is the more expressive form of evidence (as in NINA and ITOU)
useful? Does it indeed reduce the number of needed examples, and what is the tradeoff
for this?

Question 4 What is the influence of the background theory on the learning result?

Within inductive logic programming and other forms of concept learning, researchers
have always argued that background theory is very important. Usually the effect of the
background theory is evaluated in terms of accuracy. From a blas perspective it is also
useful to measure its effect on the efficiency of the learner. In particular, in inductive
logic programming, what is the influence of the number of predicates on the resources
consumed by the learner?

5.3. Experimental results

In this section we describe a number of experiments to provide insight into the above
questions. We applied our system NINA on two different domains: the first one is a
relatively small domain, involving family relations. The second domain is a larger one,
namely that of "Finite Element Mesh Design" as described in Dolgak, 1991.

5.3.1. Learning Family Relations

Although family relations is a toy domain, it is sufficiently complex to contribute to
an improved understanding of bias. First, the background knowledge can contain many

SPECIFIC-TO-GENERAL ILP SYSTEMS 141

relations, not all of which are relevant for a certain learning problem. Second, some
relations that are very well understood by people turn out to be surprisingly complex.
Consider for example the relation uncle/2. The exact definition consists of 4 clauses,
containing variables up to depth 2, as shown in Table 6.

Table 6. Definition of uncle/2.

uncle(x,y) ~-- brother(x,z),father(z,y)
uncle(x,y) ~- brother(x,z), mother(z,y)
uncle(x,y) ~-- married(x,z), sister(z,t), father(t,y)
uncle(x,y) ~-- married(x,z), sister(z,t), mother(t,y)

Finally, the way the knowledge is expressed will influence the learning result. For
example the result of learning g randparen t /2 will be different when the parent-relation
is expressed by parentJ2 or by father/2 and mother/2.

Figure 1 (see Section 4.4) contains the family tree that is used in our experiments.
In the experiments we performed in this domain, we concentrated on learning the

following four relations : brother/2, grandparent/2, sibling/2 and parent_in_law/2.
Table 7 gives the number of positive and negative instances for each of these relations
in the given family.

In tables 9 and 12 that present results of our experiments with NINA on this domain,
the following parameter instantiations are listed for each run:

BT (Relations in the background theory): the predicates available in the back-
ground theory, that can be used by the system in order to build starting clauses.

P (Positive evidence): the selected positive instances and/or the definite clauses that
are given to the system. P:all means that all positive instances are used.

N (Negative evidenee) : CWA means closed world assumption, i.e., the use of all
possible negative instances as negative evidence; in case denials are used, they are
explicitly mentioned.

Bias : we use three different combinations of biases:

1. a series {(£o, B),(£1, B),(£2, B)}, with the syntactic language blas as in Exam-
ple 8, and the semantic bias/3(c, T, P, N) always true. In the table this bias is
referred to as CLINT.

Table Z Size of the example sets in the family relations domain

brother/2 grandparent/2 sibling/2 parent_inJaw/2

number of positive instances 5 14 10 6
number of negative instances 164 155 159 163

142 H. ADÉ, L. DE RAEDT. AND M. BRUYNOOGHE

2. a series {(£0,13),(£1, B),(£2, B)}, where the subscript of the syntactic languages
denotes the maximal level of its clauses (as in Example 8), and the semantic
bias 13(c, T, P, N) is true if the clause c is determinate with degree at most 1.
This bias is referred to as GOLEM in the table.

3. the blas of ITOU, i.e., requiring logical entailment from the flattened positive
evidence and the flattened background theory. So the syntax of the hypothesis
clauses is determined by the syntax of the positive evidence and the background
theory (cf. Example 10).

Tables 9 and 12 list the following results :

se-literals: the number of literals in the starting clauses. For each bias we list all
the numbers that occurred in our experiments. E.g., £2:12-13-14, means that when
searching in the language £2, NINA found starting clauses with 12, 13 or 14 literals
(where different numbers of course concern different examples).

H-elauses: the number of clauses in the hypothesis (after post-processing).

Time : expressed in cpu-seconds on a Sparc Sun4. We split the result in two parts:
the time needed for inducing a hypothesis (1.), and the time needed for reducing
(post-processing) this hypothesis (r.).

Aeeuraey: the number of correctly and incorrectly classified positive and negative
instances, ep is the number of covered positives, up the number of uncovered
positives, en the number of covered negatives and ue the number of uncovered
negatives.

Finally, fails in the table means that the system was unable to construct consistent
starting clauses within the given bias settings.

