
Machine Learning, 17, 201-223 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On-Line Learning of Rectangles and Unions of
Rectangles

ZHIXIANG CHEN
Department of Computer Science, Boston University, Boston, MA 02215, USA

zchen@ cs.bu.edu.

WOLFGANG MAASS maass @igi.tu-graz.ac.at
Institute.for Theoretical Computer Science, Technische Universitaet Graz, Klosterwiesgasse 32, A-8010 Graz,
Austria

Editor: Lisa Hellerstein

Abstract. We design efficient algorithms for on-line learning of axis-parallel rectangles (and for the union of two
such rectangles) in the common model for on-line learning with equivalence queries. With regard to the learning
of rectangles in arbitrary dimensions d we solve the following open problem:

Is there an algorithm for on-line learning of rectangles 1--[~=1 {ai, ai + 1 bi} over a discrete domain

{ 1 , . . . , n} d whose error bound is polylogarithmic in the size n d of the domain (i.e. polynomial in d and log n)?
We give a positive solution by introducing a new design technique that appears to be of some interest on its

own. The new learning algorithm for rectangles consists of 2d separate search strategies that search for the
parameters a 1, b l , . • . , ad, bd of the target rectangle. A learning algorithm with this type of modular design tends
to fail because of the well known "credit assignment problem": Which of the 2d local search strategies should be
"blamed" when the global algorithm makes an error? We propose here a rather radical solution to this problem:
each local search strategy that is possibly involved in an error of the global algorithm will be blamed. With this
radical solution it is unavoidable that frequently local search strategies will be blamed incorrectly. We overcome
this difficulty by employing local search strategies ("error tolerant binary search") that are able to tolerate such
incorrect credit assignments. The structure of this learning algorithm is reminiscent of "finite injury priority
constructions" in recursive function theory.

Section 4 contains another application of this design technique: an algorithm for learning the union of two
recta~ngles in the plane.

Keywords: On-line learning, computational learning theory, geometrical learning problems, finite injury priority
constructions

1. Introduction

In our first result we consider the concept class

BOX~:={¢}U a~,...,b~} l<_ai<_b~<_n f o r i = l , . . . , d
k i = l

over the domain { 1 , . . . , n) d. We will refer to the elements of BOX~ as boxes, or equiva-
lently as rectangles.

Our learning model is the standard model for on-line learning (see Angluin, 1988;
Litt[estone, 1987; Maass & Tur~in, 1992). A learning process for a concept class C over a
domain X is viewed as a dialogue between a learner A and the environment. The goal of
the iearner A is to "learn" an unknown target concept CT E C that has been fixed by the

202 z. CHEN AND W. MAASS

environment. In order to gain information about CT the learner proposes hypotheses H
from a fixed hypothesis space 7-/with C C_ 7-I C_ 2 x .

Whenever H 5£ CT for the proposed hypothesis H, the environment responds with some
counterexample (CE) g E HACT := (CT -- H) tO (H - CT). g is called a positive
counterexample (PCE) if 9 E CT - H, and 9 is called a negative counterexample (NCE) if
g E H - CT. Each new hypothesis H , + I of the learner (resp. learning algorithm) A may
depend on the earlier hypotheses H1,. • •, Hs and the given counterexamples gj E H jACT
f o r j = 1 , . . . , s .

One defines the resulting learning complexity of a learning algorithm A by

LC(A) := max{s E N I there is some CT E C and a sequence g l , . - - , 98-1 of
counterexamples to the hypotheses H a , . . . , H , - 1 of the
learner A such that H~ ¢ CT}.

The learning complexity of concept class C with hypothesis space 7-[is defined by

LCT~(C) := min{LC(A) [A is a learning algorithm for C with hypothesis space
7-t}.

One sets LC(C) := LCa(C) and LC - ARB(C) := Lc2X (c).
This learning model is equivalent to Littlestone's model (1987) for "mistake bounded

on-line learning". In Littlestone's model, which is somewhat closer to realistic learning
situations, the learner proposes at each step s some hypothesis Hs E 7-/. He then uses
this hypothesis Hs to "predict" the label y, of the example (xs, y~) E X x {0, 1} (with
Ys = CT(Xs)) that is given without the label Ys to the learner at step s. Whenever this
prediction is incorrect, one says that the learner has made a mistake at step s. The goal of
the learner is to minimize the total number of mistakes that he makes. It is easy to show (see
Littlestone, 1987) that the worst case mistake bound of the best learning algorithm in this
model is equal to LC ~ (C). This holds no matter whether the learner is allowed to revise
his hypothesis at every step, or only at those steps where he has made a mistake.

It is known that L C (B O X d) > LC - A R B (B O X d) = ~(d log n). The upper bound
O(d log n) for LC - A R B (B O X d) follows by considering the HALVING-algorithm (see
Angluin, 1988; Littlestone, 1987; Maass & Turin, 1992). The lower bound f~(d l o g n) i s
shown by constructing a decision tree for B O X d in which every leaf has depth f/(d log n).
This is sufficient by a result of Littlestone (1987) (see also Maass & Turin, 1992).

The HALVING-algorithm uses arbitrary subsets of the domain as hypotheses. With regard
to learning algorithms for BOXan that use computationally feasible hypotheses there exist
two quite different approaches. Both of these algorithms use hypotheses from BOXgn.
There is a learning algorithm B with LC(B) = O(d. n) that issues as its next hypothesis
always the smallest C E B O X d that is consistent with all preceding counterexamples.
This algorithm is frequently considered in the special case n = 2 where the concepts
C E B O X d correspond to monomials over d boolean variables (see the algorithm for the
complementary class 1-CNF in Valiant, 1984).

It is less trivia[(even for d = 2) to design a learning algorithm D for B O X d with
computationally feasible hypotheses such that LC(D) = O(f(d) log n) for some function

ON-LINE LEARNING OF RECTANGLES AND UNIONS OF RECTANGLES 203

f : N ~ N. An algorithm D of this type (which uses hypotheses from BOX~) was
exhibited in Maass & Tur~in (1989, 1994). However this algorithm D learns separately
each of the 2 a corners of the target concept, and hence LC(D) is exponential in d (i.e.
f(d) > 2d).

The question whether the advantageous features of both learning algorithms B and D can
be combined in a single algorithm S with LC(S) < poly(d, log n) was first brought to our
attention by David Haussler (1989; see also Maass & Tur~in, 1994).

A learning algorithm S which achieves this performance is exhibited in section 3 of this
paper. It proceeds in a completely different way than the two previously described learning
algorithms for BOXdn. We describe the main component of the new algorithm in section 2.

The main ingredient of this learning algorithm is a novel solution of the "credit assignment
problem". The credit assignment problem may be defined as "the problem of assigning credit
or blame to the individual decisions that led to some overall result" (Cohen & Feigenbaum,
1982). Obviously this problem is ubiquitous not just in Artificial Intelligence, but also in
the study of adaptive neural networks, where credit or blame for the overall performance
of the network has to be distributed to the individual components of the network.

The credit assignment problem in the case of on-line learning of rectangles is the following.
When the learner receives a negative counterexample (xl,. •., Xd) to his current hypothesis

d 1-I i=l{ai , . . . , bi}, it is clear that the learner has to change at least one of the intervals
{ai,.. •, bi} so that it no longer contains x~. But it is not clear which of the intervals
{ai , . . •, bi} should be changed.

