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Abstract. We design efficient algorithms for on-line learning of axis-parallel rectangles (and for the union of two 
such rectangles) in the common model for on-line learning with equivalence queries. With regard to the learning 
of rectangles in arbitrary dimensions d we solve the following open problem: 

Is there an algorithm for on-line learning of rectangles 1--[~=1 {ai, ai + 1 . . . . .  bi} over a discrete domain 

{ 1 , . . . ,  n}  d whose error bound is polylogarithmic in the size n d of the domain (i.e. polynomial in d and log n)? 
We give a positive solution by introducing a new design technique that appears to be of some interest on its 

own. The new learning algorithm for rectangles consists of 2d separate search strategies that search for the 
parameters a 1, b l , .  • . ,  ad, bd of the target rectangle. A learning algorithm with this type of modular design tends 
to fail because of the well known "credit assignment problem": Which of the 2d local search strategies should be 
"blamed" when the global algorithm makes an error? We propose here a rather radical solution to this problem: 
each local search strategy that is possibly involved in an error of the global algorithm will be blamed. With this 
radical solution it is unavoidable that frequently local search strategies will be blamed incorrectly. We overcome 
this difficulty by employing local search strategies ("error tolerant binary search") that are able to tolerate such 
incorrect credit assignments. The structure of this learning algorithm is reminiscent of "finite injury priority 
constructions" in recursive function theory. 

Section 4 contains another application of this design technique: an algorithm for learning the union of two 
recta~ngles in the plane. 

Keywords: On-line learning, computational learning theory, geometrical learning problems, finite injury priority 
constructions 

1. Introduction 

In our first result we consider the concept class 

BOX~:={¢}U  a~,...,b~} l<_ai<_b~<_n f o r i = l , . . . , d  
k i = l  

over the domain { 1 , . . . ,  n )  d. We will refer to the elements of BOX~ as boxes, or equiva- 
lently as rectangles. 

Our learning model is the standard model for on-line learning (see Angluin, 1988; 
Litt[estone, 1987; Maass & Tur~in, 1992). A learning process for a concept class C over a 
domain X is viewed as a dialogue between a learner A and the environment. The goal of 
the iearner A is to "learn" an unknown target concept CT E C that has been fixed by the 
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environment. In order to gain information about CT the learner proposes hypotheses H 
from a fixed hypothesis space 7-/with C C_ 7-I C_ 2 x .  

Whenever H 5£ CT for the proposed hypothesis H,  the environment responds with some 
counterexample (CE) g E HACT := (CT -- H) tO (H - CT). g is called a positive 
counterexample (PCE) if 9 E CT - H,  and 9 is called a negative counterexample (NCE) if 
g E H - CT. Each new hypothesis H , + I  of the learner (resp. learning algorithm) A may 
depend on the earlier hypotheses H1,.  • •, Hs and the given counterexamples gj E H jACT 
f o r j  = 1 , . . . , s .  

One defines the resulting learning complexity of a learning algorithm A by 

LC(A) := max{s E N I there is some CT E C and a sequence g l , . - - ,  98-1 of 
counterexamples to the hypotheses H a , . . . ,  H , - 1  of the 
learner A such that H~ ¢ CT}. 

The learning complexity of concept class C with hypothesis space 7-[ is defined by 

LCT~(C) := min{LC(A) [ A is a learning algorithm for C with hypothesis space 
7-t}. 

One sets LC(C) := LCa(C) and LC - ARB(C) := Lc2X (c). 
This learning model is equivalent to Littlestone's model (1987) for "mistake bounded 

on-line learning". In Littlestone's model, which is somewhat closer to realistic learning 
situations, the learner proposes at each step s some hypothesis Hs E 7-/. He then uses 
this hypothesis Hs to "predict" the label y, of the example (xs, y~) E X x {0, 1} (with 
Ys = CT(Xs)) that is given without the label Ys to the learner at step s. Whenever this 
prediction is incorrect, one says that the learner has made a mistake at step s. The goal of 
the learner is to minimize the total number of mistakes that he makes. It is easy to show (see 
Littlestone, 1987) that the worst case mistake bound of the best learning algorithm in this 
model is equal to LC ~ (C). This holds no matter whether the learner is allowed to revise 
his hypothesis at every step, or only at those steps where he has made a mistake. 

It is known that L C ( B O X  d) > LC - A R B ( B O X  d) = ~(d log n). The upper bound 
O(d log n) for LC - A R B ( B O X  d) follows by considering the HALVING-algorithm (see 
Angluin, 1988; Littlestone, 1987; Maass & Turin, 1992). The lower bound f~(d l o g n ) i s  
shown by constructing a decision tree for B O X  d in which every leaf has depth f/(d log n). 
This is sufficient by a result of Littlestone (1987) (see also Maass & Turin, 1992). 

The HALVING-algorithm uses arbitrary subsets of the domain as hypotheses. With regard 
to learning algorithms for BOXan that use computationally feasible hypotheses there exist 
two quite different approaches. Both of these algorithms use hypotheses from BOXgn. 
There is a learning algorithm B with LC(B)  = O(d. n) that issues as its next hypothesis 
always the smallest C E B O X  d that is consistent with all preceding counterexamples. 
This algorithm is frequently considered in the special case n = 2 where the concepts 
C E B O X  d correspond to monomials over d boolean variables (see the algorithm for the 
complementary class 1-CNF in Valiant, 1984). 

It is less trivia[ (even for d = 2) to design a learning algorithm D for B O X  d with 
computationally feasible hypotheses such that LC(D) = O(f(d)  log n) for some function 
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f : N ~ N. An algorithm D of this type (which uses hypotheses from BOX~) was 
exhibited in Maass & Tur~in (1989, 1994). However this algorithm D learns separately 
each of the 2 a corners of the target concept, and hence LC(D) is exponential in d (i.e. 
f(d) > 2d). 

The question whether the advantageous features of both learning algorithms B and D can 
be combined in a single algorithm S with LC(S) < poly(d, log n) was first brought to our 
attention by David Haussler (1989; see also Maass & Tur~in, 1994). 

A learning algorithm S which achieves this performance is exhibited in section 3 of this 
paper. It proceeds in a completely different way than the two previously described learning 
algorithms for BOXdn. We describe the main component of the new algorithm in section 2. 

The main ingredient of this learning algorithm is a novel solution of the "credit assignment 
problem". The credit assignment problem may be defined as "the problem of assigning credit 
or blame to the individual decisions that led to some overall result" (Cohen & Feigenbaum, 
1982). Obviously this problem is ubiquitous not just in Artificial Intelligence, but also in 
the study of adaptive neural networks, where credit or blame for the overall performance 
of the network has to be distributed to the individual components of the network. 

The credit assignment problem in the case of on-line learning of rectangles is the following. 
When the learner receives a negative counterexample (xl,. •., Xd) to his current hypothesis 

d 1-I i=l{ai , . . . ,  bi}, it is clear that the learner has to change at least one of the intervals 
{ai,.. •, bi} so that it no longer contains x~. But it is not clear which of the intervals 
{ai , . .  •, bi} should be changed. 

Our new learning algorithm for rectangles consists of 2d separate search strategies that 
searchforthe2dendpointsaT,bT..., ad ,T bdT of the d intervals { a T , . . . ,  bT} ofthe target - 

rectangle 1-Id=l{aT,. . . ,  b/T}. The main problem is which of the 2d local search strategies 
should be "blamed" when the global algorithm makes an error? We propose here a rather 
radical solution to this credit assignment problem: each local search strategy that is possibly 
involved in an error of the global algorithm will be blamed. With this radical solution it is 
unavoidable that frequently local search strategies will be blamed incorrectly. We overcome 
this ,difficulty by employing local search strategies ("error tolerant binary search") that are 
able to tolerate such incorrect credit assignments. 