5.3.2. Learning Finite Element Mesh Design

As a larger domain we chose the "Finite Element Mesh Design"-domain, as described in
Dol~ak, 1991 and Dolgak and Muggleton, 1992. We will not go into detail about finite
element (FE) methods. We just mention hefe that the problem involves the partitioning of
physical structures into a finite number of elements for the purpose of analyzing stresses.
For deciding how to partition a structure a number of parameters including the shape of
the structure, the loadings and the boundary conditions should be taken into account.

Table 8 describes the FE domain. Positive examples have the form mesh(Edge,
Number), meaning that a particular Edge is partitioned in Number parts. Example :
mesh(a23,2). The set of possible numbers of finite elements is {1,2,3,4,5,7,8,9,10,11,
12}, and for the negative examples the closed world zssumption is made, i.e., N = {
mesh(Edge, Number) I Edge ~ {al e96}, Number ~ {1 12} } - P, where P
is the set of positive examples.

We first describe the general setup of the experiments and list the results. We divided
the task of learning rules for the predicate mesh/2, into the subtasks of learning rules

SPECIFIC-TO-GENERAL ILP SYSTEMS 143

Table 8. The Finite Element Mesh Domain.

Structures a (a cylinder)
b (a hydro)
c (a paper mill)
d (a roller)
e (a bearing box)

Labeling of the edges a l , a2 , . . , a55
bl,b2 ,b42
cl,c2 ,c28
dl,d2 ,d57
e l , e 2 , . . , e 9 6

Backgreund predicates
structure

loadings
boundary conditions

short/1, circuit/1, half_circuit/1, quarter_circuit/1, short_for_hole/1
long_for_hole/1, circuit_hole/l, half_circuit_hole/1, not_important/l
not_loaded/1, one_side_loaded/l, two_sideßoaded/1, cont_loaded/1
free/1, one..side_fixed/1, two_side_fixed/1, fixed/1
neighbour/2, opposite/2, equal/2

for mesh(_,l), mesh(_,2), mesh(_,3), mesh(_,4), mesh(_,5), mesh(_,6), mesh(_,7),
mesh(_,8), mesh(_,9), mesh(_,lO), mesh(_,11) and mesh(_,12).

In order to prevent the system from just stopping when it does not succeed in con-
structing a consistent starting clause for a certain example, we make the system add the
example to the hypothesis. By doing so, we obtain a hypothesis containing a number
of clauses, and a number of ground facts. This allows us to determine the number of
examples covered by the hypothesis and the number of examples for which the system
is not able to find a starting clause, and thus also no covering hypothesis. (This can be
due to an overly-restrictive blas, or to noise present in the data.)

The application of GOLEM to this domain is described in Dolgak & Muggleton, 1992
and Dol~ak, 1991. However, to obtain more determinate clauses, the background knowl-
edge was adapted. Dolgak et al. added suffixes _xy, _yz and _zx to the predicate neigh-
bour/2, and suffixes J and J to the predicates equal/2, opposite/2 and to the extended
neighbour predicates. However, using the learned rules for deciding on the FE-mesh
design of new structures, these suffixes are not needed. FE methods apparently do not
need the division into three planes in the xyz-space, nor do they need the symmetry
information contained in the _r- and _•-suffixes. Therefore we removed these suffixes,
and removed also all the information doubly contained in the background knowledge.

In the experiments, the structures b, c, d and e are used as the training set, and
the structure a is used as the test set. The reason for this is that for our purposes it is
more interesting to discuss in detail one experiment, than to summarize the 5 experiments
which would be obtained applying cross-validation. This is particularly true since starting
clauses and cpu-times are compared.

In the Tables 10 and 11 that present the results of our experiments in this domain, the
headline indicates the blas instantiation. Each table presents the following results:

144 H. ADÉ. L. DE RAEDT, AND M. BRUYNOOGHE

Accuracy on the training set: the total number of edges of the structures b, c, d
and e that were not handled by NINA. There are no covered negative examples,
since NINA is designed such that both starting clauses and hypotheses are required
to be consistent with the negative evidence.

Accuracy on the test set:

- a correc t pos i t i ve is an edge of the structure a that is partitioned into the correct
number of patts by the mies induced on the training set. The correct nurnber is
the number as indicated in the positive exainple for this edge.

- a c o v e r e d negat ive is an edge of the structure a that is partitioned into the wrong
number of parts by one or more of the rules induced on the training set. A
wrong number is a number that occurs in one of the negative examples for this
edge.

- no value means that the edge is not classified by any of the mies induced on the
training set.

- correc t + w r o n g means that the edge is covered by more than one h i e induced
on the training set. One of these rules gives the correct partitioning, the others
divide the edge into a wrong number of parts.

Time: the times in cpu seconds on a Sparc Sun4. We give separate times for inducing
a hypothesis (learn) and post-processing the hypothesis (reduce).