Our new learning algorithm for rectangles consists of 2d separate search strategies that
searchforthe2dendpointsaT,bT..., ad ,T bdT of the d intervals { a T , . . . , bT} ofthe target -

rectangle 1-Id=l{aT,. . . , b/T}. The main problem is which of the 2d local search strategies
should be "blamed" when the global algorithm makes an error? We propose here a rather
radical solution to this credit assignment problem: each local search strategy that is possibly
involved in an error of the global algorithm will be blamed. With this radical solution it is
unavoidable that frequently local search strategies will be blamed incorrectly. We overcome
this ,difficulty by employing local search strategies ("error tolerant binary search") that are
able to tolerate such incorrect credit assignments.

Our solution of the credit assignment problem is quite reminiscent of a famous construc-
tion method in recursive function theory, the socalledfinite injury priority construction (see
Soare, 1987). This linkage is of some methodological interest insofar as priority arguments
with injuries are the dominant design technique in recursive function theory, but so far
there, are hardly any applications of this technique for the design of concrete algorithms in
computer science.

Section 4 contains another application of this design technique: an algorithm for learning
the union of two rectangles in the plane. We assume here that the learner knows already
that the top left corner of the domain is contained in one rectangle, and the bottom right
corner in the other. Nevertheless this learning problem is substantially more complicated
than the preceding one: The obvious local search procedures that search for the lengths of
the slides of the two rectangles are likely to get not only false negative counterexamples (as
in the preceding learning problem), but also false positive counterexamples. This compli-
cation arises from the fact that in general the learner does not know to which one of the two

204 Z. CHEN AND W. MAASS

rectangles of CT a positive counterexarnple belongs. Nevertheless one can construct for
this learning problem an efficient learning algorithm whose learning complexity is asymp-
totically optimal. Again this algorithm consists of suitable versions of binary search as
modules, which will tolerate certain incorrect credit assignments.

This positive result for learning the union of two rectangles provides a contrast to earlier
results about efficiently learnable concept classes C such as halfplanes over { 1 , . . . , n} 2, or
monomials, for which one has shown t h a t / / - 2 - C := {C1 U C 2 [C1, C 2 E C} is not
efficiently learnable (see Maass & Tur~in, 1994; Pitt & Valiant, 1988).

2. An algorithm for binary search that tolerates one-sided errors

In this section we consider an extension of the notion of a "negative counterexample", and
along with it an extension of the previously described learning model.

Assume CT E C is the target concept and Hs is the current hypothesis of the learner. The
environment may respond in the extended model with a positive counterexample ("PCE")
9 E CT -- H~, with a true negative counterexample ("true NCE") 9 E H~ - CT, or with a
false negative counterexample ("false NCE") 9 E Hs • CT. Note that the environment is
allowed to respond with a false NCE even if H~ = CT. We extend the notion of a negative
counterexample (NCE) so that it subsumes both true and false NCE's. The environment is
not required to tell the learner to which of these categories a counterexample 9 belongs.

We define a binary search algorithm T B S n (the "T" stands for error-tolerant) for learning
the "head" h of a halfinterval {1 , . . . , h} _C {1 , . . . , n} in this extended learning model.

d B O X d (see The new algorithm S for learning rectangles CT = 1-~i=1 {a~, . . . ,b i} E
section 3) will consist of 2d separate copies of the here defined error-tolerant binary search
algorithm T B S : in each dimension i it uses separate copies of T B S and its symmetric
counterpart T B S * for learning the "head" bi and the "tail" ai of the interval {ai , . • •, bi}.
Although this learning algorithm S for B O X d will receive only true counterexamples,
the individual binary search procedures may also receive false negative counterexamples.
This is a consequence of our quite radical solution to the associated "credit assignment
problem", where we blame each of the 2d subroutines for binary search for any error of the
learning algorithm S. In particular a true NCE for S will result in a true NCE for at least
one subroutine and false NCE's for up to d - 1 other subroutines.

In this section we consider the concept class

H E A D ~ := {{1,. .. , j} l j E { 1 , . . . , n } }

over the domain {1, 2 , . . . , n}.
At the beginning of each step r of a learning process in the extended learning model the

learner issues a hypothesis H~ := {1 , . . . , h~} E H E A D ~ . If H~. ~ CT, then the learner
will receive at step r the counterexample g~ E {1 , . . . , n}. We set

Ps := max({1} U {9r I 1 < r < s and 9r was a PCE})

ns := m i n ({ n + l } U { 9 ~ l l < r < s , g r>p~ ,

and 9~ was a (true or false) NEE})

true min({n + 1} U {gr I 1 < r < s and 9r was atrue NCE}). n s : ~

ON-LINE LEARNING OF RECTANGLES AND UNIONS OF R E C T A N G L E S 205

f f s m. n $

' × I x I

h,+i

ntrue $

I x

h, h

Figure t. A typical scenario in the procedure TBSn, where { 1 , . . . , h} is the target concept and the hypothesis
{1, i . . , hs} is "refuted" at step s by a false NCE 9~.

The interpretation of these parameters is quite obvious. Ps is the largest PCE received by
true is the smallest true NCE received by step s. Hence it is clear that the step s, and n 5

endpoint h of the target concept HT = { 1 , . . . , h} E HEAD~ lies in the "undetermined
true _ 1}. Unfortunately the learner does in general not know the value interval" {ps, • . . , n5

true is provided by the parameter of ntJ ue at step s. His best possible approximation to n 5
n~, which is the minimum of all those NCE's received by step s which have not yet been
shown to be false NCE's by the end of step s.

Tlhe following search algorithm TBSr, (where TBS stands for error-tolerant binary search)
provides the basic module for our learning algorithm for rectangles.

Definition oft he binary search algorithm T B Sn for learning H E A D n in the extended
learning model:

The algorithm TBS~ issues at step s the hypothesis { 1 , . . . , hs}.
Set !hl := 1.
F o r s > 1 set h5+l := hs if9~ is aNCE and g5 -< Ps-
[If 9) -< P~ it is clear that 95 is a false NCE, hence it can safely be ignored.]
Else, we define

/ min({n5 - 1} U {hr [1 < r < s andps _< h~ < ns}),

h5+1 := if g5 is aPCE.

(ps + [~2_zJ , ifg5 is a (true or false) NCE.

In this algorithm TBSn the hypothesis { 1 , . . . , hs+l} at step s + 1 is defined as in the usual
binary search procedure in the case where 95 is a NCE which is not obviously false at step
s (i.e. 95 > Ps). A typical situation of this type is illustrated in Figure 1.

A~ a consequence of this clause in the definition of TBSn one can show in Lemma 2.3
t r u e 1} that any true NCE reduces the length of the "undetermined interval" {Ps,. •., ns -

by at least 50% (as in the usual binary search procedure). The strategy of the quite dif-
fer@t definition of the hypotheses { 1 , . . . , hs+l} after a PCE at step s is to treat PCE's
as aiparticularly valuable resource. This is justified, since PCE's are always true coun-
tere~:amples. Therefore, instead of halving the open interval in an upwards direction, one

206 Z. CHEN AND W. MAASS

moves the hypothesis direct up to the least unrefuted NCE, respectively the least unrefuted
earlier hypothesis. The justification for this clause in the definition is given in Lemma 2.4.
It is shown there that a second PCE after this move will bring definite progress: it either
unmasks a false NCE, or it definitely refutes an earlier hypothesis that was previously only
"refuted" by false NCE's.

Note that the more familiar halving of the open interval in an upwards direction after each
PCE (as in the regular binary search procedure) uses PCE's in a less economic fashion (if
false NCE's are present). It could then occur that one uses a sequence of log n / 2 PCE's just
to find out that one earlier NCE (to which these PCE's converge from below) was a false
NCE.

THEOREM 2.1 Assume that f false NCE's occur in a learning process for H E A D n with
learning algorithm TBS,~. Then at most log n true NCE's and at most log n + 3 f + 1
PCE's occur in this learning process.

