
Machine Learning, 9, 57-94 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Utility of Knowledge in Inductive Learning

MICHAEL PAZZANI pazzani@ics.uci.edu
DENNIS KIBLER kibler@ics.uci.edu
Department of Information & Computer Science, University of California, Irvine, lrvine, CA 92717-3425

Editor: Paul Rosenbloom

Abstract. In this paper, we demonstrate how different forms of background knowledge can be integrated with
an inductive method for generating function-free Horn clause rules. Furthermore, we evaluate, both theoretic-
ally and empirically, the effect that these forms of knowledge have on the cost and accuracy of learning. Lastly,
we demonstrate that a hybrid explanation-based and inductive learning method can advantageously use an ap-
proximate domain theory, even when this theory is incorrect and incomplete.

Keywords: Learning relations, combining inductive and explanation-based learning

1. Introduction

There are two general approaches to concept learning studied in artificial intelligence.
Empirical learning programs operate by finding regularities among a group of training
examples. One weakness of this approach is that in its purest form, it cannot take advan-
tage of the existing knowledge of the learner. Explanation-based learning (EBL)systems
(De Jong & Mooney, 1986; Mitchell, Kellar, & Kedar-Cabelli, 1986) operate by using
a domain theory ~ to explain a single example, and forming a general description of the
class of examples with the same explanation. One weakness of EBL is that the learned
concept description cannot be more accurate than the domain theory. Integrated learning
systems, (i.e., systems that combine empirical and explanation-based learning) have the
potential of overcoming the weakness of either method applied individually.

Most existing systems that combine empirical and explanation-based learning severely
restrict the complexity of the language for expressing the concept definition. For exam-
ple, some systems require that the concept definition be expressed in terms of the attribute-
value pairs (Lebowitz, 1986; Danyluk, 1989). Others effectively restrict the concept defini-
tion language to that of propositional calculus, by only allowing unary predicates (Hirsh,
i989; Mooney & Ourston, 1989; Katz, 1989; Shavlik & Towell, 1989; Pazzani, 1989;
Sarrett & Pazzani, 1989). The few systems that allow relational concept definitions (e.g.,
OCCAM (Pazzani, 1990), IOE (Flann & Dietterich, 1989), ML-SMART (Bergadano,
Giordana, & Ponsero, 1989)) place strong restrictions on the form of induction and the
initial knowledge that is provided to the system. The restricted concept definition languages
that are usually required by the empirical learning component, reduce the applicability
of the integrated learning system.

A recent advance in concept formation, FOIL (Quinlan, 1989; Quinlan, 1990) learns
fianction-free Horn clauses, a useful subset of first-order predicate calculus. In Section 2,

58 M. PAZZANI AND D. KIBLER

we review FOIL and, in the next section, we analyze the complexity of FOIL in terms
of the size of the hypothesis space generated and tested during learning. We describe how
FOIL can be extended to use a variety of types of background knowledge to increase the
class of problems that can be solved, to decrease the hypothesis space explored, and to
increase the accuracy of learned rules.

In Section 3, we incrementally define an extension to FOIL which combines both induc-
tive and explanation-based learning. The new learning system called FOCL (First Order
Combined Learner) uses FOIL's information-based metric to evaluate extensions to a
(possibly null) hypothesis of a concept definition. The extensions may be proposed either
by an inductive component or by an explanation-based component. We demonstrate that
FOCL, with prior knowledge, learns more accurate Horn clause concept definitions and
with less computational costs.

Given a set of examples and a correct domain theory, the output of FOCL is similar
to that of applying explanation-based learning on each unexplained positive example. Con-
versely, without any background knowledge, FOCL operates like FOIL. In Section 5, we
describe how FOCL learns with an incomplete or incorrect domain theory. In this case,
some clauses of a rule may be learned purely analytically, others may be learned purely
empirically, and some clauses may be learned by a combination of methods (i.e., some
literals of a single clause are added empirically while others are added analytically).

We take a broad view of prior knowledge that includes typing information, both exten-
sionally and intensionally defined predicates, and an initial, approximate definition of the
concept to be learned. In Section 5, we demonstrate the effects of each form of knowledge
with a complexity analysis of FOIL and with a series of experiments on learning concepts
from the domains of list relations and chess end game relations.

Throughout this paper we use the simple domain of list relations to illustrate FOCL's
learning mechanisms. A more severe test is provided by the more complex domain of chess
end games. This was the most difficult problem on which FOIL has been tested. A domain
theory for this particular chess problem is succinct and amenable to systematic experimen-
tation by mutation. In fact, FOCL has been tested on a variety of problems, including a
number of standard EBL problems, and a larger problem that includes a domain theory
describing when a student loan is required to be repaid (Pazzani & Brunk, 1990).

Section 6 relates FOCL to other systems that combine empirical and explanation-based
learning. Section 7 summarizes FOCL,s current characteristics and suggests future
extensions.

2. Background: FOIL

In this section, we review FOIL so that we can analyze its complexity. We begin by intro-
ducing some definitions. Formally, predicates can be defined extensionally, as a list of tuples
for which the predicate is true, or intensionally, as a set of (Horn) clauses for computing
whether the predicate is true. FOIL permits predicates with variables but does not allow
them to contain function symbols, including constants. Syntactically, a literal is a predicate
or its negation. Semantically, FOIL adopts PROLOG's negation-as-failure rule to define
the meaning of a negated predicate. Under this interpretation, if no proof that a tuple satisfies

KNOWLEDGE IN INDUCTIVE LEARNING 59

the predicate exists, then the tuple satisfies the negated predicate. Literals that are unnegated
predicates are called positive literals. Literals that are the negation of predicates are called
negative literals. A clause body is a conjunction of literals. A Horn clause consists of a
clause head, which is a predicate, and a clause body. It has the form P *- Ll, /-~, .. •
where each L i is a literal. A rule for P is a collection of Horn clauses each with the head P.

For completeness, we will define the semantics of a rule. In general, a k-tuple is a finite
sequence of k constants, denoted by <a l ak> . The meaning of a rule for a k-arity
predicate is the set of k-tuples that satisfy the predicate. A tuple satisfies a rule if it satisfies
one of the Horn clauses that define the rule. A tuple satisfies a Horn clause if there is
a mapping ~b of the variables of the head onto the tuple and an extension ~b' of all the variables
in the positive literals of the clause body into constants such that for each literal in the
clause body, the bindings resulting from ~b' result in a satisfiable literal. Note that a negative
literal is satisfiable if there do not exist any bindings for the remaining variables (if any)
that make the predicate satisfiable.

Given positive and negative examples of some concept, and a set of extensionally defined
background predicates, FOIL inductively generates a logical concept definition or rule for
the concept. FOIL and FOCL share the restriction that the induced rule must not involve
any constants or function symbols, 2 but does allow negated predicates. FOIL also permits
restricted use in clause bodies of the predicate it is learning. This allows FOIL to learn
some recursive concepts. Like ID3 (Quinlan, 1986), FOIL is a non-incremental learner
that hill climbs using a metric based on information theory to construct a rule that covers
the data. Pagallo and Haussler (1990) introduced the idea of separate-and-conquer to define
their GROVE and GREEDY3 algorithms. Unlike ID3 and like AQ (Michalski, 1980), FOIL
uses this separate-and-conquer approach rather than a divide-and-conquer approach.
Separate-and-conquer approaches concentrate on creating one rule at a time, collecting
the uncovered examples into a single pot that will be handed to the induction algorithm again.

Table 1 presents a high-level view of the FOIL algorithm. The algorithm has two main
stages: separate and conquer. The separate stage of the algorithm begins a new clause while
the conquer stage constructs a conjunction of literals to serve as the body of the clause.
Each clause describes some subset of the positive examples and no negative examples. Note
that, in effect, FOIL has two operators: start a new, empty clause, and add a literal to the
end of the current clause. FOIL adds literals to the end of the current clause until no negative
example is covered by the clause, and starts new clauses until all positive examples are
covered by some clause.

To more precisely present FOIL's algorithm, we need to define carefully what an exam-
ple is. For example, suppose FOIL's task is to learn the relation grandfather(X, Y) given
the relations father(X, Y) and parent(X, Y), defined extensionally. Furthermore, suppose
that the current clause (Body in Table 1) is grandfather(X, Y) *- parent(X, Z). This clause
can be extended by conjoining the body with any of the literals father(X, X), father(Y,
Z), father(U, Y), parent(Y, Z), parent(Y, Y), as well as many others. From this example,
we see that to create a literal to extend a clause, not only must a predicate-name be selected,
but also a particular set of variables for the predicate-name. We call the choice of variables
for a predicate-name a variabilization of the predicate. If the variable chosen already oc-
curs in an unnegated literal of the clause (i.e., in either the head or the current body),

60 M. PAZZANI AND D. KIBLER

Table L FOIL Design I.

Let Pred be the predicate to be learned.
Let Pos be the positive examples.
Until Pos is empty do:

Let Neg be the negative examples.
Set Body to empty.
Call LearnClauseBody.
Add Pred '-- Body to the rule.
Remove from Pos all examples that satisfy the Body.

Procedure LearnClauseBody
Until Neg is empty do:

Choose a literal L.
Conjoin L to Body.
Remove from Neg examples that do not satisfy L.

then the variable is called oM. Otherwise, the variable is called new. One restriction that
FOIL and FOCL place on literals is that they contain at least one old variable.

I f an extension of a clause is formed by conjoining a literal that uses only old variables,
then the new set of positive and negative examples is the subset of old positive and negative
examples that satisfy the additional predicate. As expected, these examples retain their same
classifications as positive or negative. The situation is much different if the extension of
the clause involves new variables.

For example, suppose FOIL extends a clause grandfather(X, Y) ~- true by conjoining
the literal parent(X, Z), introducing the new variable Z. Now the positive examples con-
sist of those of values <X, Y, Z > such that grandfather(X, Y) is true and parent(X, Z)
is true. To reinforce the fact that these examples are very different from the original positive
examples, and following the language of Quinlan, we will call these positive tuples. For
a given pair <X, Y> there may be zero or more values of Z such that parent(X, Z) is
true. Similarly, the set of negative tuples consists of those values of <X, Y, Z > such that
grandfather(X, Y) is false, but parent(X, Z) is true. In effect, an example is an ordered
tuple of bindings for the variables of the clause. When a new variable is introduced, the
tuples are extended to include values for that variable.

With this understanding, we can elaborate the original algorithm in Table 2. For simplicity,
we refer to the original positive examples as positive tuples. At a high level of abstraction,
FOIL is quite simple. It uses hill climbing to add the literal with the maximum information
gain to a clause. For each variabilization of each predicate P, FOIL measures the informa-
tion gain. In order to select the literal with maximum information gain, it is necessary
to know how many of the current positive and negative tuples are satisfied by the variabiliza-
tions of every extensionally defined predicate. 3

3. Analysis of FOIL

In general, the cost of hill-climbing search, such as FOIL and FOCL carry out, is the
branching factor times the depth at which a solution is found. Usually the branching factor,

KNOWLEDGE IN INDUCTIVE LEARNING 61

Table 2. FOIL Design II.

Let Pred be predicate to be learned.
Let Pos be the positive tuples.
Until Pos is empty do:

Let Neg be the negative tuples.
Let Body be empty.
Let Old be those variables used in Pred.
Call LearnClauseBody.
Add Pred ' - Body to the rule.
Remove from Pos all tuples that satisfy the Body.

Procedure LearnClauseBody
Until Neg is empty do:

For each predicate-name P.
For each variabilization L of P.
Compute information gain of L and its negation.
Select literal L with most information gain.
Conjoin L with Body.
Add any new variables to Old.
Let Pos be all extensions of Pos that are satisfied by the literal.
Let Neg be all extensions of Neg that are satisfied by the literal.

while not constant, is at least bounded. In FOIL, the branching factor grows dramatically,

roughly exponentially in the arity of the available predicates, the arity of the predicate to
be learned, and the length of the clause that is being learned. In this section, we make
these statements precise.

