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Abstract. Research on bias in machine learning algorithms has generally been concerned with the impact of 
bias on predictive accuracy. We believe that there are other factors that should also play a role in the evaluation 
of bias. One such factor is the stability of the algorithm; in other words, the repeatability of the results. If we 
obtain two sets of data frorn the same phenomenon, with the same underlying probability distribution, then we 
would like our learning algorithm to induce approximately the same concepts from both sets of data. This paper 
introduces a method for quantifying stability, based on a measure of the agreement between concepts. We also 
discuss the relationships among stability, predictive accuracy, and bias. 
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1. Introduct ion 

A significant area of  research in machine learning involves empirical tests of  algorithms 

that learn to classify. The most commonly used criterion for evaluation of  classification 
algorithms is predictive accuracy. Other criteria are cost (e.g., the cost of  acquiring data or 
the cost  of  classification errors) and complexity (e.g., the computational complexity of  the 
algori thm or the syntactic complexity of  the induced rules). We suggest another criterion: 
the stability of  the algorithm. 

The stability of  a classification algorithm is the degree to which it generates repeatable 
results, given different batches of  data from the same process. In our work with indus- 
trial applications of  decision tree induction algorithms (Famili & Turney, 1991)~ we have 
discovered the importance of  stability. We have used decision tree induction to generate 
rules that can predict  low yield in a manufacturing process. The rules are used by process 
engineers to help them understand the causes of  low yield. The engineers frequently have 
good reasons for believing that the causes of low yield are relatively constant over time. 
Therefore the engineers are disturbed when different batches of  data from the same process 
result in radical ly different decision trees. The engineers lose confidence in the decision 
trees, even when we can demonstrate that the trees have high predictive accuracy. 

A classification algorithm learns a concept from a set of  training data° That concept is 
represented either explicit ly (e.g., as a decision tree or a set of rules) or implicit ly (e.g., as a 
set of  stored instances, in the case of instance-based learning). To measure stability, we first 
need a measure of  the similarity between two induced concepts. A syntactic measure of 
similarity (e.g., the percentage ofover lap in the attributes used in two different decision trees) 
is l ikely to be ad hoc and specific to a particular concept representation. We use a semantic 
measure of  similari ty called agreement (Scharfer, 1992). Scharfer (1992) introduced the 
idea of  agreement in his analysis of  bias, but we use agreement here to analyze stability. 

Section 2 presents a formal definition of  stability, based on agreement. An empir- 
ical method for estimating stability is also presented. Stability is introduced here as a 
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new criterion for evaluating biases. Section 3 discusses methods for improving stability. 
Section 4 surnmarizes the paper and lists some open questions. 

2. Definitions and Theorems 

In this section, we define and discuss predictive accuracy, agreement, stability, and bias. 

2.1. Predictive Accuracy 

The following notation is adapted from Scharfer (1992). Let A be a finite or infinite set of 
attribute vectors and C a finite set of classes. By a concept, f ,  we mean any function from 
A to C. Let DA×C be a probability distribution on A x C. Let t be n samples from A x C, 
where each sample is selected identically and independently from the distribution Da x t  
(i.e., iid f-rom DA ×c). Given A and C, let F be the set of all concepts and let T be the set of 
all training sets of size n, for some fixed n. A learning algorithm defines a function L from 
T to F. That is, a learning algorithm L takes a training set t in T as input and generates a 
concept f in F as output. 

The definition of predictive accuracy is familiar: we train the learner L with data sampled 
from a distribution DA × c and then test it with new data from the same distribution. Predictive 
accuracy is also known as generalization accuracy or testing set accuracy (to distinguish 
it from accuracy on the training set). In this paper, when we speak of accuracy, we mean 
predictive accuracy, not training set accuracy. 

Let t be selected with distribution DA×C. Let fL(t) be the concept learned by L when 
given t as input, L(t) = fL(t). Let (a, c) be a random variable in A x C with DAxc. 

DEFINITION 1. The predictive accuracy of L is defined to be Poa«(fL(t)(a) -= c), the 
probability that L, when trained on a sample t of length n, will correctly classify a new 
observation (a, c). We use acc(L) to denote the predictive accuracy of L, given DA×C. 

