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Abstract. When communicating concepts, it is often convenient or even necessary to define a concept approxi- 
mately. A simple, although only approximately accurate concept definition may be more useful than a completely 
accurate definition which involves a lot of detail. This paper addresses the problem: given a completely accurate, 
but complex, definition of a concept, simplify the definition, possibly at the expense of accuracy, so that the 
simplified definition still corresponds to the concept "sufficiently" well. Concepts are represented by decision 
trees, and the method of simplification is tree pruning. Given a decision tree that accurately specifies a concept, the 
problem is to find a smallest pruned tree that still represents the concept within some specified accuracy. A pruning 
algorithm is presented that finds an optimal solution by generating a dense sequence of pruned trees, decreasing in 
size, such that each tree has the highest accuracy among all the possible pruned trees of the same size. An efficient 
implementation of the algorithm, based on dynamic programming, is presented and empirically compared with 
three progressive pruning algorithms using both artificial and real-world data. An interesting empirical finding is 
that the real-world data generally allow significantly greater simplification at equal loss of accuracy. 
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1. I n t r o d u c t i o n  

1.1. Motivation 

W h e n  communica t ing  concepts,  it is often convenient  or even necessary to define a concept  
approximately.  Some general  idea that is s imple and only approximately accurate is often 
more  useful than a completely accurate concept  definit ion which involves a lot of  detail and 
exceptions.  In general,  the problem here is that of  trading the accuracy for simplicity of a 
concept  description. In this respect, a problem of  interest is: given a completely accurate, 
but  complex,  defini t ion of a concept,  s implify the definition, possibly at the expense of 

accuracy, so that the simplified definit ion still corresponds to the concept  well  in general,  
but  may  be inaccurate in some details. This  paper is concerned with the problem of  how to 
do such simplifications when  concepts are represented by decision trees. 

It should be emphasized that our motivat ion for s impl i fying decis ion trees is somewhat  
different from, although not  completely unrelated to, the typical motivat ion for p runing  
decis ion trees when  learning from noisy data (Mingers,  1989). In learning from noisy data 
the assumpt ion  is that the init ially induced large decision tree is inaccurate and appropriate 
pruning  would improve its accuracy. That  is, we hope that after simplification the decis ion 
tree better approximates the target concept.  In our case, however, we assume that a decis ion 
tree is given which correctly represents the concept  in question. The problem then is not  
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the tree's inaccuracy, but its size, which makes it impractical to be communicated to and 
understood by the user. The difficulty is that the overall main idea of the concept is hard to 
discern in a forest of detail. Relevant to this point are Donald Knuth's thoughts which we 
here quote from Michie (1989): 

The programming theorist Donald Knuth once said that to communicate a concept to a student you 
first have to tell him or her a lie. By subsequently working through the qualifications and exceptions, 
the original over-generalization is successively refined. Finally you confess: "What I first said was not 
strictly true. But it got us started!" 

A more direct practical motivation for our work came from multi-attribute decision mak- 
ing. The users there actually requested that the formalized decision knowledge be presented 
at various levels of detail, trading accuracy for simplicity (Rajkovi~ & Bohanec, 1991). The 
higher, grosser levels are useful for quick justification of decisions. In the majority of cases 
the low level detail does not affect the decision at all. This application is discussed in 
Section 5.3 where many real-world decision knowledge bases were used for experimenting 
with the algorithm developed in this paper. 

1.2. A detailed example 

As an example consider the chess endgame with three pieces: White king, White rook and 
Black king (KRK ending for short). Let the concept of interest be the legality of a White- 
to-move chess position with these three pieces on the board. Assume that our description 
language comprises relations like: two given pieces on the same file, two pieces next to 
each other, etc. The concept of position legality is then to be defined in terms of these 
relations. This problem has been used by several authors in Machine Learning experiments 
(Michie, et al., !989; Muggleton & Feng, 1990; Quinlan, 1990; Bain & Muggleton, 1991; 
Lavra6 & D~eroski, 1991; Pazzani & Brunk, 1991; D~eroski & Bratko, 1992). There tile 
problem was to induce a definition of the concept of legality by a learning progam from 
eXamples of legal and illegal positions. 

Figure 1 shows four such examples of KRK positions. Positions (a) and (d) are legal and 
the remaining two are illegal. Basically, according to the rules of chess a KRK position 
with White to move is illegal if the Black king is under attack. In position (b), the White 
king attacks the Black king, and in position (c) the White rook attacks the Black king. A 
rook attacks along a file or a rank, so an attempt to define illegality due to White rook attack 
on Black king could be:- 

if White rook and Black king are on the same fiIe or rank 
then the position is illegal. 

However, position (d) is an exception to this rule because White king interposes the rook's 
line of attack. 

Let Wig, W R  and Big  denote the position of White king, White rook and Black king, 
respectively. Let WR~ denote White rook rank, and W R y  White rook file, and similarly 
BK~ and B K f  for Black king. So, for example, the position W R  of White rook is a pair: 

w R  = ( w ~ ,  wRj.),  1 _ wR~ _< 8, 1 _< wR~ < 8 
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(~) (b) 

(¢) (d) 

Figure 1. Examples of KRK positions, White to move. Positions (a) and (d) are legal, (b) and (c) are illegal. 

Figure 2 shows a definition of the legality concept in the form of a decision tree. This 
tree decides between the legality and illegality depending on the positions W K ,  W R  and 
B K .  The meaning of the tests that appear in the internal nodes of the tree is: 
W K  ~ B K :  White king's position is approximately equal to Black king's position, that 
is: 

IWKs - B N f l  <_ 1 /x  IwK~ - B N ~ I  <_ 1 

In such a situation the kings attack each other or they are on the same square. 
W R f  = B K f :  White rook attacks Black king along a file. 
W R r  = BKr:  White rook attacks Black king along a rank. 

The conjunctive condition: 

( w R s  = BKs) A ( W R s  = WKs) A (WR~ < WK~ < XKr) 

describes positions in which the White king interposes the rook's attack on Black king. 
Figure 3 shows the same decision tree pruned to various degrees as indicated by the 

dotted cross-lines. The numbers attached to these lines show the accuracy (in percent) of 
the remaining part of the tree after the tree has been pruned below the line and the thus 
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Figure 2. A decision tree that defines the concept of KRK-legality. The left branches correspond to positive 
outcomes of the tests. 
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Figure 3. Pruning the KRK-legality tree to various sizes and corresponding degrees of accuracy. At each leaf, the 
number of corresponding positions is shown. 

resulting new leaf-nodes have been assigned the majority decision (legal or illegal). Notice 
that the simplified tree with just four leaves (or seven nodes in total) still correctly classifies 
98.45% of all the positions (in total, there are 643 = 262144 positions). The tree with five 
leaves is 99.57% correct. 
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Figure 4. Accuracy vs. size in representing the KRK-legality with pruned decision trees. 