To begin, we estimate the cost of adding a single literal to a clause. There are two
reasonable measures we might use to estimate this cost. One measure, we call the theory
cost, indicates the number of different literals that can be chosen to extend the body of
the given clause. The second measure, called the evaluation cost, measures the cost of
computing the information gain of each literal. Note, the evaluation cost is a function of
the number of training examples, while the theory cost is not.

3.L Theory cost of FOIL

In order to compute the number of different literals to be considered for evaluation, let
us first consider the number of different variabilizations of a single predicate P of arity
m when the current clause has k old variables. Let this number be v(m, k). In Appendix
I we provide a detailed analysis of this value. At this point we present an approximation
which will be sufficient for a qualitative understanding. The first few values of v(m, k)
are displayed in Table 3, indicating the rapid growth of v(m, k) in both rn and k.

62 M. PAZZANI AND D. KIBLER

Table 3. Growth of v(m, k).

v(m, k) OLD variables

Arity 1 2 3 4 5 6 7 k

1 1 2 3 4 5 6 7 k
2 3 8 15 24 35 48 63 (k + 1) 2
3 10 32 72 136 230 360 532 = k 3
4 37 136 357 784 1525 2712 4501 ~ k 4
5 151 622 1863 4684 10,375 20,826 38,647 ~ k 5
6 674 3060 10,278 29,168 72,810 163,764 338,030 ~ k 6

Let Pred(i) be the number of predicates of arity i. Let MaxA be the maximum arity
of any predicate. As before, k is the number of old variables. The total number of literals
to be considered is given by:

TheoryCost = 2 • Z
i=1

Pred(i) * v(i, k) .

The factor of 2 reflects the fact that for each predicate we also consider its negation.
Although v(m, k) is complex (see Appendix I), we can easily compute an upper bound.

Let OM be the maximum number of old variables. Let AlIPred be the total number of
predicates. To add a new predicate we may choose from one of AllPred predicates. If the
predicate has arity MaxA (the worst case), then we must consider choosing MaxA variables
from OM old variables and MaxA - 1 new variables. A simple upper bound on this cost
is: (Old + MaxA - 1) ~t°-~a. Consequently, an upper bound of the theory cost is:

TheoryCost <_ 2 • AlIPred • (OM + MaxA - 1) ~ta~a (~)

One can make a number of qualitative inferences from this formula. In particular, it shows -
that additional predicates increase the cost (branching factor) by a linear amount, while
increasing the arity of the predicates increases the size of the search space exponentially.
Also, the amount of work increases exponentially with the number of distinct variables
in the clause.

We have developed this analysis to measure the branching factor at any point in the search
process. Now, let us illustrate this analysis by measuring the complexity of learning a par-
ticular concept, for example, the concept of list membership. This domain, as defined by
Quinlan (1990), has three predicates, null, member, and component, with arities one, two,
and three, respectively. Components (A, B, C) is true if, in PROLOG notion [A I B] = C.
The definition of member is given in Table 4.

Let us concentrate our attention on learning the boxed conjunct of the second clause,
which is the point at which the branching factor is maximized. At this point the number
of old variables is four. There are three available predicates, one of each arity from one ~
to three. Using Table 3 we see that the number of extensions is 2 * (1 * 4 + 1 • 24 +
1 * 136) = 328.

KNOWLEDGE IN INDUCTIVE LEARNING 63

Table 4. Definition of member.

member(X, Y) ~ component(X, Z, Y).
member(X, Y) ~- component(A, B, Y), member(X, B) .

There are two important points that should be noted. First, the branching factor is largely
due to the predicates with the largest arity. Second, the branching factor of the last con-
junct of the longest clause, measured in the number of distinct variables, is significantly
larger than at other points in the search space.

Putting these observations together yields the following approximation for the TheoryCost

in learning a rule R. Let Var be the largest number of distinct variables in any clause of
R, excluding the last conjunct. Let MaxP be the number of predicates with largest arity
MaxA. Then an approximation of the total number of nodes generated to learn R is:

NodesSearched -- 2 * MaxP • v(MaxA, Var) < 2 * MaxP • (Var + MaxA - 1) ~t°~.

Now that we know how many literals there are, we turn our attention to estimating the
cost of evaluating each literal.

3.2. Evaluation cost o f FOIL

In the previous section, we computed the number of different extensions of the current
clause. Each extension needs to be evaluated, and this is the main computational cost in
running FOIL. This requires testing each literal on the current set of positive and negative
tuples. Regardless how it is implemented, we suppose that this cost is a proportional to
the number of tuples. This gives us our first estimate of the evaluation cost, namely:

EvaluationCost = TheoryCost * TupleSize. (2)

As the literals in a clause are generated, the number of tuples can vary greatly. If the
extension introduces no new variables, then the number of tuples will decrease, possibly
by a very small amount. For example, it is possible that the extension will exclude only
one negative tuple. In this case, an upper bound on the tuple size is simply the old tuple
size. On the other hand, if the extension introduces new variables, then the number of
tuples may increase dramatically. To estimate the new tuple size, we introduce a few new
concepts.

First, we consider the case when no new variables are introduced by the literal. We define
the density of a predicate to be the proportion of cases when the predicate is true. For
example, suppose the domain is the integers from one to ten. Then the density of the suc-
cessor(X, Y) predicate is 9/100 and the density of less(X, Y) is 45/100. If a literal in-
troduces no new variables, then the tuple size will not increase as it consists of the subset
of the current tuples that satisfy the literal. In this case, we expect that the new tuple size
will be the density of the predicate times the old tuple size.

64 M. PAZZANI AND D. KIBLER

Now we consider the case when the literal introduces new variables. We define thepower
of a predicate to be the maximum number of solutions of the predicate when one variable ~
is bound. For the predicate less (X, Y) on the domain of integers from one to ten, the power
is nine, which is achieved by less (1, Y) and by less (X, 10). Similarly, the power of the
successor predicate is one. Since negative literals do not introduce new variables, we define
their power to be 1. The power of a predicate limits the amount of growth in the tuple
size, since NewTupleSize <_ OldTupleSize * PowerOfPredicate.

We now use the notion of Power to get an upper bound on the growth of the tuple size.
Let Pi, for i = 1 to k be the literals in the body of a clause. Define Growth(Pi) = 1 if
Pi uses only old variables and Growth(P i) = Power(Pi) if P~. uses new variables. Then
a conservative estimate for the tuple size is

k

TupleSize < I X Growth(Pi).
i=1

(3)

We can achieve a more reasonable estimate for the expected tuple size. Define the
AveragePower of a predicate to be the average number of solutions of the predicate when
one variable is bound. Since neither successor(X, 1) or successor(lO, Y) have any solu-
tions in the domain, the AveragePower of the successor predicate is 18/20. Over the same
domain, the predicate less has AveragePower 4.5. The importance of the power of a predicate
is that, in the worst case, the number of tuples can increase by no more than the power
of the predicate. Consequently, we expect that the tuple size grows proportional to
AveragePower, rather than Power.

Define the AverageGrowth(Pi) to be the density of Pi if Pi uses only old variables and
Average Power(Pi) if Pi uses new variables. This yields the following approximation for
the tuple size:

k

TupleSize ~. ~ AverageGrowth (Pi).
i=1

(4)

The importance of these estimates indicates that in order to reduce the evaluation cost,
we should prefer predicates that have low average power and low density. A predicate like
successor, which has power of 1, is guaranteed not to increase the tuple size. Of course,
we always prefer predicates.that most increase the information gain. In Section 5.1, Tables
11 and 12 illustrate the accuracy of these approximations.

Our general conclusions from this analysis are that the number of literals to add to the
end of a clause grows exponentially with the arity of the predicates and the number of
variables, which is likely to be proportional to clause length. The number of examples
can also grow, but this growth is bounded by the power of the predicate. Consequently,
one might choose predicates with low power when representing a domain. Indeed, to bound
the induction process, GOLEM (Muggleton & Feng, 1990) restricts its predicates in exactly
this manner.

KNOWLEDGE IN INDUCTIVE LEARNING 65

In the subsequent sections, we will show that by adding knowledge, we can reduce,
sometimes dramatically, these costs. Somewhat surprisingly, this analysis will also show
that sometimes large amounts of knowledge will have very little effect on reducing the search
space.

4. FOCL: Adding knowledge to FOIL

FOCL extends FOIL in a variety of ways. Each of these extensions affects only how FOCL
selects literals to test while extending a (possibly empty) clause under construction. These
extensions allow FOCL to use domain knowledge to guide the learning process. One set
of extensions allows FOCL to use constraints to limit the search space. A second set of
extensions allows FOCL to use intensionally defined predicates (i.e., predicates defined
by a rule instead of a collection of examples) in a manner similar to the extensionally defined
predicates in FOIL. A collection of intensionally defined predicates is identical to the do-
main theory of EBL. A final extension allows FOCL to accept as input a partial, possibly
incorrect rule that is an initial approximation of the predicate to be learned. If this rule
is defined in terms of extensionally defined predicates, it is analogous to a partial concept
definition constructed by an incremental inductive learning system. If this rule is defined
in terms of intensionally defined predicates, it is analogous to the target concept of EBL.
Indeed, when we discuss explanation-based extensions to FOCL, we will use the terms
"non-operational" and "intensionally defined" as synonyms. Similarly, the extensionally
defined predicates correspond to the observable facts (or the operational predicates) of EBL.
The goal of FOCL, like FOIL, is to create a rule (i.e., a set of clauses) in terms of the
extensionally defined predicates, that covers all of the positive examples and none of the
negative examples. Unlike FOIL, FOCL integrates background knowledge and EBL methods
with an inductive learner.

In the following sections, we describe these extensions in more detail and evaluate the
effect of each extension on either the number of literals tested by FOCL Or the accuracy
of FOCL. To illustrate these extensions, we use two domains. In the first domain, that
of list relations, we illustrate how FOCL learns a simple recursive concept, the member
predicate. FOCL is provided with positive and negative examples of the member predicate
(e.g., member(b,[a, b, c]) notmember(a,[b, c]) and the component predicate (e.g., com-
ponent(a, [b, c], [a, b, c]) and learns the correct recursive definition for member, as given
in Table 4.

The second domain is more complicated and was introduced by Muggleton and Feng
(1989). This domain suggests that FOCL can handle moderately-sized realistic domains.
Several hundred examples are used to build a concept description that varies from four to
eleven clauses, depending upon the extensional predicates that are provided. The predicate or
concept to be learned is illegal(A, B, C, D, E, F). This is true if a chess board containing
a white king and rook and black king is in an illegal state if it is white's turn to move. A
state is illegal if either king is in check or more than one piece occupies the same space. A
and B are the position of the white king (rank and file), C and D are the white rook's posi-
tion, and E and F are the black king's position. The ranks and files are represented by
a number between 1 and 8. In this example, the operational predicates used are between (X,

66 M. PAZZANI AND D. KIBLER

Y, Z) (the value of Y is between the values of X and Z), adjacent(X, Y) (the value of X
is either one greater or one less than the value of Y) and equal(X, Y) (the values of X ~
and Y are equal).

Where appropriate, we present two sorts of experiments with this domain. First, we pre-
sent experiments using a large number of examples that enables FOCL to learn a concept
description that is extremely accurate (> 99%), and we measure the effect of the knowledge
on the size of the hypothesis space searched. Second, we present experiments using a smaller
number of examples and evaluate the impact of the knowledge on the accuracy of the rule
learned.

4.L Zero knowledge differences in FOIL and FOCL

The goal of our analysis and experimentation is to gain an understanding of the impact
of each type of knowledge on acquiring Horn clause theories. However, even when FOCL
is provided with no knowledge, it has some differences with FOIL that we should mention.