In order to prove Theorem 2.1 we analyze the properties of algorithm T B S n in three
simple Lemmata.

LEMMA 2.2

a) Ps+ [~] < - n ~ - l f o r a l l s > - - 1 .

b) p~ < h~+l <_ n~ - l for all s >_ 1.

c) I f 9~ is a (true or false) NCE, then h~+x <_ h~.

Proof:

a)

b)

c)

Note thatps < ns by the definition of ns.

This follows from part a).

I fgs <_ P~ then h~+a = h~. Assume that 9~ > ps and s > 1. Since hs _ ns -1 - 1 by
b), we have n~ = 9~ <- h~. Furthermore h~+l = Ps + [-~-P-~] < n~ (see part a)). •

true
ns - Ps <-

true
n r - - P r

Proof: It is obvious that r > 1. Thus n~ rue = nr = 9r, since Pr < g,- <_ hr <_ n r - 1 - 1
by Lemma 2.2 b). One shows in the same way that n~ rue = n8 = gs-

Since 9r is a NCE one has h r + 1 ~ Pr -1-

LEMMA 2.3 Assume r < s and gr,gs are true NCE's. Then

O N - L I N E L E A R N I N G O F R E C T A N G L E S A N D U N I O N S O F R E C T A N G L E S 207

Case 1:P8 > h~+~

n p P~+ntrU° hence n T M - - Ps < n t r u e t r u e T h e n p 8 - > P r + L ~ j + 1 >_ 2 , - - - r - P ~ - < n r -
t r u e t r u e

-

Case 2:P8 <_ h~+l

Then 9j _< hr+l for every j c { r + l , . . . , s - 1} such that gj is aPCE. Hence hj+l _< hr+l
for each such j (by the definition of hi+l). Together with Lemma 2.2 c) this implies that
hj÷l <_ hr+l foreveryj E { r + l , . . . , s - l } . In particular we have shown that h8 _< h~+l.

true Therefore ntrue_ps < hr+l_gs < pr + (~) _ps < Thus n 8 = 98 < h~+l. n t p
i

[n trUe_ p "~ t r u e + - p r _- 2-P •

LEMMA 2.4 Assume that gs and gs+l are PCE's. Then gs+l ~ ns, or gs+l > hr for
some r c { 1 , . . . , s} with Ps <_ hr < ns. In other words: gs+l proves that an earlier
NCE was a false NCE, or it definitely refutes an earlier hypothesis {1 , . . . , h~ } which had
received a counterexample at step r, but which was at step s consistent with all currently
unrefuted counterexamples.

Proof: By construction one has gs+l > hs+l = min({n8 - 1} U {h~] 1 < r < s and
p s < h ~ < n s }) . •

PROOF OF THEOREM 2.1: Lemma 2.3 implies that at most log n true NCE's occur in
any I learning process with algorithm TBSn. Hence at most log n + f NCE's occur in the
considered learning process Q. Thus there exist at most log n + f + 1 maximal blocks
of sluccessive PCE's in this learning process Q. Consider any such maximal block B that
consists of k + 1 PCE's g~, . . . , g~+k. Set

kB := I{JlJ E { s + l , . . . , s + k) andgj > n j _ l) [

kB := [{ J l J c { s + l , . . . , s + k) andgj > h r f o r s o m e r c { 1 , . . . , j - 1 }

withpj_l <_ hr < nj-1}l.

By 2emma 2.4 we have k~ + k2 B _> k.
Eiach time when gj > nj-1 (as in the definition of klB), then an earlier NCE gets proven

falsle at step j . This happens at most once for each of the f false NCE's.
E~ch time when gj provides a counterexample to an earlier hypothesis { 1 , . . . , hr} that

wa~ consistent with all unrefuted counterexamples at the beginning of step j (as in the
definition of k2B), then this hypothesis {1 , . . . , h~} can never appear to be consistent again
at 4 later step t (since Pt >- gj > h~). Furthermore this event can only occur if the
original counterexample gr to {1 , . . . , hr} was a false NCE. Thus altogether there are only
f h!cpotheses {1 , . . . , h r) for which this event can ever occur.

208 Z. CHEN AND W. MAASS

Thus we have shown that ~-~{kff I B is a maximal block of PCE's in Q } < f and
~-~{k B] B is a maximal block of PCE's in Q } < f . Altogether we have shown that at
most log n + 3 f + 1 PCE's occur in the considered learning process Q. •

Remark 2.5 One can construct in the same manner a learning algorithm TBS~ for the
concept class

TAIL,~ := {{ j , j + l , . . . , n } [1 < j < n}

that satisfies an analogous version of Theorem 2.1.

Remark 2.6 There exist already various algorithms for binary search in the presence of
two-sided errors, see e.g. Dhagat, Gacs, & Winkler (1992) and Borgstrom & Kosaraju
(1993). These algorithms do not provide sufficiently strong bounds (e.g. on the number of
true NCE's) to be useful for our application in section 3.

3. A learning algorithm for BOX~ whose error bound is polynomial in d and log n

T HEOREM 3 .1 L C (B O X d) = O(d 2 log n).

Proof: Consider any target concept CT = 1 - [d l { a ~ , . . . , hi} E B O X d. The learning
algorithm S for B O X d issues H1 := ~ as its first hypothesis. If H1 ¢ CT then S
receives a PCE u -- @1, •. •, Udl E CT. Henceforth the algorithm S splits the task of
learning CT into 2d separate subtasks: The learning of {u i , . . . , bi} C_ {ui, • • •, n} (i.e. of
a concept from HEADn_~+I over the transformed domain {u i , . . . , n}) and the learning
of {ai , . • •, ui} C { 1 , . . . , ui} (i.e. of a concept from TAILu~) for i = 1 , . . . , d. For each
i e { 1 , . . . ,d} the algorithm S employs TBSn_~+I for the former and TBS*, for the
latter subtask.

One sets H~ := {u}. Assume that at any step r _> 2 the learning algorithm S for B O X d
d h* has issued a hypothesis H r := l--Ii=l { i , - . - , hi}. Then the next hypothesis H r + l is

determined in the following way by the 2d subroutines.
Let x = (x 1, •. •, Xd) E CT A H r be the counterexample to the hypothesis H r of algorithm

S. Note that we use the notion of a counterexample for algorithm S in the traditional sense
(i.e. x is a PCE or a true NCE). If x is a PCE to hypothesis Hr , then for at least one
i • { 1 , . . . , d} the point xi is a PCE to the current hypothesis of one of the two subroutines
TBS~_~+I or T B S * . For each such i one changes the interval in the i-th dimension
according to the next hypothesis of the subroutine T B S~_ ~ + 1 resp. T B Sui. For other i one
has xi • { h * , . . . , h~}, and one repeats in these dimensions the same interval { h * , . . . , hi}
in the next hypothesis H r + l of S.

Assume now that x = (x l , . . . , Xd) is a NCE to hypothesis Hr. For each i • { 1 , . . . , d}
with xi ~ ui the point xi provides a (true or false) NCE to the current hypothesis
{ui, •. •, hi } of subroutine TBSn_ u~ + 1, or to the current hypothesis { h * , . . . , ui } of sub-
routine T B S * . One updates the interval in the i-th dimension of the next hypothesis H r + l
of S according to the next hypothesis of TBSn-u~+I resp. TBSp,. For those i with
xi = ui one leaves the interval in the i-th dimension unchanged.

