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Abstract£ We provide some general results on the convergence of a class of stochastic approximation algorithms 
and their parallel and asynchronous variants. We then use these results to study the Q-learning algorithm, a rein- 
forcement learning method for solving Markov decision problems, and establish its convergence under conditions 
more general than previously available. 
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1. Introduction 

This paper is motivated by the desire to understand the convergence properties of Watkins' 
(1992) Q-learning algorithm. This is a reinforcement learning method that applies to 
Markov decision problems with unknown costs and transition probabilities; it may also be 
viewed as a direct adaptive control mechanism for controlled Markov chains (Sutton, Barto 
& Williams, 1992). 

In Q-learning, transition probabilities and costs are unknown but information on them 
is obtained either by simulation or by experimenting with the system to be controlled; see 
(Barto, Bradtke & Singh, 1991) for a nice overview and discussion of the different ways 
that Q-learning can be applied. Q-learning uses simulation or experimental information to 
compute estimates of the expected cost-to-go (the value function of dynamic programming) 
as a function of the initial state. Furthermore, the algorithm is recursive and each new piece 
of information is used for computing an additive correction term to the old estimates. As 
these correction terms are random, Q-learning has the same general structure as stochastic 
approximation algorithms. In this paper, we combine ideas from the theory of stochastic 
approximation and from the convergence theory of parallel asynchronous algorithms, to 
develop the tools necessary to prove the convergence of Q-learning. 

Stochastic approximation algorithms often have a structure such as 

:= + - + 

where x = ( x l , . . . ,  xn) E ~n, F 1 , . . . ,  Fn are mappings from N~ into ~, w.i is a random 
noise term and a is a small, usually decreasing, stepsize. The Q-learning algorithm, to 
be described in more detail in Section 7, is precisely of this form, with the mapping F = 
( F 1 , . . . ,  F~) being closely related to the dynamic programming operator associated with 
a Markov decision oroblem. 
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The convergence of Q-learning has been proved by Watkins and Dayan (1992) for dis- 
counted Markov decision problems, as well as for undiscounted problems, under the as- 
sumption that all policies eventually lead to a zero-cost absorbing state. It was assumed, in 
addition, that the costs per stage are bounded random variables. The proof by Watkins and 
Dayan uses a very clever argument. On the other hand, it does not exploit the connection 
with stochastic approximation and runs into certain difficulties if some of the assumptions 
are weakened. 

In this paper, we provide a new proof of the results of Watkins and Dayan (1992), In 
addition, our method of proof allows us to extend these results in several directions. In 
particular, we can prove convergence for undiscounted problems without assuming that 
all policies must lead to a zero-cost absorbing state; we allow the costs per stage to be 
unbounded random variables; we allow the decision on which action to simulate next to 
depend on past experience, and, finally, we consider the case of parallel implementation 
that allows for the use of outdated information, as in the asynchronous model of Bertsekas 
(1982) and Bertsekas and Tsitsiklis (1989). 

To the best of our knowledge, the convergence of Q-learning does not follow from the 
available convergence theory for stochastic approximation algorithms. For this reason, 
our first step is to extend the classical theory. We briefly explain the technical reasons 
for doing so. A classical method for proving convergence of stochastic approximation is 
based on the supermartingale convergence theorem and exploits the expected reduction 
of a smooth Lyapunov function such as the Euclidean norm (Poljak & Tsypkin, 1973). 
However, for the case of Q-learning, we face the problem that the dynamic programming 
operator does not always have the necessary properties. Indeed, the dynamic programming 
operator, for discounted problems, is a contraction only with respect to the ~?~ norm and 
the classical theory does not apply easily to this case; for undiscounted problems, it is not 
a contraction with respect to any norm. Another method for establishing convergence is 
based on "averaging" techniques that lead to an ordinary differential equation (Kushner 
& Clark, 1978). While this method is very powerful, some of the required assumptions 
might not be natural in certain contexts. For example, in the case of Q-learning, we would 
have to require that there exist well-defined average frequencies under which the different 
state-action pairs are being simulated. The method that we develop in this paper is based 
on the asynchronous convergence theory of Bertsekas (1982) and Bertsekas et  al. (1989), 
suitably modified so as to allow for the presence of noise. There have been some earlier 
works on the convergence of asynchronous stochastic approximation methods, but their 
results do not apply to the models considered here: the results of Tsitsiklis, Bertsekas and 
Athans (1986) involve a smooth Lyapunov function, the results of Kushner and Yin (1987, 
1987) rely on the averaging approach, and the assumptions of Li and Basar (1987) are too 
strong for our purposes. 

During the writing of this paper, we learned that other authors (T. Jaakkola, M.I. Jordan, 
S. Singh) have also been developing convergence proofs for Q-learning that exploit the 
connection with stochastic approximation. 

The rest of the paper is organized as follows. In Section 2, we present the algorithmic 
model to be employed and our assumptions, and state our general results on stochastic 
approximation algorithms. Section 3 contains an elementary result on stochastic approx- 
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imation that we will be using in our proofs. Sections 4, 5, and 6 contain the proofs of 
the results of Section 2. (Sections 3, 4, 5, and 6 can be skipped without loss of conti- 
nuity.) Section 7 applies the theory of Section 2 to Q-learning. Section 8 contains some 
concluding comments. 