As noted in Section 3, the theory cost and the evaluation cost grow exponentially in the
number of distinct variables. Consequently, to lessen this cost, in FOCL, we have intro-
duced an iterative widening search strategy 4 that is analogous to iterative depth-first search
(Korf, 1985). FOCL first attempts to learn a clause by introducing no free variables. If
this fails because no variabilization of any predicate has positive gain, then additional free
variables are allowed. On each failure, an additional free variable is allowed until the number
of free variables exceeds the maximum arity of any predicate. As with iterative deepening,
there is a small cost for using iterative widening search when it is not needed. However,
when iterative widening reduces search, there is a major benefit.

Additionally, there are three features of FOIL that we do not consider in this paper. First,
FOIL contains a limited form of backtracking to allow it to solve some problems that can-
not be solved with hill climbing alone. It is difficult to estimate how often this backtrack-
ing is needed. All of the examples in this paper can be solved without backtracking. Sec-
ond, FOIL contains a branch-and-bound pruning heuristic that allows it to avoid testing
the variabilizations of some predicates. It is difficult to analyze the impact of the pruning
heuristic on the number of literals tested. In the worst case, it will have no impact. Moreover,
it can never affect the accuracy of the hypothesis. Since this heuristic is not compatible
with the iterative widening search, we do not make use of it. s Finally, FOIL contains an
information-based stopping criteria that allows it to learn from noisy data. We do not con-
sider noisy data in our analysis or experiments.

Now we will describe the extensions and modifications of FOIL that permit various forms
of background knowledge to be exploited. We also evaluate the benefit that these exten-
sions have. After we have considered each of these extensions separately, we present the
complete FOCL algorithm. At this point, we present the specification of FOCL in Table 5.

The subsequent sections discuss the modifications necessary to use each of the forms
of knowledge that may be presented to FOCL.

KNOWLEDGE IN INDUCTIVE LEARNING 67

Table 5. FOCL specification.

Given:

1. The name of a predicate of known arity.
2. A set of positive tuples.
3. A set of negative tuples.
4. A set of extensionally defined predicates.
5. (optionally) A set of intentionally defined predicates.
6. (optionally) A set of constraints (e.g., typing) on the inten-

sional and extensional predicates.
7. (optionally) An initial (operational or non-operational) rule.

Create: A rule in terms of the extensional predicates such that
no clause covers any negative examples and some clause covers
every positive example.

4.2. Single argument constraints

Type constraints provide a useful and inexpensive way of incorporating a simple form of
background knowledge. FOCL can easily use typing information. 6 Typing is implemented
by associating a type for each argument of a predicate. For example, the predicate illegal(A,
B, C, D, E, F) has a type definition:

illegal(rank, file, rank, file, rank, file).

A type can then be associated with a variable the first time it is used in a clause and all
other uses of that variable in the clause must be consistent with that type.

Introducing typing may require introducing additional predicates. In the illegal exam-
ple, the predicate adjacent is overloaded in that it can compare ranks or compare files.
However, it should never be used to compare ranks to files. Therefore, we add the predicate
adjacent__rank(X, Y) with the type adjacent__rank(rank, rank). Similarly,
adjacent___file(A, B) is used to compare files.

Typing reduces the search space by avoiding testing literals where the types of old variables
conflict with the usage of these variables as arguments to a predicate. More precisely, let
us assume that a domain has Ttypes and, in the best case, these types are distributed equally
among the variables. Then, with typing, the theory cost approximately reduces to TheoryCost
= AllPred*((Var + MaxA)/T) ~t°-~, a savings of T M~xa. This shows that, in the best case,
typing can reduce the exponent of the search space. In practice, the reduction, though signifi-
cant, is less than the best case.

In the chess domain, typing information was used to ensure that the predicates between,
equal, and adjacent were only applied to either all ranks or all files. The benefit of typing
is illustrated by the fact that FOCL using typing tests 3240 literals and 242,982 tuples as
compared to 10,366 literals and 820,030 tuples for FOCL without typing when learning
illegal from 641 randomly selected positive and negative training examples, of which 233
were positive and 408 were negative.

68 M. PAZZANI AND D. KIBLER

In addition to reducing the size of the search space explored, typing can also improve
the accuracy of the hypothesis produced. The effect of typing on the hill-climbing search
is to eliminate some literals that may (coincidentally) have the maximum information gain.
For example, in the chess domain, it can occur that a literal that violates the typing con-
straints has the maximum information gain (e.g., the rank of the white king is equal to
the file of the black king). Typing prevents FOCL from considering these literals.

In order to test the hypothesis that typing can improve the accuracy of FOCL, we ran
an experiment in which we compared FOCL without typing to FOCL with typing on the
illegal problem. Twenty trials of FOCL with typing and without typing were run on 10,
20, 40, 60, 80, 100, 150, 200, 250 and 300 randomly selected training examples. We
measured the accuracy at each point on 1000 randomly selected testing examples. Figure
1 shows the mean accuracy plotted as a function of the number of training examples. FOCL
with typing is labeled "Typed Induction." FOCL without typing is labeled "Untyped?'
("Irrelevant Pred" will be used in the next experiment.) An analysis of variance indicates
that typing has a significant effect on the accuracy of FOCL (F(1,380) = 75.8, p = <
.0001). A similar effect could be achieved by not permitting a data value to belong to two
types. In the representation used for illegal, numbers are used to represent the ranks and
files. If numbers were used for the ranks, and letters for files, it wouldn't be possible for
a rank to have the same value as a file. However, without explicit typing, FOCL would
still have to consider the possibility that a rank could equal a file.

With a small number of examples, typing improves the accuracy of the resulting hypotheses
produced by FOCL. As the number of examples increases, the effect of typing on accuracy
is reduced. This occurs because it is unlikely in a larger training set for a predicate
variabilization that does not obey the typing restriction to have the maximum information
gain. However, typing is still useful since it is an inexpensive way to reduce the number
of literals tested.

| . 0 '

0.9'

0.8'

0.7

0.6

0.5

duction
Pred

'~ ~ Untyped

. . . . i i i I i 1

0 50 100 150 200 250 300

Number of Examples

Figure 1. The effect of adding irrelevant predicates and variable typing on the accuracy of FOCL.

KNOWLEDGE IN INDUCTIVE LEARNING 69

4.3. Multiple arguments constraints

A second type of a constraint involves inter-argument constraints, the relationship between
the arguments of a predicate. For example, equal(X, X) is trivially true and between(X,
X, Y) is trivially false. Such expressions should not play a part in a concept definition
and, therefore, it is wasteful to test hypotheses including these literals.

One multiple argument constraint we have implemented handles predicates where all
the variables must be distinct. This is declared in the input to FOCL via a unique variables
declaration on designated predicates. Providing such constraints on literals when FOCL
learns illegal further reduces the size of the hypothesis space explored. Like typing, inter-
argument constraints reduce the number of variabilized literals that must be tested.

The value of inter-argument constraints is illustrated by the fact that FOCL, using typing
and inter-argument constraints, tests 1296 literals and 109,350 examples as compared to
3240 literals and 242,982 examples for FOCL using only typing when learning illegal from
641 randomly generated training examples.

This unique variables inter-argument constraint does not affect the accuracy of the resulting
hypotheses. A trivially true or trivially false predicate cannot have positive information
gain. Nonetheless, like variable typing, it is an effective constraint for reducing the number
of literals that are tested by the inductive component of FOCL. These constraints reduce
CPU time as well as the theory cost and evaluation cost. For example, without these con-
straints, FOCL took 220 CPU seconds on a SUN 4/65 computer running Common Lisp.
With these constraints, 21.6 CPU seconds were consumed during learning illegal. This
illustrates that both the run time and the size of the search space explored are reduced
by an order of magnitude by these simple constraints on inductive learning.

Another implemented inter-argument constraint is the requirement that for some
predicates, variables must commute. For example, it is not necessary to test
adjacent__rank(F, X) since this has the same meaning and information gain as
adjacent_rank(X, F). Binary predicates may be declared to be commutative, reducing the
number of literals explored. In the illegal example, adjacent and equal are commutative.
Adding this knowledge reduces the number of variabilizations of commutative predicates
by half. Therefore, a total of 711 literals were tested with this additional knowledge. Note
that commutafivity does not affect accuracy, but merely avoids testing equivalent variabiliza-
tions of the same literal.

Finally, we have also implemented a third constraint that reduces the number of variabiliza-
tions of a predicate that must be checked. A predicate may have a mode declared. The
mode indicates whether each argument to the predicate may be bound to an old variable
or a new variable. Mode information is commonly used by a compiler to create more effi-
cient compiled predicates. In FOCL, we use it to avoid computing the information gain
of variabilizations of a predicate that violate the mode restriction. The mode interacts with
the iterative widening search used in FOCL, because FOCL initially considers only those
variabilizations that have no new variables. As a consequence, it does not decrease the
amount of search performed on the illegal problem. However, when new variables are needed
in a concept representation, and modes are declared for predicates, the mode declarations
can significantly decrease the amount of search performed during learning.

70 M. PAZZANI AND D. KIBLER

4.4. Operational initial rules

In the next sections,, we consider ways in which background knowledge can improve in-
ductive learning. First, we will consider the case where the background knowledge is a
(possibly incorrect) partial, operational rule that approximates the concept to be learned.
For the subsequent discussion, we regard an operational predicate as one that is given ex-
tensionally. If a predicate is defined by other predicates, we say the definition is non-
operational. Such an initial rule might be provided by a teacher, or, in an incremental learn-
ing system (e.g., Widmer, 1990), learned from an initial subset of the examples.

The extension to FOCL to use a partial, operational Horn clause rule is straightforward.
In FOIL, the information gain of a literal is computed as a function of the original and
extended positive and negative tuples covered by the literal. A clause is merely a conjunc-
tion of literals. Therefore, the information gain of a clause is simply a function of the number
of tuples covered by the conjunction of literals. When deciding to add a new literal, FOCL
computes the information gain of each clause in the initial concept. If any clause has positive
information gain, the conjunction of operational literals is added to the end of the clause
under construction. If the current clause covers some negative tuples, additional literals
are added inductively to rule out the negative tuples.

The analysis of the complexity of FOIL provides insight into the benefit of including
an operational partial rule for the predicate to be learned. In general, search in FOIL is
dominated by the last literal of the clause with the largest number of variables. This means
that a partial rule that is nearly complete, but omits the last literal of the clause with the
largest number of distinct variables, reduces the search by only a negligible amount.

The following experiments support this analysis. We gave FOCL three partial defini-
tions of the member function, namely:

1. member(X,
2. member(X,

member(X,
3. member(X,

Y) *- component(X, Z, Y).
Y) ~- component(X, Z, Y).
Y) ~ component(A, B, Y).
Y) ~- component(X, Y, Z).

The first two definitions are partial and correct. The second clause of the second partial
definition must be extended by adding an additional literal. The last partial definition is
incorrect. For the first definition, FOCL tests 268 literals and considers 20,140 tuples.
In the second definition, the corresponding figures are 228 literals and 12,167 tuples. Us-
ing the third definition, these figures are 311 literals and 23,358 tuples. Without any par-
tial definition, FOIL tests 308 literals and considers 23,057 tuples. Note that the correct
partial definitions given do not significantly reduce the number of literals tested because
the majority of the work is needed to add the last literal to the last clause of member. The
incorrect partial definition only slightly increases the number of literals and tuples tested
since FOCL checks the possibility that the partial definition may have some information
gain, and ignores the definition when there is not positive gain.

In general, a partial operational concept definition reduces search in FOCL since FOCL
saves the work needed to generate this partial definition. However, since this search is
dominated by the last literal of the clause with the largest number of distinct variables,

KNOWLEDGE IN INDUCTIVE LEARNING 71

a partial definition that does not contain this clause does not save a significant amount
of work. Note that an initial partial operational concept definition might improve the ac-
curacy of FOIL if FOIL could not find an accurate concept definition using greedy search.