ON-LINE LEARNING OF RECTANGLES AND UNIONS OF RECTANGLES 209

By Theorem 2.1 each subroutine for learning one of the 2d halfintervals encounters at most
log n true NCE's. Since each NCE for algorithm S provides a true NCE for at least one of the
2d subroutines, S gets altogether at most 2d log n NCE's. Each of these NCE's may generate
false NCE's for up to d - 1 subroutines. Hence the sum of false NCE's for all 2d subroutines
together is <_ (d - 1)2d log n. Thus by Theorem 2.1 the sum of all PCE's that are received by
the 2d subroutines is bounded by 2d(log n + 1) + 3 (d - 1)2d log n = (6d 2 - 4d) log n + 2d.
Since each PCE to algorithm S (except for the first one) generates a PCE for at least one of
its 2d subroutines, the total number of PCE's that S receives is _< (6d 2 - 4d) log n + 2d + 1.
Hence LC(S) <_ 2d log n + (6d z - 4d) log n + 2d + 1 = 6d 2 log n - 2d log n + 2d + 1.

Remark 3.2 Peter Auer shows (1993) that L C (B O X d) = f~(d 2 log n~ log d). Hence the
preceding algorithm is close to optimal with regard to its error bound. He also constructs
an error robust variation of our learning algorithm for B O X d, that can tolerate a certain
fraction of incorrect positive and negative counterexamples for the global algorithm (for
any distribution of incorrect counterexamples).

4. An algorithm for learning the union of two boxes in the plane

The algorithm in the preceding section was based on a solution of the credit assignment
problem in which the local search procedures tolerate false negative counterexamples. It
was', essential for the success of this algorithm that the local search procedures never receive
false positive counterexamples.

In this section we examine a more complex learning problem, in which the obvious local
search procedures have to tolerate both false negative and false positive counterexamples.
For any m, n E N let Xm, n be the domain

Xr~,,~ := {(i , j) l i E { 1 , . . . , m } a n d j E { 1 , . . . , n } } .

SetBOXm,,~ := { { i , . . . , j } × {k , . . . ,l} I 1 _< i _<j < m

a n d l < k < l < n } .

Wewri te a := (1, n) for the upper left corner and b := (m, 1) for the lower right corner of
this domain Xm,,~. We consider the following concept class over the domain Xm,n :

T W O - BOXm,n := {RA U R B I RA, R B E BOXm,n, a E R A and b E RB}.

Whenever we write RA (RB) in the following, we assume that RA E BOXm,n and
a E R A (R B E BOX,~,n and b E RB). Note that the two components RA and R B of a
concept in T W O - B O X r a , n may or may not intersect.

The learning of arbitrary target concepts R A tO RB from T W O - BOX,~,n may be
viewed as a combination of 4 search procedures that determine the lengths of the sides of
RA and RB. In the same way as in the preceding section these local search procedures will
receive false negative counterexamples, since it is not clear which side of R A (R B) has to
be Shortened in order to aecomodate a NCE 9 E (RA tO RB) - CT. However these local
sem:ch procedures will in general also receive false positive counterexamples, since it is not

210 Z. CHEN AND W. MAASS

t~
Z m t n

Figure 2. A typical concept RA U R B in the concept class TWO-BOXm,n, where R A contains the upper left
comer a of the domain, and R B contains the lower right comer b of the domain.

clear whether a PCE should lie in RA, or in R B (or in both). The following result shows
that nevertheless there is an efficient learning algorithm for this learning problem.

THEOREM 4.1 L C (T W O - BOXm,n) = O(log(m + n)).

Proof: It is obvious that chain(TWO - BOX,~,~) : f t (m + n), where chain(C) denotes
the length of the longest chain in C with regard to the partial order " < " of C defined by
C < C ' ¢4. C c C'. According to Maass and Turfin (1989, 1992), one has

L C (T W O - BOXm,n) > [log(chain(TWO - BOXm,~))J.

In fact, the same lower bound holds for LC - A F t B (T W O - BOXm,n) .
In order to prove the upper bound of Theorem 4.1, we first consider the following subclass

o f T W O - B O X m , n :

l.~m, n : = { R A to R B I RA, R B c BOX,%m a E R A , b E RB ,
and IRA N R B I : 1}.

We will exhibit in the proof of the main lemma (Lemma 4.3) an efficient learning algorithm
K for this concept class b/,~,~. This algorithm K will employ as local search procedures
the following binary search algorithm C B S ("conservative binary search"), which is distin-
guished by the property that it never receives two successive NCE's. Although C B S will
also be used in a nonstandard situation (where there exists no target concept), it suffices that
we analyze it here in the context of the basic learning model that was defined in section 1.

Definition of the binary search algorithm C B S for learning H E ADn:

Assume that the environment has fixed some target concept CT E H E A D n . At step r the
learner issues the hypothesis H~ := { 1 , . . . , r} E H E A D n . If Hr ¢ CT, he receives at

ON-LINE LEARNING OF RECTANGLES AND UNIONS OF RECTANGLES 211

step r a counterexample gr E H, .ACT. Let ps be the maximum of 1 and the largest PCE
received by the end of step s, and let ns be the minimum of n + 1 and the smallest NCE
received by the end of step s.

Set h i : = 1, and

] ' p ~ , i f g s i s a N C E
hs+l : ~ - I p ~ + [~ J , i f g s i s a P C E .

LEMMA 4.2 Consider any learning process for learning H E A D n (in the basic learning
model) with learning algorithm C B S . Then there are never two successive NCE's in this
learning process. Furthermore nt - Pt <_ ~ for any step t >_ 1 with Ht 7 £ CT.

Proof : The first claim is obvious from the construction of C B S .

In order to prove the second claim we show that for any s > 1 such that 98 is a PCE and

Hs~-I 7 ~ CT one has

ns+l -- Ps+l ~ - -

Since gs is a PCE we have

hS+l= S+i 1.
If g~+l is a NCE we have

audips+1 = ps, hence

ns+l -- Ps+l ~ ns -- Ps
2

If g~+l is a PCE we have

Ps+l >- 1 + hs+l >_ ps + - -

and n~+l = n~, hence

(n s + l - p s + l < - n ~ - p ~ + --

LEMMA 4.3 (Main lemma) L C T W O - B O X (l/Ira,n) = O (l o g (m + n)) .

212 z. CHEN AND W. MAASS

Remark 4.4

a) One has to use in Lemma 4.3 a larger hypothesis space than lgm,n, since LC(Um,n) =
f t (m ÷ n). This lower bound can be shown with the help of an adversary strategy that
gives only negative counterexamples from the"diagonal line" between (1, 1) and <m, n>
in Xm,n.

b) The learning algorithm for b/m,~ that is constructed in the proof of Lemma 4.3 uses
actually only the hypothesis space {H E T W O - B O X m , , ~ [H C T W O - B O X n , m },
which is a proper subclass of T W O - BOXm,n.

Proof of Lemma 4.3: In order to design an efficient learning algorithm K for btm,n, we
note that any concept RA tO R B E lg,~,n with a C RA, b c R B and IRA n RBI = 1 can
be uniquely characterized by the single intersection point w = (i, j) of the rectangles R A
and RB. We write R~ for this concept RA U R B from/.4,~,,~, and RA~,, RB~ for its two
components RA, RB.

The learning algorithm K for 14m,,~ proceeds in a recursive manner. Assume that it has
already exhibited an rn ~ × n ' rectangle W c Xm,n with w E W for the target concept
/ ~ C b/m,n (initially one has W = Xm,n). We will use area (W) (or rather: 1-area
(W)) as a "measure of progress" for the learning algorithm K. We will not be able to
guarantee that area(W) can always be reduced by a fixed fraction within O(1) steps of
learning algorithm K. However we can show that there is some number t (which depends
on the specific learning process) such that K produces in t + 2 further steps a rectangle

¢+ W with w c W and

area(W)
area(W) <

max(2, 2t/4-2) '

Assume that e c X,~,,~ is the "centerpoint" of W. We first consider the case where e does
not lie on the perimeter of W (i.e. we assume that m ' > 2 and n ~ > 2). Then K issues Re
as its next hypothesis.

