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1. I n t roduc t ion  

This speciat issue of Machine Learning focuses on the evaluation and selection of  biases. 
The papers in this issue describe methods by which intelligent systems automatically eval- 
uate and select their own biases, and tools for analyzing and testing various approaches to 
bias selection. In this paper, we motivate the importance of this topic. Since most readers 
will be familiar with supervised concept learning, we phrase our discussion within that 
framework. However, bias as we present it here is a part of  every type of  learning. 

We outline a framework for treating bias selection as a process of designing appropriate 
search methods over the bias and meta-bias spaces. This f ramework has two essential 
features: it divides bias into representational and procedural components,  and it char- 
acterizes learning as search within multiple tiers. The sources of  bias within a system 
can thus be identified and analyzed with respect to their influence on this multi-tiered 
search process, and bias shift becomes search at the bias level. The framework provides 
an analytic tool with which to compare different systems (including those not developed 
within the framework), as weil as an abstract formalism and architecture to guide the 
development of new systems. 

We begin by defining what we mean by the term bias. Next, we explain why the selec- 

tion and evaluation of  biases is a critical task for intelligent systems. We then describe 
our search-based framework for bias selection. Finaily, we survey recent research in this 
field, using the concepts developed in out  framework to guide the discussion. 
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2. W h a t  is a bias? 

Mitchell (1980) defines bias as "any basis for choosing one generalization over another, 
other than strict consistency with the instances." We broaden this definition to include 
any factor (including consistency with the instances) that influences the definition or 
selection of inductive hypotheses. 1 There are two major types of bias: representational 
and procedural. Background (e.g., task) knowledge has sometimes been considered to 
be a bias as well (Hirsh 1990). However, since knowledge has the supportive role of 
providing information to select a representational or procedural bias, here we do not 
consider it to be a bias per se. 

A representational bias defines the states in a search space. Typically, this search space 
is the space of hypotheses. A representational bias specifies a language (such as first- 
order predicate calculus or a restriction to disjunctive normal form (DNF) expressions), an 
implementation for this language (e.g., DNF can be implemented using rules or decision 
trees), and a set of primitive terms (the allowable features, their types, and their range 
of values), thereby defining the set of states. 

Representational bias can be characterized along several axes, including strength and 
correctness. According to Utgoff (1986), a strong representational bias for the hypothesis 
space implies a small hypothesis space; a weak representational bias implies a large 
hypothesis space. A representational bias is considered correct if it defines a hypothesis 
space that includes the target concept; otherwise, it is incorrect. 

The computational learning community has also explored the issue of bias strength 
from a formal, analytical perspective. Vapnik and Chervonenkis (1971) define a measure 
of the size of a bias defined by a given representation, called the VC-dimension. Blumer 
et al. (1989) use the VC-dimension to provide bounds on the number of examples 
required for any consistent learning algorithm to approximate the target concept with 
high confidence. 

A procedural bias (also called algorithmic bias (Rendell 1987)) determines the order 
of traversal of the states in the space defined by a representational bias. Examples of 
procedural biases include the beam width in a beam search and a preference for simple or 
specific hypotheses. Occam's Razor (Blumer et al. 1987) and the Minimum Description 
Length Principle (Chaitin 1977, Solomonoff 1964) provide formal motivations for why 
a preference for simple hypotheses works well theoretically. However, they leave the 
question of a practical implementation open, and appropriate representational biases and 
search heuristics that find simple hypotheses are still required. 

Note that biases may interact; a procedural and a representational bias might interact 
synergistically or conflict. Few researchers have studied bias interactions (see Cardie 
(1993) and Cobb (1992) for exceptions). Hopefully, future work will explore this impor- 
tant topic. 

Both representational and procedural biases can be evaluated (empirically or analyti- 
cally) by determining the effect they have or are expected to have on learning perfor- 
mance. Bias selection involves using the results of this evaluation process to choose a 
bias (or a sequence of biases) for use during learning. Shifting bias refers to the special 
case where bias selection occurs again after learning has already begun. In this case, the 
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system may simply choose the next bias in a bias sequence that was established prior to 
learning, or it may use the results of the learning performed so far to evaluate potential 
alternative biases. In either case, there will be a need to incorporate the knowledge that 
has already been learned to initialize and guide the search through the space defined by 
the new bias. 