4.5. Non-operational predicates

Next, we consider domain theories using non-operational predicates, i.e., ones defined
in terms of operational and other non-operational predicates. Non-operational predicates
will bias the search for a concept definition, but do not appear in the final concept defini-
tion. Systems such as CIGOL (Muggleton & Buntine, 1988) make use of (or invent)
background knowledge of this form. For example, if an operational definition of the predicate
between (X, Y, Z) is not provided, it could be defined in terms of the operational predicate
less than by I

between(X, Y, Z) ~ less_than(X, Y), less_than(Y, Z).
between(X, Y, Z) 4- less-than(Z, Y), less-than(Y, X).

One advantage of the non-operational predicates is illustrated by the fact that between (X,
Y, Z) may have positive information gain, while less-than(X, Y) and less_than(Y, Z) may
have negative gain. Therefore, FOIL's hill-climbing search may not learn a concept that
~nvolves less-than (X, Y), less_than (Y, Z). More generally, non-operational predicates
allow the hill-climbing search to take some larger steps that can allow the hill climber to
solve problems that cannot be solved with smaller steps.

Note that it would be computationally prohibitive to consider all conjunctions of length
two of the operational predicates. In general, this would more than square the theory cost.
Non-operational predicates provide information on what particular combinations of opera-
tional predicates may be useful and allow FOCL to simulate a selective look-ahead.

Non-operational predicates are evaluated in the same manner as operational predicates
in FOCL. The information gain of all variabilizations of non-operational predicates is com-
puted in a manner similar to that used by FOIL with operational predicates. Computing
the information gain of a non-operational literal requires counting the number of positive
and negative tuples (and extensions of these tuples if the variabilization includes new
variables) covered by the literal. 7 If the literal with the most gain is non-operational, then
the literal is operationalized and the operational definition is added to the clause under
construction. Note that, unlike operational predicates, the computation of the information
gain of non-operational predicates involves a potentially expensive Prolog proof.

The operationalization process in FOCL differs from that of EBL in that it is guided
by an information gain metric over a set of both positive and negative examples rather than
by the proof of a single positive example. As in EBL, the operational definition for a predicate
lnay specialize the predicate if the domain theory is disjunctive (i.e., if there are multiple
clauses for any non-operational predicate). In EBL, the predicates that are the leaves of
the proof tree of the single training example are used as the operational definition. In FOCL,
the information gain metric is used to determine how to construct a proof tree which is
likely to cover many cases. This process is formalized in Table 6.

72 M. PAZZANI AND D. KIBLER

Table 60perationalization.

Procedure: Operationalize(Literal, Pos, Neg)
If Literal is operational

Return Literal
Initialize OperationalLiterals to the empty set.
For each clause in the definition of Literal

compute gain(clause, Pos, Neg).
For the clause with the maximum gain,

for each literal L in the clause,
Add operationalize(L, Pos, Neg) to OpemtionalLiterals.

The compute_gain function uses Prolog to prove a clause (i.e., a conjunction of opera-
tional and non-operational literals). The operationalization process uses the information
gain metric to select which clause of a non-operational rule should be expanded. The result
of this process is that an operational specialization of a non-operational literal is selected
that covers many positive tuples and few negative tuples.

Due to its reliance on hill-climbing search, FOIL and FOCL are unable to learn a com-
pletely correct definition of illegal using only less_than, equal and adjacent. When FOCL
is also given a non-operational definition of between in terms of less_than, it finds a com-
pletely correct definition in terms of the operational predicates less_than, equal and
adjacent,

A disadvantage of using non-operational predicates in this manner is that each additional
non-operational predicate, particularly those with many arguments, increases the search
space. This has the undesirable consequence that the more one knows, the slower one learns.
This became obvious when we added rules from a domain theory of chess to FOCL. These
rules indicate facts such as: A king is in check if there is an opposing rook in the same
file as the king and there is not another piece between the rook and king. Table 7 contains
definitions of these non-operational predicates.

With this extended domain theory, FOCL tested 3063 literals and 283,602 tuples before
finding an operational concept definition, as opposed to 1296 literals and 109,350 tuples
when only the operational predicates were used. This experimental finding agrees with
the analysis of FOIL presented in Section 3. In particular, since the number of predicates
increased, the number of literals tested increased.

A slight modification to the operationalization procedure described so far increases FOCUs
ability to tolerate overly specific domain theories caused by clauses having one or more
extra literals. In particular, the information gain of the conjunction of literals produced
by operationalization may be increased by the deletion of one of the literals of the conjunc-
tion. When deleting a literal increases the information gain and the ratio of negative tuples
to total tuples is decreased by the deletion, then the literal is deleted from the operationaliza-
tion. This process is repeated until no deletion results in additional information gain. Note
that this scheme is a greedy search for the subset of an operationalization with the max-
imum information gain. An optimal algorithm that is guaranteed to find the subset with
the maximum information gain would operate by finding the information gain of all subsets
of the operationalization. However, this expensive scheme is not practical in large applica-
tions. In Pazzani, Brunk, and Silverstein (1991), we provide experimental evidence that
the greedy method is an efficient approximation of the optimal algorithm.

KNOWLEDGE IN INDUCTIVE LEARNING 73

Table 7. Partial domain theory for chess.

Predicate to be learned: illegal (A, B, C, D, E, F)
Type: (rank file rank filerank file)
Pos: (5 3 1 8 1 6) (3 7 5 6 1 6) . . .
Neg: (3 8 6 1 8 5)(8 6 4 1 1 8) . . .

NonOperational Predicates:
sameJoc(R1,F1,R2,F2) ~- equal_rank(R1,R2), equal~le(F1,F2).
type: (rank file rank file), unique variables.
king attack~king(R1,F1,R2,F2) ~- adjacent_rank(R1,R2), adjacent~ile(F1,F2)
king~attack_king(R1,F1,R2,F2) ~- adjacent_rank(R1,R2), equaLffile(F1,F2)
king_attack~king(R1,F1,R2,F2) ~- equal_rank (R1,R2), adjacent~/~le (F1,F2)
type: (rank file rank file), unique variables.
rook_attack~cing (R1,F1,R2,F2,R3,F3) *- equalJank (R2,R3), king~ot_between~eile (R1,F1,R2,F2,F3).
rook_attack~cing (R1,F1,R2,F2,R3,F3) ~- equal~ile (F2,F3), king~ot~between~'ank (R1,F1,R2,F2,F3).
type: (rank file rank file rank file), unique variables.
king_not~between~ile(R1,F1,R2,F2,F3) ~- not(equal~'ank(R1,R2)).
king_not~etween~ile (R1,F1,R2,F2,F3) ~- equal_rank (R1,R2), not (between_file (F2,F1,F3)).
type: (rank,file,rank,file,file), unique variables.
king~ot_between~'ank(R1,F1,R2,F2,R3) ~ not(equal~ile(F1,F2)).
king_not~etween__rank(R1,F1,R2,F2,R3) ~ equal~ile(F1,F2)), not(between_rank(R2,R1,R3)).
type: (rank,file,rank,file,rank), unique_variables.

Operational Predicates:
between~'ank(rank,rank,rank), unique_variables
Pos: (123)(124)(124) . . . (234) , (235) .. . (678)
equal~'ank(rank,rank), unique_variables.
Pos: (11)(22)(33)(44)(55)(66)(77)(88)
adjacent~'ank (rank, rank), unique_variables.
Pos: (12)(21)(23)(32)(34)...(78)

A positive effect of a domain theory is that it may provide the right predicates to allow
a hill-climbing search to find the concept description. On the negative side, it increases
the search space and can decrease the accuracy. This can occur if the predicates present
in the domain theory are irrelevant to the task. A variabilization of an irrelevant predicate
may have the maximum information gain, and be used incorrectly as a literal in a clause.
This problem is not limited to just non-operational predicates. This is analogous to an ir-
relevant attribute in propositional learning.

In order to test the hypothesis that irrelevant predicates degrade the accuracy of FOCL,
we ran an experiment in which we compared FOCL without irrelevant predicates to FOCL
with irrelevant predicates on the illegal problem. Irrelevant predicates such as odd(X) ,
p r i m e (X) , successor(X, Y), p lus (X , Y, Z) , t imes(X, Y, Z) , square(X, Y), cube(X, Y), and
greater(X, Y) were added. Both versions of FOCL did not use typing. The experiment
follows the same design as the previous experiment. Figure 1 also plots the mean accuracy
of FOCL with irrelevant predicates. An analysis of variance indicates that irrelevant
predicates have a significant effect on the accuracy of FOCL (F(1,380) = 37.6, p < .0001).
When learning with extra irrelevant predicates, especially greater and successor, FOCL
learned concepts that were not as accurate on test data. The original operational predicates,

74 M. PAZZANI AND D. KIBLER

equal, between and adjacent were carefully chosen because these concepts are useful in
learning about rooks attacking kings, kings attacking kings, and blocking a rook from at- o
tacking a king. When less care is taken in selecting predicates, or if the relevant predicates
are not known beforehand, more data is needed to create accurate hypotheses. In this man-
ner, the available predicates in a Horn clause learner are analogous to the attributes used
by a propositional learning program. In summary, irrelevant predicates can increase the
amount of work, by a linear amount, and increase the number of training examples re-
quired to achieve a given accuracy.

4.6. Non-operational initial rules

In the previous section, we pointed out how adding background knowledge in the form
of a domain theory can increase the ability of FOCL to find solutions. However, increasing
the size of the domain theory may increase the search space explored by the learning pro-
gram and decrease the accuracy of the resulting hypothesis. In explanation-based learning,
the search for a concept definition is facilitated by providing the learning system with a
target concept, an abstract description of the concept to be learned. For example, Table
8 shows a representation of an initial non-operational rule (target concept) for illegal. In
EBL, the target concept is assumed to be correct. In FOCL, we relax the assumptions o
that the target concept and the domain theory are correct.

When a non-operational initial rule is provided to FOCL, it is treated in a manner similar
to an operational rule (i.e., a rule using just extensionally defined predicates). In particular, ~
it is possible to compute the information gain of a conjunction of extensionally and inten-
sionally defined literals, by using a Prolog style proof process to determine which examples
(and extended examples) are covered by each clause of the initial rule. If a clause of the
initial rule is non-operational and has maximum gain, literals are added to the current clause
by operationalization of the target concept in the manner described in Section 4.5.

When FOCL is provided with a correct non-operational target concept and the domain
theory of the previous section, it finds a correct operational definition of illegal by testing
72 literals. In contrast, with the correct domain theory, but no target concept, FOCL tests
3063 literals. The reason for this savings is that with no target concept, FOCL must test
every variabilization of every predicate. When provided with a target concept, the proof
structure determines which variabilizations are tested. FOCL computes the information
gain of illegal(Rl, FI, R2, F2, R3, F3) and operationalizes it if it has positive information
gain. As a result, only three variabilizations of same_loc are tested when the target con-
cept is provided to FOCL. Without this knowledge, FOCL tests 2712 different variabiliza-
tions of same_loc, (since there are six variables and same_loc has arity four). Without
the target concept, the constraints of typing and unique variables, and iterative widening
search reduce this number to 36. Similarly, unconstrained induction checks 163,764
variabilizations of rook attack~cing, constrained induction checks 36, and operationaliza-
tion checks only one.

KNOWLEDGE IN INDUCTIVE LEARNING 75

Table 8. Chess target concept.

illegal (R1,F1,R2,F2,R3,F3) ~ same_loc(R1,F1,R2,F2).
illegal(R1,F1,R2,F2,R3,F3) ~ same_loc(R1,F1,R3,F3).
illegal(R1,F1,R2,F2,R3,F3) ~- same loc(R2,F2,R3,F3).
illegal(R1,F1,R2,F2,R3,F3) *- king~attack~king(R1,F1,R3,F3).
illegaI (R1,F1,R2,F2,R3,F3) *- rook attack king (R1,F1,R2,F2,R3,F3).

Note that typing, unique variables, and iterative widening are not needed by the analytic
learning component, since the domain theory and the target concept control the selection
of predicate variabilizations. A good domain theory will not violate typing, use predicates
trivially, or introduce unnecessary new variables.