Our solution of the credit assignment problem is quite reminiscent of a famous construc- 
tion method in recursive function theory, the socalledfinite injury priority construction (see 
Soare, 1987). This linkage is of some methodological interest insofar as priority arguments 
with injuries are the dominant design technique in recursive function theory, but so far 
there, are hardly any applications of this technique for the design of concrete algorithms in 
computer science. 

Section 4 contains another application of this design technique: an algorithm for learning 
the union of two rectangles in the plane. We assume here that the learner knows already 
that the top left corner of the domain is contained in one rectangle, and the bottom right 
corner in the other. Nevertheless this learning problem is substantially more complicated 
than the preceding one: The obvious local search procedures that search for the lengths of 
the slides of the two rectangles are likely to get not only false negative counterexamples (as 
in the preceding learning problem), but also false positive counterexamples. This compli- 
cation arises from the fact that in general the learner does not know to which one of the two 
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rectangles of CT a positive counterexarnple belongs. Nevertheless one can construct for 
this learning problem an efficient learning algorithm whose learning complexity is asymp- 
totically optimal. Again this algorithm consists of suitable versions of binary search as 
modules, which will tolerate certain incorrect credit assignments. 

This positive result for learning the union of two rectangles provides a contrast to earlier 
results about efficiently learnable concept classes C such as halfplanes over { 1 , . . . ,  n} 2, or 
monomials, for which one has shown t h a t / / -  2 - C := {C1 U C 2 [ C1,  C 2 E C} is not 
efficiently learnable (see Maass & Tur~in, 1994; Pitt & Valiant, 1988). 

2. An algorithm for binary search that tolerates one-sided errors 

In this section we consider an extension of the notion of a "negative counterexample", and 
along with it an extension of the previously described learning model. 

Assume CT E C is the target concept and Hs is the current hypothesis of the learner. The 
environment may respond in the extended model with a positive counterexample ("PCE") 
9 E CT -- H~, with a true negative counterexample ("true NCE") 9 E H~ - CT, or with a 
false negative counterexample ("false NCE") 9 E Hs • CT. Note that the environment is 
allowed to respond with a false NCE even if H~ = CT. We extend the notion of a negative 
counterexample (NCE) so that it subsumes both true and false NCE's. The environment is 
not required to tell the learner to which of these categories a counterexample 9 belongs. 

We define a binary search algorithm T B S n  (the "T" stands for error-tolerant) for learning 
the "head" h of a halfinterval {1 , . . . ,  h} _C {1 , . . . ,  n} in this extended learning model. 

d B O X  d (see The new algorithm S for learning rectangles CT = 1-~i=1 {a~, . . . ,b i}  E 
section 3) will consist of 2d separate copies of the here defined error-tolerant binary search 
algorithm T B S :  in each dimension i it uses separate copies of T B S  and its symmetric 
counterpart T B S *  for learning the "head" bi and the "tail" ai of the interval {ai , .  • •, bi}. 
Although this learning algorithm S for B O X  d will receive only true counterexamples, 
the individual binary search procedures may also receive false negative counterexamples. 
This is a consequence of our quite radical solution to the associated "credit assignment 
problem", where we blame each of the 2d subroutines for binary search for any error of the 
learning algorithm S. In particular a true NCE for S will result in a true NCE for at least 
one subroutine and false NCE's for up to d - 1 other subroutines. 

In this section we consider the concept class 

H E A D ~  := {{1,. .. , j}  l j E { 1 , . . . , n } }  

over the domain {1, 2 , . . . ,  n}. 
At the beginning of each step r of a learning process in the extended learning model the 

learner issues a hypothesis H~ := {1 , . . . ,  h~} E H E A D ~ .  If H~. ~ CT, then the learner 
will receive at step r the counterexample g~ E {1 , . . . ,  n}. We set 

Ps := max({1} U {9r I 1 < r < s and 9r was a PCE}) 

ns := m i n ( { n + l } U { 9 ~ l l < r < s ,  g r>p~ ,  

and 9~ was a (true or false) NEE}) 

true min({n + 1} U {gr I 1 < r  < s and 9r was atrue NCE}). n s : ~  
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Figure t. A typical scenario in the procedure TBSn, where { 1 , . . . ,  h} is the target concept and the hypothesis 
{1, i . . ,  hs} is "refuted" at step s by a false NCE 9~. 

The interpretation of these parameters is quite obvious. Ps is the largest PCE received by 
true is the smallest true NCE received by step s. Hence it is clear that the step s, and n 5 

endpoint h of the target concept HT = { 1 , . . . ,  h} E HEAD~ lies in the "undetermined 
true _ 1}.  Unfortunately the learner does in general not know the value interval" {ps, • . . ,  n5 

true is provided by the parameter of ntJ ue at step s. His best possible approximation to n 5 
n~, which is the minimum of all those NCE's received by step s which have not yet been 
shown to be false NCE's by the end of step s. 

Tlhe following search algorithm TBSr, (where TBS stands for error-tolerant binary search) 
provides the basic module for our learning algorithm for rectangles. 

Definition oft  he binary search algorithm T B Sn for learning H E A D n  in the extended 
learning model: 

The algorithm TBS~ issues at step s the hypothesis { 1 , . . . ,  hs}. 
Set !hl := 1. 
F o r s  > 1 set h5+l := hs if9~ is aNCE and g5 -< Ps- 
[If 9) -< P~ it is clear that 95 is a false NCE, hence it can safely be ignored.] 
Else, we define 

/ min({n5 - 1} U {hr [ 1 < r < s andps _< h~ < ns}), 

h5+1 := if g5 is aPCE. 

(ps + [~2_zJ  , ifg5 is a (true or false) NCE. 

In this algorithm TBSn  the hypothesis { 1 , . . . ,  hs+l} at step s + 1 is defined as in the usual 
binary search procedure in the case where 95 is a NCE which is not obviously false at step 
s (i.e. 95 > Ps). A typical situation of this type is illustrated in Figure 1. 

A~ a consequence of this clause in the definition of TBSn  one can show in Lemma 2.3 
t r u e  1} that any true NCE reduces the length of the "undetermined interval" {Ps,. •., ns - 

by at least 50% (as in the usual binary search procedure). The strategy of the quite dif- 
fer@t definition of the hypotheses { 1 , . . . ,  hs+l} after a PCE at step s is to treat PCE's 
as aiparticularly valuable resource. This is justified, since PCE's are always true coun- 
tere~:amples. Therefore, instead of halving the open interval in an upwards direction, one 
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moves the hypothesis direct up to the least unrefuted NCE, respectively the least unrefuted 
earlier hypothesis. The justification for this clause in the definition is given in Lemma 2.4. 
It is shown there that a second PCE after this move will bring definite progress: it either 
unmasks a false NCE, or it definitely refutes an earlier hypothesis that was previously only 
"refuted" by false NCE's.  

Note that the more familiar halving of  the open interval in an upwards direction after each 
PCE (as in the regular binary search procedure) uses PCE's in a less economic fashion (if 
false NCE's  are present). It could then occur that one uses a sequence of log n / 2  PCE's  just 
to find out that one earlier NCE (to which these PCE's converge from below) was a false 
NCE. 

THEOREM 2.1 Assume that f false NCE's occur in a learning process for  H E A D n  with 
learning algorithm TBS,~. Then at most log n true NCE's and at most log n + 3 f  + 1 
PCE's occur in this learning process. 