3. Bias selection 

Here is a very simple example that motivates the importance of selecting an appropriate 
representational bias, in this case by selecting a subset of the available features for 
expressing hypotheses. Suppose that the target concept is a description of blocks that are 
stable when placed on a table, and further suppose that the shape of an object determines 
its stability (though the learner is not told this). The perceptible features of the blocks 
are "size," "color," and "shape." Two examples are given to the learner: a small, blue 
cube that is a positive instance and a small, red sphere that is negative (it rolls off the 
table). If  the bias selected is that "size" and "color" are preferred to "shape" in forming 
concept descriptions, the system might form the hypothesis: 

hi. Small, blue blocks will be positive and small, red ones negative. 

If  the bias selected is that only "shape" shouid be used, the following hypothesis might 
be formed: 

h2. Cubes will be positive and spheres negative. 

Both of these hypotheses are consistent with the training examples seen so far. Suppose 
that a small, blue sphere is now observed. Then ]Zl will predict that it will be stable, 
and h2 will predict that it will not be stable. In this case, h2 will be the better predictor 
of the concept of stability, demonstrating that judicious bias selection can improve the 
predictive accuracy of the learner. Judicious bias selection can also improve the learner's 
ability to achieve other performance goals in addition to accuracy, such as efficiency (i.e., 
a reduction in time and/or space complexity) or readability. 

In more complex, real-world domains, with potentially hundreds of features and many 
sources of data, bias selection becomes even more critical: not only can choosing the 
wrong feature set make learning a correct concept impossible or computationally over- 
whelming, but other aspects of bias become important as well. For example, using 
inappropriate heuristics to search the hypothesis space may cause the learning system to 
get stuck at local maxima or to take so long to find the correct hypothesis that the time 
for the performance task has expired before the concept is learned. 

Various methods can be used to select biases that improve learning. The framework 
presented in Section 5 considers bias selection as searching a space of learning biases. 
In this framework, as in any search paradigm, operators for generating states in the space 
(biases) and evaluation techniques to determine which state to explore (bias to select) are 
requiredl Evaluation of biases may use various forms of knowledge about the learning 
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context, including background knowledge about relevance, information about costs o f  
learning and making predictions, and knowledge about the performance of the learning 
methods being used. 

4. Bias evaluation 

Bias evaluation methods are needed to form a basis for bias selection. The cost and qual- 
ity of bias evaluation methods will have a large impact on the overall benefits reaped 
from bias choices. Typical categories of evaluation methods include generate-and-test 
(online and empirical) and theoretical studies (offtine and analytical). Generate-and-test 
methods are valuable for gathering knowledge in knowledge-poor situations. Predic- 
tive theoretical analyses are also valuable when they do not make too many simplifying 
assumptions. The knowledge gained from generate-and-test and analytical evaluations 
may be kept offline. Chrisman (1989) describes a method for analyzing learning perfor- 
mance to identify inappropriate biases (this can be thought of as the "test" stage of a 
generate-and-test evaluation method). 

Just as search heuristics are used at the hypothesis space level to find a good hypoth- 
esis, the use of heuristics is a potentially efficient method for bridging the gap between 
the evaluation and selection of biases. Heuristics compile the knowledge gained from 
previous bias evaluations to be used for future bias selection. Examples of heuristics 
(which are also biases - see below) are "Prefer simple hypotheses" or "Order the biases 
from strongest to weakest." If these heuristics have preconditions (e.g., "If the data is 
noisy and the goal is to improve predictive accuracy, then prefer simple hypotheses"), 
then we can associate regions of expertise with biases, tn other words, we can identify 
the "best" bias for each given set of problem space characteristics (e.g., the quality of the 
data, the type of attributes, or the contents of the current hypothesis) and performance 
goals. VBMS (Rendell et al. 1987) is an example of this approach. In VBMS, the 
domain-independent heuristics are learned from "training examples" that are themselves 
inductive learning problems. Brodley's MCS (this issue) is a more recent heuristic-based 
system in which the heuristics are manually generated. 

Many of the papers in this special issue could be considered as providing steps toward 
the carving out of regions of expertise for biases. Recently, there has been a great deal of 
discussion regarding "no-free-lunch" theorems about induction (Wolpert 1992, Schaffer, 
1994). These results state that when performance is averaged uniformly over all possible 
problems, one learner cannot be better than another. Nevertheless, these results still 
allow the possibility of one learner being better than another for a particular distribution 
of problems. Therefore, the identification of regions of expertise of biases remains a 
critical task to address. 

5. A search-based framework for bias selection 

A static bias is established when learning begins and remains fixed. A dynamic bias 
can be altered during learning, requiring bias shift. Early machine learning systems 
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used only static bias. Around 1986, a keen interest in dynamic bias developed; many 
systems have since been implemented that utilize methods for shifting bias. The primal D, 
reason for shifting bias is that if the knowledge for bias selection is not available prior 
to learning, this knowledge can be gathered during learning, thereby enabling the system 
to improve its learning online with a better bias once such a bias has been found. In this 
special issue, we hope to give the reader insights into the advantages and disadvantages 
of particular static biases and bias shifting methods. 