2. Model and assumptions 

In this section, we describe the algorithmic model to be employed and state the assumptions 
that will be imposed. The model is presented for the most general case which allows for 
a number of parallel processors who may be updating based on outdated information. In 
most respects, the model is the one in Chapter 6 of Bertsekas et al. (1989), except for the 
presence of noise. 

The algorithm consists of noisy updates of a vector x E Nn, for the purpose of solving a 
system of equations of the form F(x) = x. Here F is assumed to be a mapping from ~ 
into itself. Let F 1 , . . . ,  Fn : ~n H ~ be the corresponding component mappings; that is, 
F(x) = ( F l ( x ) , . . . ,  Fn(x)) for all x E ~ .  

Let A/" be the set of nonnegative integers. We employ a discrete "time" variable t, taking 
values in H .  This variable need not have any relation with real time; rather, it is used to 
index successive updates. Let x(t) be the value of the vector x at time t and let xi(t) denote 
its ith component. Let T i be an infinite subset of N" indicating the set of times at which an 
update of xi is performed. We assume that 

xi(/: + 1) = xi(t), t ¢ T i. (1) 

Regarding the times that xi is updated, we postulate an update equation of the form 

x (t + 1) = x (t) + - xi( t )  + w{(t)) ,  t e T (2) 

Here, c~(t) is a stepsize parameter belonging to [0, 1], wi(t) is a noise term, and xi(t) is a 
vector of possibly outdated components of x. In particular, we assume that 

• ' ( t )  = t • T (3) 

where each 7j(t) is an integer satisfying 0 <_ r j ( t )  <_ t. If no information is outdated, we 

have 7)(t) = t and xi(t) = x(t) for all t; the reader may wish to think primarily of this 
case. For an interpretation of the general case, see Bertsekas et al. (1989). In order to bring 
Eqs. (1) and (2) into a unified form, it is convenient to assume that ai(t), w~(t), and Tj(t) 

are defined for every i, j ,  and t, but that c~(t) = 0 and ~-)(t) = t for t ~ T ~. 

We will now continue with our assumptions. All variables introduced so far (x(t), "rj (t), 
c~(t), w~(t)) are viewed as random variables defined on a probability space (f2, U, 7 )) and 
the assumptions deal primarily with the dependencies between these random variables. Our 
assumptions also involve an increasing sequence { 5 ( t ) } ~ 0  of subfields of 5 c. Intuitively, 
P ( t )  is meant to represent the history of the algorithm up to, and including the point at 
which the stepsizes c~i(t) for the tth iteration are selected, but just before the noise term 
wi (t) is generated. Also, the measure-theoretic terminology that "a random variable Z is 
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5c(t)-measurable '' has the intuitive meaning that Z is completely determined by the history 
represented by 5v(t). 

The first assumption, which is the same as the total asynchronism assumption of Bertsekas 
etal. (1989), guarantees that even though information can be outdated, any old information 
is eventually discarded. 

Assumption 1. For any i and j ,  limt~oo T)(t) = oe, with probability 1. 

Our next assumption refers to the statistics of the random variables involved in the 
algorithm. 

Assumption 2. 

a) x(0) is ~c(0)-measurable; 

b) For every i and t, wi(t) is 5r(t + 1)-measurable. 

c) For every i, j ,  and t, c~i(t) and r)(t)  are 5c(t)-measurable. 

d) For every i and t, we have E[wi(t) I 5c(t)] = 0. 

e) There exist (deterministic) constants A and B such that 

E[w~(t) i 5r(t)] -< A + B max max [xj (~-)t 2, Yi, t. 
j ~<t 

Assumption 2 allows for the possibility of deciding whether to update a particular com- 
ponent xi at time t, based on the past history of the process. In this case, the stepsize c~i (t) 
becomes a random variable. However, part (c) of the assumption requires that the choice of 
the components to be updated must be made without anticipatory knowledge of the noise 
variables wi that have not yet been realized. This is trivially satisfied if the sets T i and the 
stepsizes ai (t) are deterministic but this would be too restrictive as we argue in Section 7. 

The next assumption concerns the stepsize parameters and is standard for stochastic 
approximation algorithms. 

Assumption 3. 

a) For every i, 

oo 

t = 0  

w.p.1. (4) 

b) There exists some (deterministic) constant C such that for every i, 

Za~(t) <C~ w.p.1. (5) 
t = 0  
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Finally, we introduce a few alternative assumptions on the structure of  the iteration map- 
ping F .  We first need some notation: if x, y E R~, the inequality z <_ y is to be interpreted 
as xi <_ y~ for all i. Furthermore, for any positive vector v = ( v l , . . .  ,v,~), we define a 
norm [1 • I]~ on ~ by letting 

Hxllv = m a x  [xi-~, x E ~ .  (6) 
i v i  

Notice that in the special case where all components of v are equal to 1, ]1 • ]1~ is the same 
as the maximum norm 11" [[~. 