In order to prove Theorem 2.1 we analyze the properties of algorithm T B S n  in three 
simple Lemmata. 

LEMMA 2.2 

a) Ps+ [ ~ ]  < - n ~ - l f o r a l l s > - - 1 .  

b) p~ < h~+l <_ n~ - l for  all s >_ 1. 

c) I f  9~ is a (true or false) NCE, then h~+x <_ h~. 

Proof: 

a) 

b) 

c) 

Note thatps < ns by the definition of ns. 

This follows from part a). 

I fgs  <_ P~ then h~+a = h~. Assume that 9~ > ps and s > 1. Since hs _ ns -1  - 1 by 
b), we have n~ = 9~ <- h~. Furthermore h~+l = Ps + [-~-P-~] < n~ (see part a)). • 

true 
ns - Ps <- 

true 
n r  - -  P r  

Proof: It is obvious that r > 1. Thus n~ rue = nr  = 9r, since Pr < g,- <_ hr <_ n r -  1 - 1 
by Lemma 2.2 b). One shows in the same way that n~ rue = n8 = gs- 

Since 9r is a NCE one has h r +  1 ~ Pr -1- 

LEMMA 2.3 Assume r < s and gr,gs are true NCE's. Then 
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Case 1:P8 > h~+~ 

n . . . .  p P~+ntrU° hence n T M  - -  Ps < n t r u e  t r u e  T h e n p 8 - > P r +  L ~  j + 1  >_ 2 , - - - r  - P ~ - < n r  - 
t r u e  t r u e  

- 

Case 2:P8 <_ h~+l 

Then 9j _< hr+l for every j c { r + l , . . . ,  s -  1} such that gj is aPCE. Hence hj+l  _< hr+l 
for each such j (by the definition of hi+l). Together with Lemma 2.2 c) this implies that 
hj÷l <_ hr+l foreveryj  E { r + l , . . .  , s - l } .  In particular we have shown that h8 _< h~+l. 

true Therefore ntrue_ps < hr+l_gs  < pr + ( ~ )  _ps  < Thus n 8 = 98 < h~+l. n t . . . .  p 
i . . . .  

[ n trUe_ p "~ t r u e  + - p r  _- 2-P  • 

LEMMA 2.4 Assume that gs and gs+l are PCE's. Then gs+l ~ ns, or gs+l > hr for 
some r c { 1 , . . . ,  s} with Ps <_ hr < ns. In other words: gs+l proves that an earlier 
NCE was a false NCE, or it definitely refutes an earlier hypothesis {1 , . . . ,  h~ } which had 
received a counterexample at step r, but which was at step s consistent with all currently 
unrefuted counterexamples. 

Proof: By construction one has gs+l > hs+l = min({n8 - 1} U {h~ ] 1 < r < s and 
p s < h ~ < n s } ) .  • 

PROOF OF THEOREM 2.1: Lemma 2.3 implies that at most log n true NCE's occur in 
any I learning process with algorithm TBSn. Hence at most log n + f NCE's occur in the 
considered learning process Q. Thus there exist at most log n + f + 1 maximal blocks 
of sluccessive PCE's in this learning process Q. Consider any such maximal block B that 
consists of k + 1 PCE's g~, . . . ,  g~+k. Set 

kB := I{JlJ  E { s + l , . . . , s + k )  andgj > n j _ l )  [ 

kB := [ { J l J c { s + l , . . . , s + k )  andgj > h r f o r s o m e r c { 1 , . . . , j - 1 }  

withpj_l <_ hr < nj-1}l. 

By 2emma 2.4 we have k~ + k2 B _> k. 
Eiach time when gj > nj-1 (as in the definition of klB), then an earlier NCE gets proven 

falsle at step j .  This happens at most once for each of the f false NCE's. 
E~ch time when gj provides a counterexample to an earlier hypothesis { 1 , . . . ,  hr} that 

wa~ consistent with all unrefuted counterexamples at the beginning of step j (as in the 
definition of k2B), then this hypothesis {1 , . . . ,  h~} can never appear to be consistent again 
at 4 later step t (since Pt >- gj > h~). Furthermore this event can only occur if the 
original counterexample gr to {1 , . . . ,  hr} was a false NCE. Thus altogether there are only 
f h!cpotheses {1 , . . . ,  h r )  for which this event can ever occur. 
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Thus we have shown that ~-~{kff I B is a maximal block of PCE's  in Q } < f and 
~-~{k B ] B is a maximal block of PCE's in Q } < f .  Altogether we have shown that at 
most log n + 3 f  + 1 PCE's  occur in the considered learning process Q. • 

Remark 2.5 One can construct in the same manner a learning algorithm TBS~ for the 
concept class 

TAIL,~ :=  {{ j , j  + l , . . . , n }  [1 < j < n} 

that satisfies an analogous version of Theorem 2.1. 

Remark 2.6 There exist already various algorithms for binary search in the presence of 
two-sided errors, see e.g. Dhagat, Gacs, & Winkler (1992) and Borgstrom & Kosaraju 
(1993). These algorithms do not provide sufficiently strong bounds (e.g. on the number of  
true NCE's)  to be useful for our application in section 3. 

3. A learning algorithm for BOX~ whose error bound is polynomial in d and log n 

T HEOREM 3 .1  L C ( B O X  d) = O(d 2 log n). 

Proof: Consider any target concept CT = 1 - [ d l { a ~ , . . . ,  hi} E B O X  d. The learning 
algorithm S for B O X  d issues H1 := ~ as its first hypothesis. If  H1 ¢ CT then S 
receives a PCE u -- @1, •. •, Udl E CT. Henceforth the algorithm S splits the task of 
learning CT into 2d separate subtasks: The learning of {u i , . . . ,  bi} C_ {ui, • • •, n} (i.e. of  
a concept from HEADn_~+I  over the transformed domain {u i , . . . ,  n}) and the learning 
of {ai , .  • •, ui} C { 1 , . . . ,  ui} (i.e. of  a concept from TAILu~) for i = 1 , . . . ,  d. For each 
i e { 1 , . . .  ,d} the algorithm S employs TBSn_~+I  for the former and TBS*,  for the 
latter subtask. 

One sets H~ := {u}. Assume that at any step r _> 2 the learning algorithm S for B O X  d 
d h* has issued a hypothesis H r  := l--Ii=l { i , - . - ,  hi}. Then the next hypothesis H r + l  is 

determined in the following way by the 2d subroutines. 
Let x = (x 1, •. •, Xd) E CT A H r  be the counterexample to the hypothesis H r  of  algorithm 

S. Note that we use the notion of a counterexample for algorithm S in the traditional sense 
(i.e. x is a PCE or a true NCE). If  x is a PCE to hypothesis Hr ,  then for at least one 
i • { 1 , . . . ,  d} the point xi is a PCE to the current hypothesis of  one of the two subroutines 
TBS~_~+I  or T B S * .  For each such i one changes the interval in the i-th dimension 
according to the next hypothesis of the subroutine T B  S~_ ~ + 1 resp. T B  Sui. For other i one 
has xi • { h * , . . . ,  h~}, and one repeats in these dimensions the same interval { h * , . . . ,  hi} 
in the next hypothesis H r + l  of  S. 