Literais in starüng clause: for each language bias all numbers of literals that oc-
curred in our tests are listed. E.g., /Z2:12-13-14, means that in £2 NINA found
starting clauses with 12, 13 and 14 literals. In case there is only one blas in the test,
the language is not explicitly mentioned. Note also that we detailed these "-sults
for the different subrelations of the relation mesh(_,_). For the relation mesh(_,11)
there are no results, since there are no edges in the training set that should be divided
into 11 patts.

Note that both the accuracy and the time results concern the entire mash /2 relation, i.e.,
all subrelations together.

5.3.3. Par t ia I a n s w e r s to the ques t i ons

In this section we discuss a number of specific experiments which indicate partial answers
to some of the questions posed in Section 5.2.

D e t e r m i n a c y

To answer the first question, i.e., to determine the influence of the semantic restriction
of determinacy on the learning results, we ran two experiments, one in mesh-design and
one in familv relations.

SPECIFIC-TO-GENERAL ILP SYSTEMS 145

The results of the tests in family relations are shown in Table 9. We start the discussion

with the first two tests on the brother/2 relätion. The second of these shows that with
the determinacy restriction starting clauses are shorter, and learning takes less time. The
first test, however, shows that the determinacy requirement can be too restrictive. With
the GOLEM bias NINA cannot build consistent starting clauses since the p a r e n t relation
is not determinate (a person has 2 parents), although the definition for bro ther /2 belongs
syntactically to £1 of the GOLEM bias. With the CLINT bias on the other hand, NINA
identifies a correct definition, since it belongs to £2 of the CLINT bias, and there are no
semantic restrictions. These two experiments suggest the following trend:

T r e n d 1 The determinacy restriction efficiently prunes the search space, but at the risk
of losing solutions.

At first sight, the second test on the grandfather/2 relation seems to contradict this
trend, as the GOLEM bias seems to be much less efficient than the CLINT bias. This is
due to the fact that with the CLINT bias, the system only needs to introduce variables
at level I, and to perform unification between those variables. With the i j -determinate
languages, however, it was in some cases necessary to shift to a language introducing
variables at level 2, thus making the starting clauses unnecessarily complex.

Notice also that in these four tests, when the determinacy restriction is employed, the
system produces shorter starting clauses than when using no semantic restrictions.

Table 9. Influence of determinacy in the family relations domain.

brother/2 P: all, N: CWA, BT: male/l, female/1, patent/2
Bias sc-literals H-clauses Time (1.+r,) Accuracy
CLINT £2:5-6-7 1 3.00 + 0.53 cp:5 cn:0 up:0 un:164
GOLEM fails

P: all, N: CWA, BT: male/l, female/1, father/2, mother/2
Blas sc-Iiterals H-clauses Time (I.+r.) Accuracy
CLINT £2:8-10 1 6.27 + 0.67 cp:5 cn:0 up:0 un:164
GOLEM £2:8 1 5.41 + 0.24 cp:5 cn:0 up:0 un:164

grandparent/2 P: all, N: CWA, BT: male/l, female/1, patent/1
Bias sc-literals H-clauses Time (1.+r.) Accuracy
CLINT £2:5-6 1 2.57 + 0.27 cp:14 cn:O up:0 un:l r "
GOLEM falls

P: all, N: CWA, BT: male/l, female/1, father/2, mother/2
Bias sc-literals H-clauses Time (l.+r.) Accuracy
CLINT £2:6-7-8 4 12.22 + 2.17 cp:14 cn:O up:0 un:155
GOLEM £1:7 £2:10-16 4 84.32 + 1.38 cp:14 cn:0 up:0 un:155

We also tested our hypothesis with regard to determinacy on the larger domain of finite
element mesh design. The results of these experiments are shown in Table 10. In these

146 H, ADJ. L. DE RAEDT, AND M. BRUYNOOGHE

specific experiments, we ran NINA with a language allowing for level ! (i = 1), and
this both with and without the determinacy restriction. The results of these experiments
confirm our earlier hypothesis, i.e., with the determinacy restriction, starting clauses
tend to be smaller and the cpu-time required shorter. However, the hypothesis derived
under the determinacy restriction has a slightly lower accuracy, which confirms the fact
that with determinacy certain solutions may be lost. The latter effect seems to be less
important in the finite element mesh domain.