Assumption 4. 

a) The mapping F is monotone; that is, if x <_ y, then F(x) <_ F(y). 

b) The mapping F is continuous. 

c) The mapping F has a unique fixed point x*. 

d) If e E Nn is the vector with all components equal to 1, and r is a positive scalar, then 

F ( x )  - re  _< F ( z -  re)  _< F ( x  + r e )  _< F ( x )  + re. (7) 

Assumption 5. There exists a vector x* C R~, a positive vector v, and a scalar/3 C [0, 1), 
such that 

I I F ( x )  - x*llv ~</3[Ix - x*ll~,, Vx ~ ~ n .  (8) 

Assumption 6. There exists a positive vector v, a scalar/3 E [0, 1), and a scalar D such that 

UF(x)ll~</3nXllv+D, V x E ~  ~. (9) 

We now state the main results of  this paper. Theorem 1 provides conditions for x(t) to be 
hounded. Theorems 2 and 3 deal with convergence under Assumptions 4 and 5, respectively. 

THEOREM 1. Let Assumptions 1, 2, 3, and 6 hold. Then, the sequence x(t) is bounded, 
with probability 1. 

THEOREM 2. Let Assumptions 1, 2, 3, and 4 hold. Furthermore, suppose that z(t) is 
bounded with probability 1. Then, x(t) converges to x*, with probability 1. 

THEOREM 3. Let Assumptions 1, 2, 3, and 5 hold. Then, x(t) converges to x*, with 
probability 1. 
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3. Preliminaries 

In this section, we state a well known result that will be needed later. 

LEMMA 1. Let {.T'(t)} be an increasing sequence of or-fields. For each t, let a( t ), w ( t - 1), 
and B ( t ) be .T ( t )-measurable scalar random variables. Let C be a deterministic constant. 
Suppose that the following hold with probability 1: 

a) E[w(t) [ 5r(t)] = 0; 

b) E[w2(t) l U(t)] < B(t); 

c) a(t) E [0,1]; 

oo t 
d) ~ t = 0  a (  ) -- oo; 

e) E %0 2(t) <c .  

Suppose that the sequence {B( t )}  is bounded with probability 1. Let W ( t ) satisfy the 
recursion 

W( t  + 1) = (1 - a(t))W(t)  + a(t)w(t). 

Then limt-_,~ W(t)  = O, with probability 1. 

Proof: For the case where the sequence B(t) is bounded by a deterministic constant, we 
are dealing with the classical stochastic gradient algorithm for minimizing a quadratic cost 
function and its convergence is well known; for example, see Poljak et al. (1973). 

For every positive integer k, we define rk = min{t  > 0 I B(t) > k}, with the un- 
derstanding that rk = o c i f B ( t )  < k for a l l k .  We def inewk( t )  = w(t) i f t  < rk 
and wk(t) = 0, otherwise. Let Wk(t)  be defined by letting Wk(O) = W(0)  and 
Wk( t  + 1) = (1 - a(t))Wk(t)  + a(t)wk(t). Since E[(wk(t)) 2 [ 5r(t)] < k for all 
t, we see that W k (t) converges to zero, with probability 1, for every k. On the other hand, 
since B(t)  is bounded, there exists some k such that Wk(t)  = W(t)  for all t, and this 
implies that W(t)  also converges to zero. • 

4. Proof  of  Theorem 1 

In this and in all subsequent proofs, we assume that we have already discarded a suitable 
set of measure zero, so that we do not need to keep repeating the qualification "with 
probability 1." 

We assume that all components of the vector v in Assumption 6 are equal to 1. (The case 
of  a general positive weighting vector v can be reduced to this special case by a suitable 
coordinate scaling.) In particular, there exists some fl E [0, 1) and some D such that 
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It follows from Eq. (10) that there exist 7 C [0, 1) and Go > 0 such that 

IFi(x)[ _< "/max { - -  ~maxlxjl 'G°~' Vx 6 ~n, Vi. (11) 

(Any 7 E [0, 1) and Go > 0 satisfying •Go + D < "/Go will do.) Let us also fix e > 0 so 
that 0,(1 + e) = 1. 

Let 

M(t) = max [Ix(T)I[oo. 
,r<t 

(12) 

We define a sequence {G(t)}, recursively, as follows. Let G(0) --= max{M(0), Go}. 
Assuming that G(t) has already been defined, let G(t+ 1) = G(t) if M (t+ 1) <_ ( l+e)a ( t ) .  
I f M ( t  + 1) > (1 + e)a(t), then let a(t + 1) = Go(1 + ,)~ where k is chosen so that 

Go(1 + e) k-1 < M(t + 1) < G o ( l +  e) k. 

A key consequence of our definitions is that 

M(t )  < (1 + , ) a ( t ) ,  Vt > O, (13) 

and 

M(t) <_ G(t) if G(t - 1) < G(t). (14) 

It is easily seen that M(t) and G(t) are .T(t)-measurable. 
In order to motivate our next step, note that as long as there is possibility that x(t) is 

unbounded, E[w~(t) [ ~(t)] could also be unbounded (cf. Assumption 2) and results such 
as Lemma 1 are inapplicable. To circumvent this difficulty, we will work in terms of a 
suitably scaled version of wi (t) whose conditional variance will be bounded. 