Assume now that x = (x l , . . . ,  Xd) is a NCE to hypothesis Hr. For each i • { 1 , . . . ,  d} 
with xi  ~ ui the point xi provides a (true or false) NCE to the current hypothesis 
{ui, •. •, hi } of  subroutine TBSn_ u~ + 1, or to the current hypothesis { h * , . . . ,  ui } of sub- 
routine T B S * .  One updates the interval in the i-th dimension of the next hypothesis H r + l  
of  S according to the next hypothesis of  TBSn-u~+I resp. TBSp,.  For those i with 
xi  = ui one leaves the interval in the i-th dimension unchanged. 
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By Theorem 2.1 each subroutine for learning one of the 2d halfintervals encounters at most 
log n true NCE's.  Since each NCE for algorithm S provides a true NCE for at least one of  the 
2d subroutines, S gets altogether at most 2d log n NCE's.  Each of  these NCE's  may generate 
false NCE's  for up to d -  1 subroutines. Hence the sum of false NCE's  for all 2d subroutines 
together is <_ ( d -  1)2d log n. Thus by Theorem 2.1 the sum of all PCE's  that are received by 
the 2d subroutines is bounded by 2d(log n + 1) + 3 ( d -  1)2d log n = (6d 2 - 4d) log n + 2d. 
Since each PCE to algorithm S (except for the first one) generates a PCE for at least one of  
its 2d subroutines, the total number of PCE's that S receives is _< (6d 2 - 4d) log n + 2d + 1. 
Hence LC(S)  <_ 2d log n + (6d z - 4d) log n + 2d + 1 = 6d 2 log n - 2d log n + 2d + 1. 

Remark 3.2 Peter Auer shows (1993) that L C ( B O X  d) = f~(d 2 log n~ log d). Hence the 
preceding algorithm is close to optimal with regard to its error bound. He also constructs 
an error robust variation of  our learning algorithm for B O X  d, that can tolerate a certain 
fraction of  incorrect positive and negative counterexamples for the global algorithm (for 
any distribution of incorrect counterexamples). 

4. An algorithm for learning the union of two boxes in the plane 

The algorithm in the preceding section was based on a solution of  the credit assignment 
problem in which the local search procedures tolerate false negative counterexamples. It 
was', essential for the success of  this algorithm that the local search procedures never receive 
false positive counterexamples. 

In this section we examine a more complex learning problem, in which the obvious local 
search procedures have to tolerate both false negative and false positive counterexamples. 
For any m, n E N let Xm, n be the domain 

Xr~,,~ :=  {(i , j)  l i E { 1 , . . . , m } a n d j E { 1 , . . . , n } } .  

SetBOXm,,~ :=  { { i , . . . , j }  × {k , . . .  ,l} I 1 _< i _<j < m 

a n d l < k < l < n } .  

Wewri te  a :=  (1, n) for the upper left corner and b :=  (m, 1) for the lower right corner of 
this domain Xm,,~. We consider the following concept class over the domain Xm,n : 

T W O  - BOXm,n :=  {RA U R B  I RA, R B  E BOXm,n, a E R A  and b E RB}.  

Whenever we write RA (RB) in the following, we assume that RA E BOXm,n and 
a E R A ( R B  E BOX,~,n and b E RB). Note that the two components RA and R B  of a 
concept in T W O  - B O X r a , n  may or may not intersect. 

The learning of arbitrary target concepts R A  tO RB from T W O  - BOX,~,n may be 
viewed as a combination of 4 search procedures that determine the lengths of  the sides of  
RA and RB. In the same way as in the preceding section these local search procedures will 
receive false negative counterexamples, since it is not clear which side of  R A ( R B )  has to 
be Shortened in order to aecomodate a NCE 9 E (RA tO RB) - CT. However these local 
sem:ch procedures will in general also receive false positive counterexamples, since it is not 
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t~ 
Z m t n  

Figure 2. A typical concept RA U R B  in the concept class TWO-BOXm,n, where R A  contains the upper left 
comer a of the domain, and R B  contains the lower right comer b of the domain. 

clear whether a PCE should lie in RA,  or in R B  (or in both). The following result shows 
that nevertheless there is an efficient learning algorithm for this learning problem. 

THEOREM 4.1 L C ( T W O  - BOXm,n)  = O(log(m + n)). 

Proof: It is obvious that chain(TWO - BOX,~,~) : f t (m + n), where chain(C) denotes 
the length of the longest chain in C with regard to the partial order " < "  of C defined by 
C < C '  ¢4. C c C'.  According to Maass and Turfin (1989, 1992), one has 

L C ( T W O  - BOXm,n)  > [log(chain(TWO - BOXm,~))J.  

In fact, the same lower bound holds for LC - A F t B ( T W O  - BOXm,n) .  
In order to prove the upper bound of Theorem 4.1, we first consider the following subclass 

o f  T W O  - B O X m ,  n : 

l.~m, n : =  { R A  to R B  I RA,  R B  c BOX,%m a E R A ,  b E RB ,  
and IRA N R B  I : 1}. 

We will exhibit in the proof of the main lemma (Lemma 4.3) an efficient learning algorithm 
K for this concept class b/,~,~. This algorithm K will employ as local search procedures 
the following binary search algorithm C B S  ("conservative binary search"), which is distin- 
guished by the property that it never receives two successive NCE's. Although C B S  will 
also be used in a nonstandard situation (where there exists no target concept), it suffices that 
we analyze it here in the context of the basic learning model that was defined in section 1. 

Definition of the binary search algorithm C B S for learning H E ADn: 

Assume that the environment has fixed some target concept CT E H E A D n .  At step r the 
learner issues the hypothesis H~ := { 1 , . . . ,  r} E H E A D n .  If  Hr  ¢ CT, he receives at 
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step r a counterexample gr E H, .ACT.  Let ps be the maximum of  1 and the largest PCE 
received by the end of  step s, and let ns be the minimum of n + 1 and the smallest  NCE 
received by the end of step s. 

Set h i  : =  1, and 

] ' p ~  , i f g s i s a N C E  
hs+l : ~ -  I p ~ + [ ~ J ,  i f g s i s a P C E .  

LEMMA 4.2 Consider any learning process for  learning H E A D n  (in the basic learning 
model) with learning algorithm C B S .  Then there are never two successive NCE's  in this 
learning process. Furthermore nt - Pt <_ ~ for  any step t >_ 1 with Ht  7 £ CT. 

Proof :  The first claim is obvious from the construction of  C B S .  

In order to prove the second claim we show that for any s > 1 such that 98 is a PCE and 

Hs~-I 7 ~ CT one has 

ns+l -- Ps+l ~ - -  

Since gs is a PCE we have 

hS+l= S+i  1. 
If  g~+l is a NCE we have 

audips+1 = ps, hence 

ns+l -- Ps+l ~ ns -- Ps 
2 

If  g~+l is a PCE we have 

Ps+l >- 1 + hs+l >_ ps + - -  

and n~+l = n~, hence 

( n s + l - p s + l  < - n ~ -  p ~ +  -- 

LEMMA 4.3  (Main lemma) L C  T W O - B O X  . . . . . .  (l/Ira,n) = O ( l o g ( m  + n)) .  
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Remark 4.4 

a) One has to use in Lemma 4.3 a larger hypothesis space than lgm,n, since LC(Um,n) = 
f t (m ÷ n). This lower bound can be shown with the help of an adversary strategy that 
gives only negative counterexamples from the"diagonal line" between (1, 1) and <m, n> 
in Xm,n. 

b) The learning algorithm for b/m,~ that is constructed in the proof of Lemma 4.3 uses 
actually only the hypothesis space {H E T W O - B O X m , , ~  [ H C T W O - B O X n , m  }, 
which is a proper subclass of T W O  - BOXm,n. 