In addition to reducing the search space, a correct target concept and domain theory
will improve accuracy. In order to test the hypothesis that a correct domain theory will
increase the accuracy of FOCL, we ran an experiment in which we compared FOCL without
a domain theory to FOCL with a domain theory for illegal. Although typing is always
valuable, to focus just on the value of the domain theory in this experiment, both versions
of FOCL did not use typing. The experiment follows the same design as the previous ex-
periments. Figure 2 plots the mean accuracy of FOCL with and without a correct domain
theory. FOCL with a correct domain theory is labeled "Correct DT." FOCL without a
correct domain theory is labeled "Untyped." ("Incorrect DT" will be used in the next ex-
periment.) An analysis of variance indicates that typing has a significant effect on the ac-
curacy of FOCL (F(1,380) = 75.8, p < .0001). An analysis of variance indicates that a
correct domain theory has a significant effect on the accuracy of FOCL (F(1,380) = 337.9,
p < .0001). As expected, the correct target concept and domain theory improve the ac-
curacy of the resulting hypothesis. FOCL does require close to 200 examples to typically
achieve 100% accuracy with a correct domain theory on this problem because some of
the clauses in the correct concept are rare and FOCL requires that at least one positive
example be covered by any operationalization.

1.0

0.9

0.8

0.7

0.6

0.5

••__
~ ~ ~ Lncorrect DTT

-'- Untype~

. . . . i i i i I I

50 100 150 200 250 300

Numl~r of Examples

Figure 2. The effect of adding a correct domain theory and a 76.2 % accurate domain theory on the accuracy of FOCL.

76 M. PAZZANI AND D. KIBLER

A domain theory and target concept does reduce the CPU time in FOCL. A total of
11.6 CPU seconds on a Sun 4/60 were consumed using purely explanation-based learning °
as compared to 220 .CPU seconds using induction with no constraints. The current im-
plementation makes use of a backward chaining rule interpreter implemented in Common
Lisp that runs at approximately 1500 logical inferences per second.

4.7. Summary of FOCL

Now that the components of FOCL have been explained, we show how they are integrated
in Table 9. This high level design emphasizes the main differences with FOIL. FOCL ex-
tends FOIL in several ways. First, FOCL constrains the inductive process so that not all
variabilizations of a predicate need be checked. Second, FOCL computes the information
gain of intensionally defined predicates as well as extensionally defined predicates. Third,
FOCL operationalizes intensionally defined predicates by finding an operational specializa-
tion that covers many positive and few negative examples. Fourth, FOCL computes the
information gain of an initial (operational or non-operational) rule for the concept to be
learned and can decide to use this in favor of induction. In this view, the value of an initial
rule (i.e., target concept) is that it indicates the variabilizations of a non-operational predicate
that are likely to be useful. For simplicity, we do not consider the case where FOCL is
instructed not to operationalize intensionally defined predicates, s

By using a uniform information gain metric, FOCL can deal with incomplete and incor-
rect domain theories. The only difference between inductively formed and analytically
formed literals is that the search for an analytically formed literal is more directed. The
decision about whether to use inductive or explanation-based techniques to extend a clause
is based on the likelihood of producing an accurate hypothesis, as measured by the infor-
mation metric.

5. Incorrect and incomplete domain theories

FOCL is capable of utilizing incorrect and incomplete domain theories. FOCL tolerates
such theories because the literals proposed by analytic methods are tested by an information-
based metric to make sure they have positive gain (or the maximum gain). If an analytical
extension is not selected, then FOCL selects literals inductively.

To illustrate how FOCL learns in spite of incorrect domain theories, we simultaneously
introduced four errors into the correct domain theory for illegal. The errors are indicated
in Table 10.

These errors correspond to the assumption that rooks only attack in files, kings may
move like knights, kings may attack anywhere in the same rank, and two pieces may occupy
the same square provided the black king is not in an adjacent file. With these four errors,
the domain theory correctly classified 76.2 % of the examples when tested on 10,000 training
examples. Appendix II provides an edited trace of FOCL operating with this domain theory.
FOCL tests 705 literals to generate this definition. Analysis of the definition, confirmed
by testing on 10,000 training instances, indicates that the concept acquired is 100% correct.

KNOWLEDGE IN INDUCTIVE LEARNING 77

Table 9. Design of FOCL.

Let Pos be the positive tuples.
Let IR be the initial rule.
Let Body be empty.

Until Pos is empty
Leg Neg be the negative tuples.
Call LearnClauseBody.
Remove from Pos those tuples covered by Body.
Set Body to empty.

Procedure LearnClauseBody:
If a ClauseBody of IR has positive gain,

Choose best ClauseBody 1
Operationalize and delete superfluous literals from it?
Conjoin result with Body,
Update Pos and Neg,
Call ExtendBody?

Else
Choose best literal,
Operationalize and delete superfluous literals from it?
Conjoin result with body,
Update Pos and Neg,
Call LearnClauseBody.

Procedure ExtendBody:
While Neg is non-empty

Choose best literal?
Operationalize and delete superfluous literals from it.
Conjoin result with Body.
Update Pos and Neg.

ITakes advantage of good prior clauses.
aAllows use of non-operational predicates.
3Allows correction of old clause bodies.

Table 10. Domain errors.
.

Deleted Clause: (Theory loses coverage)
rookJttack~cing(R1, F1, R2, F2, F3) *- equal_rank(R2, R3),

kingJot~etween~file(R1, F1, R2, F2, /73).

Added Clause: (Theory too general)
kingjttack~ing(R1, F1, R2, F2) *-- knight_move(R1, F1, R2, F2).

Deleted Literal: (Clause too general)
Changed: king_attack~ing(R1, F1, R2, F2) ~ equal_rank(R1, R2), adjacent file(F1, F2)
To: king attack~cing(R1, F1, R2, F2) ~- equal_rank(R1, R2).

Added Literal: (Clause overly specific)
illegal(R1, FI, R2, F2, R3, F3) ~- sarne_loc(R1, F1, F2, F2), adjacent file(F1, F3).

Through a single mechan i sm, F O C L responds to each type of modi f i ed domain theory

in a diferent manner. I f these modif ica t ions result in negat ive gain, F O C L wil l not opera-

t ionalize this rule but instead finds an accurate defini t ion using as m u c h of the domain

78 M. PAZZANI AND D. KIBLER

theory as possible and fills in the remainder with its bottom-up inductive method. In general,
FOCL responds to the four types of correctness destroying transformations as follows: -

* Literal Deletion: If the literals defining a clause have positive gain, then FOCL can
operationalize the clauses that are not altered in a purely explanation-based fashion. If
the clause with the literal deleted has positive gain, then FOCL operationalizes this clause
and then uses inductive methods to complete the clause by finding a predicate that cor-
rectly classifies the remaining positive tuples and doesn't cover any negative tuples. Quite
often, using induction to finish a clause results in finding the literal that was deleted.

• Clause Deletion: FOCL can operationalize the clauses that are not deleted. Operational
descriptions equivalent to the remaining clauses (i.e., they cover the positive training
tuples not covered by the remaining clauses and do not cover any negative tuples) are
added in an inductive fashion.

• Literal Addition: Often, the unchanged clauses will have greater positive gain than the
modified clause and the unchanged clauses will be operationalized first. At this point,
the altered clause will not have positive gain, and an operational description equivalent
to the clause before modification is added inductively. If an altered clause has positive
gain, the greedy deletion of literals will usually remove the superfluous literal. I f this
fails, an overly specified clause is included in a concept definition. To cover additional
positive tuples, FOCL inductively adds clauses.

• Clause Addition: FOCL operationalizes clauses with maximum gain and it is unlikely
that randomly added clauses will have more gain. In effect, FOCL uses information gain
as a method to find a subset of the domain theory that is accurate. FOCL iteratively
finds an operational specialization with the highest positive gain on all training tuples
and makes this the next clause. It removes those positive training tuples covered by that
clause, and finds other operational clauses to cover the remaining positive tuples.

It is important to stress that FOCL does not contain any special code to deal with each
type of modification. Rather, the above behavior falls out of using a uniform, information-
based heuristic to judge the usefulness of operationalizing the target concept or using bottom-
up methods to extend a clause.

In order to test the hypothesis that an incorrect domain theory will also increase the
accuracy of FOCL, we ran an experiment in which we compared FOCL without a domain
theory to FOCL with the above incorrect domain theory for illegal. Both versions of FOCL
did not use typing. Figure 2 also plots the mean accuracy of FOCL with an incorrect do-
main theory. An analysis of variance indicates that even an incorrect domain theory has
a significant effect on the accuracy of FOCL (F(1,380) = 120.1, p < .0001). The figure
illustrates that FOCL learns more quickly with a domain theory that is only 76.2% ac-
curate, than with no domain theory. This is a result of using the information-based heuristic
to judge the usefulness of the domain theory and to switch between explanation-based and
emoirical methods.

KNOWLEDGE IN INDUCTIVE LEARNING 79

5.1. Experiments on the size of the hypothesis space searched

In the previous section, we presented several experiments demonstrating that prior knowledge
improves the accuracy of FOCL. The following experiments demonstrate that FOCL, us-
ing a combination of explanation-based and empirical learning methods, can advantageously
use partial domain theories to reduce the size of the search space explored, even when
these theories contain severe errors. Incorrect domain theories for the definition of illegal
are generated from a correct theory by four different perturbation operators.

1. Randomly deleting a term from a clause of a rule (subject to the constraint that a clause
must have at least one term). This modification will cause the rule to make errors on
negative training examples.

2. Randomly deleting a clause from a rule (subject to the constraint that a rule must have
at least one clause). This modification will cause the rule to make errors on positive
training examples.

3. Randomly adding a term to a clause of a rule. A term was constructed randomly from
the set of operational predicates and from the existing variables of a clause. This modifica-
tion will cause the rule to make errors on positive training examples.

4. Randomly adding a clause to a rule. A clause was constructed with random terms. All
clauses were at least 1 term long. There was a 0.5 probability that clauses had at least
2 terms, a .25 probability of at least 3, etc. This modification will cause the rule to
make errors on negative training examples.

We train FOCL on a large number (641) of training examples, and in all cases, the resulting
hypothesis is greater than 99% accurate. In each case, we measure the amount of search
that is required to create a hypothesis.

In the first set of experiments, each perturbation operator was applied individually. Fig-
ure 3 plots the accuracy of the resulting domain theory (averaged over 20 trials) and the
number of literals tested by FOCL for each operation as a function of the number of modifica-
tions to the domain theory. Note that FOCL is able to exploit extremely inaccurate domain
theories to constrain the search for a concept definition.

The easiest problem for FOCL occurs when additional clauses are added to the domain
theory. This problem can be solved entirely by explanation-based means. A subset of the
possible operationalizations of the target concept is chosen in a greedy manner to cover
the positive examples and exclude the negative examples. The more difficult problems for
FOCL occur when the inductive component of FOCL is required to make up for an inade-
quate domain. Induction is needed when no subset of the possible operationalizations of
the domain theory will result in a correct hypothesis.

We also ran experiments in which all of the above modifications were performed
simultaneously on the domain theory, yielding a domain theory that misclassifies both
positive and negative tuples. Figure 4 plots the accuracy of the domain theory and the number
of literals expanded by FOCL with and without a domain theory, when the domain theory
was modified by adding or deleting clauses and literals as a function of the number of
modifications to the domain theory (averaged over 20 trials). The results of adding and
deleting clauses and literals indicate that FOCL with an incorrect and incomplete domain
theory explores a smaller portion of the search space than FOCL without a domain theory.

80 M. PAZZANI A N D D. KIBLER
~,

1400 "
,

1200 -

> 200-

0
0 2 4 6 8 10
Number of Modifications to Domain Theory

~ "~" + Clauses
"*" + Literals
• ~" - Clauses
"~- - Literals
- - No DT

I I I I [I

12

1.0

0.9

0.8

0.7

0.6

0.5

0.4
0 2 4 6 8 10 12
Number of Modifications to Domain Theory

"~- + Clauses
"~ + Literals
~ - Clauses
~ - Literals

Figure 3. Upper: The effect of modifying a domain theory by individually adding literals, deleting literals, adding
clauses and deleting clauses on the amount of search required by FOCL to learn an accurate concept. Lower:
The accuracy of the modified domain theory.