We define 

~ ( t ) -  w~(t) 
c ( t )  ' v t  >_ o, 

which is .T(t + 1)-measurable. Assumption 2 implies that 

and 

E[Cv{(t) l Y=(t) ] : E[w{(t)  I ~'(t)] 
a ( t )  : O, 

E[~v~(t) 13r(t)] = 

< 

E[w~(t) I ~'(t)] < A + BM2(t) 
a 2 ( t )  - a ~ ( t )  

A + B(1 + e)2G2(t) < K, Vt _> 0, 
c~(t) 

where K is some deterministic constant. 
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For any i and to >_ 0, we define l~i(to; to) = 0 and 

l?V~(t + 1; to) = (1 - a~(t))ITC~(t; to) + c~(t)(v~(t), t > t o .  

LEMMA 2. For every 5 > O, there exists some T such that I I~Vi (t; to) l < 5, for every t and 
to satisfying T < to < t. 

P r o o f :  By Lemma 1, we obtain limt-_.o~ l~i(t;  0) = 0. For every t > to, we have 

[]_1.t--1 ] 
~¢,(t;0) = k~_~o(1- c~i(r)) Wi(to;0)+ ¢¢i(t;to), 

which implies that ]lTVi(t;to)] < IWi(t; 0)l + IWg(to; 0)[. The result follows by letting T 
be large enough so that IW~(t; 0)1 _ 5/2 for every t > T. [] 

Suppose now, in order to derive a contradiction, that x(t) is unbounded. Then, Eqs. (12) 
and (13) imply that G(t) converges to infinity, and Eq. (14) implies that the inequality 
M(t) < G(t) holds for infinitely many different values of t. In view of Lemma 2, we 
conclude that there exists some to such that M(to) < G(to) and 

IWi(t; to)l _<e, Vt>_to, Vi. (15) 

The lemma that follows derives a contradiction to the unboundedness of G(t) and concludes 
the proof of the theorem. 

LEMMA 3. Suppose thatx(t) is unbounded. Then, forevery t > to, we have G(t) = G(to). 
Furthermore, for every i we have 

- G ( t o ) ( 1  + e) < -G(to)  + 17Vi(t;to)G(to) < xi(t) 

< G(to) + ITVi(t; to)G(to) < G(to)(1 + e). 

Proof." The proof proceeds by induction on t. For t = to, the result is obvious from 
Ixi(to)r ___ M(to) < G(to) and lYv'i(to; to) = 0. Suppose that the result is true for some t. 
We then use the induction hypothesis and Eq. (11) to obtain 

xi(t + 1) = (1 - ai(t))xi(t) + ai(t)F~(xi(t)) + ai(t)wi(t) 

< (1 - ai(t))(G(to) + 17Vi(t;to)G(to)) + ai(t)TG(to)(1 + ~) 

+~(t)c~(t)a(to) 
= G(to) + ((1 - ai(t))lTVi(t; to) + a~(t)~i(t))G(to) 

= G(to) + 17Vi(t + 1; to)G(to). 

A symmetrical argument also yields -G(to)  + 12Vi(t + 1; to)G(to) <_ xi(t  + 1). Using 
Eq. (15), we obtain Ixi(t + 1)1 < G(to)(1 + e) which also implies that G(t + 1) = G(to). 

[]  
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5. Proof of Theorem 2 

Recall that e stands for the vector with all components equal to 1. Let r be a large enough 
scalar so that x* - re < x(t) < x* + re for all t. [Such a scalar exists by the boundedness 
assumption on x(t) but is a random variable because supt IIz(t) l[~ could be different for 
different sample paths.] Let L ° L ° L ° = x* - U ° . . ,  (u  °, u o) = ( 1," re and = . . . ,  = 
x* + re. Let us define two sequences {U k } and {L k } in terms of the recursions 

U k+l - Uk + F(Uk)  k > 0, (16) 
2 ~ - -  

and 

L k+l - Lk + F(Lk)  k > 0. (17) 
2 ' - -  

LEMMA 4. For every k >_ O, we have 

F ( U  k) <__ U k+l <_ U k, 

and 

F ( L  k) > L k+l > L k. 

Proof: The proof is by induction on k. Notice that, by Assumption 4(d) and the fixed 
point property of x*, we have F(U °) = F(x* +re)  < F(x*) +re  = x* +re  -= U °. Using 
the definition of U 1, we obtain F(U °) <_ U ~ < U °. Suppose that the result is true for 
some k. The inequality U k+l < U k and the monotonicity o f F  yield F ( U  k+l) <_ F(Uk).  
Equation (16) then implies that U k+z < U k+l. Furthermore, since U k+2 is the average of 
F ( U  ~+1) and U TM, w e  also obtain F(U k+l) < U k+2. The inequalities for L k follow by 
a symmetrical argument. [] 

LEMMA 5. The sequences {U k} and {L k} converge to x*. 