Proof  of Lemma  4.3: In order to design an efficient learning algorithm K for btm,n, we 
note that any concept RA tO R B  E lg,~,n with a C RA, b c R B  and IRA n RBI = 1 can 
be uniquely characterized by the single intersection point w = (i, j )  of the rectangles R A  
and RB.  We write R~ for this concept RA U R B  from/.4,~,,~, and RA~,, RB~  for its two 
components RA, RB.  

The learning algorithm K for 14m,,~ proceeds in a recursive manner. Assume that it has 
already exhibited an rn ~ × n '  rectangle W c Xm,n with w E W for the target concept 
/ ~  C b/m,n (initially one has W = Xm,n). We will use area (W) (or rather: 1-area 
(W)) as a "measure of progress" for the learning algorithm K.  We will not be able to 
guarantee that area(W) can always be reduced by a fixed fraction within O(1) steps of 
learning algorithm K.  However we can show that there is some number t (which depends 
on the specific learning process) such that K produces in t + 2 further steps a rectangle 

¢+ W with w c W and 

area(W) 
area(W) < 

max(2, 2t/4-2) ' 

Assume that e c X,~,,~ is the "centerpoint" of W. We first consider the case where e does 
not lie on the perimeter of W (i.e. we assume that m '  > 2 and n ~ > 2). Then K issues Re 
as its next hypothesis. 

We will analyze separately the two cases where the learner receives a positive respectively 
negative counterexample 9 to this hypothesis Re. In each case the primary goal of the learner 
is to determine whether w E S or w E T, where S and T are the two rectangles that are 
defined by counterexample 9 as indicated in Figure 3. However the learner may not be able 
to achieve this information within a fixed number of steps. Instead, he enters a "P-phase" 
(in case 1), respectively an "N-phase" (in case 2). We are not able to bound the number t 
of steps which are spent by the learner in the respective phase. However we can guarantee 
that at the end of such phase the learner has not only determined whether w c S or w E T, 

but in addition he can exhibit a rectangle W c+ W with 

area(W) 
area(W) < 

max(2, 2t/4-2) 

Obviously this suffices in order to determine the target concept from l.'[m,n in altogether 
O(log(m + n)) learning steps. 
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: \ \  ] 
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W 

Figure 3. The intersection point w of RA and R B  is in S U T, after a positive counterexample 9 in W is received. 

Case I: The learner receives a positive counterexample g = (Pa, qa) E Rw -- Re 

We can assume without loss of generality that g E W. If  9 lies to the left (right) of W, we 
mayireplace it by the point on the same row in the leftmost (rightmost) column of W. If  
9 lie~ above (below) W, we may replace it by a point in the same column in the highest 
(low!est) row of W. Note that we have used here the assumption that e does not lie on the 
perimeter of W (i.e. rn ~ > 2 and n ~ > 2). Furthermore it is clear that 9 cannot lie in the 
area Ito the left and above W (respectively to the right and below W), since these two areas 
are clontained both in the target concept R~, (because w C W) and in the hypothesis Re. 

Leit S, T __ W be the rectangles with S N T = {9} and R 9 f'l W = S II T, as shown 
in Fiigure 3. It is clear that w ~ S U T. The algorithm K issues Rg as its next hypothesis. 
If  R~ ¢ CT it follows that w E S U T - (S fq T). In order to determine whether w C S 
or wl E T, the learning algori thm/£ enters a procedure that we call a P-phase. When 

this ~-phase terminates after t steps, the algorithm exhibits a rectangle W with W C S or 
~ T such that w C W and area(W)N _< are~(W)2~_77a_~_2 • 

The P-phase consists of 4 concurrent binary search procedures that try to determine the 
values of 4 parameters x, y, u, v (see Figure 3). If  w C T, then the values of x and v give 
the ~orizontal resp. vertical distance of w from 9, whereas the parameters y and u are 
undefined. If  w E S, then the values of u and y give the horizontal resp. vertical distance 4 
of w ifrom 9, whereas the parameters x and v are undefined. The hypothesis of algorithm 
K isJat each step of the P-phase of the form R A  U R B  with a E R A ,  S C RA,  b E R B ,  
and T c R/3. The exact lengths of the sides of R A ( R B )  are determined by the current 
hypo!theses of the binary search procedures for x and v (u and y). The remainder of our 
analysis of case 1 is devoted to the precise description and analysis of the P-phase. 

The difficulty of the P-phase is caused by the need to carry out the concurrent binary 
searc~la procedures for the parameters x, y, u, v without knowing whether w C S or w E T, 
and hence without knowing which ones of x, y, u, v are actually undefined. Thus we have to 
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combine two "real" binary search procedures with two "dummy" binary search procedures, 
without knowing which are the real ones. The danger is that we may spend many learning 
steps exclusively for the benefit of those search procedures that later turn out to be "dummy" 
(i.e. they search for the values of parameters that are actually undefined). Consider for 
example the two search procedures for the parameters x and y. We know that exactly one 
of those two parameters is undefined. If one receives a PCE q E 1L~ - (RA  U R B )  in the 
region above T (see Figure 3), then this provides a PCE for both of the two binary search 
procedures for x and for y (in particular also for the "real" one among the two). However 
a NCE q E (RA  U R B )  - R~ in the region above T may provide a NCE only for one of 
these two binary search procedures. If one has bad luck, it provides a NCE only for the one 
that later turns out to be "dummy", and no progress has been made at this learning step for 
the"real" binary search procedure among the two. 

This difficulty is handled by using for the local binary search procedures the algorithm 
C B S  that was analyzed in Lemma 4.2. It may still occur then, that a NCE provides progress 
only for the "dummy" one among two binary search procedures C B S .  However since no 
binary search procedure C B S  (even the"dummy" ones) may receive two NCE's in a row, 
this event can occur on average at most at every second step. 

An exception may occur at a step where a binary search procedure that searches for an 
undefined parameter receives a NCE gs < Ps (and hence possibly two NCE's in a row). 
However such step (which reveals to the learner which ones of the parameters are undefined) 
automatically terminates the current P-phase. 

We now describe in detail how the algorithm K proceeds during the considered P-phase. 
One should keep in mind that this P-phase focuses its activity on the m r × nLrectangle 
W C Xm,,~, but that its hypotheses are required to be from T W O  - BOXm,~.  One carries 
out 4 concurrent binary searches with algorithm CBS .  The first one of these is a copy of 
C B S  that searches for the value of parameter x, in case that x is defined. More precisely: 
C B S  searches for the concept {0, 1 , . . . ,  x} E HEAD.a for some ¢~ < n (for technical 
reasons we take here {0 , . . . ,  ¢~ - 1} as domain for HEAD¢~, instead of { 1 , . . . ,  ~}). The 
second binary search procedure is a copy of C13S that searches for the value of y, in 
case that y is defined. Analogously one uses copies of C B S  to search for u resp. v. 
Assume that so far none of these 4 copies of C B S  has encountered a contradiction among 
its counterexamples, and that hz, h v, h,,, hv are the endpoints of the current hypotheses 
{ 0 , . . . ,  h~}, ( 0 , . . . ,  hy}, {0 , . . . ,  h~}, {0 , . . . ,  h,,} in the respective copies of C B S .  Then 
the algorithm/( issues as its next hypothesis the following concept H E T W O -  BOX,~,,~: 

H := { 1 , . . . , p o + h z } × { q g - h v , . . . , n }  

U {pg - h ~ , . . . , m }  × {1 , . . . , qg  + hy}. 