5.2. Types of incomplete and incorrect domain theories

The accuracy of the domain theory is not the only important characteristic for predicting
FOCL's ability to accurately learn a concept. In order for FOCL to tolerate incomplete
and incorrect domain theories, the inductive process must be able to "patch" the opera-
tionalized conjunctions of literals derived from the domain theory. Since the inductive process
does hill-climbing search guided by an information gain evaluation heuristic, there is no

guarantee that the resulting clause will be best. For example, consider the chess domain
where we mutate a few of the predicates. In particular, we replace the predicate equal(X,
Y) with the predicate half_eq(X, Y), defined as {(1, 1), (2, 2), (3, 3), (4, 4), (7, 8)}.
Similarly, we replace adjacent and between by extensional predicates that cover half of the

KNOWLEDGE IN INDUCTIVE LEARNING 81

140o]

1200 t

~ 10(10 t
, ~

~ 800
~ .

• ~ 00o~
, _ .

,~ 400-
'~ " r - - NO DT
~ 2 ~ " A [

0 ! I I I • I

5 10 15 20 25
Number of Modifications to Domain Theory

1.0

~ 0.9
.~

~ 0.8 ,,~

~ 17.7 [,.

~ 0.6

0.5 i I i i i

5 10 15 20 25
Number of Modifications to Domain Theory

Figure 4, The effect of modifying a domain theory by combinations of adding literals, deleti~ag literals, adding
clauses and deleting clauses on the accuracy of the domain theory and on the amount of search required by FOCL.

positive examples of the proper predicates and a few negative examples. Since such a do-
main theory would have positive information gain, FOCL would create clauses by opera-
tionalization. For example, operationalizing rook_attack__king yields

illegal(A, B, C, D, E, F) : - half eq(E, C), not(half eq(C, A)).

Because this covers some negative examples, FOCL patches it inductively. Assuming the
inductive learning can use the predicate equal (as well as halfeq), then the best possible
patch is:

illegal(A, B, C, D, E, F): - half~eq(E, C), not(half eq(C, A)),
equal(E, C), not(equal(C, A)).

However, this covers fewer positive examples than the ideal clause, so FOCL would have to
learn another clause inductively to cover the remaining positive examples. The best clause is:

82 M. PAZZANI AND D. KIBLER

illegal(A, B, C, D, E, F): - equal(E, C), not(equal(C, A)).

In this case, a 78 % correct domain theory does not help FOCL. Instead, it creates an ar-
bitrary subdivision of the examples such that to achieve 100 % accuracy, the inductive learner
must learn the same literals from each set of positive examples. We ran FOCL with such
an incorrect domain theory and with no domain theory on 25 trials of 40, 80, and 160
examples. In this experiment, the presence of a domain theory resulted in decreased ac-
curacy (F(1,144) = 9.11, p > .01).

This experiment indicates that the accuracy of a domain theory is not the only factor
that affects the accuracy of the learned concept. Rather, the domain theory must have the
property that an accurate concept description can be achieved by inductively patching its
operationalizations. The ability to patch the domain theory inductively depends on the
predicates available for induction. In the examples in Section 4 and Section 5.1, the induc-
tive component corrected for an imperfect domain theory by adding the literal that was
deleted from a clause. Similarly, it could delete a literal that was added to the domain theory,
ignore parts of the domain theory, or induce a clause that was deleted from the domain
theory. However, in the above example, the only way to exclude some negative examples
from a conjunction of literals formed by operationalization was to conjoin them with a
set of literals formed by induction? If the inductive learner had a predicate
not__7_and__8(X, Y) that was true except when X = 7 and Y = 8, then it would be able
to conjoin this predicate with half_eq(X, Y) to rule out negative examples: illegal(A, B,
C, D, E, F): -half__eq(E, C), not_7_and__8(E, C), . . .

We have explored a method for addressing this problem. As we have described FOCL
so far, it operationalizes the domain theory provided it has positive gain. Another alter-
native is to compare the gain of the domain theory to the gain of literals formed solely
by induction. On this problem, this variant of FOCL performed equally as well as FOCL
with no domain theory. However, it achieves this accuracy by simply ignoring the domain
theory. A better approach might be to consider a "paradigm shift" by replacing the exten-
sional definition of halfeq with that of equal in the domain theory. Ofcourse, this is
much simpler if the definition of equal were known. On the other hand, a true paradigm
shift often requires inventing such a new predicate.

5.3. Experiments on the prediction of the tuple size growth

Now that we have given experimental support for the utility of various semantic constraints,
we also give experimental support for the estimates of the tuple size, as developed in Sec-
tion 3. To verify our estimate, we consider the task of learning the illegal predicate. ~° We
trace the tuple size as each literal is selected and compare it with the tuple size predicted
by equation 4 from Section 3.2. In order to apply this equation, we need the densities of
all the predicates (see Table 11). The comparison of the predicted tuple size versus the ac-
tual tuple size is presented in Table 12.

KNOWLEDGE IN INDUCTIVE LEARNING 83

Table 11. Predicate densities.

Predicate Density

equal-rank .125
not equal~xank .875
adjacent_rank .25
not adjacent_rank .75
between__rank .21875
not between_rank .78125

Table 12. Predicted versus actual tuple size.

initial predicate predicted actual

641 equal~rank 80 98
98 not equal-rank 86 87
554 equal_file 69 75
75 not equal_file 66 67

487 adjacent_ file 122 102
102 adjacent_jank 25.5 24
463 equal_rank 58 70
70 adjacent_ file 17.5 16

447 equal_file 56 71
71 adjacent~rank 18 13
434 equal_file 53 56
56 equal~rank 7 8

426 equal-rank 53 54
54 equal_file 7 8

~418 equal_file 52 6
6 not between~rank 5 5

~413 equal~rank 52 7
7 not between_file 5 5

All these results are from one entire episode of FOCL learning i l l ega l . As Table 12 in-

dicates, the estimates are very reasonable, giving empirical support to our earlier analysis.
Our analysis assumed no interaction between the predicates and no intelligent choice of
predicates. In the ranks marked ~', the achieved tuple size is much less than the predicted
one. In these two cases, the sample is not a mixture of positive and negative cases, but
nearly entirely negative. In these two cases, the bias of FOCL is to select the predicate

that picks out the few positive instances.

6. Comparison to related work

Ir~ this section, we compare FOCL to a variety of related work on either learning relational
concepts or combining empirical and inductive learning methods, focusing on the types
of knowledge exploited by the systems to constrain learning and how this knowledge is used.

84 M. PAZZANI AND D. KIBLER

6.L IOU

IOU (Mooney & Ourston, 1989) is a system that is designed to learn from overly general
domain theories. IOU operates by first forming a definition via a process similar to m-EBG
(Flann & Dietterich, 1989) for the positive examples. Next, IOU removes any negative
examples from the training set that are correctly classified by the results of m-EBG. Final-
ly, IOU deletes those features that are not used in the result of m-EBG from the remaining
negative and all positive examples, and runs an induction algorithm on the features. The
final concept is formed by conjoining the result of induction over the unexplained features
with the result of m-EBG. Due to the limitations of its induction algorithm, IOU is limited
to training examples expressed as attribute-value pairs as opposed to the more general rela-
tional descriptions typically used by EBL algorithms. As already mentioned, FOCL allows
Horn clause descriptions of the background knowledge. In addition, the provided target
concept need not be correct nor overly general.

6.2. EITHER

Like FOCL, the EITHER system (Ourston & Mooney, 1990) is one of the few systems
designed to work with either overly general or overly specific domain theories. Further-
more, unlike FOCL, EITHER revises incorrect domain theories, rather than just learning
in spite of incorrect domain theories. EITHER contains specific operators for generalizing
a domain theory by removing literals from clauses, and by adding new clauses and operators
for specializing a domain theory by adding literals to a clause. Due to its induction compo-
nent and the algorithm EITHER uses to assign blame for proving a negative example or
failing to prove a positive example, EITHER is restricted to using propositional domain
theories and training examples represented as attribute-value pairs.

6.3. A-EBL

The A-EBL system (Cohen, in press) is also designed to handle overly general domain
theories. It operates by finding all proofs of all positive examples, and uses a greedy set
covering algorithm to find a set of operational definitions that cover all positive examples
and no negative examples. Unlike IOU, A-EBL will not specialize the result of EBL, unless
required, to avoid covering any negative examples.

A similar set covering behavior occurs in FOCL when dealing with overly general do-
main theories caused by having superfluous clauses (see Figure 3). However, FOCL is
not required to find every proof of every positive example. Furthermore, due to its induc-
tion component, FOCL can learn from overly specific domain theories as well as overly
general theories caused by a clause lacking a precondition (i.e., a missing literal), in addi-
tion to overly general domain theories caused by extra clauses.

KNOWLEDGE IN INDUCTIVE LEARNING 85

6°4. ML-SMART

In many respects, FOCL is similar to ML-SMART (Bergadano & Giordana, 1988). ML-
SMART also is designed to deal with both overly general and overly specific domain theories.
The major differences between ML-SMART and FOCL are involved with the search con-
trol strategy. FOCL uses hill climbing while ML-SMART uses best-first search. The best-
first search may allow ML-SMART to solve some problems that cannot be solved with
hill-climbing, at the cost of retaining all previous states. However, the cost of running a
best-first algorithm is very high, being proportional to Branching Factor Depth a. As we
have already indicated by our analysis in Section 3, the branching factor grows exponen-
tially in the length of the clauses. This means that ML-SMART will run doubly exponen-
tial time and, therefore, is restricted to relatively small problems.

ML-SMART has a number of statistical, domain independent, and domain dependent
heuristics for selecting whether to extend a rule using inductive or deductive methods. In
contrast, FOCL applies a uniform information-gain metric to extensions. The heuristics
in ML-SMART have not been subject to systematic experimentation of the type we per-
formed in Section 5.5. As a consequence, it is unclear how well they deal with various
types of incomplete and incorrect domain theories.

Finally, ML-SMART is only able to use its domain knowledge for explanation-based
learning. In contrast, FOCL can also use domain knowledge in inductive learning, by search-
ing for non-operational predicate variabilizations.

6.5. FOIL

The goal of this research has been to measure the effects of adding various types of knowledge
to FOIL, rather than to produce a system that performs better than FOIL. Nonetheless,
direct comparison of FOIL and FOCL is possible.

Although very similar, FOCL has a slightly different control strategy from FOIL. In
particular, FOCL attempts to constrain search by using variable typing, exploiting inter-
argument constraints, and uses an iterative-widening approach to adding new variables.
FOIL contains an admissible pruning heuristic that conflicts with the iterative-widening
approach. Using variable typing, inter-argument constraints, and iterative-widening, FOCL
learned the illegal concept by testing 1296 literals. With a domain theory, this number is
reduced to 72 literals. Using the same number of examples and its pruning heuristic, FOIL
requires considering 5166 literals to find a similar definition. With the exception of iterative
widening, the other constraints on induction analyzed here could easily be incorporated
with the pruning method of FOIL.

The typing constraints of FOCL have proved useful in improving the accuracy of the
resulting hypotheses. Since these do not conflict with the pruning heuristic, they can also
easily be incorporated into FOIL to reduce the search space.

The stopping criteria used by FOIL to learn from noisy data, may also be useful in stop-
ping the learning process when there are a large number of irrelevant predicates and a
small number of examples. For example, Figure 2 shows that adding irrelevant predicates
decreases the accuracy of FOCL. We ran a version of FOIL provided by Quinlan on the

86 M. PAZZANI AND D. KIBLER

same 60, 100, 200, and 641 training examples, learning illegal both with and without 20
irrelevant predicates. The accuracy of the resulting hypotheses were 92.9, 96.4, 97.4 and "
99.3 with only relevant predicates and 86.1, 90.2, 96.1, 99.0 with irrelevant predicates
added. With fewer than 200 examples, FOIL typically underfit a concept, yielding a rule
that was not consistent with all the training examples. This is due to the stopping criterion
that partially mitigates the effects of introducing irrelevant predicates into the concept descrip-
tion. However, the accuracy of the results of FOIL does decrease when operational predicates
are introduced.