Proof: We first prove, by induction, that U k > x* for all k. This is true for U °, by 
definition. Suppose that U k >_ x*. Then, by monotonicity, F ( U  k) >_ F(x*) = x*, from 
which the inequality U k+l > x* follows. Therefore, the sequence {U k } is bounded below. 
Since this sequence is monotonic (Lemma 4), it converges to some limit U. Using the 
continuity of F,  we must have U = (U + F(U)) /2 ,  which implies that U = F(U).  Since 
x* was assumed to be the unique fixed point of F,  it follows that U = x*. Convergence of 
L k to x* follows from a symmetrical argument. [] 

We will now show that for every k, there exists some time tk such that 

L k <_x(t)<<_U k, Vt>_tk. (18) 
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(The value of tk will not be the same for different sample paths and is therefore a random 
variable.) Once this is proved, the convergence of x(t) to x* follows from Lemma 5. For 
k = 0, Eq. (18) is certainly true, with to = 0, because of the way that U ° and L ° were 
defined. We continue by induction on k. We fix some k and assume that there exists some 
tk SO that Eq. (18) holds. Let t~ be such that for every t > t~, and every i, j ,  we have 
~-j(t) > tk. Such a t~ exists because of Assumption 1. (For the case where no outdated 

values of  the components of  x are used and ~-j (t) = t, we may simply let t~ = tk.) In 
particular, we have 

L k < xi(t) <_ U k, Vt >_ t~. (19) 

Let Wi(O) : 0 and 

Wi(t + 1) = (1 - ai(t))W~(t) + a~(t)wi(t). 

We then have limt_-,~ Wi(t) = 0 (cf. Lemma 1). For any time to, we also define 
Wi(to; to) = 0 and 

Wg(t + 1; to) = (1 - ai(t))W~(t; to) + a~(t)w~(t), t > to. (20) 

Following the same argument as in the proof of  Lemma 2, we see that for every to, we have 
l imt-- ,~ Wi(t; to) = O. 

We also define a sequence Xi( t ) ,  t > t~, by letting Xi(t~) = Ui k and 

X~(t + I) = (1 - a~(t))X~(t) + a~(t)F~(Uk), t > t' k. (21) 

LEMMA 6. 

x{(t) < X{(t) + W{(t;t'k), Vt >_ t'k. 

Proof: The proof proceeds by induction on t. For t = t~, Eq. (18) yields xi(t~) <_ Ui k 
/ . ! and, by definition, we have U) = Xi(t~) + Wi(t  k, tk). Suppose that the result is true for 

some t. Then, Eqs. (2), (19), (21), and (20) imply that 

xi( t  + i) _< (i - ai(t))(Xi(t)  + Wi(t; t~)) + ai( t)Fi(U k) + ai(t)wi(t)  

= X i ( t +  1) + W i ( t +  1;t~). • 

Let 6k be equal to the minimum of (U~ - F~(Uk))/4, where the minimum is taken over 
all i for which U~ - Fi(U k) is positive. Clearly, 6k is well-defined and positive unless 
U k = F(Uk).  But in the latter case, we must have U k = x* = U k+l and the inequality 
x(t) < U k implies that x(t) < U k+l and there is nothing more to be proved. We therefore 
assume that 6k is well-defined and positive. 

Let t~ be such that t~ _> t~, 

t%'-i 
1 

T=t~ 
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and 

w (4; t'k) <_ 

for all t > t~ and all i. Such a t{ exists because Assumption 3(a) implies that 

1-I = 0  

and because W~(t; t~) converges to zero, as discussed earlier. 

LEMMA 7. We have xi(t) <_ Uik+l, for all i and t >_ t~. 

Proof: Fix some i. If U) +1 = U/k, the inequality xi(4) <_ U) +1 follows from Eq. (18). 
We therefore concentrate on the case where U~ +~ < U). Equation (21) and the relation 
Xi (4~) = U) imply that Xi (t) is a convex combination of U) and Fi (Uk). Furthermore, 

t--1 zt the coefficient of U~ is equal to 1-I,-=t; (1 - ai(T)), which is no more than 1/4 for t _> t k. 
It follows that 

1 k : ~U) ~Fi(U k) ~(U)- Fi(uk)) ~ g~ +1 --(~k" x (4) < +  F,(U k) + - 

This inequality, together with the inequality Wi(t; t~) < ~k and Lemma 6, imply that 
xi(t) <<_ U) +1 for all t >_ 4~. [] 

By an entirely symmetrical argument, we can also establish that xi(4) >_ L~ +1 for all 
t greater than some t~ ~. This proves Eq. (18) for k + 1, concludes the induction, and 
completes the proof of the theorem. 

6. Proof of Theorem 3 

Without loss of generality, we assume that x* = 0; this can be always accomplished by 
translating the origin of the coordinate system. Furthermore, as in the proof of Theorem 1, 
we assume that all components of the vector v in Assumption 5 are equal to 1. Notice that 
Theorem 1 applies and establishes that x(t) is bounded. 

Theorem 1 states that there exists some (generally random) Do such that [Ix(t)[[~ _< Do, 
for all 4. Fix some e > 0 such that/3(1 + 2e) < 1. We define 

Dk+l =/3(1 + 2e)D~, k _> 0. 

Clearly, Dk converges to zero. 
Suppose that there exists some time tk such that IIx(4)11o~ -< Dk for all t > tk. We will 

show that this implies that there exists some time tk+l such that I[x(t)[I ~ -< Dk+l for all 
4 >_ tk+l. This will complete the proof of convergence of x(t) to zero. 

Let Wi(O) = 0 and 
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Wi(t + 1) = (1 - ai(t))Wi(t) + ai(t)wi(t). (22) 

We then have l imt~oo Wi(t) = 0, (cf. Lemma 1). For any time to, we also define 
Wi(to; to) = 0 and 

Wi(t + 1; to) = (1 - ai(t))Wi(t; to) + ai(t)wi(t), t > to. (23) 

Following the same argument as in the proof of Lemma 2, we see that for every 6 > 0, 
there exists some T such that [Wi(t; to)l _< 5 for all to _> T and t > to. 