Definition 1 is a formal expression of the standard notion of predictive accuracy. 

2.2. Agreement 

The following definition of agreement is intended to capmre the intuitive notion of similarity. 
The defnition requires some explanation. In philosophical logic, there is a distinction 
between the intension and extension of a predicate. The extension of a predicate is the set 
of all things in the world for which the predicate is true. For example, the extension of 
the word "person" is the set of all people. The intension of a predicate is the denotation 
(meaning) of the predicate.1 

The classical illustration of the difference between extension and intension is a story about 
a philosopher who defined "person" as "featherless biped". These phrases have the same 
extension (the set of all people), but different intensions (different meanings). According 
to the story, one of the philosopher's pupils obtained a chicken, plucked the chicken, and 
brought it back to her teacher. "Here is a person," she said. 
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Extension is relatively clear, but intension is harder to grasp. There is a suggestion, 
which can be traced back to Camap (1947), and possibly earlier, that the intension of a 
predicate is its extension in all possible woflds. For example, "person" and "featherless 
biped" have the same extension in the real world, but there are possible worlds in which 
they have different extensions, as the pupil demonstrated. This leads naturally to the idea of 
measuring the similarity of two predicates by generating samples from "possible worlds" 
and seeing whether the predicates agree on the samples. 

Let DA be a probability distribution over attribute vectors and let a be a random variable 
in A with distribution DA. The distribution DA does not need to be the marginal distribution 
defined by DA×C; DA may be completely unrelated to DA×C. Let f l ,  f2 ~ F be any two 
concepts. 

DEFINITION 2. The agreement of f l  and f2 is defined to be PDa (fl  (a) = f2(a)), the prob- 
ability that f l  and f2 assign the random variable a to the same class. We use agree(fl,  f2) 
to denote the agreement of f l  and f2, given DA. 

Definition 2 is from Scharfer (1992), where the concept of agreement was first introduced. 
Agreement is a measure of overlap in intension. 

One might suppose that DA in Definition 2 should be defined as the marginal probability 
distribution given DA×C, which we could estimate from the training data. We prefer to 
define DA to be a uniform distribution over the set of all attribute vectors. The intention 
is to eliminate the statistical relationships between the attributes that are implicit in the 
distribution DAxC. The philosopher who defined "person" as "featherless biped" did so 
because, in his experience (given the training distribution DA×C), the attribute "person" 
is strongly correlated with the attribute "featherless biped". The pupil demonstrated the 
difference in intension of these attributes by creating a sample from a new distribution (the 
distribution DA), where the correlation no longer exists. 2 

The following theorem shows an important property of agreement: 

THEOREM 1. Suppose that our attribute vectors are boolean and the concepts f l  and f2 
are formulas in propositional calculus. Let us assume that there are n boolean attributes 
and A is the set of alI possible attribute vectors, so A = {0, 1} n and C = {0, 1}. Suppose 
DA assigns a non-zero probability to every attribute vector in A. Then agree(fl , f2) = 1.0 
if and only if f l  and f2 are materially equivalent, f l  - f2. 3 

PROOF. Thisfollowsfromthefactthatagree(f~, f2) = 1 .0 i fandonlyi f f l  andf2havethe 
same truth-tables. By the semantic completeness and consistency ofpropositional calculus, 
f l  --= f2 if and only if f l  and f2 have the same truth-tables. [] 

For example, this theorem applies when D A is a uniform distribution. When DA is a 
uniform distribution, agree(fl, f2) is the percentage overlap in the truth-tables of f l  and f2. 

It is possible to determine the number of samples from DA that are required for a good 
estimate of agreement. 