The series of pruned trees indicated in Figure 3 are optimal in the sense that they optimize 
the accuracy within given size. For example, the tree with five leaves (nine nodes, 99.57% 
accuracy) indicated in Figure 3 with the emphasized pruning line is the most accurate tree 
among all possible pruned trees of the same size. Figure 4 relates the size of the optimal 
pruned tree and its accuracy. 

The point illustrated by this example is that nine nodes (including leaves) are sufficient 
to represent the concept almost completely, and the remaining 12 nodes to the full-sized 
tree only account for less than 0.5% of the total accuracy. Therefore, to communicate the 
concept of KRK legality in an economic and still rather accurate manner, Figures 2 and 3 
suggest that only the upper seven or nine nodes be used. 

1.3. Related work 

The idea of simplifying a concept description to improve its comprehensibility is related to 
Michalski's two-tiered representation (Miehalski, 1990) where a complete and consistent 
concept description, in the form of rules, is simplified by a special procedure to maximize 
a description quality measure at the possible expense of accuracy. Accuracy is restored by 
the second tier when "flexible matching" takes place. A related idea is also discussed by 
Michie (1989) when the "base case" of concept specification represents a point of view. 
It is typically very approximate and is refined by adding exceptions (approach known as 
"exception programming"). Ripple-down rules (Compton & Jansen, 1988; Catlett, 1992) 
are based on a similar idea. 

In this paper, the representation used is decision trees and the simplification mechanism 
is tree pruning. The description quality measure to be optimized is the accuracy of the 
simplified tree. In this sense, our work is related to the important family of learning 
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systems that perform induction of decision trees (Quinlan, 1986). These systems, such 
as ID3 (Quinlan, 1979, 1983), C4 (Quinlan, 1987), CART (Breiman, et al., 1984) and 
ASSISTANT (Cestnik, et al., 1987), develop decision trees from sets of examples. An 
approach perhaps closest to ours is Breiman, et al.'s (1984) error-complexity pruning. They 
weigh the relative importance of error and of complexity, and minimize, by pruning, a 
combined cost measure (weighed sum of error and size of decision tree). Our formulation 
is somewhat different: given error threshold, minimize the size. Similarly to Breiman, et 
al., error in our work can be viewed as their "resubstitution error". 

It is well-known that pruning of decision trees is an effective method for dealing with 
noisy data (Breiman, et al., 1984; Niblett & Bratko, 1986; Niblett, 1987; Bratko, 1989; 
Mingers, 1989). Initially, a full-sized tree covering all the learning examples, including 
errors, is created. Unreliable branches of the tree are then removed. 

In this paper, in contrast with learning from noisy data, the initial, unpruned decision 
trees will be assumed completely correct. No assumption is made regarding the way the 
unpruned tree is obtained. It may result from induction from examples, but this is not 
necessary; the tree may be obtained in ways other than induction. If induction is involved, 
then the unpruned tree is as if induced from reliable data defining the relation between 
attributes and classes completely. The representation of the concept is detailed and totally 
accurate. 

The goal of pruning here is not to eliminate noise, but to simplify the description to 
make it easier to understand, communicate or explain. Accordingly, our goal could also be 
described as summarizing data with decision trees. When the tree is pruned, some details 
are eliminated, resulting in a smaller but less accurate description. A sequence of smaller 
and smaller trees can be generated, representing knowledge at varying levels of detail and 
accuracy. Such representations can be particularly useful in the acquisition and refinement 
of knowledge for expert systems (Rajkovit, et at., 1988), or in presenting ("explaining") 
knowledge to people (Bohanec, et al., 1988; Bohanec & Rajkovi6 1988; Bohanec 1990). 
One can expect that the pruning of decision trees improves the comprehensibility particularly 
in problem domains where a small decrease of accuracy is accompanied by a large reduction 
of size. 

This paper develops and analyses algorithms for obtaining the smallest pruned decision 
trees that represent concepts within some chosen accuracy. In the following section, basic 
concepts of decision trees and pruning are introduced. Section 3 formally defines the 
problem of optimal pruning and presents an algorithm for its solution. The algorithm is 
compared with three progressive pruning algorithms that are described in Section 4. The 
results of empirical measurements are presented in Section 5 and summarized in Section 7. 
Section 6 is a note about pruning with the algorithm in noisy domains. 

2. Formalizing the problem in terms of tree pruning 

We will here formalize our approach in the usual terms of attribute-based learning. Let there 
be a set of examples 8. Each example is an attribute-value vector accompanied by a class 
value. The example set is assumed consistent in the sense that each attribute-value vector 
in g corresponds to exactly one class. Mathematically, the set £ can be viewed as a tabular 



TRADING ACCURACY FOR SIMPLICITY 229 

DATA SET DECISION TREE PRUNED TREE 

ACCURACY- 
PRESERVING / 

(ID3  / -U 2 a 

accuracy: a(To) = 100% a(T.) > it 
size: s(To) minimal size s(T. ) 

Figure 5. A two-stage approach to represent concepts by pruned trees 

representation of a function that maps attribute-value vectors into the set of classes. There 
is no requirement that g covers the entire attribute space, so this function specification is 
partial. 

The set g can be represented by a decision tree To. The internal nodes of the tree 
correspond to attributes, the branches of the tree are labeled by the corresponding attribute 
values, and the leaves are labeled by classes. All the examples from £ can be reconstructed 
from To in the sense that To correctly classifies all the examples from g. We therefore 
say that To has 100% accuracy. To can be constructed from £ by a usual tree induction 
algorithm without pruning, such as ID3 (Quinlan, 1986). See the compression stage in 
Figure 5. 

For a large set g, To will typically be large, which will affect its readability. For the 
reason of comprehensibility, we are interested in smaller trees. Pruning To, producing T 
(the pruning stage in Figure 5), will have two effects: (1) the size of the tree is reduced 
(a desirable effect), and (2) the accuracy will decrease (an undesirable effect). Note that 
here the accuracy is measured with respect to the data set £ ("resubstitution accuracy" of 
Breiman, et al., 1984). The question is how to reduce the size as much as possible whereby 
losing as little accuracy as possible. 

More formally, the goal of the pruning stage is to find T., a smallest pruned tree whose 
accuracy a(T.)  is not lower than some given level of accuracy a. T. is referred to as an 
optimal pruned tree. 