Michalski (1983) and Rendell (1987) both show how bias shifting can be viewed as 
a search through a space of biases. Figure 1 presents our framework, which has three 
search tiers for a bias shifting system (like the framework in (Rendell 1987)). The 
lowest (first) tier in Figure 1 represents the inductive learning process, which can be 
viewed as a search through a space of inductive hypotheses. 2 The representational and 
procedural biases for the hypothesis space can be chosen either statically or dynamically. 
If the latter, then search is performed in the next higher (second) tier, which represents 
the bias space. At this level, Figure 1 shows two search spaces--representational bias 
space and procedural bias space. Although there are many dimensions (e.g., the choice of 
language, the choice of feature values) along which it is possible to make representational 
and procedural bias choices for defining the first-level space, for clarity we show only 
one procedural and one representational dimension, or search space, at the second tier. 

A state in the representational bias space is a representational bias for the hypothesis 
space, i.e., a definition of the states in the hypothesis space. A state in the procedural bias 
space is an order for searching the hypotheses in the hypothesis space. At the third tier, 
the meta-bias space contains representational and procedural meta-biases for defining 
and ordering search in the bias space. Current bias shifting systems perform search in 
the first two tiers; some also perform search in the third tier. We are not aware of any 
systems that search in more than three tiers. 

Our framework is related to both Rendell's conceptual framework (Rendell 1987) and 
the diagram in Provost and Buchanan (1992). However, our framework is more general 
than Provost's and Buchanan's and clarifies some of the issues raised by Rendell. For 
example, Rendell describes the three tiers and also the representational/procedural (which 
he calls "algorithmic") bias distinction, but does not explain how this distinction extends 
easily to meta-bias space. 

The question arises, why bother with multiple levels when a single level, "flat" system 
could produce the same behavior as the tiered system? After all, a bias shifting system 
is itself just another bias. The main reason for keeping multiple levels is to reduce the 
system engineering and knowledge engineering costs. When system engineers embed 
implicit biases within their hypothesis space search heuristics, they can cause subsequent 
problems for themselves. If these heuristics are faulty, the engineers are then faced 
with a highly complex debugging process that does not enable clean separation between 
bias and hypothesis considerations. During the design process, a multi-tiered system 
allows flexible system design, while maintaining conceptual simplicity. For example, 
one could design a k-DNF algorithm for the hypothesis level and search for k at the 
bias level (second tier). It would be easier to switch from k-DNF to k-CNF at the 
hypothesis level, for example, than if the search for k were embedded in the hypothesis 
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space search heuristics. Cross-validation and related methods for meta-control of the 
hypothesis search process can also be thought of as search at a second tier of abstraction. 

Furthermore, knowledge plays a key role in bias evaluation and selection. With multiple 
levels, knowledge engineers can enter their domain-specific background knowledge into 
the system more easily and more succinctly than with a flat system. For example, 
suppose you have a problem in which each instance has 200 features, with 30 possible 
values for each feature. Furthermore, suppose the knowledge engineer (a domain expert) 
knows the 50 relevant features out of the 200 but does not know the target concept. 
Feature relevance knowledge is a bias expressible in the second tier of Figure 1. If 
feature relevance can be represented explicitly within the system, then the engineer has 
few changes to make: the 50 relevant features can be tagged with their relevance. If 
feature relevance is not represented explicitly, the engineer must either tag all relevant 
hypotheses or else edit the code to generate only relevant hypotheses. Editing code can 
be tedious, and tagging hypotheses could entail a great deal of work, particularly if the 
hypotheses are expressed in the low-level language of the feature values (in which case 
there are 305o relevant hypotheses covering single instances). 

5.1. Defining the search space 

We formalize this discussion as follows (see Figure 1). Let S be any search space. A 
search space, S, is actually a pair, (l(S),p(l(S))),  corresponding to the representational 
and procedural biases for the space. Formally, the representational bias l(S) specifies 
the language that defines the states in a search space; however, by specifying a language 
we are implicitly defining the set of states expressible in that language. Therefore, for 
simplicity we refer to the representational blas of S as simply the set of all states in 
space S, where state i is denoted statei(S). 