Table t0. Influence of determinacy in the FE domain

i = 1 i = 1 and determinacy (degree 1)

Accuracy on training-set 33 uncovered positives 95 uncovered positives
Accuracy on test-set 16 correct 15 correct

14 wrong 15 wrong
20 no value 23 no value
5 correct + wrong 2 correct + wrong

Time (learn+reduce) 2248.52 + 8045.02 secs 1788.58 + 877.50 secs
Length of starting clauses

mesh(_,l) 12-13-14-16q7-20 4-8-9-12-13
mesh(_,2) 8-12-13-16-17-21-22-29 4-8-9-12-13-16
m e s h (_ ~ 3) 12-13-14-16-22 8-12-16
mesh(_,4) 12-13 - 16
mesh(_,5) 16-22 12
mesh(_,6) 16-22-27 8-12-13-18-23
mesh(_,7) 17-21 12-13-16
mesh(_,8) 21-22-26-27 12-13 - 16-17-19-22-27
mesh(_,9) 19-21-22-23 8-12

mesh (_, 10) 12 4
mesh(_, 11)
mesh(_, 12) 12-18-23 4-18-23

Shift of bias

To test whether a shift of bias is useful or not, we ran NINA on the finite element
meshes, once without a shift of bias (employing CLINT's 123), and once with a shift
of bias (employing CLINT's 12o, ..-, 123). In both experiments the global expressivity of
hypotheses was the same, as the last language in both sequences was £3- The results
of this experiment are shown in Table 11. In both runs, the hypothesis derived was the
same; however, using a shift of bias proved to be much more economic. For this specific
run, the cpu-time was reduced by nearly 50 per cent. A possible explanation is that with
a shift of bias the average length of the starting clauses is much shorter. Of course, if
NINA had to shift its bias for all positive examples to the last language in the series (in
order to find a consistent starting clause), the resources consumed by the test with the
shift of bias would be larger than without the shift of bias. This situation is however
rather unlikely, unless the sequence is chosen badly with regard to the application.

We observed the following trend:

S P E C I F I C - T O - G E N E R A L ILP SYSTEMS 147

Trend 2 Using a sequence of languages and shifting the bias can be more economic
than learning in the union of the languages in the sequence.

Table i l . Shift of bias in the FE domain

Z2o, 121, £2, /23 £3

Accuracy on training-set 33 uncovered positives 33 uncovered positives
Accuracy on test-set 16 correct 16 correct

14 wrong 14 wrong
20 no value 20 no value
5 correct + wrong 5 correct + wrong

Time (learn+reduce) t292.16 + 7535.55 secs 2248.52 + 8045.02 secs
Length of starting clauses

mesh(_,l) £0:4 121:7 £a:12-13-16 12-13-14-16q7-20
mesh(_,2) /2o:4 £1:7-8 £2:7 /23:12-16-17-21 8-12-13-16-17-21-22-29
mesh(_,3) £1:7 123:16-17 12-13-14-16-22
mesh(_,4) 123:12-13-16 12-13-16
mesh(_,5) £3:16-22 16-22
mesh(_,6) Eo:4 £1:10 /223:16-25-27 16-22-27
mesh(_,7) /2o :4 Z23:17 -21 17-21
mesh(_,8) /2o:4 121:8-9 12a.26 21-22-26-27
mesh(_,9) 12o :4 19-2 t -22-23

mesh(-, 10) £o :4 12
mesh(_, l l)
mesh(_,12) £0:4 128:18-23 12-18-23

Non-factual evidence

The influence of non-factual evidence, i.e., of definite clauses as positive examples and
denials as negatives, was tested in the family relations domain. The results on learning
brother are shown in Table 12. The results for the other predicates and for larger
databases (containing 10 predicates or more) are very similar. No results for the GOLEM
bias are included here, because of the determinacy restriction.

In this table, the sets of examples are as follows:

P1 = {brother(bart,joost) ~-; brother(bart,miet) ~-}
P2 = {brother(bart,joost) ~- parent(jan,joost); brother(bart,miet)~-}
P3 = {brother(hans,tine) ~-; brother(bart,joost) ~--; brother(bart,miet) ~ }
P4 = {brother(hans,tine) , - parent(bart,hans); brother(bart,joost) +-;

brother(bart,miet) ~-}
N1 = {~- brother(X,Y), female(X); ~-- brother(X,Y), parent(X,Y)}

Observe that with only facts as positive examples (PI and P3), the bias of ITOU
(which cannot introduce new constants or variables in clauses) makes NINA fail. With
definite clauses, this bias produced the same results obtained with CLINT's bias, but

148 H. ADÉ, L. DE RAEDT, AND M. BRUYNOOGHE

Table 12. Results on the use of non-factual evidence in the family relations domain.

brother/2 P: P1, N: CWA, BT: male/l, female/1, parent/2
Blas sc-literals H-clauses Time (1.+r.) Accuracy
CLINT Z;2:6-7 1 2.16 + 1.02 cp:5 cn:0 up:0 un:164
ITOU falls