An algorithm for finding T, is developed in Section 3. This section continues with some 
additional definitions of pruning, pruned trees, involved measures and their properties that 
are used in the algorithm. 
Pruning. The pruning stage begins with tree To and proceeds by pruning To at some chosen 
nodes. Pruning at node p is done by replacing the subtree rooted at p with a leaf. The 
newly created leaf is labeled with the class that maximizes the accuracy; this is the majority 
class of the subset of £ that corresponds to p. A tree that remains after a series of such 
replacements is referred to as a pruned tree of To. 
Measures. There are three measures on decision trees involved in pruning: size, error 
frequency and accuracy. They are defined as follows: 

* size, s(T),  is equal to the number of leaves of T, 
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error frequency, e(T), is the number of examples from E that are misrepresented by T 
(we say an example is misrepresented if it is incorrectly classified by T), and 

accuracy, a(T),  is defined as the proportion of examples from g that are correctly 
classified by T: 

a(T) : 1 e(T) 
E (1) 

where E is the number of examples in g. 

Property 1. The error frequency increases with pruning or remains unchanged. 

Proof: Let x be any node of T. Let gx denote the subset of examples corresponding to 
x, Ex the size of gx and mx the number of examples in g~ belonging to the majority class. 

Consider a subtree rooted at node p. Denote with 12 the set of its leaves and recall that the 
subsets £e, g c /2 ,  form a partition of£p. Each leafg E/2 correctly represents me examples 
form ge, so the whole subtree correctly represents ~--~eeL me examples from gp. 

After T is pruned at p, the newly created leaf correctly represents mp examples from gp. 
Consequently, the difference in error frequency after and before the pruning is 

: - m.) -  (Ee - me) : m e  - (2) 

gEL gEE 

When some class c is the majority class in gp and in all the subsets ge, then m p =  ~ me, 
so rp(T) = 0. On the other hand, when there is at least one leaf with a majority class other 
than c, then mp< ~.  me a n d  rp(T) > O. • 

Note that Property 1 implies that the accuracy (1) decreases with pruning or remains 
unchanged. 

Property 2. Disjoint subtrees o f t  are mutually independent with respect to rp(T). That 
is, rp(T) only changes if the subtree rooted at p changes. 

Proof: Notice in (2) that rp(T) depends only on node p and its descendants, but not on 
the rest of the tree. Consequently, rp(T) remains unchanged after pruning a subtree of T 
that is disjoint to the subtree rooted at p. • 

3. Optimal pruning algorithm 

The task of an optimal pruning algorithm is to find 
with given: 

1. initial decision tree To whose accuracy a(T0) = 1, and 

2. required minimal accuracy of the pruned tree g E [0, 1]. 

an optimal pruned tree T, 
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T, is a smallest pruned tree of To that satisfies a(T,) >_ 5. If there are multiple solutions, 
it will be considered sufficient to find one. 

This task may seem straightforward. One can design, or select from the available ones 
(Mingers, 1989), an algorithm that progressively selects branches of To and prunes them 
until the overall accuracy becomes lower than 5. However, algorithms of this type fail to 
find an optimal pruned tree for some values of &; the resulting tree may not be the smallest 
one, as illustrated in Section 5. In order to achieve optimal solutions, a specialized algorithm 
is needed for this specific task. Such an algorithm is gradually developed in this section. 
We first introduce the concept of optimal pruning sequences as the basis for the algorithm. 
This is followed by the description of the algorithm's data structures and procedures, and 
illustrated by an example. Finally, a theoretical analysis of the algorithm's time complexity 
is carried out. 

3.1. Optimal pruning sequence 

An approach to optimal pruning was suggested by Breiman, et al. (1984, p. 65). In this 
approach, a sequence of increasingly pruned trees of To is constructed 

To, T~, r 2 ,  . . . ,  T~ (3) 

such that 

1. n = s( :ro)  - 1, 

2. the trees in the sequence decrease in size by one, i.e., s(T~) = s(To) - i for i = 
0, 1 ,  . . . ,  n (unless there is no pruned tree of the corresponding size), and 

3. each Ti has the highest accuracy among all the pruned trees of To of the same size 
(therefore sequence (3) is called optimal pruning sequence). 

In other words, this is a "dense" sequence of optimal pruned trees with respect to the number 
of their leaves. Note that in the case of a non-binary tree it might be impossible to prune To 
so that the resulting tree would have, say g leaves. In this case, the corresponding element 
Ts(%)-e is undefined. 

Given d, the optimal solution T. can be easily found in (3): simply, take Tk, the smallest 
tree in the sequence such that a(Tk) >_ &. 

The problem is how to construct an optimal pruning sequence efficiently in polynomial 
time with respect to the size of To. An extensive search of all pruned trees of To is unfeasible, 
since their number grows extremely fast with tree size. Even with small trees of, say, 10 
internal nodes there might be too many pruned trees to cope with. For example, in a 

complete binary decision tree whose leaves are all at level h, there are [b 2h ] pruned trees, 
where b - 1.5028 and Ix] the nearest integer less than x (Breiman, et al., 1984, p. 284). 
There is an even larger number of distinct sequences of pruning To up to the root. 

When suggesting the above approach, Breiman, et al. (1984) stated that an efficient algo- 
rithm exists for the construction of optimal pruning sequences. Unfortunately, they did not 
present the algorithm; they rather adopted another method called minimal cost-complexity 
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pruning (presented here in Section 4). In fact, Leo Breiman (Private Communication, De- 
cember 1990) did implement such an algorithm for optimal pruning; he was satisfied that it 
worked, but no further development was done, and the algorithm was not published. Here 
we present an independently developed optimal pruning algorithm. 

3.2. Data representation 

A sequence of pruned trees of T will be represented by a structure S = (R, P) .  R and P 
are arrays of integers and sets of nodes, respectively. The elements are denoted R[i] and 
P[i], where i = 0, 1, . . . ,  n. The interpretation of S is as follows: 

• each element of S, S[i] = (R[i], P[i]), represents a pruned tree of size s (T )  - i; 

• P[i] contains the set of nodes at which T was pruned; 

• R[i] is equal to the increase of error frequency, r (T) ,  that occurs when the nodes from 
P[i] are replaced by leaves. 

Since the error cannot decrease with pruning (Property 1), R[i] < 0 is used denote that T 
cannot be pruned by i leaves. Note that R[0] is always 0, since there is no additional error 
when T is left unchanged. 

3.3. Algorithm (OPT) 

The goal of the optimal pruning algorithm (OPT) is to construct an optimal pruning sequence 
S0 for decision tree To. The construction is recursive in that each subtree of To is again a 
decision tree with its own optimal pruning sequence. The algorithm starts by constructing 
sequences that correspond to small subtrees near the leaves of To. These are then combined 
together, yielding sequences that correspond to larger and larger subtrees of To, until So is 
finally constructed. 

A single leaf is a smallest subtree of To. It cannot be pruned at all. Consequently, the 
corresponding pruning sequence contains only that single leaf. 

A somewhat larger tree T consists of a single node and k leaves (Figure 6a). This tree 
can be pruned only at the root. The pruned tree is of size I, meaning that the size decreased 
by k - 1. Consequently, the pruned tree is Te-1 in sequence (3). When pruned, the error 
increased by ro (T) according to (2). Therefore, the sequence S' can be constructed such 
that P[k - 1] = {0} and R[k - 1] = ro(T) .  The elements from R[1] to R[k - 2] should 
be assigned some negative value since they represent non-existing pruned trees of T. 