It is obvious that S U T C H.  
Let h E H A R w  be a counterexample to this hypothesis. We will first consider the case 

where h E W. We will analyze in the next two paragraphs the subcase where h E W is 
a PCE. In the subsequent third paragraph we will analyze the subcase where h E W is a 
NCE. After that we will turn to the analysis of the case where h ~ W. 

If h is a PCE and if h lies above T, then one processes the two coordinates of h as PCE's 
for the two copies of C B S  that search for the parameters x and y. 
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If h ¢ W is a PCE that lies to the left of T, one processes the two coordinates of h as 
PCE's for the two copies of C B S  that search for the parameters u and v. 

If h E W is a NCE with h ~ S U T and h lies above T, then the two coordinates of h 
provide a NCE for at least one of the two copies of C B S  that search for x and y. (Since 
h cannot be guaranteed to provide a NCE for both copies of UBS,  it may potentially only 
provide a NCE for the "dummy" copy of CBS) .  If h ¢ W is a NCE with h ¢ S U T and 
h lies to the left of T, then the two coordinates of h provide a NCE for at least one of the 
two copies of C B S  that search for u and v. 

If h c W is a NCE with h E S U T then it terminates the current P-phase. If h E T, then 
it is proven that w E T, and that the parameters y and u are undefined. The current P-phase 
also ends if in any of the preceding cases at least one of the 4 copies of C B S  receives a 
CE that contradicts another CE that it had received at an earlier step. Assume for example 
that the copy of C B S  that searches for x receives a PCE (NCE) that contradicts an earlier 
NCE (PCE). This implies that the parameter x is undefined. Hence one has w E S, which 
implies that the parameter v is also undefined. 

Finally we consider the case where the counterexample h E HATt~, does not lie in W. 
If h is a PCE to the right of W, then it implies that w E S. Hence this counterexample 
terminates the current P-phase. If h is a NCE to the right of W, it provides a NCE for the 
binary search for y (but no CE for the binary search for x). The cases where h lies above, 
below, or left of W are handled analogously. 

It remains to be shown that in each possible case where the current P-phase is terminated, 
one can not only decide whether w E 5' or w E T, but one can also exhibit an axis-parallel 

~ ~ a r e a ( W )  
rectangle W with W _ S or W c T, w E W, and area(W) < ma×(2, 2t/4-2) ' where t is 

the number of counterexamples that have been received during the current P-phase. 

Each PCE h that is received before the end of the P-phase provides a PCE for both of the 
binary search procedures for x and y, or for both of the binary search procedures for u and 
v. Each NCE provides a NCE for at least one of the binary search procedures for x and 
y, o:r for at least one of the binary search procedures for u and v. Since none of these 4 
copies of procedure C B S  (not even those that search for undefined parameters) can receive 
two successive NCE's (except at the last step of this P-phase), at least t p " -  t • - 7 - 3 ° f t h e  
t counterexamples of this P-phase provide CE's for one of the two copies of C B S  which 
search for parameters t that are actually defined. By Lemma 4.2 at least [~j  of them reduce 

one of the two dimensions of W by at least 50%, starting with S resp. T. Since area(S), 
area(T)< area(W) one has 

area(W) < area(W) area(W) 
-- 21+L½(t/2_3)j -< 2t/4_--------i~ - .  

Finally we observe that any P-phase terminates at the latest after O (log(ra + n)) step, since 
each single one of the 4 procedures C B S  can receive at most 2 log(m + n) counterexamples 
without running into a contradiction. 
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Figure 4. The intersection point w of R A  and R/3 is in S t U T, after a negative counterexample 9 in W is received. 

Case 2: The learner receives a negative counterexample g = (pg, qg) E Re -- t ~ ,  

N N 

If  9 ~ W then we can immediately exhibit a rectangle W C W with w E W and 

area(W) < ~re~(w) Since 9 E Re = R A  U R B ,  we know that 9 lies either in the 
- -  2 

rectangle R A  of Re that contains the upper left corner a of the domain Xm,n, or 9 lies in 
the rectangle R B  that contains the lower right corner b of the domain Xm,n. If 9 E R A  
and 9 lies above W, then 9 ~ R~, implies that w lies in the left half of W. If 9 E R A  and 
9 lies left of W, then 9 ~ Rw implies that w lies in the upper half of W. Hence in either 

case we can exhibit a rectangle W with w E W and area(W) C ~rea(w) The argument 
- -  2 

for g E l:gB is analogous. 

We now assume that g E W. 

It is then clear that w E S U T for the rectangles S, T that are defined by g as indicated 
in Figure 3. In order to determine whether w E S or w E T the algorithm then enters an 
N-phase. An N-phase consists of 4 concurrent binary searches that determine the values of 
4 parameters z, y, u, v. If w E T, then the value of z is the horizontal distance of w from the 
rightmost column of W, the value of v is the vertical distance of w from the top row of W, 
and the parameters y and u are undefined. Ifw E S, then the value ofy is the vertical distance 
of w from the bottom row of W, u is the horizontal distance of w from the leftmost column 
of W, and the parameters z and v are undefined. Each hypothesis during the N-phase is the 
union of two rectangles RA and RB.  R A  is contained in {1 , . . . ,  pg - i} × {qg + 1 , . . . ,  n}, 
and the lengths of its sides are determined by the binary search procedures for u and v. 
Analogously R B  is contained in {pg + 1 , . . . ,  m} × {1 , . . . ,  qg - 1}, and the lengths of 
its sides are determined by the binary search procedures for z and y. In order to verify 
Remark 4.4 (b) we note that R A  U R B  E T W O  - BOX~ ,m  since no row and no column 
contains points from both R A  and RB.  
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In contrast to the situation in a P-phase, a PCE h to hypothesis RA U RB may yield a PCE 
only for one of the search procedures for u and v (if h lies above S), or only for one of the 
search procedures for x and y (if h lies below T). On the other hand, a NCE to hypothesis 
RA U RB provides a NCE either for both search procedures for u and v, or for both search 
procedures for x and y. Hence one uses here as binary search procedures for x, y, u, v a 
dua]L version CBS'  of CBS, for which no two successive PCE's  can occur. 

Note that any PCE h C { 1 , . . . , p g }  x { 1 , . . . , q g }  U {pg , . . . ,m}  x { q g , . . . , n }  reveals 
whether w E S or w E T, and it will automatically terminate this N-phase. Similarly a 
NCE outside of W decides whether w c S or w c T, and it also terminates this N-phase. 
Apart from these cases, the N-phase is also terminated by any counterexample that provides 
a contradiction to an earlier counterexample for any of  the 4 copies of  the binary search 
procedure CBSq The rest of the analysis of  the N-phase is analogous to that of  the P-phase. 

Finally we have to comment on the case where the algorithm K cannot continue its 
recursion with a P-phase or an N-phase, because it has already narrowed down the location 
of  w to an m I x n '  rectangle W ___ X~,,~ with m '  _< 2 or n '  < 2. Assume for example that 
m '  = 2. Then the algorithm K carries out for both columns in W a straightforward binary 
search for w. This is possible, because for the binary search in the "correct" column it can 
interpret each counterexample without ambiguity. 

This completes the proof of  Lemma 4.3. • 

With the help of the preceding main lemma we are now able to prove Theorem 4.1. Besides 
the cornerpoints a = (1, n) and b = (m, 1} we will also distinguish the other two corner- 
points c = (1, 1) and d = (m, n) of the domain Xm,n. For many C E T W O  - BOXr,,n 
the complement C :=  Xm,n - C may be viewed as element of BOXm,n, BOXn,m or 
T W O  - BOX~,~. In order to consider C as element of T W O  - 130X~,~ one "turns the 
domain by 90 °' ' , i.e. one identifies Xm,~ with Xn,m, a with c, and b with d (see Figure 4). 
This duality is frequently exploited in the following in order to discuss subroutines that aim 
at learning CT instead of CT. This makes sense for those cases where CT has a simpler 
structure than CT. Note however that one has to be careful when one exploits this duality, 
since there are C E T W O  - BOXm,n for which 6'  can not be interpreted as a union of 
one ,or two rectangles (e.g. consider C = { 1 , . . . ,  m -  1} x { n} U { 2 , . . .  ,m}  x {1}). 