7 . C o n c l u s i o n s

In this paper we have described a relational concept learner, FOCL, that combines induc-
tive and analytic learning in a uniform manner. The resulting program employs a number
of different types of knowledge. In particular, it advantageously uses both inconsistent and
incomplete theories. We provided both a mathematical and an experimental evaluation of
FOCL.

From our mathematical analysis, we can draw a number of important conclusions about
the complexity of FOCL and the effect of different sorts of knowledge on this complexity.
Some of these conclusions are summarized here:

- - The branching factor grows exponentially in the arity of the predicate to be learned,
in the maximum arity of the available predicates, and in the number of new variables
required.

-- The branching factor grows linearly in the number of available predicates.
- - The difficulty in learning a rule is primarily determined by the difficulty in learning

the longest Horn clause, where length is measured in the number of new variables.
-- The difficulty in learning a rule is only linearly proportional to the number of clauses

in the rule.
- - Partially operational rules that do not include the longest clause barely reduce the search

in finding the rule.
-- Typing knowledge provides an exponential decrease in the amount of search necessary

to find a rule.

In addition to supporting the theoretical claims made above, our experimental evidence
suggests a number of other important conclusions.

- - Non-operational predicates aid by improving the shape of the hill-climbing landscape.
- - Any method (argument constraints, semantic constraints, typing, symmetry, etc.) that

eliminates fruitless paths will decrease the search cost and potentially increase the
accuracy.

-- The uniform evaluation function applied to literals learned by induction or by explanation-
based methods allows FOCL to tolerate domain theories that are both incorrect and
incomplete.

KNOWLEDGE IN INDUCTIVE LEARNING 87

- - Irrelevant background predicates marginally slow learning and marginally decrease ac-

curacy, since the system has more opportunities to make incorrect decisions. In this
respect, irrelevant predicates in Horn clause learning are similar to irrelevant attributes

in propositional learning.
- - Iterative widening reduces the cost of search.
- - A domain theory that consists of rules that are overly general by virtue of having

superfluous clauses is the easiest to tolerate. In this case, only a subset of the opera-
tionalizations are needed and the information-gain metric of FOCL selects, in a greedy

manner, operationalizations that cover positive examples. Other forms of incomplete
and incorrect domain theories require FOCL to use induction to overcome domain theory

errors.

In this paper, we have presented the core of FOCL. Our current research with FOCL

includes dealing with noise in the context of relational learning (Brunk & Pazzani, 1991),
revising incorrect domain theories (Pazzani & Brunk, 1990), exploiting knowledge of com-

monly occurring patterns of literals called relational clichds (Silverstein & Pazzani, 1991),
allowing restricted function symbols and both nominal and ordinal constants into the
representation language (Silverstein & Pazzani, 1991), exploring heuristics other than in-

formation gain or entropy such as Laplacian error estimators, creating new extensionally
defined predicates, and including non-operational literals in learned concept descriptions.

A c k n o w l e d g m e n t s

This research is partially supported by NSF grant IRI-8908260. We would like to thank
Ross Quinlan for his advice on FOIL, Dan Hirschberg for deriving the new recurrence,
William Cohen for discussions on types of imperfect domain theories, and Cliff Brunk,
Tim Cain, Caroline Ehrlich, Ross Quinlan, Wendy Sarrett and Glelm Silverstein for review-
ing a draft of this paper.

No~s

1. In the context of this paper, we use the term "domain theory" to refer to a set of (possibly incorrect and
incomplete) Horn clauses that may be useful in defining the concept to be learned. The more general term,
"prior knowledge" also includes information such as the types of predicates.

2. For some problems, this is not a severe representational restriction. For example, color (X, red) may be
represented as color(X, Y), red(Y), although this representation can greatly increase the search cost.

3. The information gain metric used by FOIL is
Gain(Literal) = T ++ * (log2(Pl/(P l + NI)) - log2(Po/(P o + No)))

where P0 and N O are the number of positive and negative tuples before adding the literal to the clause, P1
and N 1 are the number of positive and negative tuples after adding the literal to the clause, and T ++ is the
number of positive tuples before adding the literal that have at least one corresponding extension in the positive
tuples after adding the literal (Quinlan, 1990).

4. It is also similar to the iterative broadening technique (Ginsberg & Harvey, 1990) where heuristics are used
to order the nodes expanded. In our case the heuristic is to favor nodes with few new variables. Their analysis
assumed a constant branching factor and the success of the method relied on having enough goal nodes. In
our case, the branching factor is dependent on the extension chosen.

88 M. PAZZANI AND D. KIBLER

5. Since FOCL first searches a smaller hypothesis space then FOIL, it is possible that it will produce a different
answer than FOIL on the same data. We have not observed this on the experiments reported in this paper.
However, when testing on noisy data (Brunk & Pazzani, 1991), we have observed that the larger hypothesis
space results in more accurate concepts.

6. Quinlan (1990) mentions how type constraints may be used (in combination with the closed-world assump-
tion) to generate negative examples of the predicate to be learned from the positive examples. However, type
constraints are not used to eliminate literals from consideration.

7. The Prolog predicate setofcan be used to find all extensions of a tuple. For example, if the current tuple
is (1 2 3 4 5 6) (corresponding to the variables A, B, C, D, E, and F), then the extensions of this tuple for
the literal between(A, G, E) require finding all bindings of G such that between(i, G, 5) is true.

8. To avoid conjoining two different clauses of an initial rule, the InitialRule is set to empty if it is used to
add literals to a clause. It is reset on the start of a new clause, so that other clauses may be used.

9. One could attempt to use a postprocessor to correct the output of FOCL. However, if the given predicates
and domain theory are too misleading, then the sets of remaining positive and negative examples are smaller
than they would be with no domain theory at all. Consequently, induction is more likely to make a mistake
that cannot be corrected by postprocessing.

10. The definition learned for illegal is:
illegal(A, B, C, D, E, F):- equaljank(E, C), not(equal rank(C, A)).
illegal(A, B, C, D, E, F):- equal file(F, D), not(equal file(D, B)).
illegal(A, B, C, D, E, F):- adjacent__file(F, B), adjacent~rank(E, A).
illegal(A, B, C, D, E, F):- equal__rank(E, A), adjacent file(F, B).
illegal(A, B, C, D, E, F):- equal file(F, B), adjacent_rank(E, A).
illegal(A, B, C, D, E, F):- equal file(D, B), equal~rank(C, A).
illegal(A, B, C, D, E, F):- equal__rank(E, A), equal file(F, B).
illegal(A, B, C, D, E, F):- equal file(F, D), not(between__rank(E, A, C)).
illegal(A, B, C, D, E, F):- equal_rank(E, C), not(between~le(F, B, D)).

11. This recurrence was determined by Dan Hirschberg.

References

Bergadano, E, & Giordana, A. (1988). A knowledge intensive approach to concept induction. Proceedings of
the Fifth International Conference on Machine Learning (pp. 305-317). Ann Arbor, MI: Morgan Kaufmann.

Bergadano, E, Giordana, A., & Ponsero, S. (1989). Deduction in top-down inductive learning. Proceedings of
the Sixth International Workshop on Machine Learning (pp. 23-25). Ithaca, NY: Morgan Kaufmarm.

Brunk, C., & Pazzani, M. (1991). An investigation of noise tolerant relational learning algorithms. Proceedings
of the Eighth International Workshop on Machine Learning (pp. 389-393). Evanston, IL: Morgan Kaufmann.

Cohen, W. (in press). Abductive explanation-based learning: A solution to the multiple inconsistent explanation
problem. Machine Learning.

Danyluk, A. (1989). Finding new rules for incomplete theories: Explicit biases for induction with contextual
information. Proceedings of the Sixth International Workshop on Machine Learning (pp. 34-36). Ithaca, NY:
Morgan Kaufmann.

DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternate view. Machine Learning, 1, 145-176.
Flann, N., & Dietterich, T. (1989). A study of explanation-based methods for inductive learning. Machine Lear-

ning, 4, 187-226.
Ginsberg, M., & Harvey, W. (1990). Iterative broadening. Proceedings of the Eighth National Conference on

Artificial Intelligence (pp. 216-220). Boston, MA: Morgan Kaufmann.
Hirsh, H. (1989). Combining empirical and analytical learning with version spaces. Proceedings of the Sixth

International Workshop on Machine Learning (pp. 29-33). Ithaca, NY: Morgan Kaufmann.
Katz, B. (1989). Inegrating learning in a neural network. Proceedings of the Sixth International Workshop on

Machine Learning (pp. 69-71). Ithaca, NY: Morgan Kaufmann.
Korf, R.E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 1, 11-46.
Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive Science, 10.

KNOWLEDGE IN INDUCTIVE LEARNING 89

Michalski, R. (1980). Pattern recognition as rule-guided inference. 1EEE Transactions on Pattern Analysis and
Machine Intelligence, 2, 349-361.

Mitchell, T., Keller, R., &. Kedar-Cabelli, S. (1986). Explanation-based learning: A unifying view. Machine Learn-
ing, •,4%80.

Mooney, R., & Ourston, D. (1989). Induction over the unexplained: Integrated learning of concepts with both
explainable and conventional aspects. Proceedings of the Sixth International Workshop on Machine Learning
(pp. 5-7). Ithaca, NY: Morgan Kaufmann.

Muggleton, S., Bain, M., Hayes-Michie, J., & Michie, D. (1989). An experimental comparison of human and
machine learning formalisms. Proceedings of the Sixth International Workshop on Machine Learning (pp. 115-118).
Ithaca, NY: Morgan Kaufmann.

Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. Proceedings of the First Conference
on Algorithmic Learning Theory. Tokyo, Japan: Ohmsha.

Ourston, D., & Mooney, R. (1990). Chaining the rules: A comprehensive approach to theory refinement. Pro-
ceedings of the Eighth National Conference on Artificial Intelligence (pp. 815-820). Boston, MA: Morgan
Kaufmann.

Pagallo, G., & Hanssler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-100.
Pazzani, M. (1989). Explanation-based learning with weak domain theories. Proceedings of the Sixth Interna-

tional Workshop on Machine Learning (pp. 72-74). Ithaca, NY: Morgan Kaufmann.
Pazzani, M.J. (1990). Creating a memory of causal relationships: An integration of empirical and explanation-

based learning methods. Hillsdale, NJ: Lawrence Erlbaum Associates.
Pazzani, M., & Brunk, C. (1990). Detecting and correcting errors in rule-based expert systems: An integration

of empirical and explanation-based learning. Proceedings of the Workshop on Knowledge Acquisition for
Knowledge-Based Systems. Banff, Canada.

Pazzani, M., Brunk, C., & Silverstein, G. (1991). A knowledge-intensive approach to relational concept learning.
Proceedings of the Eighth International Workshop on Machine Learning (pp. 432-436). Evanston, IL: Morgan
Kaufmann.

Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
Quinlan, J.R. (1989). Learning relations: A comparison of a symbolic and a connectionist approach (Technical

Report). Sydney, Australia: University of Sydney.
Quinlan, J.R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.
Sarrett, W., & Pazzani, M. (1989). One-sided algorithms for integrating empirical and explanation-based learn-

ing. Proceedings of the Sixth International Workshop on Machine Learning (pp. 26-28). Ithaca, NY: Morgan
Kaufmann.

Shavlik, J., & Towell, G. (1989). Combining explanation-based learning and artificial neural networks. Proceedings
of the Sixth International Workshop on Machine Learning (pp. 90-93). Ithaca, NY: Morgan Kaufmann.