When dealing with larger trees, OPT recursively combines optimal sequences of their 
subtrees. To illustrate one level of such combining, consider a general decision tree To that 
consists of a root and k subtrees, possibly leaves (Figure 6b). At this stage, optimal pruning 
sequences $1, $2, • • •, Sk that correspond to the subtrees are already known. They should 
be combined together to yield So, the sequence that corresponds to To. 

There are two observations that lead to the combining part of the algorithm. First, subtrees 
1, 2, . . . ,  k (Figure 6) are disjoint and, according to Property 2, independent with respect 
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~: 0 b: 0 

1 2 k 

$1 $2 Sk 

Figure 6. Two decision trees to illustrate optimal pruning. 

to pruning. For example, if a part of subtree 1 is pruned, the error changes by the same 
amount regardless of any previous pruning in, say, subtree 2. Once both parts have been 
pruned, the total error equals to the sum of the partial errors. Consequently, the sequences 
S~ are mutually independent; there is no need to change them when combining them into 
so. 

The second observation is that a tree can be pruned to a given size by several combinations 
of the pruning of its subtrees. For example, prune To so that its size is reduced by two. 
This can be achieved by reducing the size of subtree 1 by two according to its optimal 
sequence. Another try might be to reduce the size of subtrees 1 and 2 by one. Among all 
such combinations, the one that minimizes r(To) should be chosen and assigned to S012]. 
A similar combinatorial search for the remaining sizes could be used to obtain the elements 
of $0. 

Such a combinatorial task can be efficiently implemented by dynamic programming (see 
for example Sedgewick, 1983). So can be obtained iteratively by combining two sequences 
in each iteration. This iterative combination can be justified as follows. Let Tij denote any 
pruned tree in sequence Si. To optimally prune To to a given size s, find a combination of 
its subtrees T1j1, T2j2, •. •, Tkj~ that minimizes the total error of these subtrees: 

min (e(Tljl) + e(T2j2) + - - -  + e(Tkj~)) 
s(T~51)+s(T2j2)+...+s(Tkjk)=8 (4) 

Note that the restriction on the subtrees is that their total size be equal to s. 
Expression (4) can be optimized iteratively by combining optimal sequences for subtrees 

1 and 2 into an optimal sequence for a fictitious tree composed of these two subtrees, and 
using this sequence in place of the first two terms in the sums for size and error. 

The complete algorithm is shown in Figure 7. Procedure OPT takes To and constructs 
the corresponding sequence So. In step 1, So is initialized by inserting To into the sequence 
(steps 1.1 and 1.2) and assuming that the remaining elements are empty (step 1.3). Step 2 
performs the majority of tasks discussed so far. For each subtree of To, the corresponding 
sequence Si, is first constructed recursively by OPT (step 2.1). In step 2.2, So is combined 
with Si, yielding the optimal sequence with respect to pruning subtrees 1, 2, . . . ,  i. Finally, 
pruning of To at the root is added to So in step 3. 
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Procedure OPT(To,  So): 

1, Initialize So: 
1.1. Po[O l := empty set; 
t.2. R0[0] := 0; 
1.3. for  i ¢. [1,hi do  Ro[i] := - 1 ;  
2. t b r  i 6 [1,k] do  

b e g i n  
2,1. OPT(subt ree  i, Si); 
2.2. Combine(S0, 5'/, So); 

end ;  
3. i f ,  > O t h e n  

b e g i n 
3.1, P0[n] := {root of T0}; 
3.2. /~0[n] := to(T0); 

end .  

{ construct opthnal  pruning sequence So of 7b } 

{ for subtrees of To } 

recursively construct Si } 
combine So and ,5'i into So } 

if Tel is not a single leaf } 
add pruning at the root, } 

Procedure Combine(S', S", S): 

1. 
2. 
2.1. 

2.1.1. 
2.1.2. 
2.I.3. 

2.1,3.1. 
2.1.3.2. 

{ combine sequences S t and S// into S } 

Initialize S as in step 1 of OPT; 
for i E [0,1ength(S')] su& that /~ ' [ i ]  >_ 0 do  

fo r  j E [0,Iength(S'r)] such that  R'[i] >_ 0 do 
begin 

s := i + j ;  { combined reduction of size } 
r := R/[i] + /~ 'q j ] ;  { combined error } 
i f  R[s] < 0 o r  r < R[s] t h e n  

begin 
s[~I := P'[il U P " F ] ;  
R[~] := r; 

end ;  
e n d .  

Figure 7. Algorithm for constructing optimal pruning sequences. 

Procedure Combine takes two sequences, S t and S", and combines them into one, S. 
All existing pairs St[i] and S'[j] are considered in a double loop. Each pair represents a 
situation where i and j leaves are optimally pruned from the subtrees that correspond to S t 
and S 't, respectively. When St[i] and S'[j] are applied together, the size of  7b decreases 
by s = i + j and the error increases by r = R'[i] + R'[j]. The combination is recorded 
in S' (steps 2A.3.1 and 2.1.3.2) when it represents a new solution (R[s] < 0) or has lower 
error than any of the previously considered combinations (r < R[s]). 

Note that it is possible to implement Combine more efficiently without introducing a new 
sequence S, but rather updating So directly (in place) based on Si and previous values of  
So. This can be achieved by the reorganization of the two loops. However, this results in a 
somewhat larger and less understandable program. Also, space can be economized in OPT 
by using the same local array for all Si variables. 
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Figure 8. Sample decision tree To with shown increase of error rp (To). Dotted lines indicate optimal pruning to 
various degrees of error e. 

3. 4. Example 

To illustrate the construction of an optimal pruning sequence, take a decision tree To shown 
in Figure 8. Only the most relevant information is shown: the nodes are labeled with letters 
and rp(To) is given for each node. To recall, rp(To) represents the number of examples 
that become misrepresented when To is pruned at p; it follows from (2). In Figure 8, leaves 
are presented only for the purpose of determining subtree size. 