P: P2, N: CWA, BT: male/l, female/1, parent/2
Blas sc-literals H-clauses Time (1.+r.) Accuracy
CLINT /22:7 1 2.23 + 0.96 cp:5 cn:0 up:0 un:164
ITOU 5 1 0.41 + 0.53 cp:5 en:0 up:0 un:164

P: P3, N: N1, BT: male/l, female/1, parent/2
Blas sc-literals H-clauses Time (1.+r.) Accuracy
CLINT /22:7 1 1.76 + 0.13 cp:5 cn:0 up:0 un:164
ITOU falls

P: P4, N: N1, BT: male/l, female/1, parent/2
Blas sc-literals H-clauses Time (1.+r.) Accuracy
CLINT /2z:6 1 1.85 + 0.29 cp:5 cn:0 up:0 un:164
ITOU 5 1 0.5 + 0.23 cp:5 cn:0 up:0 un:164

much fasten The gain in speed can be explained by the fact that ITOU's language is still
less expressive than the corresponding one in CLINT, which results in shorter starting
clauses for ITOU. These tests clearly show that definite clauses as examples can alleviate
problems with the blas and problems with introducing new terms in starting clauses. If
all terms are present in the evidence the learning task becomes easier. With regard to the
negative evidence, it is easy to see that replacing CWA by a few denials has a positive
influence on the computation time. We believe the trend in these experiments is very
clear: non-factual evidence should be used whenever possible as it may simplify the blas
and reduces both the learning time and the number of examples needed.

We can identify the following trend:

Trend 3 Non-factual evidence can reduce the number of exampIes needed and the learn-
ing time, and can help to alleviate problems with the blas.

Influence of the Background Theory

To test the influence of the background theory, we performed a number of subsequent
tests on the family relations domain, in which we increased each time the number of
predicates in the background knowledge. In these tests the predicate grandparent/2 was
learned, given 6 ground facts as positive evidence, CWA as negative evidence, and the
series {£0, £1,/22,/23} as syntactic blas. No extra semantic restrictions were imposed.

Table 13 shows the times needed for learning and postprocessing a hypothesis for the
grandparent/2 relation. In Figure 2 the length of the starting clauses is plotted against
the number of predicates in the background knowledge. Next to each plot, we indicate

SPECIFIC-TO-GENERAL ILP SYSTEMS 149

Table 13. Results of learning the relation grandparent/2 with increasing number of predicates in the back-
ground theory.

Predieates in the baekground theory Time (learn+reduee)

male/l, female/1, father/2, mother/2 3.6 + 0.75 secs

23.77 + 0.83

Test 1

Test 2 male/l, female/1, father/2, mother/2
sister/2, brother/2, married/2

Test 3 male/l, female/1, father/2, mother/2 272.1 + 1.97
sister/2, brother/2, married/2, uncle/2, aunt/2

Test 4 male/l, female/1, father/2, mother/2 37167.29 + 1.95 secs
sister/2, brother/2, married/2, uncle/2
aunt/2, niece/2, nephew/2, cousird2

also the average time needed for computing a starting clause. All starting clauses were
found in the language £ »

It is clear that the size of the starting clauses increases as the background knowledge
grows larger. Indeed, the more predicates there are in the background theory, the more -
possibly irrelevant - literals are included in the starting clause. Moreover, also the time
needed for computing a starting clause increases significantly. As a consequence, the
time needed for inducing a hypothesis, and post-processing it, will grow with the number
of predicates in the background theory.

We can identify the following trend:

Trend 4 Both the size of the starting clauses and the computation time grow (exponen-
tially) with the number of relations in the background theory.

This trend may seem counterintuitive in the sense that one would expect that extra
background knowledge would speed up the learning process. However, the trend for-
mulated here is specific to the ILP approach and to the method of using the background
knowledge as predicates in the search for a starting clause. The trend also points out the
need for biases in order to make the learning process more efficient.

6. Conclusions and related work

We have presented several contributions concerning the declarative blas issue in induc-
tive logic programming. First, we have formulated a conceptual framework for bias,
that cleanly separates syntactic and semantic bias and that discusses the role of a shift
of bias. Second, we have introduced a new and attractive formalism for the declarative
specification of syntactic blas in inductive logic programming systems. Third, we have
presented the generic algorithm and system NINA that learns predicates from examptes,
bias and background knowledge. NINA combines interesting abil{ties from several differ-
ent systems, mostly from GOLEM, ITOU and CLINT, i.e., semanfic bias from GOLEM,
non-factual positive evidence from ITOU, and shift of bias from CLINT. Fourth, we