Once the representational bias, l(S), has been chosen, we select a procedural bias for 
that particular set of states l(S). The procedural bias consists of two parts, an accessibility 
mapping ~ß and a partial ordering 0 over the states; i.e., p(l(S)) = (¢(l(S)), O(I(S))). 
The accessibility mapping consists of operators, or algorithms, that map from a stare 
in the space to a successor state. The partial ordering, which is determined by an 
evaluation function, structures the hypotheses in a lattice that, when used in conjunction 
with a particular algorithm or set of search operators, induces an order for state space 
traversal. This evaluation function, when applied to stares that are biases, is what we 
mean by "bias evaluation" in this paper. Blas evaluation may be done offline or online, 
and may be accompanied by heuristic preconditions. The induced order for state space 
traversal corresponds to our notion of "bias selection." 

Suppose there are n states in l(S), statei(S), where 1 < i < n. From each 
stare s ta te i (S)  there may be associated operators. Suppose there are mi operators 
opÆ(statei(S)) where 1 < k < m i .  Each of these operators maps statei(S) into a 
next stare, i.e., opk(state~(S)) = s~atej(S) where 1 < j _< n. Then ~(l(S)) = 
{opÆ(statei(S)) I 1 < i < n, i < k < m~}. Thus ¢(l(S)) is an accessibility mapping 
over the states in l(S). ¢(l(S)) may be a many-to-many mapping. 
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Figure 1. Multi-dered bias search space. 

O(I(S)) is a partial ordering relation, detennined by an evaluation function, over the 
stares in l(S), O(l(S)) denotes a relation statei(S) ~ statej(S) over pairs of stares in 
S. 

Let S* be the (possibly infinite) set of  all possible stares in the universe that are 
candidates for being elements of S. Ler L* be the set of  all possible candidates for the 
representational bias I(S), i.e., L* is the set of all subsets of S*. To implement a tractable 
blas shifting system, we select a finite L(S), where we define L(S) C L*. L(S) is the 
search space at the next tier up from S (see Figure 1) that defines a set of representational 
candidates for S, i.e., a set of  candidates for l(S). Let us abbreviate statei(L(S)) with 
li(S). Then for some integer r, L(S) = {li(S) j 1 < i < r}. Likewise, we let P~ be the 
set of all possible candidates for p(l(S)) and define P(l(S)) C P*. P( l (S ) )  is the search 
space at the hext tier up from 5' (see Figure 1) that defines a set of procedural candidates 
for l(S), i.e., a set of candidates for p(l(S)). Ler us abbreviate statej(P(li(S))) with 
pj(l~(S)). If  we have chosen Ii(S) as the representational blas l(S), then for some 
integer qi, P(l(S)) = P(li(S) = {pj(li(S)) I 1 < j < qi}. Once we have selected a 
representational and procedural bias for S, the search space S is fully defined. 

Consider how these formal definitions apply to the lowest tier of Figure 1. Suppose S 
is a hypothesis space, H. Then each statei(H) is a single hypothesis, bi, and opÆ(hi) 
maps hypothesis h~ to a candidate successor hypothesis. Ler H* be the set of all possible 
hypotheses in the universe. Then L* is the set of  all subsets of  H*, and L(H) C L*, 
i.e., L(H) is a set of  candidate sets of  hypotheses. L(H) is the set of  representational 
biases being considered for l(H). Each l(H) can be viewed as the choice of  a particular 
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language for expressing the hypotheses. For example, l(H) might be restricted to only 
hypotheses described by a single feature. The procedural bias p(l(H)) consists of the 
accessibility and ordering components. An example of an accessibility mapping O(l(H)) 
is a set of generalization and specialization operators that map hypotheses to each other. 
An example of a partial ordering O(l(H)) is one that expresses a preference for more 
general hypotheses. Note that it may be possible through the accessibility mapping to 
move from a state with a higher preference to one with a lower preference. Therefore, 
accessibility and the partial ordering need not coincide. Finally, P* is the set of all 
possible mapping-ordering pairs over the hypotheses in l(H), and P(l(H)) C_ P*. We 
can likewise define L(P(I(H))), P(I(L(H))), and so on. 