The construction of the optimal pruning sequence that corresponds to node A, SA, pro- 
ceeds recursively from the bottom to the top of To. Therefore, the subtree rooted at node E 
is considered first. This subtree can be pruned only at the root. When pruned, three leaves 
are removed, but one new leaf appears. The size is therefore reduced by two leaves. In 
addition, the error increases by 1. The corresponding sequence SE therefore consists of 
only one entry SE [2] such that RE [2] = 1 (error) and PE [2] = {E} (place of pruning). This 
is obtained by steps 1 and 3 of OPT (Figure 7). The result, SE, is denoted as follows: 

SE = [2: (1;E)] 

The sequences that correspond to the remaining small subtrees, rooted at nodes F to I, are 
constructed similarly: 

SF = [2: (1;F)] 
sG : [1: (1; G)] 
SH : [1: (1;H)] 
~-'QI = [1: (1; I)] 

As soon as SE and S F are  known, they are combined, giving SB,  the sequence that corre- 
sponds to the subtree rooted at node B. All the combinations of the elements of SE-and SF 
are considered by the Combine procedure (Figure 7). The combinations are the following: 
pruning at E, pruning at F, and pruning at both E and E The first two result in the same 
reduction of size, so the one that minimizes rp(To) should be chosen. Since they are equal 
in this case, pruning at F appears in the solution (the selection depends on the loops of 
Combine). Finally, OPT adds pruning at the root B (step 3), giving 
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Table 1. Optimal sequence of pruning the tree in Figure 8. 

size s [leaves] error e accuracy a [%] pruned at nodes 

14 1 94.44 1 
13 1 94.44 F 
12 1 94.44 D, H 
11 2 88.89 D 
10 2 88.89 D, F 
9 3 83.33 D, E H 
8 3 83.33 C, D 
7 4 77.78 B, D 
6 4 77.78 C, D, F 
5 6 66.67 B,D,G,H 
4 5 72.22 C, D, E, F 
3 6 66.67 B, C, D 
2 
1 11 38.89 A 

SB = [2: (1;F)  4 :  (2;E,  F) 5 :  (3;B)] 

Similarly, Sc  and SD are obtained: 

Sc  = [1: (1;H) 2 :  (2;G,  H) 4 :  (2;C)] 
SD = [1: (1;I) 3 :  (1;D)] 

In order to find the final solution SA, the algorithm first combines SB and Se,  giving 

SA (intermediate) = 
[1: (1;H) 2 :  (1;F)  3 :  (2;F,  H) 4 :  (2;C) 5 :  (3;B) 
6 :  (3;C, F) 7 :  (5;B, G, H) 8 :  (4;C, E, F) 9 :  (5;B, C)] 

The final pruning sequence SA is obtained by combining the above intermediate SA with 
Sin. The result is interpreted in Table 1. The sequence is dense with respect to size; pruned 
trees of  all sizes are available, except for the size of two which can not be obtained at all. 

The accuracy column in Table 1 is obtained using equation (1), where the total number 
of  examples E equals to 18. In general, the accuracy decreases with pruning, but there is 
an exception at size s = 4. Note that this exception does not contradict Property 1; the tree 
at s = 4 is n o t  a pruned tree of the tree at s = 5, but rather of the one at s = 6. In the latter 
case, the accuracy did decrease in accordance with Property 1. 

The sequence in Table 1 illustrates an interesting property of  optimal pruning sequences, 
which was already observed by Breiman, et al. (1984): the sequence is not necessarily 
formed by a progressive upward pruning. Some branches that were previously removed 
may reappear in the sequence. For example, the subtree rooted at node F is pruned at 
s = 13, but it reappears in the sequence at s = 12, 11 and 8. Some other examples can be 
found in Table 1 as well. 
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3.5. Time complexity 

To analyze time complexity of OPT with respect to the size of To, consider a complete k-ary 
decision tree of depth A + 1 (A can be interpreted as the number of attributes in ID3-1ike 
decision trees). This means that each node has exactly k-descendants and all the leaves 
appear at level A (assuming that the root is at level 0). The number of leaves is s = k a. 
More generally, the number of nodes at level d is n d =  k a and a subtree rooted at level d 
has Sd = k A - d  leaves. 

In the analysis we assume that To has already been built and that the error differences, 
rp(To), are known for all nodes (they are easily obtainable in the tree development stage). 
Time complexity is measured by the number of comparisons in the innermost loop of 
Combine (step 2.1.3). Given two sequences of lengths L t and L", Combine makes at most 
(L' + 1)(L" + 1) such comparisons. 

The number of comparisons needed to construct a sequence that corresponds to one node 
depends on the level of that node in the tree. Consider a node at level d. The corresponding 
partial sequence So is gradually developed by combining So with sequences Si whose 
length is L = sk-  1 - 1. Initially, the length of So is 0, but it increases by L after each step. 
Consequently, the number of elementary comparisons needed to construct one sequence is 
at most 

k--1 

i=0 

= Sd-1 ( k  + (Sd-t -- 1) ( k -  1 ) ( k -  2 2)) 
~- 0 ( k 2 8 ~ _ 1 )  

= o(4). 

Therefore, the time spent for each node is proportional to s~. 

In order to construct the final sequence, OPT recursively visits each internal node exactly 
once. There are na nodes on each level d; OPT visits all levels from 0 to A - 1, but 
skips the leaves at level A. Consequently, the total number of elementary comparisons is 
proportional to 

A-1 
E T~dS2d = 
d=O 

E kdk2(A-d) = E k2A-d 

= k A + l  E kd = k A + l  kA -- 1 
k - 1  

= O ( k  2A) 
= O(s2) .  

In summary, the time complexity of OPT is quadratic with respect to the number of leaves 
of To. 
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4. Progressive pruning algorithms 

In this section we compare OPT with other pruning algorithms that generate sequences of 
progressively pruned trees. We call these algorithms progressive pruning algorithms and 
consider the following three of them: 

1. GREEDY; a simple progressive pruning algorithm, defined below, 

2. MCC0: the so-called minimal cost-complexity pruning algorithm that was developed 
by Breiman, et al. (1984) and used in their CART system, and 

3. MCC1 : a derivative of MCCo. 

4.1. Basic concepts 

The progressive pruning algorithms share several characteristics. They construct a sequence 
of smaller and smaller pruned trees of To: 

To, T1, T2, . . . ,  Tm (5) 

Basically, the sequence is similar to OPT's (3). However, sequence (5) is formed by a 
progressive pruning of To, meaning that each subsequent tree in the sequence is obtained 
from its predecessor by removing one or more subtrees. Put another way, pruned trees in 
the sequence are nested. As a consequence of this, the accuracy of the trees in the sequence 
decreases monotonically. Another difference is that the size of trees usually decreases faster 
than in OPT. 

The three algorithms are iterative. First, they take To as a current pruned tree, T, which 
is then pruned by iterating the following three steps: 

1. select a node p of T; 

2. prune T at node p; 

3. if T meets requirements, then append T to sequence (5). 

The steps are repeated until To is pruned up to the root or the accuracy of T falls below 
threshold & 

The algorithms differ in steps 1 and 3. In step 1, each algorithm applies its own selection 
criterion that determines the node to be pruned next. Similarly, different requirements are 
used in step 3 to decide whether to make T a member of the sequence or not. 