THEOREM 2. Let us estimate the agreement of  f l  and f2 by the average agreement, given 
n samplesfrom DA. In the worst casefor any DA, the standard deviation of the estimated 
agreement is less than or equal to 0.5/~,cff. 
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PROOF. We can consider ( f l  (a) = f2(a))  to be a random boolean function (1 if f l  (a) and 
f2(a)  are equal, 0 otherwise) of  the random sample a. By definition, ( f l  (a) = f2(a))  is a 
sample f rom a Bernoulli distribution. There is a certain probability p that ( f l  (a) = f2(a))  
will be 1. We say that ( f l (a)  = f2(a))  is a sample from a Bernoulli(p) distribution. 
Let xl . . . . .  xn be n samples from a Bernoulli(p) distribution. Consider the average of 
xl . . . . .  xn. This average has a mean of p and a standard deviation of ~ - p)/~/-ff 
(Fraser, 1976). The worst case (largest standard deviation) is p = 0.5, where the standard 
deviation is 0.5/,/ 'fr. [] 

If  we set n = 10,000, then the standard deviation is 0.005 (in the worst case), or 0.5%, 
which seems acceptably low. Suppose A = {0, 1} s, so IAI = 2 ~. The truth-tables for f l  
and f2 would have 2 s rows. As s grows, a precise calculation of the agreement of f l  and f2 
quickly becomes infeasible. For example, with s = 30, we would need to look at 230 ~ 109 
boolean vectors. Theorem 2 shows that we can get a good estimate of  agreement by looking 
at only 104 boolean vectors. 

Intension (meaning, denotation) and extension (reference) are both semantic notions. 
Agreement  is a semantic measure of intensional similarity. One might ask why we do not 
use a syntactic measure of similarity, since syntactic measures are more familiar, perhaps 
more intuitive, and easier to compute than the semantic measure introduced here. For exam- 
ple, we could use Levenshtein edit distance (Levenshtein, 1966; Honavar, 1992) to measure 
the syntactic similarity of two decision trees. 4 There are several problems with syntactic 
measures of  similarity. First, they tend to be ad hoc. Second, they are dependent on the 
chosen representation. This means that we would need to develop a different syntactic 
similarity measure for each different representation that we consider. It also means that 
we would not be able to compare stability across distinct representations. For example, we 
could not compare the stability of  a decision tree induction algorithm with the stability of  
a neural network algorithm, if we based out definition of stability on a syntactic measure 
of similarity. Third, a syntactic similarity measure would count logically equivalent repre- 
sentations as different. For example, suppose we have two superficially different decision 
trees. Suppose we translate the decision trees into disjunctive normal form expressions 
in propositional calculus and it turns out that the two expressions are logically equivalent. 
We know by Theorem 1 that the agreement of  the two decision trees is 1. However, the 
Levenshtein edit distance between the two trees could be quite large. Unlike a syntactic 
similarity measure, agreement is not sensitive to superficial differences in representations. 
This is a virtue of  agreement, since we should not be concerned with superficial differ- 
ences in the expression of a concept. Our concern should be with differences in concept 
meaning (intension). Sometimes it is not readily apparent that two different representa- 
tions of a concept are in fact logically equivalent. However, by empirically estimating 
their agreement, we can discover their logical equivalence (more precisely, their logical 
similarity). 

2.3. Stability 

When a learner L is trained on two sets of data tl and t2 that are sampled from the same 
distribution D A xC, we would like the learned concepts fL(t~) and fLUt2) to have approximately 
the same intension. Even when both concepts fLUt,) and fLOra) have high predictive accuracy, 
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we find it disturbing when the concepts have radically different intensions. Definition 3 is 
an attempt to capture this idea. 

Let tl and t2 be two distinct iid sequences of samples of length n, selected with distribution 
DA×c. Let fL(t~~ and fL(t2) be random variables that represent the concepts learned by L, 
given the training sequences tl and te, respectively. 

DEFINITION 3. The stability of L is defined to be the expected agreement of fL(t~~ and 
fL(t2), EDA×c(agree(fL(tl), fl.(t2))). We use stable(L) to denote the stability of L, given 
DAxC and DA. Combining Definitions 2 and 3, the stability of L is: 

E»a~c(PDA(fL(tt)(a) = fL(t2)(a))) (1) 

Definition 3 is new. 
Again, DA may be completely unrelated to DAxC. Suppose that the attributes al and a2 

are highly correlated, given the distribution DAxc. Suppose that we use C4.5 (Quinlan, 
1992) to learn decision trees on two sets of data sampled from DA×C. When building a 
decision tree, C4.5 selects attributes using the information gain ratio. Since at and az are 
highly correlated, C4.5 may consider them to be equally acceptable, according to  their 
information gain ratios. It may happen that al has a slightly higher information gain ratio 
than az in the first training set, but az has a higher ratio thän al in the second training set. 
Thus the first decision tree might use al while the second decision tree uses a»  Thus highly 
correlated attributes can be one source of instability. To detect this instability, we cannot 
compare the agreement of the two decision trees by defining DA as the marginal distribution 
given DAxc. We taust use a distribution DA where the correlation between a~ and a2 has 
been eliminated. 