The learning algorithm L for T W O -  BOXm,,~ proceeds in 4 phases. The first hypothesis 
of  the first phase is the set Xm,n. If  Xm,n ¢ CT, then one receives a NCE. It is then clear 
that c ~ CT or d ~ CT. In order to eliminate the case where {e, d} N CT ¢ 0, one uses 
as a subroutine some learning algorithm A for BOXm,,~ that is guaranteed to find any 
C c BOX,~,n in O( log(m + n))  steps, using hypotheses from BOXm,,~ (see section 3, 
or Maass & Tur~in (1994)). One first executes this learning algorithm A in order to find 
C T  under the assumption that c c C T  and d E CT (hence C---T E BOXm,n) by inverting 
the '!sign" of  each example and by replacing each hypothesis H of A by its complement H 
(note that H E T W O  - BOXm,,~ for any H E BOX,~,,~ with c c H).  In this way one 
finds; UT in O( log(m + n)) steps if e E CT and d ~ CT. If  this attempt is not successful, 
one i~xecutes A again in order to find CT, but this time under the assumption that d E CT 
and C E CT. If  this attempt is also not successful, one has proven that c E CT and d c CT. 
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During its second phase the algorithm L checks whether CT E btn,m. For this purpose it 
executes the algorithm K from the proof of Lemma 4.3 for O(log(m + n)) steps over the 
domain Xn,m in order to learn the complement of CT. Hence the sign of each example is 
inverted, and each hypothesis H of algorithm K is replaced by its complement H.  Note 
that according to Remark 4.4 (b) this algorithm K for b/n,m uses only hypotheses H such 
that H E T W O  - BOXm,n .  Hence H is a permissible hypothesis for algorithm L. If 
this simulation of K fails to identify CT within its alloted time, we know that CT ~ lgn,,~. 
Furthermore the sample S that has been assembled by this time has the property that no 
C E T W O  - B O X m , n  with C E ~'~n,m is consistent with S. (We refer to a set of positive 
and/or negative examples for CT as a sample for CT.) 

During its third phase the learning algorithm L checks whether CT is of the form RAtA R B  
with R A  ~ R B  ~ ~0. One uses here the following simple structural result. 

LEMMA 4.5 Assume that S is a sample that is consistent with some C = R A  U R B  E 
T W O  - BOXm,n  such that e, d ~ C and R A N  R B  ¢ ~. Furthermore assume that S is 
not consistent with any C E T W O  - B O X m , n  such that C E bln,m. 

Then there do not exist among those concepts that are consistent with S for  i = 1, 2 
concepts Ci = R A i  tA RB~ with RA~ n R B i  7 ~ ~) and Ci of  the form RCi  t2 RDi  with 
RC~, RDi  E BOXm,n ,  c E RCi,  d E ROi,  such that 9 E RC1 fq R D 2 f o r  some negative 
example 9 in S. 

In other words: the assignment of  negative examples in S to the two rectangles o f  C is 
unique (for concepts C = RAtA R B  with R A n  R B  7~ ~, e, d ~ C). 

Proof  of Lemma 4.5: Assume for a contradiction that there exist such concepts C1, C2 
and such negative example g E RC1 U RD2 in S. Then there are two different rows (resp. 
columns) rl ,  r2 in the domain Xm,~ such that r l  C C1, r2 C C2, and 9 lies strictly between 
r l  and r2. Without loss of generality we assume that rl ,  r2 are rows with r l  above r2 (see 
Figure 5). 

a~ 

C 

X__l 
g 

RC . 
\ \ 

d 

7" 1 

r2 

Figure 5. Negative counterexamples in the sample S are contained in B, or lie above r l  and to the right of the 
rightmost column of B, or lie below r2 and to the left of the leftmost column of B. 
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Figure 6. Searching the boundaries of R A  and R B  with four procedures which "tolerate" false positive coun- 
terexamples. 

Le t /3  be the smallest axis parallel rectangle that contains all negative examples in S 
which lie between r l  and r2. Note that g C/3. Since C1 is consistent with S, all negative 
examples in S that lie above r l  are contained in RD1, hence they lie to the right of the 
rightmost column of B. Since C2 is consistent with S, all negative examples in S that lie 
below re are contained in RC2, hence they lie to the left of the leftmost column of B. In 
particular all negative examples in S are contained in B U f~C1 U RD~. 

Since B C_ RC1 N RD~ we can define rectangles R C  C_ RC1 and R D  C_ RD2 with 
c E :RC and d c R D  such that R C  and R D  intersect exactly at the top right corner of 
B. ]Hence R C  U R D  E bln,~. By construction we have/3 U RC1 U RD2 C R C  U RD,  

hence R C  U R D  contains all negative examples in S. Furthermore R C  U R D  does not 
contain any p_._ositive examples in S, since RC1 URD2 does not contain any positive example 
in S and R C  U R D  C_ RC1 U RD2. Hence the complement of R C  U R D  is a concept 
C ~ T W O - B O X ~ , ~  that is consistent with S and which satisfies C = R C U R D  E Lt~,m. 
HoWever such concept C does not exist by the assumption of Lemma 4.5. • 

Remark 4.6 We would like to point out that the unique partition of negative examples in 
S (t:~hat exists by Lemma 4.5) can be computed in an efficient manner. One can assume 
without loss of generality that R C  and R D  are "spanned" by c (resp. d) and the negative 
examples in S that are assigned to them. Hence it suffices to cycle through all pairs Pl, P2 
of n~gative examples in S and check whether the rectangle that is spanned by {c, Pl, P2} is 
a feasible solution for RC. 

T!le strategy of L during its third phase is the following. It employs 4 concurrent copies 
of thee dual version T B S '  of the error tolerant binary search procedure T B S  from section 2. 
T B ~ '  "tolerates" false PCE's (in a sense analogous to Theorem 2.1), as long as it receives 
only true NCE's. If CT = R A  U R B  with R A n  R B  74 ~) then these 4 copies of T B S '  
willifind the lengths x, y, u, v of the sides of the rectangles RA,  R B  (see Figure 6). 
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Let S~ be any extension of the so far collected set S of examples by further examples for CT. 
Then S satisfies the assumptions of Lemma 4.5 (provided that CT is of the form R A  U R B  
with R A N  R B  ~ ~). Hence one can uniquely (and efficiently) assign any negative example 
in Sto  one oftherectangles RC,  R D  c B O  Xm,~ with R C U  R D  = -CT , c E RC ,  d c R D .  
Obviously any negative example that has been assigned to R C  ( R D )  provides true negative 
examples for the binary search procedures for u and y (x and v). This is the reason why false 
NCE's can be avoided in the 4 concurrent binary searches of this phase. The hypothesis H 
of L during this phase will always be of the form 

H : = { 1 , . . . , h ~ } x  { n - h y + l , . . . , n } U { m - h ~ + l , . . . , m } x  {1 , . . . , h~} ,  

where hz,  h v, hu, hv are the endpoints of the hypotheses for the associated binary search 
procedures T B S  r. Whenever one receives a NCE g E H - CT, one determines the unique 
assignment ofg  to _RC or R D  (among all U C T W O  - B O X m , n  that are consistent with 
all examples received so far, and which satisfy CT ~ R A  U R B  with R A G  R B  7£ 1~). 
Hence the coordinates o fg  provide true NCE's for one o1" two copies o f T B S  ~ (and no false 
NCE for any copy of TBS~) .  On the other hand the coordinates of a PCE g E CT -- H are 
interpreted as positive examples for all copies of T B S  t. Hence 9 provides a true PCE for 
at least one copy of T B S  ~, and false PCE's for up to 3 copies of T B S  ~. 