4.2. Simple progressive pruning (GREEDY) 

GREEDY is probably the simplest and most intuitive algorithm that can be designed for 
finding small pruned trees of high accuracy. While pruning, it simply follows the rule: keep 
accuracy high and size low. Therefore, the following criteria are used in GREEDY: 
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Table 2. A pruning sequence of 
GREEDY. 

size accuracy selected node 

12 94.44 D 
10 88.89 E 

8 83.33 F 
7 77.78 B 
6 72.22 G 
3 66.67 C 
1 38.89 A 

The selection is based on the increase in error with respect to the current tree, rp(T); 
the node p that minimizes rp(T) is selected. If  there are several such nodes, the one 
that is the root of the largest subtree is taken. 

The requirements are null, meaning that each pruned tree is added to 
the sequence. 

Example: Table 2 shows the sequence obtained by GREEDY when pruning the tree from 
Figure 8. In the first iteration, the node D was selected for pruning due to its small error 
(rD (T) = 1) and large subtree (4 leaves). The process continued by choosing nodes E and 
F (error 1, size 3). After the subtrees E and F had been pruned off, the error difference 
of the parent node B with respect to the current tree decreased from 3 to 3 - 2 x 1 = 1. 
Consequently, the node B was chosen for pruning in the next step. The rest of the sequence 
was obtained in a similar way. 

In comparison with the pruning sequence of OPT (Table 1), the GREEDY's one is about 
half its length, so the density of the generated trees with respect to size is lower. Additionally, 
there is a pruned tree of  size 6 in the sequence (underlined in Table 2) whose accuracy 
(72.22%) is lower than the accuracy of the optimal tree of the same size (77.78%). The 
sequence of  GREEDY is therefore suboptimal. [] 

4.3. Minimal cost-complexity pruning (MCC) 

Breiman, et al. (1984, pp. 66-71) have developed a more sophisticated method of progres- 
sive pruning, called minimal cost-complexity pruning. It was made a part of  their CART 
system. In (Mingers, 1989), this method is referred to as error-complexity pruning. 

MCC takes into account classification error costs that are obtained as follows. The error 
cost of node p is defined as the proportion of  examples from g that are misclassified at node 
p. Using the notation of Section 2, the error cost equals to 

R p -  rp(T) 
E (6) 
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Table 3. Pruning sequences of MCCo 
(marked with *) and MCC1 (all). 

size accuracy selected node 

* 12 94.44 D 
10 88.89 E 
8 83.33 F 

* 4 72.22 C 
* 3 66.67 B 
* 1 38.89 A 

Let Tp be a subtree rooted at node p of  T. Then, the error cost of the subtree, R(Tv), equals 
to the sum of error costs of  its leaves. 

When pruning a tree, MCC extends the error measure R(Tp) by adding a complexity cost  
of  Tp: 

R (Tp) = R(Tp) + (7) 

Here, ~ is the cost of an additional leaf in the tree, and sp is the number of leaves of  Tp. 
The pruning method now works as follows. For each ~ > 0, a pruned tree is found that 

minimizes the total cost. When c~ is small, the additional cost for each leaf in the tree is 
small too, so the pruned tree will be large. On the other hand, with sufficiently large c~, the 
size will prevail over the error and, consequently, the tree will be pruned up to the root. 

Although c~ runs through a continuum of values, only a finite number of  solutions exist. 
They can be found by a progressive pruning algorithm (Breiman, et al., 1984, p. 69 and 
294). The algorithm fits well into the general schema presented above. In each iteration, a 
node p is selected that minimizes 

R(T ) ,-p(T) 
o ~ ;  - - ( 8 )  

sp - 1 E(sp - 1) 

The original version of MCC puts a special requirement on whether the current tree should 
be added to the sequence or not. Namely, (Xp generally increases with pruning, but may 
remain constant in some iterations. A tree is added only when ap  has increased (Breiman, 
et al., 1984, p. 70). Here, this version of MCC is referred to as MCC0. 

The above requirement makes sense in the context of learning from noisy data which was 
the purpose of this algorithm. However, for our purpose the requirement is unsuitable as 
it makes the sequences more sparse than necessary. For this reason, a modified version of 
the algorithm was tested as well that imposes no restrictions on the generated pruned trees. 
This version is refer redto  as MCC1. 

MCC generates pruned trees that have an important property (Breiman, et al., 1984, p. 
71): each tree is optimal with respect to size. This means that no other pruned tree of  the 
same size exists whose accuracy would exceed the one obtained. Notice in (8) that when 
Sp is fixed, both MCC and OPT minimize the same measure. 

Example: Take again the tree of  Figure 8 and prune it with MCC0 and MCC1. The result 
is shown in Table 3. The whole sequence corresponds to MCC1. Only six pruned trees 
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were generated. However, they are all optimal with respect to size (compare with Table 1). 
The trees generated by MCC0 are marked with an asterisk in Table 3. Two trees of MCC1 
were skipped, resulting in the sequence of only four trees. [] 

4.4. Complexity of progressive pruning algorithms 

The most time-consuming step in progressive pruning algorithms is the selection of the 
next no~e to be pruned. In MCC (Breiman, et al., 1984, pp. 293-296), the search proceeds 
as follows. In each internal node of the tree, the algorithm maintains the current value of 
the minimal C~p (8) that appears in the subtree rooted at that node. Starting at the root, the 
algorithm follows the path of minimal such values until it locates the node. A node at level 
d is found in d steps. After the tree has been pruned, the algorithm spends additional d 
steps to update the path from the node up to the root. A similar approach can be used to 
implement the search in GREEDY. 

In the worst case, all internal nodes have to be visited in this way. Using the notation 
from Section 3.5, in a balanced tree the pruning takes time proportional to  

A-1 

2dnd : 2dk : O ( A k  A) : O( log s) 
d=l  ~\ 

However, whenthe tree is totally unbalanced (i.e., linear), this approach may take up to 
0 @  2) steps. Consider a linear k-ary tree of depth A. It contains A internal nodes and 
s = A(k - 1) + 1 leaves. Each level from 1 to A - 1 contains exactly one internal node. 
Thus, the time needed~o prune the tree is at most 

A-1  

Z 2ii : ( A  - 1 ) ( A  - 2) : O ( A  2) : 
d=l  

Therefore, the worst case time complexity of progressively pruning a tree with s leaves is 
between O(s log s) and O(s2), depending on the degree of balance in the tree. 

5. Empirical comparison of the algorithms 

The four pruning algorithms (OPT, GREEDY, MCCo and MCC1) were empirically tested 
on artificial and real-world data. The experimental procedure and obtained results are 
presented in this section. 

5.1. Experimental procedure 

According to the approach of Figure 5, a decision tree was developed by ID3 from each set 
of examples. The tree was then independently pruned by the four algorithms. In all cases, 
the threshold ~ was set to 0, so the complete sequences of pruned trees were constructed. 
In each sequence, the accuracy of pruned trees was observed with respect to their size. 
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Figure 9. A sample measurement of two pruning sequences, 

An example of one such measurement is shown in Figure 9. Two pruning sequences are 
shown. The first one, consisting of points shown by [], is optimal. Note that the accuracy 
does not strictly increase with size. The second sequence is suboptimal and contains less 
trees than the first one. 