We usually do not have direct knowledge of the distribution DAxc; typically we have 
a set of training data t, consisting of samples from an unknown distribution DÄ×c. We 
can estimate predictive accuracy and stability using a standard technique, n-fold cross- 
validation, with n = 2. We randomly split the training data into two equal-size subsets 
(nearly equal, if the training set has an odd size). We train the learner on one subset, then 
test it on the second subset. We then swap the subsets and repeat the process. To increase 
the reliability of the estimates for predictive accuracy and stability, we repeat the 2-fold 
cross-validation m times. Figure 1 summarizes the method. 

The parameters m and n in Fig. 1 determine the quality of the estimates for predictive 
accuracy and stability. Larger values will yield better estimates, but they will also require 
more computer time. Theorem 2 gives some guidance in determining a suitable value for n. 
The following theorem gives some guidance for m. 

THEOREM 3. Ler us estimate the stability of L by the method given in Fig. 1. In the worst 
case, for any DA and any DAxc, the standard deviation of the estimated stabiliß, is less 
than or equal to 0.5/4rm. 

PROOF. In the method given in Fig. 1, the expected agreement of fL(t~) and fL(t2~ is 
estimated by stab/, which is the average of (fL(t~)(a) = fc(t2l (a)) given n samples from the 
distribution DA, where DA could be, for example, a uniform distribution. Since (fL(tl~ (a) = 
fL(t2)(a)) has a Bernoulli(p) distribution, n. stab/has a binomial(n, p) distribution (Fraser, 
1976). The stability of L, stable(L), is estimated by stab/, the average of stab/for i equal 1 
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F o r i = l t o m d o :  
Randomly split the training data t into two equal-size subsets tl and tz 
Run the learner L on the data q, resulting in the concept fL(t~) 
Run the learner L on the data tz, resulting in the concept fL(t2) 
Let acci, 1 be the accuracy of J)~(tl) on the data t2 

Let acci,2 be the accuracy of fL(t2) on the data tl 
For j = 1 ton do: 

Generate a random attribute vector a from Da 

Ler agrj be 1 if fL(q)(a) = fL(t2)(a), 0 otherwise 
End for j 
Let stab/be the average of agrj, for j = 1 to n 

End for i 
Let the estimated predictive accuracy be the average of acci, 1 and accl,2 for i = 1 to m 
Let the estimated stability be the average of stab/, for i = 1 to m 

Figure 1, Pseudocode for empirical approximation of predictive accuracy and stability. 

to m. Therefore n • m • s t ab / i s  the sum of m random variables with binomial  distributions, 
binomial(n,  p l )  . . . . .  binomial(n,  Pro). These m binomial variables may have different 
probabil i t ies Pi, due to variation in the m random splits of  the data. The range of  values for 

Pi depends on the distribution DA×C, which we assume is unknown. In the worst case, Pi 
is i tself  a random variable with a Bernoulli(0.5) distribution. In this case, n .  s tab / i s  either 
0 or n, so s t ab / i s  either 0 or 1. That is, s t ab /wi l l  also have a Bernoulli(0.5) distribution. 
Therefore the result of Theorem 2 applies and s t ab /has  a standard deviation less than or 

equal to 0.5/~v/-m. [] 