We will analyze separately the two cases where the learner receives a positive respectively
negative counterexample 9 to this hypothesis Re. In each case the primary goal of the learner
is to determine whether w E S or w E T, where S and T are the two rectangles that are
defined by counterexample 9 as indicated in Figure 3. However the learner may not be able
to achieve this information within a fixed number of steps. Instead, he enters a "P-phase"
(in case 1), respectively an "N-phase" (in case 2). We are not able to bound the number t
of steps which are spent by the learner in the respective phase. However we can guarantee
that at the end of such phase the learner has not only determined whether w c S or w E T,

but in addition he can exhibit a rectangle W c+ W with

area(W)
area(W) <

max(2, 2t/4-2)

Obviously this suffices in order to determine the target concept from l.'[m,n in altogether
O(log(m + n)) learning steps.

ON-LINE LEARNING OF RECTANGLES AND UNIONS OF RECTANGLES 213

a

X

: \ \]

< 1

W

Figure 3. The intersection point w of RA and R B is in S U T, after a positive counterexample 9 in W is received.

Case I: The learner receives a positive counterexample g = (Pa, qa) E Rw -- Re

We can assume without loss of generality that g E W. If 9 lies to the left (right) of W, we
mayireplace it by the point on the same row in the leftmost (rightmost) column of W. If
9 lie~ above (below) W, we may replace it by a point in the same column in the highest
(low!est) row of W. Note that we have used here the assumption that e does not lie on the
perimeter of W (i.e. rn ~ > 2 and n ~ > 2). Furthermore it is clear that 9 cannot lie in the
area Ito the left and above W (respectively to the right and below W), since these two areas
are clontained both in the target concept R~, (because w C W) and in the hypothesis Re.

Leit S, T __ W be the rectangles with S N T = {9} and R 9 f'l W = S II T, as shown
in Fiigure 3. It is clear that w ~ S U T. The algorithm K issues Rg as its next hypothesis.
If R~ ¢ CT it follows that w E S U T - (S fq T). In order to determine whether w C S
or wl E T, the learning algori thm/£ enters a procedure that we call a P-phase. When

this ~-phase terminates after t steps, the algorithm exhibits a rectangle W with W C S or
~ T such that w C W and area(W)N _< are~(W)2~_77a_~_2 •

The P-phase consists of 4 concurrent binary search procedures that try to determine the
values of 4 parameters x, y, u, v (see Figure 3). If w C T, then the values of x and v give
the ~orizontal resp. vertical distance of w from 9, whereas the parameters y and u are
undefined. If w E S, then the values of u and y give the horizontal resp. vertical distance 4
of w ifrom 9, whereas the parameters x and v are undefined. The hypothesis of algorithm
K isJat each step of the P-phase of the form R A U R B with a E R A , S C RA, b E R B ,
and T c R/3. The exact lengths of the sides of R A (R B) are determined by the current
hypo!theses of the binary search procedures for x and v (u and y). The remainder of our
analysis of case 1 is devoted to the precise description and analysis of the P-phase.

The difficulty of the P-phase is caused by the need to carry out the concurrent binary
searc~la procedures for the parameters x, y, u, v without knowing whether w C S or w E T,
and hence without knowing which ones of x, y, u, v are actually undefined. Thus we have to

214 z. CHEN AND W. MAASS

combine two "real" binary search procedures with two "dummy" binary search procedures,
without knowing which are the real ones. The danger is that we may spend many learning
steps exclusively for the benefit of those search procedures that later turn out to be "dummy"
(i.e. they search for the values of parameters that are actually undefined). Consider for
example the two search procedures for the parameters x and y. We know that exactly one
of those two parameters is undefined. If one receives a PCE q E 1L~ - (RA U R B) in the
region above T (see Figure 3), then this provides a PCE for both of the two binary search
procedures for x and for y (in particular also for the "real" one among the two). However
a NCE q E (RA U R B) - R~ in the region above T may provide a NCE only for one of
these two binary search procedures. If one has bad luck, it provides a NCE only for the one
that later turns out to be "dummy", and no progress has been made at this learning step for
the"real" binary search procedure among the two.

This difficulty is handled by using for the local binary search procedures the algorithm
C B S that was analyzed in Lemma 4.2. It may still occur then, that a NCE provides progress
only for the "dummy" one among two binary search procedures C B S . However since no
binary search procedure C B S (even the"dummy" ones) may receive two NCE's in a row,
this event can occur on average at most at every second step.

An exception may occur at a step where a binary search procedure that searches for an
undefined parameter receives a NCE gs < Ps (and hence possibly two NCE's in a row).
However such step (which reveals to the learner which ones of the parameters are undefined)
automatically terminates the current P-phase.

We now describe in detail how the algorithm K proceeds during the considered P-phase.
One should keep in mind that this P-phase focuses its activity on the m r × nLrectangle
W C Xm,,~, but that its hypotheses are required to be from T W O - BOXm,~. One carries
out 4 concurrent binary searches with algorithm CBS . The first one of these is a copy of
C B S that searches for the value of parameter x, in case that x is defined. More precisely:
C B S searches for the concept {0, 1 , . . . , x} E HEAD.a for some ¢~ < n (for technical
reasons we take here {0 , . . . , ¢~ - 1} as domain for HEAD¢~, instead of { 1 , . . . , ~}). The
second binary search procedure is a copy of C13S that searches for the value of y, in
case that y is defined. Analogously one uses copies of C B S to search for u resp. v.
Assume that so far none of these 4 copies of C B S has encountered a contradiction among
its counterexamples, and that hz, h v, h,,, hv are the endpoints of the current hypotheses
{ 0 , . . . , h~}, (0 , . . . , hy}, {0 , . . . , h~}, {0 , . . . , h,,} in the respective copies of C B S . Then
the algorithm/(issues as its next hypothesis the following concept H E T W O - BOX,~,,~:

H := { 1 , . . . , p o + h z } × { q g - h v , . . . , n }

U {pg - h ~ , . . . , m } × {1 , . . . , qg + hy}.

It is obvious that S U T C H.
Let h E H A R w be a counterexample to this hypothesis. We will first consider the case

where h E W. We will analyze in the next two paragraphs the subcase where h E W is
a PCE. In the subsequent third paragraph we will analyze the subcase where h E W is a
NCE. After that we will turn to the analysis of the case where h ~ W.

If h is a PCE and if h lies above T, then one processes the two coordinates of h as PCE's
for the two copies of C B S that search for the parameters x and y.

O N - L I N E L E A R N I N G O F R E C T A N G L E S A N D U N I O N S O F R E C T A N G L E S 215

If h ¢ W is a PCE that lies to the left of T, one processes the two coordinates of h as
PCE's for the two copies of C B S that search for the parameters u and v.

If h E W is a NCE with h ~ S U T and h lies above T, then the two coordinates of h
provide a NCE for at least one of the two copies of C B S that search for x and y. (Since
h cannot be guaranteed to provide a NCE for both copies of UBS, it may potentially only
provide a NCE for the "dummy" copy of CBS) . If h ¢ W is a NCE with h ¢ S U T and
h lies to the left of T, then the two coordinates of h provide a NCE for at least one of the
two copies of C B S that search for u and v.

If h c W is a NCE with h E S U T then it terminates the current P-phase. If h E T, then
it is proven that w E T, and that the parameters y and u are undefined. The current P-phase
also ends if in any of the preceding cases at least one of the 4 copies of C B S receives a
CE that contradicts another CE that it had received at an earlier step. Assume for example
that the copy of C B S that searches for x receives a PCE (NCE) that contradicts an earlier
NCE (PCE). This implies that the parameter x is undefined. Hence one has w E S, which
implies that the parameter v is also undefined.