150 H. ADÉ, L. DE RAEDT. AND M. BRUYNOOGHE

20

10

number of
literals
in the starting
clause

5 9 8 . 7 2 s e c s

4 5 . 0 1 s e c s

3 . 7 5 s e c s

1 0 . 5 4 s e c s

I I I I I I I I ', I 1 1 ; ~

4 7 9 12
number of relations in the background theory

Figure 2. Computation of starting clauses with increasing background knowledge. E.g., with four predicates
in the background theory, the number of literals in the starting clauses ranged from 6 to 8, and the average
time needed for computing such a starting clause is 0.54 cpu-secs.

have shown that NINA is appropriate for bias evaluation purposes. In particular, using
NINA to experiment in the family relations domain and the finite element mesh domain,
we have identified some important trends concerning bias. More specifically, these are:
1) the determinacy restriction efficiently prunes the search space, but at the risk of los-
ing completeness; 2) using a sequence of languages and shifting the bias can be more
economic than learning in the union of the languages in the sequence; 3) non-factual
evidence can reduce the learning time and the number of examples needed, and can help
to alleviate problems with the bias; and 4) having too many predicates in the background
theory can substantially reduce the performance of the system. Finally, NINA has al-
lowed us to show that the three seemingly disparate systems GOLEM, ITOU and CLINT

SPECIFIC-TO-GENERAL ILP SYSTEMS 151

have rauch in common concerning the generation of starting clauses and the use of a
syntactic blas.

We believe this is the first experimental and general study of the influence of bias
in specific-to-general ILR Although the experimental results were obtained on relatively
few and simple domains, several interesting trends were identified. They seem to confirm
the need for using strong biases in ILP (cf. the experiments with the family relations
domain), and the possible impact of using a shift of bias mechanism. This puts some of
the earlier work on the CLINT system (De Raedt, 1992) into a new perspective. Whereas
in CLINT, a shift of bias was used to find a solution at all, it can now also be used to
find solutions in a more efficient manner (cf. Trend 2). In this context, it would also be
interesting to investigate the influence of predicate invention, when viewed as a bias shift
operation (cf. (Stahl, 1994)). These and other experiments would be needed to provide
stronger evidence for the trends we identified. However, as long as ILP lacks a real ex-
perimental methodology, it remains hard to systematically justify eonjectures in this field.

Concerning the bias representation formalism, we showed that our approach integrates
earlier frameworks by Bergadano and the MOBAL team. Schemata as employed in
MOBAL correspond to the subset of our framework without the set notations, and
Bergadano's language is essentially ours without predicate variables. Other declara-
tive bias specification formalisms have been introduced by Tausend (this is related to the
MOBAL schemata, see (Tausend, 1994)) and Cohen (see (Cohen, 1994)). A comparative
survey of these biases has been published by Tausend (see (Tausend, 1994)). Whereas
our formalism focuses on specifying the syntax of clauses in hypotheses, some of the
others have also addressed semantic issues such as types, modes, etc. We feel that such
semantic aspects should be seen as complementary to the syntax. Syntax and semantics
are therefore best handled separately, allowing for a clear understanding of both issues.

As far as related work is concerned, we would like to mention William Cohen's GREN-
DEL system (Cohen, 1994), which can be considered a generic framework for evaluating
the bias of general-to-specific inductive logic programming systems. In spirit, NINA is
for specific-to-general ILP what GRENDEL is for general-to-specific ILR

Acknowledgments

The authors would especially like to thank Céline Rouveirol at the LRI, University of
Paris-Sud for the discussions, the comments, and certainly for her invaluable share in
the work that preceded this paper.

This work is supported by the Esprit Basic Research Action ILP (project 6020) and
by the 'Vlaamse Gemeenschap' through contract nr.93/014. Hiide Adé did part of the
research during her stay at LRI, University of Paris Sud, made possible by a grant of the
Belgian National Fund for Scientific Research. Luc De Raedt and Maurice Bruynooghe
are supported by the Belgian National Fund for Scientific Research.

152 H. ADg, L. DE RAEDT, AND M. BRUYNOOGHE

The authors would like to thank Diana Gordon for encourag ing us to wri te this pa-

per. We also thank the a n o n y m o u s rev iewers for their very valuable c o m m e n t s and

suggest ions . We are grateful to Boyan Dolgak for mak ing the data on the Fini te E l emen t

M e s h Des ign Domain available, and to Pe te r Flach for making his implementa t ion of the

lgg-opera tor available, wh ich can be found in his book (Flach, 1994).

Finally, many thanks to Gunther Sablon for his c o m m e n t s on the earl ier vers ions of

the paper, and for his help in the imp lemen ta t i on of the N I N A system. Also thanks to

Luc Dehaspe for correc t ing this text.