Note that, in the worst  case, the value of  n is irrelevant in determining the standard 
deviation of  stability. This would suggest that a good strategy would be to set n to 1 and 
m to 10,000 (for example).  Unfortunately, the inner loop of the procedure in Fig. 1 (for 
j equal 1 to n) will  usually be rauch more efficient to compute than the outer loop (for i 
equal 1 to m). The outer loop is where the learner actually learns, while the inner loop 
merely involves the application of what has been learned. In general, the value of n will 
have some impact  on the standard deviation of stability. Thus concern for computational 
efficiency suggests that n should be more than 1 and m should be less than 10,000. The 
appropriate values of m and n taust be chosen by trading oft  the accuracy of the estimates 
for predictive accuracy and stability, on the one hand, and the computational efficiency of 

the procedure in Fig. 1, on the other hand. 
A stable learning algorithm can be used to detect change in a stochastic process. Suppose 

we continuously collect  batches of data from some ongoing data generating process (e.g., 
a manufacturing p roce s s - -more  generally, samples from a probabili ty distribution). As 
each bateh of data arrives, we give it to our learning algorithm to analyze. If  our learning 
algori thm is stable, a small change in the extension of  the target concept (due to random 
fluctuations in the batches of  data) will result in a small change in the intension of  the induced 
concept. A large change in the intension of the induced concept implies a large change in 
the extension of  the target concept. Thus we can use the intension of the induced concept 
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to monitor variation in the extension of the target concept. For example, in manufacturing 
process control, a process engineer can detect changes in the manufacturing process by 
monitoring the rules that are induced by the learning algorithm, over successive batches of 
data. On the other hand, if the learning algorithm is unstable, variation in the intension of 
the induced concept is not proportional to variation in the extension of the target concept. 
Therefore an unstable learning algorithm cannot be used to monitor change in the data 
generating process. This is the central motivation for desiring stable learning algorithms. 

In Section 3, we examine ways to improve the stability ofa  learner. One way to increase 
stability is to increase the strength of bias. Therefore, in Section 2.4, we discuss bias, in 
preparation for out discussion of ways to improve stability. 

2.4. Bias 

Utgoff (1986) describes biases along the dimensions of strength and correctness: 

1. A strong bias is one that focuses the concept learner on a relatively small number of 
hypotheses. Conversely, a weak bias is one that allows the concept learner to consider 
a relatively large number of hypotheses. 

2. A correct bias is one that allows the concept learner to select the target concept. Con- 
versely, an incorrect bias is one that does not allow the concept learner to select the 
target concept. 

Rendell (1986) distinguishes two types ofbias, exclusive bias andpreferential bias. A learn- 
ing algorithm has an exclusive bias against a certain class of concepts when the algorithm 
does not eren consider any of the concepts in the class. A less extreme form of bias is a 
preference for one class of concepts over another class. 

Some researchers distinguish representational bias and procedural bias. Representa- 
tional bias is typically a form of exclusive bias, since constraining the representation lan- 
guage means that certain concepts cannot be considered, since they cannot be e×pressed. 
Procedural bias is typically a form of preferential bias. For example, pruning in C4.5 is 
a procedural bias that results in a preference for smaller decision trees (Quintan, 1992; 
Scharfer, 1993). The distinction between exclusive and preferential bias is based on the 
learner's behavior, while the distinction between representational and procedural blas is 
based on the learner's design. 

Utgoff's (1986) definition ofbias strength implicitly assumes an exclusive blas. A learner 
with a strong exclusive bias (equivalently, a strong representational bias) considers only a 
small class of concepts. The VC (Vapnik-Chervonenkis) dimension is a measure of the 
strength of an exclusive bias (Vapnik, 1982; Hausster, 1988). Scharfer (1992) introduced 
the definition of agreement (Definition 2 here) as a component in his definition of a measure 
of the strength of preferential bias. The idea behind Schaffer's definition is that a learner 
with a strong preferential bias toward fl  over f2 will only learn fz when f2 is substantially 
more accurate than f l .  

The following is a variation on Schaffer's (1992) definition. Let t be a random variable 
representing a training set of size n sampled iid from the distribution DA× C o v e r  A × C. 
Let the learned concept fL be a random variable that depends on the value of the random 
variable t. The expectation Eoa×c in the following definition is calcutated with the random 
variable fL using the distribution DA×c. 5 
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DEFINITION 4. We say L prefers fl to f2 if EDa« (agree(fl, fL))>EDA×« (agree(f2, .ICL)). 