Two additional adjustments were applied to each sequence in order to: 

• make optimal pruning sequence monotone with respect to size, and 

• make all sequences comparable with each other regardless of their density. 

By the the first adjustment, we remove from the sequence each tree whose accuracy is 
lower than the accuracy of a smaller tree in the sequence. When all such trees are removed, 
the sequence becomes monotone. The second adjustment generalizes the accuracy of a 
sequence over all sizes. When the accuracy is undefined at some size, the accuracy of the 
first smaller tree is assumed there. 

The two adjustments result in accuracy as a monotonically increasing function of size 
(line plots in Figure 9). The accuracy is defined for each size, so various measurements 
can be compared or averaged regardless of the density of the initially obtained pruning 
sequence. 

5.2. Experiments using artificial data 

The objective of the first experiment was to observe and compare the average (expected) 
performance of the four algorithms under well-controlled conditions. Therefore, prob- 
lem domains of various dimensions were constructed artificially. The dimensions were 
determined by: 
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Figure 10. Average accuracy in pruning sequences 
(artificial domain witl£ A = 3, M = 4 and N = 3). 

• A: number of attributes (varied in the range from 2 to 5), 

* M: number of classes (2 to 5), and 

• Ni: number of values of the i-th attribute (2 to 4); denoted simply by N when all the 
attributes have the same number of possible values. 

In each domain, 100 sets of examples were randomly generated such that 

• the examples completely and consistently covered the problem domain, and 

• the probability distribution of classes was uniform. 

For each domain, 100 corresponding decision trees were developed by ID3 and indepen- 
dently pruned by OPT, GREEDY, MCC0 and MCC1, and the accuracy of the obtained 
pruning sequences was averaged. 

Figure 10 shows the accuracy of pruning sequences that were obtained in a 
domain defined by three three-valued attributes and four classes. In this domain, MCC0 
performed inferior to the remaining three algorithms. Since MCC guarantees to generate 
trees that are optimal with respect to size, the only reason for such performance is the 
sparsity of sequences; the number of generated trees was too small. A qualitatively similar 
behavior of MCC0 was observed in the remaining experiments. As it was actually designed 
for a different purpose, and seems unsuitable for the present one, we omit MCC0 from 
further comparison. 

The algorithms OPT, GREEDY and MCC1 performed almost equally well in the domain 
shown in Figure 10. There was a particularly small difference between OPT and GREEDY, 



244 M. BOHANEC AND I. BRATKO 

which occurred only in the range from 5 to 15 leaves. The situation was similar in other 
uniform domains, i.e., domains where all the attributes had the same number of values. All 
the three algorithms performed similarly with respect to accuracy. In nonuniform domains, 
however, the differences in accuracy between the three algorithms tended to increase. 

In general, the differences between OPT and GREEDY were small in the average of 
100 experiments. However, there were specific sequences where GREEDY performed 
considerably worse than OPT. For example, in the domain where A = 3, M = 4, N1 = 2 
and N2 = N3 = 3, GREEDY "guessed" exactly the same sequence as OPT (in terms of 
accuracy) in 67 of 100 tests. In each of the remaining 33 cases, however, there was a range 
of sizes where a substantial difference between OPT and GREEDY occurred, reaching 
11.12%. 

There are two explanations of such cases. One reason is that GREEDY, when choosing 
between equivalent subtrees to be pruned, looks only one step ahead and sometimes makes 
a wrong decision. The second cause can be explained by the property of optimal pruned 
trees that was already demonstrated in Section 3.4: a subtree that was cut off in some 
stage of pruning may reappear later as a part of an optimal solution. Algorithms that 
work by progressively pruning a decision tree, such as GREEDY, can never discover such 
sequences. It seems that such cases occur more frequently in nonuniform than in uniform 
problem domains. 

5.3. Experiments using real-world data 

Real-world sets of examples were taken from knowledge bases that were developed with 
DECMAK, an expert system shell for multi-attribute decision making (Bohanec, et al., 
1983; Bohanec & Rajkovi~, 1987). Basically, DECMAK is intended for decision-making 
problems where an option has to be chosen from a set of possible ones so as to best satisfy 
the goals of the decision maker. In decision theory (French, 1986), this is called the option 
with the highest utility. 

There are two principal stages of solving such problems. First, a knowledge base is 
developed that consists of 

• a hierarchy of attributes that describe the problem domain (similar as in Shapiro's (1987) 
structured induction); 

• the so-called utility functions, that define a mapping from lower-level to higher-level 
attributes in the hierarchy; the functions are defined by examples, provided by an expert. 

In the second stage, the knowledge base is used to evaluate options and explain their 
characteristics. 

Since 1981, 40 knowledge bases have been developed with DECMAK in various fields, 
such as personnel management, investment planning and performance evaluation of enter- 
prises. Each knowledge base contains several (tens of) utility functions, so the total number 
of utility functions obtained so far was 534. They were used in the experiments described 
here. 
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Figure 11. Average accuracy in the pruning of 39 utility functions, compared with OPT in the corresponding 
artificial domain (A : 3, M = 4 and N = 3). 

Each utility function is defined by a set of examples. Each example is described in terms 
of attributes (i.e., lower-level attributes in the hierarchy) and belongs to a particular class 
(i.e., a value of the corresponding higher-level attribute). So, a utility function is actually a 
problem domain in itself. For comparison with typical machine learning applications, these 
problem domains have some specific characteristics: the number of attributes is relatively 
small, usually from 2 to 5, and never exceeds 8, attributes are discrete, problem domains 
are deterministic, and sets of examples are consistent. 

Therefore, utility functions of DECMAK meet the requirements and assumptions from 
Section 2. Moreover, it is highly desirable to have utility functions represented at different 
levels of detail in various stages of practical decision making (Rajkovi6 & Bohanec, 1991). 
So, utility functions provide a useful application of decision trees and the kind of pruning 
investigated in this paper. In fact, this was the starting point and motivation for the research 
reported here. 

A similar set of experiments as with artificial data was performed on utility functions. To 
facilitate comparison, utility functions that were defined in problem domains of exactly the 
same dimensions were grouped together. There were 53 different groups, containing from 
1 to 80 utility functions. The results of pruning were averaged within each group. 