5.2. Searching the bias space 

Ler us consider some examples of search spaces in the second tier, i.e., L(H) and 
P(l(H)) of Figure 1. Orte common method for searching the representational bias space 
is constructive induction, which uses feature constructors to move from a stronger to a 
weaker bias. Constructive induction is typically done to increase the likelihood that the 
representational bias l(H) is correct, but can also improve efficiency (Rendell 1990). In 
the example introduced previously, the features for learning about stability are "size," 
"color," and "shape." If the shape of an object determines its stability, but the initial 
hypothesis language does not include the feature "shape," then we can weaken the bias 
by adding this feature to the hypothesis language so that out bias becomes correct and 
the target concept can be learned. Alternatively, we might have operators that strengthen 
the bias by removing features. In Figure 2, for example, we see a search space L(H). 
The first state of L(H), Il(H), includes all hypotheses that are expressed using only 
the features "size," "color," and "shape." (The complete representational bias would 
also specify the language for constructing hypotheses from the feature set, e.g., decision 
trees.) A feature removal operator, opl (/1 (H)),  takes the system to another state, 12 (H), 
that includes all hypotheses that are expressed using only the features "size" and "color." 
Note that l(H), the current representational bias for H, was originally equal to 11 (H). 
After the bias shift, l(H) becomes equal to lz(H). Feature removal is typically done to 
improve learning efficiency because it reduces the size of the hypothesis space. However, 
identifying features to remove can be expensi7e and might even result in an incorrect 
bias, so the cost of removing features taust be balanced against the savings. 

Once we have chosen an l(H), we can shift the procedural bias for that particular l(H), 
assuming the chosen l(H) stays fixed while we search the space of procedural biases for 
it. The search space P(12(H)), used for selecting p(12(H)), is shown in Figure 3 with two 
states, Pl (12(H)) and P2(12 (H)).  A shift in procedural bias for the hypothesis space is a 
shift in the order of traversal of the hypotheses. Recall that the procedural bias has two 
components: O(l(H)), the operators (or algorithms) that can move the system from one 
state to another in the space, and O(l(H)), the partial ordering over the stares. Together, 
these components enable the system to select a "next state." A shift in procedural 
bias normally alters the components individually. For example, if the set of operators 
for moving from one hypothesis to another includes generalization and specialization 
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Figure 3. A procedural blas space with two states. 

operators, then we could shift the procedural bias by removing one of the specialization 
operators. This might make some of the hypotheses (states) inaccessible. The evaluation 
function induces an order for stare space traversal. For example, a simplicity preference 
combined with a hill climbing search process will concentrate on the portion of the state 
space dominated by simpler hypotheses. If  we shift from a preference for simplicity to a 
preference for complexity, the focus will shift to a different portion of the search space. 
Note that although the procedural blas shift in Figure 3 results from a change in the 
set of hypothesis accessibility operators, an equivalent bias shift could have alternatively 
resulted from a change in the evaluation function (or from a change in the operators and 
the evaluation function). 

5.3. Search ing  the meta-b ias  space  

At the second tier (blas search space), we again face the question of whether we want 
the search to be static or dynamic. In most current systems, decisions at this level are 
static. However, in some systems there is a third level of flexibility. In this case, search 
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Figure 4. A representational meta-bias space with two states. 

also takes place at a meta-bias space level, which includes the search spaces L(L(H)), 
L(P(I(H))), P(I(L(H))), and P(l(P(l(H)))). At the meta-bias level, it is possible to 
select a procedural or representational blas for any search space in the second tier. Each 
state in a representational meta-bias space defines the states for a bias search space. In 
other words, it is an option for l(L(H)) or for l(P(l(H))). Each state in a procedural 
meta-bias space is a different accessibility-ordering pair for the states in a bias space. In 
other words, it is an option for p(l(L(H))) or for p(I(P(l(H)))). 

To illustrate representational rneta-bias space, suppose we wish to select a representa- 
tional bias space (rather than a procedural bias space) dynamically. Thus we are selecting 
representational candidates li(L(H)) for l(L(H)). Then the meta-bias space is a search 
space in which a state is a set of candidate representational biases (e.g., ll(L(H)) or 
12(L(H)) in Figure 4). This set provides choices for searching at the hext tier down 
(i.e., for representational bias space search). If  we want to increase the efficiency of  the 
search through representational bias space, for example, we might move from one state 
in meta-bias space to another state that contains fewer alternative biases. An example is 
shown in Figure 4. In this figure, we start out with four representational biases. Each 
bias consists of a set of features for describing hypotheses. By moving to a state with 
only two biases, the efficiency of the search through bias space is improved. Once we 
have moved to state 12(L(H)) in meta-bias space, we have chosen this stare as the cur- 
rent state for l(L(H)). This results in a language for the bias search space L(H) that 
has the same states that we see in L(H) in Figure 2. 