Silverstein, G., & Pazzani, M. (1991). Relational cliches: Constraining constructive induction during relational
learning. Proceedings of the Eighth International Workshop on Machine Learning (pp. 203-207). Evanston,
IL: Morgan Kaufmann.

Widmer, G. (1990). Incremental knowledge-intensive learning: A case study based on an extension to Bergadano
& Giordana's integrated learning strategy (Technical Report). Austrian Research Institute for Artificial Intelligence.

Appendix I. Detai led analysis o f v (m, k)

In the text we approximated v(m, k). Here we compute it exactly. To count the total number
of distinct variabilizations, it is convenient to count the number of distinct variabilizations
that use exactly j positions for old variables. We use p (m, k, j) to represent this number.
Since we require at least one old variable,

v(m k) =
j=m

Z p(m, k, j).
i=1

90 M. PAZZANI AND D. KIBLER

N o w p (rn, k, j) is the product of the number of ways of pickingj positions, the number of
ways of assigning old variables to them, and number of ways of assigning the new variables to "
the remaining positions. The number of ways of pickingj positions from rn is (~). The num-
ber of ways of filling these j positions with any of the k old variables is k j. Now we have
to count the number of ways to fill the remaining rn - j positions to fill with new variables.
Since the name of a new variable is not important (i.e., they are dummy variables), we
must count them carefully. For example, i fXis an old variable and Yand Z are new variables
then between (Y, X, Z) and between (Z, X, Y) are equivalent variabilizations of between.

We define new(i, j) to be the number of distinct (non-equivalent) ways of filling i posi-
tions with exactly j new variables. We note the following recurrence: 11

new(i, j) = new(i - 1, j - 1) + j * new(i - 1, j)

To understand this recurrence, consider two cases. In case one, the last of the i positions
is filled with a distinct new variable, giving rise to new(i - 1, j - 1) distinct variabiliza-
tions. In case two, all of the j variables are already placed in the first i - 1 positions.
This yields the second summand.

The boundary conditions are:

new(i, O) = 0
new(i, 1) = 1
new(i, j) = O, i f i < j

We define anynew(i) to be the number of distinct ways of filling i positions with any
number of new variables. By the definition of new(i, j) we have

l=i

anynew(i) = ~]~ new(i, l).
1=1

Now the total number of variabilizations of a predicate of arity rn using j positions for
old variables, p(rn, k, j) , is:

m) k j anynew(m j) . p(m, k, j) = j * * -

Summing this function as j ranges from 1 to rn will give the total number of ways of
variabilizing a predicate of arity m.

Appendix II. An annotated trace of FOCL

We present here an annotated trace of FOCL using the incorrect domain theory of illegal
from Section 5. To create an operational definition for illegal, FOCL first computes the
information gain of each given clause for illegal:

KNOWLEDGE IN INDUCTIVE LEARNING 91

king-attack-king(R1,F1,R3,F3)
rook-attack-king(R1,F1,R2,F2,R3,F3)
same-loc(Rl ,F1 ,R2,F2),adjacent-file(F 1 ,F3)
same-loc(R2,F2,R3,F3)
same-loc(R1,FI,R3,F3)

+61.6
+ 124.1

+0.0
+18.9

11.6

In this case, rook attack~ing has the highest information gain, and is operationalized.
Since there is only one clause for rook_attack~ing in this incorrect domain theory, it
is selected for operationalization. This clause uses one operational predicate equal file
and one non-operational, king_not between_rank. There are two clauses for
king_not between__rank and the clause with the maximum information gain is opera-
tional. Therefore, the first clause for illegal is created entirely with explanation-based
methods in FOCL:

OPERATIONALIZING rook-attack-king(R1 ,F1 ,R2,F2,R3,F3)
OPERATIONALIZING
equal-file(F2,F3),king-not-between-rank((R1,F1,R2,F2,F3)
OPERATIONALIZING king-not-between-rank(R1 ,F 1 ,R2,F2,F3)

equal-file(F1,F2),not-between-rank(R2,R1,R3) +0.135
not(equal-file(F 1,F2)) + 1.299

CLAUSE 1:
illegal(R 1,F 1, R2, F2, R3,F3) :-equal-file(F2,F3),not(equal- file(F 1,F2))

This clause indicates that a chess board is in an illegal state if the white rook and black
king are in the same file, and the white king is not in the same file. The positive examples
that are satisfied by this clause are removed and the same process is repeated. Note that
since the set of positive tuples is reduced, the information gain of the clauses for illegal
is different when learning the first and second clause.

The second clause operationalizes king attack~zing. The most common way for this
to occur is for the two kings to be in adjacent ranks and adjacent files. The third clause
also operationalizes king attack__king. This time the operationalization indicates that the
kings are in the same file and adjacent ranks.

king-attack-king (R 1, F 1, R3, F 3) + 70.7
rook-attack-king(R1 ,F 1, R2,F2 ,R3 ,F3) + 14.8
same-loc(R1,F1,R2,F2),adjacent-file(F1,F3) +0.0
same-loc(R2 ,F2,R3 ,F3) + 1.8
same-loc(R1 ,F1 ,R3,F3) + 14.8

OPERATIONALIZING king-attack-king(R1 ,F 1 ,R3,F3)
CLAUSE 2:

illegal(R1,F1,R2,F2,R3,F3):-adjacent-rank(R1,R3),adjacent-file(F1,F3)

CLAUSE 3:
illegal (R 1, F 1, R2, F2, R3, F 3): -adj acent-rank(R 1, R3), equal-file (F 1, F 3)

92 M. PAZZANI AND D. KIBLER

If the domain theory were correct and complete, this process would be repeated until
all positive examples are covered by at least one operational clause. Clauses would be created
in a greedy manner .by selecting the operationalization that covers the most positive ex-
amples (i.e., if no operationalization covers any negative examples, then the operationaliza-
tion that covers the most positive examples has the highest information gain). However,
since an incorrect domain theory will misclassify some negative examples, and an opera-
tionalization of an incomplete theory will fail to cover some positive examples, it is also
necessary to use the inductive component. Clause 4 provides one example where both the
inductive and the explanation-based components are needed.

In Clause 4, FOCL operationalizes k ing_at tack~ing again. However, the clause with
the maximum information gain is the clause with the deleted literal. This indicates that
a king attacks a king if they are in the same rank:

king-attack-king(R 1 ,F1 ,R3 ,F3)
rook-attack-king(R1,F1,R2,F2,R3,F3)
same-loc(R1,F1,R2,F2),adjacent-file(F1,F3)
same-loc(R2,F2,R3,F3)
same-loc(R1,F1,R3,F3)

OPERATIONALIZING king-attack-king(R1,F 1, R3,F3)
adjacent-rank(R1,R3),adjacent-file(F1,F3)
equal-rank(R 1 ,R3)
knight(R1,F1,R3,F3)
adjacent-rank(R1,R3),equal-file(F1,F3)
BEST CONDI'rlON equal-rank(R1,R3)

+23.9
+13.1

+0.0
+0.0

+17.5

0.0
+26.7

+ -0 .1
+0.0

Because some negative examples are covered by this clause, the clause is extended in-
ductively. FOCL computes the information gain of every variabilization of every opera-
tional predicate (and its negation) and selects the literal with the maximum gain:
adjacent__file (F3 ,F1) .

between-file(F1,F2,F1) +0.0;
between-file(F 1, F2,F3) + - 3.26;

• . .

equal-file(F3,F1) + 10.17;
adjacent-file(F3,F 1) + 20.34;

CLAUSE 4

- 0 . 0

- 4 . 6

- - 6 . 1

- - 1 0 . 2

illegal(R1 ,F1 ,R2, F2,R3,F3):-equal-rank(R 1 ,R3),adjacent-file(F3,F 1)

This excludes all negative examples and the clause added indicates that a chess board
is in an illegal state if the kings are in the same rank and adjacent files.

Clause 5 is learned by operationalizing same_loc. It indicates that a chess board is in
an illegal state if the two kings are on the same square.

KNOWLEDGE IN INDUCTIVE LEARNING 93

CLAUSE 5
illegal(R1 ,F1 ,R2,F2,R3,F3):-equal-rank(R1 ,R3),equal-file(F1 ,F3)

Clause 6 is learned by op~rationalizing rook_attack~king. It covers the case that is less
common than the first clause. In this case, the white rook and black king are in the same
file. The white king is in this file, but not between the rook and black king.

CLAUSE 6
illegal(Rl ,F1 ,R2,F2,R3,F3):-equal-file(F3 ,F2),equal-file(F 1 ,F2)

not(between-rank(R2,R1,R3))

Clause 7 is learned entirely by inductive techniques. It indicates that a chess board is
illegal if the white rook and black king are in the same rank, and the white king is not
in that rank. Note that after the first literal is added inductively, FOCL again tries to opera-
tionalize the target concept. In this case, no operationalization of the target concept has
positive information gain when extending this clause. However, it can occur that the first
literal of a clause is learned inductively, and some of the remaining literals are learned
via explanation-based techniques.

king-attack-king(R1 ,F1,R3,F3) + - 1.0
rook-attack-king(R1 ,F 1 ,R2,F2,R3,F3) + 0.0
same-loc(R1 ,F1,R2,F2),adjacent-file(F1,F3) + 0.0
same-loc(R2,F2,R3,F3) + 0.0
same-loc(R1 ,F 1,R3,F3) + 0.0

between-file(F 1 ,F2,F3) + 5.5;
• . ,

equal-rank(R3,R2) + 192.4;
BEST CONDITION equal-rank(R3,R2)

king-attack-king(R1,F 1, R3,F3) + - 2.1
• . .

between-file(F 1 ,F2,F3) + 0.9;
• , .

equal-rank(R1,R2) + -2 .2 ;
BEST CONDITION not(equal-rank(R1,R2))

CLAUSE 7

- - 5 . 0

- -25 .3

- - 0 . 9

- 2 . 6

illegal(R1,F1,R2,F2,R3,F3):-equal-rank(R3,R2),not(equal-rank(R1,R2))

After the set of positive examples that matches this clause is removed, a clause of the
target concept now has positive information gain (king_attack_king). Once again, the
clause with the maximum information gain is the clause with the deleted literal. This in-
dicates that a board is in an illegal state if the two kings are in the same rank. Inductive
techniques finish this clause by adding the restriction that the rook be in this rank, but
not between the two kings. In effect, this clause had been extended to cover the case where
the white rook is attacking the black king.

94 M. PAZZANI AND D. KIBLER

king-attack-king(R1,F1,R3,F3) +4 .5
rook-attack-king(R1,F1,R2,F2,R3,F3) + 0 . 0
same-loc(R1 ,F1 ,R2,F2),adjacent-file(F 1 ,F3) +0 .0
same-loc(R2,F2,R3,F3) +0 .0
same-loc(R1,F1,R3,F3) +0 .0

O P E R A T I O N A L I Z I N G king-attack-king(R 1 ,F 1 ,R3,F3)

adjacent-rank(R1,R3),adjacent-file(F 1,F3) + 0.0
equal-rank(R 1,R3) + 9.0
knight(R1,F1,R3,F3) +0 .0
adjacent-rank(R1,R3),equal-file(F1,F3) +0 .0

BEST CONDITION equal-rank(R1 ,R3)

betweenrfile(F1,F2,F3) +4.4; - - 1.6
equal-rank(R3,R2) + 13.5; - 0.0
BEST CONDITION equal-rank(R3,R2)

between-file(F 1,F2,F3) + 1.9; - - 1.1
between-file (F2, F 1,F3) + 0.0; - - 2.4

BEST condition not(between-file(F2,F1,F3)).
CLAUSE 8 i l legal(R1,F1,R2,F2,R3,F3):-equal-rank(R1,R3),

equal-rank(R3,R2), notCoetween-file(F2,F 1 ,F3)).

Finally, the last clause is learned entirely inductively and indicates that a board is in
an illegal state if the white king and rook are in the same square.

CLAUSE 9
il legal(R1,F1,R2,F2,R3,F3):-equal-file(F2,F1),equal-rank(R2,R1)