To illustrate the results, consider the problem domain of the same dimensions as in 
Figure 10 (A = 3, M = 4, N = 3). There were 39 utility functions available for this 
domain. The average pruning sequences are presented in Figure 1 l, showing that the 
pruning sequences of MCC1 were inferior to those of OPT and GREEDY. For comparison 
with artificial data, the sequence obtained by OPT in the corresponding artificially generated 
domain is presented with a dashed line. 
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An important difference occurred between artificial and real-world domains. In real- 
world domains, pruned trees were substantially smaller than the trees of the same accuracy 
in artificial domains; or, conversely, the accuracy of equally sized trees was substantially 
higher in the real-world domains. Consider, for example, Figure 11 and set the required 
accuracy to g = 90%. In the case of artificial data, this accuracy is achieved with trees of 
approximately 20 leaves; only 7 leaves were cut off in average. With real-world data, the 
same accuracy was obtained by trees of only 10 leaves in average. 

Although this difference varies with different values of g, different problem domains and 
different examples, and might not be as substantial as in the above case, it clearly indicates 
that real-world sets of examples are far from being random. There are many cases where 
a substantial reduction of size can be achieved at a small loss of accuracy. It seems that 
decision trees and pruning provide an appropriate and useful framework for knowledge 
representation in such cases. 

We complete the comparison of pruning algorithms with an illustration of the actual 
execution times of our implementations in Pascal. As discussed earlier, OPT's complexity 
grows with the square of the tree size, whereas MCC and GREEDY have generally lower 
complexity. For the tree sizes in our experiments, the actual execution times are not at all 
critical. Average pruning times on a 40 MHz PC 386 for trees in turn of size 20, 40, 60 
and 80 leaves, were for OPT 0.02, 0.04, 0.08 and 0.13 CPU seconds, respectively. MCCI'S 
times for the same trees grew almost linearly between 0.005 and 0.02 CPU seconds. 

6. Note on pruning with OPT in noisy domains 

Although OPT was not directly motivated by learning in noisy domains, it can be applied to 
noise-reduction pruning. For such pruning, the resubstitution error is unsuitable because we 
are interested in the tree's accuracy on new data, not on learning data. The accuracy on new 
data can either be computed by using an independent test set of examples or by estimating the 
probability of incorrect classification, using, for example, the m-estimate (Cestnik, 1990; 
Cestnik & Bratko, 1991). With exception of some insignificant implementation details, any 
one of these error measures can be used in OPT. In fact, the dynamic programming principle 
used in OPT will produce optimal pruning sequences for any error measure that guarantees 
the independence of the optimal sequences of the subtrees. By independence we mean that 
the optimal sequence for a tree is constructed by combining the optimal sequences of the 
tree's subtrees. 

For illustration, let us check this condition for the m-estimated error probabilities. Let us 
consider the optimal pruning of a tree T to size s. Let T have the left subtree L and right 
subtree R. Let the subtrees' optimal pruning sequences be L1, L2, . . .  and R1, R2, . . . ,  
respectively. Here Li denotes an optimal pruned left subtree of size i. Optimal pruned tree 
T of size s minimizes the expression 

min e(Li, Rj) 
i+j=s  

where e(Li, Rj) is the error of the tree with subtrees L~ and Rj. 
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Let p(L) and p(.R) be the probabilities of a data vector belonging to L and R, respectively. 
Then 

e(L~, Rj) = p(L)e(Li) + p(R)e(Rj) 

The error probabilities e(L~) and e(Rj) are m-estimated on the basis of data subsets be- 
longing to L and R, and the apriori probabilities of classes. Thus the probabilities e(Li) 
and p(L) for the left subtree are estimated independently of the right subtree. Therefore 
the independently constructed pruning sequences for L and R can be combined by OPT in 
constructing the optimal pruning sequence for T. 

An interesting question is: How well would OPT perform in noisy domains in comparison 
with other pruning algorithms motivated specifically by noise? Are there any comparative 
gains in terms of classification accuracy or size when decision trees are pruned by OPT? 
When trying to answer this question, one can compare OPT with MCC, which performs 
well in noisy domains (Mingers, 1989). Both algorithms generate trees of maximal accu- 
racy with respect to size; the only difference is that OPT generates more trees than MCC. 
Consequently, OPT would perform at least as well as MCC in terms of classification accu- 
racy, which is measured on an independent set of examples. Also, OPT would occasionally 
outperform MCC. On the other hand, the variation of classification accuracy is usually very 
small near its maximum (Breiman, et al., 1984; Mingers, 1989). So, if MCC missed a tree 
near the maximum, but OPT discovered it, no significant gains in classification accuracy can 
be expected in general. Consequently, we expect that OPT would perform very similarly 
to MCC in noisy domains. 

7. Conclusion 

Decision trees and pruning were considered in the context of knowledge representation at 
different levels of accuracy. There is a tradeoffbetween the size and representation accuracy 
of a decision tree: the smaller the tree, the less accurate the representation. 

In particular, the problem of finding the smallest pruned tree that still represents knowledge 
with some chosen accuracy was addressed here. Based on initial work by Breiman, et al. 
(1984), an algorithm for finding minimal size trees was developed. It generates a dense 
sequence of pruned trees with respect to their size, obtained by pruning a fully-developed 
initial decision tree. An optimal tree always appears in the sequence and can be easily 
located. The algorithm is based on recursive dynamic programming and is efficient; its 
time complexity is quadratic with respect to the size of the initial tree. 

The optimal pruning algorithm, OPT, was empirically compared with three progressive 
pruning algorithms: a simple progressive algorithm, GREEDY, and two derivatives of 
Breiman, et al.'s (1984) minimal cost-complexity pruning, MCCo and MCC1. The exper- 
iments were performed on randomly generated domains and real-world sets of examples 
taken from multi-attribute decision making. The conclusions are as follows: 

. MCC0, the original version of minimal cost-complexity pruning, is unsuitable for this 
specific problem; it generates too few trees. A modified version, MCC1, is better, but 
still attains lower accuracy than OPT. 
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. In uniform domains, where the attributes have the same number of possible values, the 
performance of GREEDY and MCCI was almost optimal. Since they are faster than 
OPT, one can prefer them in such domains. In nonuniform domains, the difference 
between the algorithms increased, particularly between MCC1 and OPT. The average 
difference between OPT and GREEDY was still relatively small, but since severe defi- 
ciencies of GREEDY were recorded in some experiments, OPT should be preferred in 
such cases. 

. When comparing artificially generated and real-world sets of examples, there was a 
large difference in the achieved level of accuracy at equal size. With real-world data, a 
relatively high accuracy was achieved with relatively small pruned trees. 

Although the relation between the accuracy and size depends on the characteristics of 
the corresponding set of examples and properties of the problem domain, we believe that 
pruning of decision trees is a useful technique for obtaining knowledge representations that 
trade between size and accuracy. One can expect that smaller representations, although tess 
accurate, are more comprehensible. 

However, future work will have to assess the validity of this expectation and, in particular, 
answer the questions: How comprehensible are pruned trees? Are optimal pruned trees 
more comprehensible than trees obtained by some simpler method of pruning? What is the 
threshold of accuracy (~) that still allows people to understand the underlying concepts? 
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