Let % > tk be such that [Wi(t; "rk)[ < 3eDk and Ilz~(t)lloo _< Dk for all t > 7-k and all 
i. As discussed earlier, the first requirement will be eventually satisfied. The same is true 
for the second requirement, because of Assumption 1. We define Yi (rk) ---- Dk and 

Y~(t + 1) = (1 - ai(t))Yi(t) + ai(t)/3Dk, t > 7-~. (24) 

LEMMA 8. 

- -Yi( t )+Wi(t;rk)<xi( t )<_Yi( t )+Wi(t;rk) ,  Vt>_rk. (25) 

Proof: We use induction on t. Since Yi(rk) = Dk and Wi(rk; r~) = 0, the result is true 
for t = rk. Suppose that Eq. (25) holds for some t. We then have 

xi(t + 1) _< (1 - ai(t))(Y~(t) + W~(t; Tk)) + ai(t)13Dk + ai(t)wi(t) 

= Yi(t + 1) + Wi(t + 1; rk). 

A symmetrical argument yields - Y i ( t  + 1) + Wi(t + 1; 7-k) _< x~(t + 1) and the inductive 
proof is complete. • 

It is evident from Eq. (24) and Assumption 3(a) that Yi(t) converges to/3Dk as t ~ oo. 
This fact, together with Eq. (25) yields 

l imsup  Ix,(t)l ~ fl(1 + e)Dk < Dk+l ,  
t-----r ~ 

and the proof is complete. 

7. The convergence of Q-learning 

We consider a Markov decision problem defined on a finite state space S. For every state 
i C S, there is a finite set U(i) of possible control actions and a set of  nonnegative scalars 
Pij(u), u E U(i), j E S, such that ~j~sPij(u)  = 1 for all u C U(i). The scalarpij(u) is 
interpreted as the probability of a transition to j ,  given that the current state is i and control 
u is applied. Furthermore, for every state i and control u, there is a random variable c ~  
which represents the one-stage cost if action u is applied at state i. We assume that the 
variance of ei~ is finite for every i and u C U(i). 
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A stationarypoliey is a function 7r defined on S such that 7r (i) E U (i) for all i E S. Given a 
stationary policy, we obtain a discrete-time Markov chain s ~ (t) with transition probabilities 

Pr (s ' r ( t  + 1) = j I s~(t)  = i) = pij(Tr(i)). 

Let /3  E [0, 1] be a discount factor. To any stationary policy 7r and initial state i, the 
cost-to-go V/~ is defined by 

V~ '~ lim sup E = 
T---~x~ t=0  

The optimal cost-to-go function V* is defined by 

V~* = inf V~ ~, i E S. 
7r 

The Markov decision problem is to evaluate the function V*. (Once this is done, an optimal 
policy is easily determined.) 

Markov decision problems are easiest when the discount factor/3 is strictly smaller than 
1. For the undiscounted case (/3 = 1), we will assume throughout that there is a cost-free 
state, say state 1, which is absorbing; that is, p l l ( u )  = 1 and c1~, = 0 for all u E U(1). The 
objective is then to reach that state at minimum expected cost. We say that a stationary policy 
is proper if the probability of being at the absorbing state converges to 1 as time converges 
to infinity; otherwise, we say that the policy is improper. The following assumption is 
natural for undiscounted problems. 

Assumption 7. 

a) There exists at least one proper stationary policy. 

b) Every improper stationary policy yields infinite expected cost for at least one initial state. 

We define the dynamic programming operator T:~ISl ~ ~lSl, with components Ti, 
by letting 

Ti(V) = min {E[ci~] + / 3 ~ - ~ P i j ( u ) V j / .  
ueU(i) jES ) 

It is well known that if/3 < 1, then T is a contraction with respect to the norm l] " ]l~ and 
V* is its unique fixed point. If/3 = 1, then T is not, in general, a contraction. However, 
it is still true that the set {V E ~lSl t 1/1 = 0} contains a unique fixed point of T and this 
fixed point is equal to V*, as long as Assumption 7 holds (Bertsekas et al., 1989, 1991). 

The Q-learning algorithm is a method for computing V* based on a reformulation of 
the Bellman equation V* =- T ( V * ) .  We provide a brief description of the algorithm. Let 
P = {(i, u) [ i E S, u E U(i)} be the set of all possible state-action pairs and let n 
be its cardinality. We use a discrete index variable t in order to count iterations. After t 
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iterations, we have a vector Q(t) E ~ ,  with components Qi~(t), (i, u) E P,  which we 
update according to the formula 

Qi~(t + 1) - -Q~, ( t )+c~ iu ( t ) [Ciu+i3  veu(s(~#,))min Qs(i,~,),v(t) - Qiu(t) 1 • (26) 

Here, each c~i~, (t) is a nonnegative stepsize coefficient which is set to zero for those (i, u) E 
P for which Qiu is not to be updated at the current iteration. Furthermore, ci~ is a random 
sample of the immediate cost if action u is applied at state i. Finally, s(i, u) is a random 
successor state which is equal to j with probability Pij (u). It is understood that all random 
samples that are drawn in the course of the algorithm are drawn independently. 