N o t e s

1. For the time being, we assume here that starting_clause returns a single starting clause. The extension to
the more general case consists of making starting_clause nondeterministic, and enumerating all solutions
through backtracking. This extension is introduced in Section 4.2.

2. A literal is redundant in a clause if the removal of this literal will not cause the clause to be inconsistent
with the negative evidence.

3. A clause is redundant if removing this clause will not harm the completeness of the concept definition.

4. Varions other kinds of refinement operators exist, but a full discussion of these would be very tech-
nical and contribute little to our bias evaluation method. We refer to (Muggleton & De Raedt, 1994),
(van der Laag & Nienhuys-Cheng, 1993) for more information.

5. Variabilizing the constants is done here because NINA assumes the depth of clauses in hypotheses is 0,
i.e., NINA allows neither constants nor functors in its hypotheses.

6. Completely bound DATALOG Horn clauses are Horn clauses in DATALOG - i.e., without constants or
functors - in which all variables in the head also appear in the body, and vice versa.

7. It is not exactly the language of clauses with maximum level 1, because in that language one could have
several atoms of the same form, such as for instance parent(X,Y1) parent(X,¥~) where rz could be
any positive integer, resulting in an infinite language. As this is impractical and in all specific-to-general
systems excluded in one way or another (in GOLEM because of determinacy), we will work only with
apprnximations of languages defined in terms of level.

8. A clause is range restricted if all the variables appearing in its head also appear in the body.

References

Adé, H. & Bruynooghe, M. (1992). A comparative study of declarative and dynamically adjustable language
blas in concept learning. In Proceedings of the ML-92 Workshop on Biases in lnductive Learning.

Bergadano, F. (1993). Towards an inductive logic programming language. Technical Report ESPRIT project
no. 6020 ILP Deliverable TO1, Computer Science Department, University of Torino.

Bergadano, F. & Gunetti, D. (1993). An interactive system to learn functional logic programs. In Proceedings
of the 13th International Joint Conference on Artificial Intelligence, pages 1044-1049. Morgan Kaufmann.

Buntine, W. (1987). Induction of Hom-Clauses: methods and the plausible generalization algorithm. Interna-
tional JournaI of Man-Machine Studies, 26:499-520.

Cameron-Jones, R.M. & Quinlan, J.R. (1993). Avoiding pitfalls when learning recursive theories. In Pro-
ceedings of the 13th International Joint Conference on Artificial Intelligence, pages 105"0-1055. Morgan
Kaufmann.

Cohen, W.W. (1994). Grammatically biased learning: leaming logic programs using an explicit antecedent
description language. Artificial InteUigence, 68:303-366.

De Raedt, L. (1992). Interactive Theory Revision: an Inductive Logic Programming Approach. Academic
Press.

SPECIFIC-TO-GENERAL ILP SYSTEMS t53

De Raedt, L. & Bruynooghe, M. (1992). Betief updating from integrity constraints and queries. Artificial
lntelligence, 53:291-307.

De Raedt, L. & Bruynooghe, M. (1992). Interactive concept-learning and constructive induction by änalogy.
Machine Learning, 8(2):107-150.

De Raedt, L. & Bruynooghe, M. (1992). A unifying framework for concept-leaming algorithms. The
Knowledge Engineering Review, 7(3):251-269.

De Raedt, L., Lavra6, N., & D2eroski, S. (1993). Multiple predicate leaming. In Proceedings of the 13th
International Joint Conference on Artificial IntelIigence, pages 1037-1042. Morgan Kaufmann.

Dol~ak, B. (1991). Constructing finite element meshes using artificial intelligence methods. Master's thesis,
Faculty of Teclmical Sciences, University of Maribor, Slovenia. in Slovene.

Dolgak, B. & Muggleton, S. (1992). The application of inductive logic programming to finite element mesh
design. In S. Muggleton, editor, lnductive logic programming, pages 453--472. Academic Press.

D~:eroski, S., Muggleton, S., & Russell, S. (1992) PAC-learnability of determinate logic programs. In
Proceedings of the 5th ACM workshop on Computational Learning Theory, pages t28-135.

Emde, W., Habel, C.U., & Rollinger, C.R. (1983). The discovery of the equator or concept driven learning.
In Proceedings of the 8th International Joint Conference on Artificial Intelligence, pages 455-458. Morgan
Kaufmann.

Hach, R (1994), Simply logical - Intelligent Reasoning by Example. John Wiley & Sons.
Kietz,J-U. & Wrobel, S. (1992). Controlling the complexity of learning in logic through syntactic and task-

oriented models. In S. Muggleton, editor, lnductive logic programming, pages 335-359. Academic Press.
King, R.D, Muggleton, S., Lewis, R.A., & Sternberg,M.J.E.. (1992). Drug design by machine learning: the

use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues
binding to dihydrofolate reductase. Proceedings of the National Academy of Scienees, 89(23).