That is, L prefers f l  to f2 if we expect L to learn a concept fL that agrees more with 
fl  than with f2. In this definition, the preference of L depends on the distribution DAxC. 
This leads naturally to the idea that we can measure the strength of the learner's preference 
by varying the distribution. 

Let a(cl, C2) be defined as follows: 

{ l i f c l ; c 2 }  
~ (c l , c2 )=  0 i f c l  c2 (2) 

Let f l  and f2 be any two concepts. Let p 6 [0, 1]. Let Dä be any distribution on A, 
where DÄ may be distinct from the distribution DA used to define agreement. DÄ (a) is the 
probability of a according to the distribution DÄ. We may define a farnily of distributions 
D°((a, c) I DÄ, p, f l ,  f2) for (a, c) ~ A x C, given D i ,  p, fl ,  and f2, as follows: 

D°((a, c) ] DÄ, p, f l ,  f2) = (1 - p ) .  8 ( f l ( a ) , c ) .  DÄ(a) + p .  8 ( f2(a) ,c ) .  DÄ(a) (3) 

Given a random observation (a, c) sampled with distribution D°((a, c) I DÄ, p, f l ,  f2), 
the probability that f l  correctly classifies a is p, while the probability that f2 correctly 
classifies a is 1 - p, assuming fl  and fz disagree on a. The accuracy of f l  may be greater 
than p and the accuracy of f2 may be greater than 1 - p, since they may agree. 

Let tp be a random variable representing a training set consisting of an iid sequence of n 
samples from the distribution D°((a, c) I DÄ, p, f l ,  f2). 

DEFINITION 5. If L prefers f l  to fz for training sets to.5, we say the learner is biased toward 
B over f2. 

A training set to.5 provides, on average, equal evidence for both fl  and f2- lfthe learner has 
a preference when the evidence is ambiguous, p = 0.5, it is natural to call this preference a 
bias. We can extend this idea further to provide a measure of the strength of the learner's bias. 

DEFINITION 6. If p > 0.5 and p is the smallest value such that L prefers f l  to f2 for 
training sets tp, we say the learner has apreferential bias ofstrength p toward fl  over f2. 

Thus the strength of a preferential bias ranges from greater than 0.5 to less than or 
equal to 1.0. Speaking metaphorically, p represents the "force" that the data taust "exert" 
to overcome the bias of L. This definition readily lends itself to empirical measurement 
of bias strength (Scharfer, 1992). We can generate artificial data, using the distribution 
D°((a, c) I DÄ, p, fx, f2), and we can vary the value of p to discover the strength of the 
preferential bias of L. 

A strong exclusive bias accelerates learning by reducing the learner's search space. A 
strong bias (either exclusive or preferential) also improves resistance to noise in the train- 
ing data. Increasing bias can increase accuracy, if the bias pushes the learner towards 
more accurate concepts. However, increasing blas can also decrease accuracy, if the bias 
pushes the learner in the wrong direction (Scharfer, 1993). For example, if we restrict 
the representational power of the learner too severely, the target concept may lie outside 
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of what the learner can represent. The difficulty is determining the right direction for 
bias. 

Utgoff's (1986) definition of bias correctness implicitly as sumes that predictive accuracy 
is the measure of the correctness of a bias. PAC (probably approximately correct) learning 
provides another measure of bias correctness (Haussler, 1988). We propose that the notion 
of bias correctness should be extended to include stability. More generally, criteria for the 
correctness of a blas include accuracy, stability, cost (e.g., the cost of acquiring data or 
the cost of classification errors), and complexity (e.g., the computational complexity of the 
algorithm or the syntactic complexity of the induced concepts). 

3. Improving Stability 

There are at least three ways to improve the stability of a learner. First, we can increase 
the size of the training data sample t. With larger samples, the learner is less likely to 
be influenced by random sampling effects. Second, we can increase the strength (either 
exclusive or preferential) of the blas. This increases stability by pushing the learner towards 
a given class of concepts. Third, we can have a learner that memorizes previously learned 
concepts. When we run the learner on the data tl, it memorizes the resulting concept fL(t~~. 
When we run the learner on the data t2, it generates a new concept fr(t2), but it also considers 
the old concept fL(t~~. Given a certain desired level of accuracy and stability, the learner 
decides between fL(h) and fL(t2~ as the output concept for the data t 2. 