Finally we consider the case where the counterexample h E HATt~, does not lie in W.
If h is a PCE to the right of W, then it implies that w E S. Hence this counterexample
terminates the current P-phase. If h is a NCE to the right of W, it provides a NCE for the
binary search for y (but no CE for the binary search for x). The cases where h lies above,
below, or left of W are handled analogously.

It remains to be shown that in each possible case where the current P-phase is terminated,
one can not only decide whether w E 5' or w E T, but one can also exhibit an axis-parallel

~ ~ a r e a (W)
rectangle W with W _ S or W c T, w E W, and area(W) < ma×(2, 2t/4-2) ' where t is

the number of counterexamples that have been received during the current P-phase.

Each PCE h that is received before the end of the P-phase provides a PCE for both of the
binary search procedures for x and y, or for both of the binary search procedures for u and
v. Each NCE provides a NCE for at least one of the binary search procedures for x and
y, o:r for at least one of the binary search procedures for u and v. Since none of these 4
copies of procedure C B S (not even those that search for undefined parameters) can receive
two successive NCE's (except at the last step of this P-phase), at least t p " - t • - 7 - 3 ° f t h e
t counterexamples of this P-phase provide CE's for one of the two copies of C B S which
search for parameters t that are actually defined. By Lemma 4.2 at least [~j of them reduce

one of the two dimensions of W by at least 50%, starting with S resp. T. Since area(S),
area(T)< area(W) one has

area(W) < area(W) area(W)
-- 21+L½(t/2_3)j -< 2t/4_--------i~ - .

Finally we observe that any P-phase terminates at the latest after O (log(ra + n)) step, since
each single one of the 4 procedures C B S can receive at most 2 log(m + n) counterexamples
without running into a contradiction.

2 1 6 z. CHEN AND W. MAASS

V b,\\
KT\

'

j

W

Figure 4. The intersection point w of R A and R/3 is in S t U T, after a negative counterexample 9 in W is received.

Case 2: The learner receives a negative counterexample g = (pg, qg) E Re -- t ~ ,

N N

If 9 ~ W then we can immediately exhibit a rectangle W C W with w E W and

area(W) < ~re~(w) Since 9 E Re = R A U R B , we know that 9 lies either in the
- - 2

rectangle R A of Re that contains the upper left corner a of the domain Xm,n, or 9 lies in
the rectangle R B that contains the lower right corner b of the domain Xm,n. If 9 E R A
and 9 lies above W, then 9 ~ R~, implies that w lies in the left half of W. If 9 E R A and
9 lies left of W, then 9 ~ Rw implies that w lies in the upper half of W. Hence in either

case we can exhibit a rectangle W with w E W and area(W) C ~rea(w) The argument
- - 2

for g E l:gB is analogous.

We now assume that g E W.

It is then clear that w E S U T for the rectangles S, T that are defined by g as indicated
in Figure 3. In order to determine whether w E S or w E T the algorithm then enters an
N-phase. An N-phase consists of 4 concurrent binary searches that determine the values of
4 parameters z, y, u, v. If w E T, then the value of z is the horizontal distance of w from the
rightmost column of W, the value of v is the vertical distance of w from the top row of W,
and the parameters y and u are undefined. Ifw E S, then the value ofy is the vertical distance
of w from the bottom row of W, u is the horizontal distance of w from the leftmost column
of W, and the parameters z and v are undefined. Each hypothesis during the N-phase is the
union of two rectangles RA and RB. R A is contained in {1 , . . . , pg - i} × {qg + 1 , . . . , n},
and the lengths of its sides are determined by the binary search procedures for u and v.
Analogously R B is contained in {pg + 1 , . . . , m} × {1 , . . . , qg - 1}, and the lengths of
its sides are determined by the binary search procedures for z and y. In order to verify
Remark 4.4 (b) we note that R A U R B E T W O - BOX~ ,m since no row and no column
contains points from both R A and RB.

ON-LINE LEARNING OF RECTANGLES AND UNIONS OF RECTANGLES 217

In contrast to the situation in a P-phase, a PCE h to hypothesis RA U RB may yield a PCE
only for one of the search procedures for u and v (if h lies above S), or only for one of the
search procedures for x and y (if h lies below T). On the other hand, a NCE to hypothesis
RA U RB provides a NCE either for both search procedures for u and v, or for both search
procedures for x and y. Hence one uses here as binary search procedures for x, y, u, v a
dua]L version CBS' of CBS, for which no two successive PCE's can occur.

Note that any PCE h C { 1 , . . . , p g } x { 1 , . . . , q g } U {pg , . . . ,m} x { q g , . . . , n } reveals
whether w E S or w E T, and it will automatically terminate this N-phase. Similarly a
NCE outside of W decides whether w c S or w c T, and it also terminates this N-phase.
Apart from these cases, the N-phase is also terminated by any counterexample that provides
a contradiction to an earlier counterexample for any of the 4 copies of the binary search
procedure CBSq The rest of the analysis of the N-phase is analogous to that of the P-phase.

Finally we have to comment on the case where the algorithm K cannot continue its
recursion with a P-phase or an N-phase, because it has already narrowed down the location
of w to an m I x n ' rectangle W ___ X~,,~ with m ' _< 2 or n ' < 2. Assume for example that
m ' = 2. Then the algorithm K carries out for both columns in W a straightforward binary
search for w. This is possible, because for the binary search in the "correct" column it can
interpret each counterexample without ambiguity.

This completes the proof of Lemma 4.3. •

With the help of the preceding main lemma we are now able to prove Theorem 4.1. Besides
the cornerpoints a = (1, n) and b = (m, 1} we will also distinguish the other two corner-
points c = (1, 1) and d = (m, n) of the domain Xm,n. For many C E T W O - BOXr,,n
the complement C := Xm,n - C may be viewed as element of BOXm,n, BOXn,m or
T W O - BOX~,~. In order to consider C as element of T W O - 130X~,~ one "turns the
domain by 90 °' ' , i.e. one identifies Xm,~ with Xn,m, a with c, and b with d (see Figure 4).
This duality is frequently exploited in the following in order to discuss subroutines that aim
at learning CT instead of CT. This makes sense for those cases where CT has a simpler
structure than CT. Note however that one has to be careful when one exploits this duality,
since there are C E T W O - BOXm,n for which 6' can not be interpreted as a union of
one ,or two rectangles (e.g. consider C = { 1 , . . . , m - 1} x { n} U { 2 , . . . ,m} x {1}).

The learning algorithm L for T W O - BOXm,,~ proceeds in 4 phases. The first hypothesis
of the first phase is the set Xm,n. If Xm,n ¢ CT, then one receives a NCE. It is then clear
that c ~ CT or d ~ CT. In order to eliminate the case where {e, d} N CT ¢ 0, one uses
as a subroutine some learning algorithm A for BOXm,,~ that is guaranteed to find any
C c BOX,~,n in O(log(m + n)) steps, using hypotheses from BOXm,,~ (see section 3,
or Maass & Tur~in (1994)). One first executes this learning algorithm A in order to find
C T under the assumption that c c C T and d E CT (hence C---T E BOXm,n) by inverting
the '!sign" of each example and by replacing each hypothesis H of A by its complement H
(note that H E T W O - BOXm,,~ for any H E BOX,~,,~ with c c H). In this way one
finds; UT in O(log(m + n)) steps if e E CT and d ~ CT. If this attempt is not successful,
one i~xecutes A again in order to find CT, but this time under the assumption that d E CT
and C E CT. If this attempt is also not successful, one has proven that c E CT and d c CT.