Next, we illustrate procedural meta-bias space. Suppose each state in this meta-bias 
space is an accessibility-ordering pair for searching a representational bias space. (Alter- 
natively, it could be an accessibility-ordering pair for searching a procedural bias space.) 
Then each state in this meta-bias space imposes a particular accessibility mapping and 
partial ordering over the states for representational search at the next lower tier. Figure 
5 shows an example. Here, we assume that II(L(H)) has been chosen for the cur- 
rent l(L(H)) and we are now searching for a procedural bias for ll(L(H)), i.e., for 
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Figure 5. A procedural meta-bias space with two states. 

p(lz(L(H))). If  an order (stare) is selected at this Ievel, search at the next tier down 
(i.e., in representational bias space) will follow this order when searching through the 
biases l i (H).  Again, the procedural bias selects both the operators and the partial order- 
ing for the next lower level. Note that each state, pi(ll (L(H))), of Figure 5 (if a partial 
ordering were included) is a procedural candidate for the space L(H). 

Conceptually, we could also imagine a fourth tier in addition to the three, and so on. 
Although we are not aware of  any systems with more than three tiers, one can easily see 
how to extend the current framework to add tiers. Each additional tier adds the ability 
to explore alternative biases at the level below. This additional search can improve 
tearning performance through increased efficiency or better predictions, but also adds 
computational costs that taust be offset by the performance gain in order to have an 
overall increase in performance. 

6. Recent research 

Our framework for blas selection as search raises a number of important questions about 
research in this field: 

® What does each search space (hypothesis space, bias space, meta-bias space) look 
like? 

® Which tiers and dimensions are dynamic, and which are static? 

• What evaluation method has been ased to facilitate blas selection? 

In addition, there are some general questions that can be asked when analyzing a learning 
system and its bias: 

® What are the user's performance goals for the learner (e.g., accuracy, efficiency, read- 
ability)? How do they affect the decisions regarding the choice of tiers, evaluation 
method, static versus dvnamic? 



16 D. GORDON AND M. DESJARDINS 

• How successful is the learner at meeting the user's performance goals? 

The papers in this issue range from formal, theoretical analyses of bias-selection issues 
to empirical tests of particular methods. Most of the papers describe systems or analytical 
methods that examine multiple states in the second tier: that is, they search the bias 
space. Although none of these systems perform a completely automated search of the 
meta-bias space, several describe methods for searching the third tier by allowing the 
human designer to implement various search strategies in the second tier. Provost and 
Buchanan's paper is a good example of this. 

The research in this area, presented in this issue and elsewhere, can be roughly char- 
acterized as either offline or online bias evaluation and selection. The former category 
consists of evaluation methods used by system designers to explore and select biases 
or bias search methods during the development stage of a learning system. The latter 
includes constructive induction, the use of prior knowledge to select biases, and other 
methods for searching the bias space dynamically during learning. Most of the papers 
in this issue describe offline learning methods: comparative studies (Ade et al., Stahl) or 
methods for encoding bias search strategies (Provost and Buchanan, Brodley). Turney 
introduces stability as a useful performance goal that could be used in conjunction with 
online or offline bias selection methods. Subramanian analyzes the use of the irrele- 
vance principle as an online learning method. We discuss research on bias evaluation 
and selection, divided into offline and online techniques, in the following sections. The 
summary presented here is intended to be representative, not comprehensive. 

6.1. Offiine learning 

Offline learning methods are evaluation methods used by researchers and designers to 
explore the effect of various biases and bias search methods on learning performance. 
Formal and empirical methods can be used to compare bias methods in various systems, 
giving us insight into the advantages and disadvantages of the different methods used. 
Ade et al. (this issue) present a comparative study of biases in three ILP (Inductive 
Logic Programming) systems - CLINT, GOLEM, and ITOU. Their NINA system allows 
a designer to specify bias for ILP learning declaratively, and it can shift biases in a 
prespecified sequence. NINA supports specification of the representational bias I(H), 
which they call syntactic bias, and a form of procedural bias p(l(H)) that consists of a 
Boolean evaluation function for biases (this is termed semantic bias.) The performance 
goals are accuracy and efficiency; these are measured in an empirical comparison of the 
biases within the three systems. 

Stahl (this issue) also compares different ILP approaches, presenting a formal analysis 
of when predicate invention is a useful shift. Predicate invention, a form of constructive 
induction, is a search mechanism through the representational bias space L(H). The 
results of Stahl's analysis could be used at the procedural meta-bias level P(I(L(H))) 
to determine whether predicate invention is a useful method to use for search at the bias 
level. In this case, the performance goal for defining "useful" is whether or not learning 
succeeds with the selected representational bias. 
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Other offline methods provide testbeds or paradigms for developing strategies for 
searching the bias space; these search methods can be used subsequently in online learn- 
ing. Provost and Buchanan (this issue) describe a testbed for implementing inductive 
policy, that is, a declarative representation for a search method over the hypothesis space 
H and bias spaces L(H) and P(I(H)). Their SBS (Search of the Bias Space) testbed, 
which has been implemented and is available for other researchers to use, allows a de- 
signer to explore the eflects of various performance goals on the bias selection process. 
Therefore, a designer can use SBS to work within meta-bias space to make decisions 
about representational and procedural bias spaces. Thus their system is one in which the 
third (uppermost) tier of Figure 1 can be explored. 