We now argue that the Q-learning algorithm has the form of Eq. (2). Let F be the mapping 
from 3~ ~ into itself with components Fi~ defined by 

Fi~(Q) = e[ci~] +/3E[ min Q~(i,u),v], (27) 
k~U(~(i,~)) l 

and note that 

E [  min Q~(i~)v] = ~--~piu3( min Qj~. 
k,eU(~(~,~,)) ' ' j  "---' )~eu(j) j~S  

It is not hard to see that if a vector Q is a fixed point of F,  then the vector with components 
Vi -- min~eu(i) Qi~ is a fixed point of T. In view of Eq. (27), Eq. (26) can be written as 

Q ~ ( t  + 1) = Q~.(t) + ~ ( t ) [ F ~ ( Q ( t ) )  - Q~.(t) + w~.(t)], 

where 

(28) 

[The expectation in the expression E[minv6u(s(i,u)) Q,(i,u),,(t) I 5c(t)] is with respect to 
s(i, ~).l 

We now discuss the meaning of the various assumptions of Section 2 in the context of the 
Q-learning algorithm. Assumption 1 is satisfied in the special case where ~)(t) -- t, which 
is what was implicitly assumed in Eq. (26), but can be also satisfied even if we allow for 
outdated information. The latter case could be of interest if the Q-learning algorithm were 
to be implemented in a massively parallel machine, with different processors carrying out 
updates of different components of Q, possibly using outdated information on some of the 
components of Q. 

Regarding Assumption 2, we let 5c(t) represent the history of the algorithm during the 
first t iterations. Parts (a) and (b) of the assumption are then automatically valid. Part (c) 
is quite natural: in particular, it assumes that the required samples are generated after we 
decide which components to update during the current iteration. Note, however, that it 
allows this decision to be made on the basis of past experience, past explorations, or by 
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simply following a simulated trajectory. This point was not appreciated in earlier proofs. 
In particular, the proof of Watkins et al. (1992) implicitly assumes that the coefficients 
c~i~ (t) are deterministic and, therefore, does not allow for experience-driven exploration 
or the use of simulated trajectories. Part (d) is automatic from Eq. (28). The conditional 
variance of minveu(s(i,~)) Qs(i,~,),v, given 5c(t), is bounded above by the largest possible 

2 value that this random variable could take, which is maxjes  maxvEu(j ) Qjv(t). We then 
take the conditional variance of both sides of Eq. (28), to obtain 

E[w~u(t) l ~(t)] < V a r ( e ~ ) + m a x  max Q~v(t) 
-- dES vcU(j) J 

and part (e) is also satisfied. [ We have assumed here that eiu is independent from s(i, u). tf 
it is not, the right-hand side in the last inequality must be multiplied by 2, but the conclusion 
does not change.] 

Assumption 3 needs to be imposed on the stepsizes employed by the Q-learning algorithm. 
In particular, it requires that every state-action pair (i, u) is simulated an infinite number 
of times. 

For discounted problems (/3 < 1), Eq. (27) easily yields 

- V} l, VQ, Q' .  IFi (Q) - Fi (Q')I 
v~U(j) 

In particular, F is a contraction mapping, with respect to the maximum norm H " [1~ and 
Assumption 5 is satisfied. In particular, Theorem 3 establishes convergence. 

For undiscounted problems (/3 = 1), our assumptions on the absorbing state 1 imply 
that the update equation for Qlu degenerates to Ql~(t + 1) = Qi~(t), for all t. We 
will be assuming in the sequel, that Qi~, is initialized at zero. This leads to an equivalent 
description of the algorithm in which the mappings Fi~, of Eq. (27) are replaced by mappings 
Fi~ satisfying Fi~ = F i u  if i 7+ 1 and Flu(Q) = 0 for all u E U(1) and Q E ~n. Let us 
consider the special case where every policy is proper. It is then known (Bertsekas et al., 
1989, 1991) that there exists a vector v > 0 such that T is a contraction with respect to the 
norm II • I1~. In fact, a close examination of the proof of Bertsekas et al. (1989) (pp. 325- 
327) shows that the proof is easily extended to show that the mapping _F (with components 
Fi~) is a contraction with respect to the norm 1] • ]lz, where ziu = vi for every u E U(i). 
Convergence then follows again from Theorem 3. 

Let us now keep assuming that/3 = 1, but remove the assumption that all policies are 
proper; we only impose Assumption 7. It is then known that the dynamic programming 
operator T satisfies Assumption 4 (Bertsekas et al., 1989, 1991) and this implies easily that 
fi~ satisfies the same assumption. However, in order to invoke Theorem 2, we must also 
guarantee that Q(t) is bounded. We discuss later how this can be accomplished. 

We summarize our discussion in the following result. 

THEOREM 4. Consider the Q-learning algorithm and let Q *  = E[ci~] +/3 ~ j  Pij (u) VA*. 
Then, Qi~ (t) converges to Qi*, with probability 1, for every i and u, in each of the follow- 
ing cases: 

a) I f /3<1 .  
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b) If/3 = 1, QI~ (0) = O, and all policies are proper 

c) If~3 = 1, Assumption 7 holds, QI~(O) = O, and if Q(t) is guaranteed to be bounded, 
with probability 1. 