Lavra6, N. & D2eroski, S. (1994). lnductive Logic Programming: Techniques and Applications. Ellis
Horwood.

Lavra6, N., D2eroski, S., Pirnat, V., & Kri2man, V. (1993). The use of background knowledge in learning
medical diagnostic rules. Applied Artificial Intelligence, 7:273 - 293.

Mitchell, T.M. (1982). Generalization as search. Artificial lntelligence, 18:203-226.
Muggleton, S. editor. (1992). Inductive Logic Programming. Academic Press.
Muggleton, S. & De Raedt, L. (1994), Inductive logic programming : Theory and methods. Journal of Logic

Programming, 19,20:629-679.
Muggleton, S. & Feng, C. (1990). Efficient induction of logic programs. In Proceedings of the Ist conference

on algorithmic learning theory, pages 368-381. Ohmsma, Tokyo, Japan.
Muggleton, S., King, R.D., & Sternberg, M.J.E. (1992). Protein secondary structure prediction using logic.

Protein Engineering, 7:647-657.
Pazzani, M. & Kibler, D. (1992). The utility of knowledge in inductive learning. Machine Learning, 8:57-94.
Plotkin, G. (1970). A note on inductive generalization. In Machine lnteIligence, volume 5, pages 153-163.

Edinburgh University Press.
Plotkin, G. (1971). A further note on inductive generalization. In Machine Intelligence, volume 6, pages

101-124. Edinburgh University Press.
Quinlan, J.R. (1990). Learning logical definitions from relations. Machine Learning, 5:239-266.
Quinlan, J.R. (1991). Knowledge acquisition from structured data - using determinate literals to assist search.

IEEE Expert, 6(6):32-37.
Rouveirol, C. (1991). Semantic model for induction of first order theories. In Proceedings of the 12th

International Joint Conference on Artificial Intelligence, pages 685-690. Morgan Kaufmann.
Rouveirol, C., Adé, H. & De Raedt, L. (1993). Bottom-up generalisation in ILP. In F. Bergadano, De Raedt,

L., Matwin S., and Muggleton, S., editors, Proceedings of the HCAI93 workshop on ILP, pages 59-70.
Rouveirot, C. & Puget, J.-E . (1989). A simple solution for inverting resolution. In Katharina Morik, editor,

Proceedings of the 4th European Working Session on Learning, pages 201-210. Pitman.
Russetl, S. & Grosof, B. (1990). A sketch of autonomous learning using declarative bias. In RB. Brazdil

and K. Konolige, editors, Machine Learning, Meta-Reasoning and Logics, pages 19-54. Kluwer Academic
Publishers.

Russell, S.J. (1989). The use of knowIedge in analogy and indaction. Pitman.
Shapiro, E.Y. (1983). Algorithmic Program Debugging. The MIT Press.

154 H. ADÉ. L. DE RAEDT. AND M. BRUYNOOGHE

Stahl, I. (1994). On the Utility of Predicate Invention in Inductive Logic Programming. In E Bergadano and
De Raedt, L., editors, Proceedings of the 7th European Conference on Machine Learning, volume 784 of
Lecture Notes in Artificial Intelligence, pages 272-286. Springer-Verlag.

Tausend, B. (1994). Biases and Their Effects in Inductive Logic Programming. In F. Bergadano and De Raedt,
L., editors, Proceedings of the 7th European Conference on Machine Learning, volume 784 of Lecture Notes
in Artificial lntelIigence, pages 431-434. Springer-Verlag.

Tausend, B. (1994). Representing Biases for Inductive Logic Programming. In E Bergadano and De Raedt,
L., editors, Proceedings of the 7th European Conference on Machine Learning, volume 784 of Lecture Notes
in Artificial Intelligence, pages 427-430. Springer-Verlag.

Utgoff, EE. (1986). Shift of bias for inductive concept-leaming. In R.S Michalski, J.G. Carbonell, and T.M.
Mitchell, editors, Machine Learning: an artificial intelligence approach, pages 107-148. Morgan Kaufmann.

Utgoff, EE. & Mitchell, T.M. (1982). Acquisition of appropriate bias for concept learning. In Proceedings oJ
the 1st National Conference on Artificial lntelligence (A_AAI-82), pages 414-418. Morgan Kaufmann.

van der Laag, RR.J. & Nienhuys-Cheng, S.-H. (1993). Subsumption and refinement in model inference. In
E Brazdil, editor, Proceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture
Notes in Artificial lntelligence, pages 95-114. Springer-Verlag