Brodley's Model Class Selection (this issue) is a tearning system that demonstrates 
a particular paradigm for developing bias search strategies - heuristic rules are used 
to select and shift bias at a coarse grain size. The current implementation of MCS 
incorporates a set of heuristics to search the representational bias space L(H). The 
procedural bias p(l(H)) for each representational bias l(H) is thus selected and fixed 
at the outset of learning. However, one could envision using similar methods to search 
P(l(H)) as well as the (meta-bias) space of heuristic rules itself. Accuracy is the only 
performance goal that is considered in MCS. 

Turney (this issue) describes the use of stability as a performance goal to be used in the 
evaluation of alternative representational and procedural biases. One could envision this 
measure being used at both the meta-bias and the bias space levels. A formal analysis 
of the stability measure is given. This measure can be used in online or offline learning. 
Offline analysis provides insight into how the use of this measure affects overall system 
performance; an online bias selection method could then incorporate this measure into 
the bias evaluation function to guide search in the representational and procedural bias 
spaces. 

6.2. Online learning 

For online learning, many alternative methods for searching and pruning the space of 
biases have been explored by machine learning researchers; research in this area is on- 
going and active. For example, Subramanian's irrelevance principle (this issue) provides 
a formal criterion for determining when a shift of vocabulary bias is justified in problem 
solvers. In other words, the irrelevance principle guides the search through the repre- 
sentational bias space. We cannot immediately fit this work into the inductive learning 
framework of Figure 1 because the bias shift is performed in the conte×t of speedup, 
rather than inductive, learning. Nevertheless, there is an obvious similarity between the 
space being searcbed by Subrananian's system and L(H). The performance goals in 
Subramanian's work are accuracy and computational efficiency. Both a formal analysis 
of the irrelevance principle and empirical results of its application to learning domains 
are given. 

GABIL (Spears and Gordon 1992) uses cross-validation, a generate-and-test method, 
to select the degree to which the hypotheses are consistent with previously seen training 
data. The degree of hypothesis consistency is a choice of p(l(H)) because it is an 
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evaluation over the hypotheses in the set l(H). The performance goal is improved 
predictive accuracy. Spears and Gordon find that lower consistency is preferable when 
the data is noisy. 

PREDICTOR (Gordon 1990) searches L(H) by strengthening inductive bias whenever 
possible, and weakening bias minimally when necessary to restore bias correctness. The 
performance goal is to minimize the number of instances required to learn the target 
concept. PREDICTOR evaluates its bias using membership queries (i.e., requested in- 
stances (Angluin 1988)). This work reveals an important tradeoff between the reduced 
cost of learning with a stronger bias and the increased cost of more queries used to help 
in choosing a stronger bias. PREDICTOR performs feature selection. There has recently 
been an increasing interest in this topic, e.g., by Almuallim and Dietterich (1991), Kira 
and Rendell (1992), Vafaie and De Jong (1993), Aha and Bankert (1994), and John et 
al. (1994). 

The system of Bloedorn et al. (1993) searches all three tiers of Figure 1, including meta- 
bias space. The performance goals are predictive accuracy, simplicity, and efficiency. 
Heuristics are used extensively in the bias selection process. The heuristics form a 
procedural meta-bias for decisions about the choice of representational bias and are thus 
decisions about p(l(L(H)). Evaluation of the meta-bias is a combination of generate- 
and-test, using meta-level examples, and suggestions from the user. 

6.2.1. Constructive induction 

Constructive induction methods are used to generate new terms in the hypothesis lan- 
guage. Blas shift occurs as a result of constructive induction both in the representational 
bias space L(H) (if the new terms increase the expressiveness of the language, as with 
numerical ranges or disjunctions in a language that does not otherwise permit disjunc- 
tions) and in the procedural bias space P(H) (for example, the new terms may make 
certain theories simpler, so if simple theories are preferred, then the preference order is 
changed). 

Constructive ir, auction is an active field of research and the most widely studied form 
of bias change, as evidenced by the recent workshops and journal issues devoted to 
this topic. Fawc~tt ch«5-ed a workshop at the 1994 Machine Learning Conference en- 
titled "Constructive Induction and Change of Representation" at which several novel 
approaches to constructive induction were presented. This followed a 1991 Machine 
Learning workshop on "Constructive Induction" chaired by Matheus. 