An analogous version of Theorem 2.1 for T B S  ~ implies that all 4 copies of T B S  ~ together 
can receive at most 4 log(m + n) true PCE's. Hence at most 12 log(m + n) false PCE's, 
and consequently at most 1 + 37 log(m + n) NCE'S can be received altogether by the 4 
copies of T B S  r that are employed by L during this third phase. If in fact CT = R A  U R B  
with R A  N R B  ¢ (~, then L will identify CT during this phase. Of course we terminate 
this phase if it has not lead to the identification of CT within its alloted time, or if it runs 
into some contradiction (which can only arise if CT is not of the conjectured form). 

If the third phase of L has not succeeded in identifying GT, one may conclude that 
the set S of examples that has been collected up to this point is not consistent with any 
C = R A  U R B  E T W O  - B O X m , n  such that R A N  R B  ~ ~. Hence we can apply the 
following simple structural result. 

LEMMA 4.7 Assume that S is a sample that is consistent with some C E T W O  - 
B O X m , n .  Furthermore assume that S is not consistent with any C = R A  U R B  
T W O  - BOX,~ ,n  with t:dA N R B  ¢ ~). 

Then there do not exist two concepts C 1 , 6 2  ~ T W O  - B O X m , n  that are both consistent 
with S, and where Ci = R A i  U R B i ,  a c R A i ,  b C RBi ,  and the rectangles R A i  and R B i  
are separated by horizontal lines for  i = 1, 2, such that g E RA2  N RB1  for  some positive 
example g in S. 

In other words: the assignment ofpositive examples in S to R A ,  R B  is unique among all 
consistent concepts C = R A  U R B  whose components R A ,  R B  are separated by horizontal 
lines. 

The analogous result holds for  concepts whose components are separated by vertical 
lines. 
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Proof of Lemma 4.7: Assume for a contradiction that there exist such concepts C1 = 
J~A 1 U R B  1 and C2 = RA2 U RB2 (whose components are separated by two horizontal 
lines) and some positive example 9 in S with 9 ¢ RA2 N RB1. Then RA2 U RB1 is a 
concept in T W O  - B O X m , n  that is consistent with S, and whose components RA2, RB1 
have a nonempty intersection. However such concept does not exist by the assumption of 
Lemma 4.7. • 

During its fourth phase the algorithm L first checks whether CT = R A U R B  for rectangles 
RA,  R B  that are separated by some horizontal line. In the same way as in phase 3 it employs 
4 concurrent binary search procedures that search for the lengths x, g, u, v of the sides of 
RA,  R B  (see Figure 4). Each hypothesis H of L is constructed from the current hypotheses 
of the 4 binary search procedures in the same way as in phase 3. However during this phase 
we use for these procedures instead of T B S  ~ the original error tolerant binary search 
procedure T B S  from section 2 (which "tolerates" false NCE's but no false PCE's). 

Whenever a PCE 9 ¢ CT - H is given to L, it can decide with the help of Lemma 4.7 
whether 9 ¢ R A  or 9 c R B  (provided that CT = R A  U R B  for rectangles RA,  R B  that 
are separated by a horizontal line). Hence it can give the coordinates of g as true positive 
examples to those copies of T B S  that search for x and y (if 9 ERA) ,  resp. to those copies 
of T B S  that search for u and v (if 9 c RB). Since 9 ¢ H, it will provide a true PCE for 
at least one of these 4 copies of T B S  (but no false PCE for any of them). 

Any NCE 9 c H - CT for the hypothesis H of L provides a true NCE for at least one of 
the 4 copies of T B S  (and false NCE's for up to three copies of T B S ) .  

If CT consists in fact of two rectangles that are separated by some horizontal line, L will 
identify CT during this phase in at most 1 + 37 log(m + n) steps (by Theorem 2.1). 

If L does not identify CT in this way, we know that the components RA,  R B  of CT are 
separated by a vertical line. Hence it suffices to repeat the preceding process for the case 
of vertical separations. 

Each phase of L takes at most O(log(m + n)) steps. Hence the proof of Theorem 4.1 is 
now complete. • 

Remark 4.8 With regard to the general structure of the proof of Theorem 4.1 we would like 
to point out that it is necessary to apply the main lemma (Lemma 4.3) to the complements 
of the concepts C ¢ T W O  - BOXm,n ,  rather than to the concepts themselves. This arises 
from a rather subtle aspect of the third phase of the algorithm. This third phase relies on 
the structural result of Lemma 4.5, which does not have an appropriate "dual version" (with 
C and C interchanged). A source of this asymmetry is the fact that the two rectangles 
RCi R D  which form the complement of some C = R A  U R B  ¢ T W O  - B O X m , n  with 
R A  A R B  ¢ ~ have no common row or column. However the two components RA,  R B  
of some C = R A  U R B  ¢ T W O  - BOXm,n  with R A  C? R B  = ~ may very well have a 
common row or column. 

Remark 4.9 One can use the algorithm L from Theorem 4.1 as a subroutine in order to get an 
efficient learning algorithm for the concept class L / -  2 - B O X ~  := {C1 U C2 [ Cx, C2 C 
B O X ~ } .  One starts each learning process by executing a learning algorithm for B O X ~ ,  
until one has collected a sample S that is not consistent with any C E B O X ~ .  It is easy to 
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show that any such sample S contains two positive examples a, b and a negative example q s.t. 
q lies in the rectangle R that is spanned by a and b. It is then clear that a and b lie in different 
components of CT C H - 2 - B O X ~ .  This implies that CT N R E T W O  - B O X . , h , ~  

for Xm,~ :=  R. Hence one can apply the learning algorithm L from Theorem 4.1 over 
the domain R in order to learn CT n R, and separate learning algorithms for B O X  (resp. 
T W O  - B O X )  for other parts of the domain. At  each step the hypothesis of the resulting 
learning algorithm for H - 2 - t 3 0 X ~  is the union of the hypotheses that result from the 
subroutines for various parts of the domain. One gets in this way a learning algorithm that 
is guaranteed to find CT in O(log r~) step, but whose hypotheses consist of  more than 2 

rectangles. 

5. Open problems 

One challenging open problem is posed by the gap between our upper bound O ( d  2 log n) 
and Auer 's  (1993) lower bound of f~(d 2 log n / l o g  d) for L C ( B O X ~ ) .  

Furthermore most questions concerning the on-line learning complexity of the concept 

class 

u -  k -  BoxX : =  (cl  u . . .  u ck I q , . . . ,  q c Box } 

are still open. In particular, it is open whether L C ( H  - k - B O X ~ )  = O(poly  (log n, d)) 
for constant k > 2. Even for the special case k = d = 2 it is not known whether 
L C ( b l  - 2 - B O X ~ )  = O ( l o g n )  (although there is a positive result with a slightly 
larger hypothesis space; see Remark 4.9). Very recently Chen (1993) has shown that 
L C ( H  - 2 - B O X ~ )  : O(log 2 ~). 
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