218 Z. CHEN AND W. MAASS

During its second phase the algorithm L checks whether CT E btn,m. For this purpose it
executes the algorithm K from the proof of Lemma 4.3 for O(log(m + n)) steps over the
domain Xn,m in order to learn the complement of CT. Hence the sign of each example is
inverted, and each hypothesis H of algorithm K is replaced by its complement H. Note
that according to Remark 4.4 (b) this algorithm K for b/n,m uses only hypotheses H such
that H E T W O - BOXm,n . Hence H is a permissible hypothesis for algorithm L. If
this simulation of K fails to identify CT within its alloted time, we know that CT ~ lgn,,~.
Furthermore the sample S that has been assembled by this time has the property that no
C E T W O - B O X m , n with C E ~'~n,m is consistent with S. (We refer to a set of positive
and/or negative examples for CT as a sample for CT.)

During its third phase the learning algorithm L checks whether CT is of the form RAtA R B
with R A ~ R B ~ ~0. One uses here the following simple structural result.

LEMMA 4.5 Assume that S is a sample that is consistent with some C = R A U R B E
T W O - BOXm,n such that e, d ~ C and R A N R B ¢ ~. Furthermore assume that S is
not consistent with any C E T W O - B O X m , n such that C E bln,m.

Then there do not exist among those concepts that are consistent with S for i = 1, 2
concepts Ci = R A i tA RB~ with RA~ n R B i 7 ~ ~) and Ci of the form RCi t2 RDi with
RC~, RDi E BOXm,n , c E RCi, d E ROi, such that 9 E RC1 fq R D 2 f o r some negative
example 9 in S.

In other words: the assignment of negative examples in S to the two rectangles o f C is
unique (for concepts C = RAtA R B with R A n R B 7~ ~, e, d ~ C).

Proof of Lemma 4.5: Assume for a contradiction that there exist such concepts C1, C2
and such negative example g E RC1 U RD2 in S. Then there are two different rows (resp.
columns) rl , r2 in the domain Xm,~ such that r l C C1, r2 C C2, and 9 lies strictly between
r l and r2. Without loss of generality we assume that rl , r2 are rows with r l above r2 (see
Figure 5).

a~

C

X__l
g

RC .
\ \

d

7" 1

r2

Figure 5. Negative counterexamples in the sample S are contained in B, or lie above r l and to the right of the
rightmost column of B, or lie below r2 and to the left of the leftmost column of B.

ON-LINE LEARNING OF RE CT ANGL E S AND UNIONS OF RECTANGLES 219

Y

a

X

Re "-
-1

(

d

bI v

Figure 6. Searching the boundaries of R A and R B with four procedures which "tolerate" false positive coun-
terexamples.

Le t /3 be the smallest axis parallel rectangle that contains all negative examples in S
which lie between r l and r2. Note that g C/3. Since C1 is consistent with S, all negative
examples in S that lie above r l are contained in RD1, hence they lie to the right of the
rightmost column of B. Since C2 is consistent with S, all negative examples in S that lie
below re are contained in RC2, hence they lie to the left of the leftmost column of B. In
particular all negative examples in S are contained in B U f~C1 U RD~.

Since B C_ RC1 N RD~ we can define rectangles R C C_ RC1 and R D C_ RD2 with
c E :RC and d c R D such that R C and R D intersect exactly at the top right corner of
B.]Hence R C U R D E bln,~. By construction we have/3 U RC1 U RD2 C R C U RD,

hence R C U R D contains all negative examples in S. Furthermore R C U R D does not
contain any p_._ositive examples in S, since RC1 URD2 does not contain any positive example
in S and R C U R D C_ RC1 U RD2. Hence the complement of R C U R D is a concept
C ~ T W O - B O X ~ , ~ that is consistent with S and which satisfies C = R C U R D E Lt~,m.
HoWever such concept C does not exist by the assumption of Lemma 4.5. •

Remark 4.6 We would like to point out that the unique partition of negative examples in
S (t:~hat exists by Lemma 4.5) can be computed in an efficient manner. One can assume
without loss of generality that R C and R D are "spanned" by c (resp. d) and the negative
examples in S that are assigned to them. Hence it suffices to cycle through all pairs Pl, P2
of n~gative examples in S and check whether the rectangle that is spanned by {c, Pl, P2} is
a feasible solution for RC.

T!le strategy of L during its third phase is the following. It employs 4 concurrent copies
of thee dual version T B S ' of the error tolerant binary search procedure T B S from section 2.
T B ~ ' "tolerates" false PCE's (in a sense analogous to Theorem 2.1), as long as it receives
only true NCE's. If CT = R A U R B with R A n R B 74 ~) then these 4 copies of T B S '
willifind the lengths x, y, u, v of the sides of the rectangles RA, R B (see Figure 6).

220 z. CHEN AND W. MAASS

Let S~ be any extension of the so far collected set S of examples by further examples for CT.
Then S satisfies the assumptions of Lemma 4.5 (provided that CT is of the form R A U R B
with R A N R B ~ ~). Hence one can uniquely (and efficiently) assign any negative example
in Sto one oftherectangles RC, R D c B O Xm,~ with R C U R D = -CT , c E RC , d c R D .
Obviously any negative example that has been assigned to R C (R D) provides true negative
examples for the binary search procedures for u and y (x and v). This is the reason why false
NCE's can be avoided in the 4 concurrent binary searches of this phase. The hypothesis H
of L during this phase will always be of the form

H : = { 1 , . . . , h ~ } x { n - h y + l , . . . , n } U { m - h ~ + l , . . . , m } x {1 , . . . , h~} ,

where hz, h v, hu, hv are the endpoints of the hypotheses for the associated binary search
procedures T B S r. Whenever one receives a NCE g E H - CT, one determines the unique
assignment ofg to _RC or R D (among all U C T W O - B O X m , n that are consistent with
all examples received so far, and which satisfy CT ~ R A U R B with R A G R B 7£ 1~).
Hence the coordinates o fg provide true NCE's for one o1" two copies o f T B S ~ (and no false
NCE for any copy of TBS~) . On the other hand the coordinates of a PCE g E CT -- H are
interpreted as positive examples for all copies of T B S t. Hence 9 provides a true PCE for
at least one copy of T B S ~, and false PCE's for up to 3 copies of T B S ~.

An analogous version of Theorem 2.1 for T B S ~ implies that all 4 copies of T B S ~ together
can receive at most 4 log(m + n) true PCE's. Hence at most 12 log(m + n) false PCE's,
and consequently at most 1 + 37 log(m + n) NCE'S can be received altogether by the 4
copies of T B S r that are employed by L during this third phase. If in fact CT = R A U R B
with R A N R B ¢ (~, then L will identify CT during this phase. Of course we terminate
this phase if it has not lead to the identification of CT within its alloted time, or if it runs
into some contradiction (which can only arise if CT is not of the conjectured form).

If the third phase of L has not succeeded in identifying GT, one may conclude that
the set S of examples that has been collected up to this point is not consistent with any
C = R A U R B E T W O - B O X m , n such that R A N R B ~ ~. Hence we can apply the
following simple structural result.

LEMMA 4.7 Assume that S is a sample that is consistent with some C E T W O -
B O X m , n . Furthermore assume that S is not consistent with any C = R A U R B
T W O - BOX,~ ,n with t:dA N R B ¢ ~).

Then there do not exist two concepts C 1 , 6 2 ~ T W O - B O X m , n that are both consistent
with S, and where Ci = R A i U R B i , a c R A i , b C RBi , and the rectangles R A i and R B i
are separated by horizontal lines for i = 1, 2, such that g E RA2 N RB1 for some positive
example g in S.