Several papers in a recent special issue of Machine Learning on "Evaluating and Chang- 
ing Representation" examine constructive induction. For example, in that issue Wnek 
and Michalski (1994), Wrabel (1994), and Kietz and Morik (1994) describe methods 
for dynamically shifting bias by performing constructive induction when learning fails. 
Furthermore, those papers address some of the same issues we focus on hefe. 

Rendell has done rauch work on this topic. The performance goals of Rendell's (1990) 
construcUve induction system are speed, accuracy, and conciseness (simplicity). The 
constructive induction method used is "peak merging." New peaks (hypothesis disjuncts) 
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are formed by constructing new terms (attributes). Each new peak is comprised of 
multiple old peaks. 

As mentioned at the beginning of this section, a pertinent question to ask is, "What 
evaluation method facilitates bias selection?" Matheus (1991) presents a framework in 
which he elaborates sources upon which to base the evaluation of a bias shift involving 
feature construction (e.g., peak merging). These sources are the instances, the hypotheses, 
and the domain knowledge. 

6.2.2. Prior knowledge 

Prior knowledge can be used to reduce the search space and guide the selection of 
representational and procedural biases. Learning and modifying this prior knowledge 
thus amounts to searching the meta-bias level. Although none of the papers in this issue 
focus on this topic, it is an important and active area of research. In 1992, desJardins 
chaired a AAAI workshop entitled "Constraining Learning with Prior Knowledge" that 
explored novel approaches for using existing knowledge to reduce the computationat 
complexity of the learning problem, including the evaluation and selection of biases. 

Russell and Grosof (1987) first introduced the concept of declarative bias, an explicit 
specification of the representational bias I(H). The advantage of declarative bias is 
that because the bias is represented explicitly, it is easy to analyze and modify it when 
necessary. GRENDEL (Cohen 1995) allows ause r  to specify blas declaratively in a 
FOIL-like inductive learning system. The declarative bias allows the system to make 
use of a variety of types of prior knowledge directly and explicitly. 

desJardins (1994) describes a metbod for using background knowledge to evaluate 
and select biases dynamically with respect to expected accuracy and learning time in 
a decision-theoretic framework. This method provides an evaluation function over the 
space of representational biases L(H), and could be extended to evaluate procedural 
biases as well. Baltes and MacDonald (1992) and Datta and Kibler (1992) also describe 
methods that use previously learned concepts (prior knowledge) to bias the learning of 
new concepts. 

The use of prior knowledge to bias genetic algorithms and neural networks have re- 
cently been studied by several researchers. The systems of Gordon and Subramanian 
(1993) and Schultz and Grefenstette (1990) use prior knowledge to initialize a genetic 
algorithm. The former system uses high-level advice for the initialization. KBANN 
(Towell et al. 1990) uses a domain theory in the form of propositional rules to initialize 
a neural network. Pratt (1993) describes the discriminability-based transfer method for 
incorporating knowledge acquired during previous learning tasks into a neural network. 

7. Conclusiõns 

The framework we have presented for treating blas selection as search has two essential 
features: blas is divided into representational and procedural components, and learning 
systems are characterized as potentially having multiple tiers of search (in hypothesis 
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space, bias space, meta-bias space, and so on). We advocate the use of this framework 
both as a tool for understanding, analyzing, and comparing existing systems, and as a 
basis for guiding the design and development of new machine learning systems. We 
believe that doing analysis and development within this framework will lead to a better 
understanding of where the implicit and explicit biases in learning systems lie, will 
reduce both system development and knowledge engineering time and effort, and will 
allow explicit representation and incorporation of considerations such as background 
knowledge and cost. 

Of course, the framework provides only the skeleton of a design and an abstract 
formalism for representing and analyzing bias as a multiple-tiered search process. The 
real work will come in the development of systems that fill in the components of the 
outline we have sketched, and that are able to perform learning in complex and dynamic 
domains. The papers in this issue begin to address some of the critical questions in this 
development; we hope that this special issue of Machine Learning inspires the research 
community to look more closely at the central issue of the evaluation and selection of 
biases in machine learning systems. 
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Notes 

1. Biases can also affect the definition or selection of instances (see (Saxena 1991)). We omit a discussion of 
this topic for the sake of brevity. 

2. The arrows in Figure I go downward only. This is a simplification to clarify out presentation. Blas revision 
is typically both data- and model-driven, so that the lower tiers influence the higher tiers and vice versa. 
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