We conclude by discussing further how to guarantee boundedness for undiscounted prob- 
lems. One option is to enforce boundedness artifially using the "projection" method (Kush- 
ner et al., 1978). With this method, one projects the vector Q(t) onto a given bounded set B 
whenever Q(t) becomes too large. We only need to choose a large enough set B so that 
the fixed point of /~  is certain to be contained in B. This requires some prior knowledge on 
the Markov decision problem being solved, but such knowledge is often available. Since 
the projection method is a general purpose method, there is not much new that can be said 
here and we do not provide any further details. 

The lemma that follows covers another case in which boundedness is guaranteed. 

LEMMA 9. Suppose that/3 = 1, Assumption 7 holds, and QI~(O) = O. Furthermore, 
suppose that all one-stage costs eiu are nonnegative with probability 1, and that Q(O) >_ 
O. Then, the sequence {Q(t)}  generated by the Q-learning algorithm is bounded with 
probability 1. 

Proof:  Given the assumption that ci~ > O, it is evident from Eq. (26) that if the algorithm 
is initialized with a nonnegative vector Q(0) _> 0, then Q(t) _> 0 for all t. This establishes 
a lower bound on each Qi~(t). 

Let us now fix a proper policy 7r. We define a mapping F ~, with components F/~, by 
letting F[~(Q) = 0, for every u E U(1) ,  and 

Fi~(Q ) = E[ei~] + E p i j ( ~ ( i ) ) Q j , , ( j ) ,  i # 1, u E U(i). 
j#1 

Let P be the matrix whose ( i , j ) th  entry is equal to Pij(Tr(i)), for i , j  E S and i , j  ~ 1. 
Since policy ~r is proper, we see that p t  converges to 0 as t converges to infinity. Since P 
is a nonnegative matrix, the Perron-Frobenius theorem implies that there exists a positive 
vector w and some 7 ~ [0, 1) such that 

E p i j ( T r ( i ) ) w j  < ~/wi, Yi # 1. (29) 
j # l  

Therefore, for any vectors Q and Q~, we have 

- Fiu(Q )] < __ Ep~j (Tr ( i ) )w  3 ]Qj~, - Q~,l < 7 m a x  [ F i ~ ( Q ) _  - ~ ' 1 JQ3~ - Q~~,I 

W i - -  W i W j  - -  j7£1 W j  
j # l  

We conclude that there exists a positive vector v such that ]] F ~ (Q) - Q~ [Iv -< ")'IIQ - Q~ Hv 
for all vectors Q, where Q~ is the unique fixed point of F 'L  (In particular, viu = wl for 
every u E U(i).) Compare now the definition (27) with the definition o f f  ~ to conclude that 
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for every vector Q _> 0, we have F(Q)  < F~(Q). Using this and the triangle inequality, 
we obtain 

IlP(Q)IIv ~ IIF~(Q)II~ ~ [IF~(Q) - F~(Q~)II~ + IIF~(Q~)IIv 
<- 71IQ - Q=l[~ + IIQ=llv -< 7[IQIl~ + 2 1 1 Q = I l v  . 

This establishes that/3 satisfies Assumption 6 and the result follows from Theorem 1. 
[] 

We close this section by pointing out that the interest in Markov decision problems for 
which not every stationary policy is proper is not purely academic. Consider a directed 
graph in which the length of every arc (i, j )  is a nonnegative random variable c~j. We may 
then be interested in the problem of finding a path, from a given origin to a given destination, 
with the smallest possible expected arc length. If the expected arc costs E[cij] were known, 
this would simply be a shortest path problem. On the other hand, if the statistics of the 
arc costs are unknown, Q-learning can be used because shortest path problems are special 
cases of Markov decision problems in which every Pij (u) is either zero or 1. Notice that 
not every policy will be proper, in general: for example, a policy may choose a cycle that 
does not go through the destination and cycle forever around that cycle. On the other hand, 
Assumption 7 is equivalent to requiring that every cycle have positive expected costs and 
such an assumption is pretty much necessary for the shortest path to be well-posed. Once 
this assumption is imposed, Theorem 4 and Lemma 9 imply that Q-learning will converge. 

8. Concluding remarks 

We have established the convergence of Q-learning under fairly general conditions. The 
only technical problem that remains open is whether Assumption 7 alone is sufficient to 
guarantee boundedness for undiscounted problems, thus rendering Lemma 9 unnecessary. 

An interesting direction for further research concerns the convergence rate of Q-learning. 
In some sense, Q-learning makes inefficient use of information, because each piece of 
information is only used once. Alternative methods, that estimate the transition probabil- 
ities, can be much faster, as demonstrated experimentally by Moore and Atkeson (1992). 
It is an open question whether the method of Moore et al. (1992) has a provably better 
convergence rate. 

We finally point out that the tools in this paper (Theorem 3, in particular) can be used 
to establish that the batch version of Sutton's (1988) TD(A) algorithm converges with 
probability 1, for every value of A, thus strengthening the results of Dayan (1992) where 
convergence was proved for the case A = 0. This is done by expressing TD(A) in the form 
of Eq. (1) and then checking that the corresponding mapping F has the required contraction 
properties. A proof along such lines has also been carried out by T. Jaakkola, M.I. Jordan, 
and S. Singh. 
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