Stability is similar to accuracy, in that the above three techniques will also affect the 
accuracy of the learner. However, stability is quite different from accuracy with regard to 
the second technique, since any increase in blas strength will cause an increase in stability. 
The direction of the bias does not matter. We can trivially maximize stability by making 
a 'learner' with a constant output. However, in most applications, we are not interested in 
stability alone, but stability in conjunction with accuracy. We do not claim that stability is 
always desirable. For example, in some situations, we may want to discover all concepts that 
are consistent with the training data (Murphy & Pazzani, 1994). Thus we may sometimes 
define a measure of bias correctness that is based on accuracy alone, but there would not 
be rauch interest in a measure based on stability alone. 

If our measure of blas correctness incorporates both accuracy and stability, then the task 
of selecting a bias is easier than when the measure is based on accuracy alone. When 
accuracy is our only concern, the bias taust be chosen to push the learner towards the 
target concept. When stability is important, a slight bias away from the target concept 
may have a n e t  benefit, if the increase in stability is greater than the decrease in accu- 
racy. 

4. Discussion 

In this paper we defined a measure of the stability of learning algorithms and we presented an 
empirical technique for quantifying stability. We argued that stability is a desirable property 
in learning algorithms. Stability is especially important to users who do not understand 
the inner working of a learning algorithm. Even when the algorithm generates rules that 
are easy to understand, the user views the algorithm as an oracle. It is difficult to trust an 
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oracle,  and it is especia l ly  difficult  to trust an oracle that says someth ing  radical ly different  

each t ime  you  m a k e  a sl ight  change  to the word ing  of  your  question. 

There  are many  quest ions  about  stability and its relat ion to accuracy and bias. H o w  

do dis t inct  learning a lgor i thms,  such as neural  networks  and decis ion trees, compare  wi th  

respect  to stabil i ty? H o w  can a learning a lgor i thm adjust the strength and type of  its bias to 

suit the data it faces, to op t imize  the correctness  o f i t s  bias? W h e n  measur ing  the correctness  

of  a bias, h o w  can we  combine  the cri teria o f  accuracy, stability, cost, and complex i ty?  H o w  

do we  handle  the case  where  the set o f  classes, C,  is infinite? That  is, how do we  measure  

stability w h e n  learning to fit a curve,  rather than learning to c lassi fy? These  are open 

quest ions.  
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No tes  

1. In other words, the extension of a predicate is that to which the predicate refers and the intension of a predicate 
is the meaning of the predicate. The technical concept of intension is introduced in this paper in an effort 
to capture an aspect of the informal, intuitive concept of meaning. For a philosophical justification of this 
effort, the reader may turn to Carnap (1947). Meaning is relevant here, because we are seeking a notion of 
similarity that is based on meaning. 

2. To expose the differences between two concepts fl  and f2, we need a distribution DA that yields correlations 
that contrast with those given by the marginal distribution defined by DA xt.  The uniform distribution is one 
possible choice for DA. Another possibility would be to choose a distribution DA in which the correlations 
between pairs of attributes have the opposite signs of the correlations in the marginal distribution defined 
by DA×C. However, in general, this is not possible. Suppose we have three attribute vectors, such that 
correlation (al, a2) = 1, correlation (ab a3) = -1,  and correlation (az, a3) = -1.  If we switch the signs of 
the correlations, we will get correlation (ab a2) = -1,  correlation (ab a3) = 1, and correlation (a2, a3) = 1, 
but this is inconsistent. If correlation (al, a3) = 1 and correlation (a2, a3) = 1, then it necessarily follows 
that correlation (al, a2) = 1. 

3. The English statement, "A if and only if B"  is expressed by logicians as, "A is materially equivalent to B" 
which is written symbolically as A - B. 

4. The Levenshtein edit distance measures the distance between two structures (e.g., strings, trees) by the number 
of edit operations (e.g., deletions, insertions, reversals) required to transform one structure into the other. 

5. Note that, in the definitions in this section, f l  and f2 are two fixed concepts. This is different from the 
previous section, where fL(tl) and fL(t2) are random variables. 
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