In other words: the assignment ofpositive examples in S to R A , R B is unique among all
consistent concepts C = R A U R B whose components R A , R B are separated by horizontal
lines.

The analogous result holds for concepts whose components are separated by vertical
lines.

ON-LINE LEARNING OF RECTANGLES AND UNIONS OF RECTANGLES 221

Proof of Lemma 4.7: Assume for a contradiction that there exist such concepts C1 =
J~A 1 U R B 1 and C2 = RA2 U RB2 (whose components are separated by two horizontal
lines) and some positive example 9 in S with 9 ¢ RA2 N RB1. Then RA2 U RB1 is a
concept in T W O - B O X m , n that is consistent with S, and whose components RA2, RB1
have a nonempty intersection. However such concept does not exist by the assumption of
Lemma 4.7. •

During its fourth phase the algorithm L first checks whether CT = R A U R B for rectangles
RA, R B that are separated by some horizontal line. In the same way as in phase 3 it employs
4 concurrent binary search procedures that search for the lengths x, g, u, v of the sides of
RA, R B (see Figure 4). Each hypothesis H of L is constructed from the current hypotheses
of the 4 binary search procedures in the same way as in phase 3. However during this phase
we use for these procedures instead of T B S ~ the original error tolerant binary search
procedure T B S from section 2 (which "tolerates" false NCE's but no false PCE's).

Whenever a PCE 9 ¢ CT - H is given to L, it can decide with the help of Lemma 4.7
whether 9 ¢ R A or 9 c R B (provided that CT = R A U R B for rectangles RA, R B that
are separated by a horizontal line). Hence it can give the coordinates of g as true positive
examples to those copies of T B S that search for x and y (if 9 ERA) , resp. to those copies
of T B S that search for u and v (if 9 c RB). Since 9 ¢ H, it will provide a true PCE for
at least one of these 4 copies of T B S (but no false PCE for any of them).

Any NCE 9 c H - CT for the hypothesis H of L provides a true NCE for at least one of
the 4 copies of T B S (and false NCE's for up to three copies of T B S) .

If CT consists in fact of two rectangles that are separated by some horizontal line, L will
identify CT during this phase in at most 1 + 37 log(m + n) steps (by Theorem 2.1).

If L does not identify CT in this way, we know that the components RA, R B of CT are
separated by a vertical line. Hence it suffices to repeat the preceding process for the case
of vertical separations.

Each phase of L takes at most O(log(m + n)) steps. Hence the proof of Theorem 4.1 is
now complete. •

Remark 4.8 With regard to the general structure of the proof of Theorem 4.1 we would like
to point out that it is necessary to apply the main lemma (Lemma 4.3) to the complements
of the concepts C ¢ T W O - BOXm,n , rather than to the concepts themselves. This arises
from a rather subtle aspect of the third phase of the algorithm. This third phase relies on
the structural result of Lemma 4.5, which does not have an appropriate "dual version" (with
C and C interchanged). A source of this asymmetry is the fact that the two rectangles
RCi R D which form the complement of some C = R A U R B ¢ T W O - B O X m , n with
R A A R B ¢ ~ have no common row or column. However the two components RA, R B
of some C = R A U R B ¢ T W O - BOXm,n with R A C? R B = ~ may very well have a
common row or column.

Remark 4.9 One can use the algorithm L from Theorem 4.1 as a subroutine in order to get an
efficient learning algorithm for the concept class L / - 2 - B O X ~ := {C1 U C2 [Cx, C2 C
B O X ~ } . One starts each learning process by executing a learning algorithm for B O X ~ ,
until one has collected a sample S that is not consistent with any C E B O X ~ . It is easy to

222 z. CHEN AND W. MAASS

show that any such sample S contains two positive examples a, b and a negative example q s.t.
q lies in the rectangle R that is spanned by a and b. It is then clear that a and b lie in different
components of CT C H - 2 - B O X ~ . This implies that CT N R E T W O - B O X . , h , ~

for Xm,~ := R. Hence one can apply the learning algorithm L from Theorem 4.1 over
the domain R in order to learn CT n R, and separate learning algorithms for B O X (resp.
T W O - B O X) for other parts of the domain. At each step the hypothesis of the resulting
learning algorithm for H - 2 - t 3 0 X ~ is the union of the hypotheses that result from the
subroutines for various parts of the domain. One gets in this way a learning algorithm that
is guaranteed to find CT in O(log r~) step, but whose hypotheses consist of more than 2

rectangles.

5. Open problems

One challenging open problem is posed by the gap between our upper bound O (d 2 log n)
and Auer 's (1993) lower bound of f~(d 2 log n / l o g d) for L C (B O X ~) .

Furthermore most questions concerning the on-line learning complexity of the concept

class

u - k - BoxX : = (cl u . . . u ck I q , . . . , q c Box }

are still open. In particular, it is open whether L C (H - k - B O X ~) = O(poly (log n, d))
for constant k > 2. Even for the special case k = d = 2 it is not known whether
L C (b l - 2 - B O X ~) = O (l o g n) (although there is a positive result with a slightly
larger hypothesis space; see Remark 4.9). Very recently Chen (1993) has shown that
L C (H - 2 - B O X ~) : O(log 2 ~).

6. Acknowledgment

We would like to thank David Haussler for drawing our attention to the problem of efficient
on-line learning of rectangles in arbitrary dimensions. Furthermore we are grateful to two
anonymous referees for their helpful comments.

References

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2, 319-342.

Auer, R (1993). On-line learning of rectangles in noisy environments. Proc. of the 6th Annual ACM Conference
on Computational Learning Theory (pp. 253-261). New York: ACM-Press.

Borgstrom, R.S. & Kosaraju, S.R. (1993). Comparison-based search in the presence of errors. Proc. e~]'the 25th
Annual ACM Symposium on the Theory c~f Computing (pp. 130-136). New York: ACM-Press.

Chen, Z. (1993). Learning unions of two rectangles in the plane with equivalence queries. Proc. of the 6th Annual
ACM Conference on Computational Learning Theory (pp. 243-252). New York: ACM-Press.

Cohen, P.R. & Feigenbaum, E.A. (1982). The Handbook o['Artificial Intelligence, vol. 3, Los Altos, CA: William
Kaufmann.

ON-LINE LEARNING OF RECTANGLES AND UNIONS OF RECTANGLES 223

Dhagat, A., Gacs, P., & Winkler, P. (1992). On playing "Twenty Questions" with a liar. Proc. (~f'the 3rd Annual
ACM-SIAM Symposium on Discrete Algorithms (pp. 16-22). New York: ACM-Press.

Hausster, D_ (1989). Personal Communication.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: a new linear threshold algorithm.
Machine Learning, 2, 285-318.

Maass, W., & Tur~in, G. (1989). On the complexity of learning from counterexamples (extended abstract). Proc
~tthe 30th Annual LE.E.E. Symposium on Foundations (~f Cnmputer Science (pp. 262-267). Los Alamitos, CA:
IEEE Computer Society Press.

Maass, W., & Tuffm, G. (1994). Algorithms and lower bounds for on-line learning of geometrical concepts.
Machine Learning, 14, 251-269.

Maass, W., & Turfin, G. (1992). Lower bound methods and separation results for on-line learning models. Machine
Learning, 9, 107-145.

Pitt, L. & Valiant, L.G. (1988). Computational limitations on learning frmn examples. J. of the ACM, 35,965-984.

Soare, R.I. (1987) Recursively Enumerable Sets and Degrees. Berlin: Springer.

Valiant, L.G. (1984). A theory of the learnable. Comm. of the ACM, 27, 1134-1 t42.

Received October 30, 1992
Accepted October 29, 1993
Final Manuscript November 22, 1993

