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Abstract. In this paper, we demonstrate how different forms of background knowledge can be integrated with 
an inductive method for generating function-free Horn clause rules. Furthermore, we evaluate, both theoretic- 
ally and empirically, the effect that these forms of knowledge have on the cost and accuracy of learning. Lastly, 
we demonstrate that a hybrid explanation-based and inductive learning method can advantageously use an ap- 
proximate domain theory, even when this theory is incorrect and incomplete. 
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1. Introduction 

There are two general approaches to concept learning studied in artificial intelligence. 
Empirical learning programs operate by finding regularities among a group of training 
examples. One weakness of this approach is that in its purest form, it cannot take advan- 
tage of the existing knowledge of the learner. Explanation-based learning (EBL)systems 
(De Jong & Mooney, 1986; Mitchell, Kellar, & Kedar-Cabelli, 1986) operate by using 
a domain theory ~ to explain a single example, and forming a general description of the 
class of examples with the same explanation. One weakness of EBL is that the learned 
concept description cannot be more accurate than the domain theory. Integrated learning 
systems, (i.e., systems that combine empirical and explanation-based learning) have the 
potential of overcoming the weakness of either method applied individually. 

Most existing systems that combine empirical and explanation-based learning severely 
restrict the complexity of the language for expressing the concept definition. For exam- 
ple, some systems require that the concept definition be expressed in terms of the attribute- 
value pairs (Lebowitz, 1986; Danyluk, 1989). Others effectively restrict the concept defini- 
tion language to that of propositional calculus, by only allowing unary predicates (Hirsh, 
i989; Mooney & Ourston, 1989; Katz, 1989; Shavlik & Towell, 1989; Pazzani, 1989; 
Sarrett & Pazzani, 1989). The few systems that allow relational concept definitions (e.g., 
OCCAM (Pazzani, 1990), IOE (Flann & Dietterich, 1989), ML-SMART (Bergadano, 
Giordana, & Ponsero, 1989)) place strong restrictions on the form of induction and the 
initial knowledge that is provided to the system. The restricted concept definition languages 
that are usually required by the empirical learning component, reduce the applicability 
of the integrated learning system. 

A recent advance in concept formation, FOIL (Quinlan, 1989; Quinlan, 1990) learns 
fianction-free Horn clauses, a useful subset of first-order predicate calculus. In Section 2, 
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we review FOIL and, in the next section, we analyze the complexity of FOIL in terms 
of the size of the hypothesis space generated and tested during learning. We describe how 
FOIL can be extended to use a variety of types of background knowledge to increase the 
class of problems that can be solved, to decrease the hypothesis space explored, and to 
increase the accuracy of learned rules. 

In Section 3, we incrementally define an extension to FOIL which combines both induc- 
tive and explanation-based learning. The new learning system called FOCL (First Order 
Combined Learner) uses FOIL's information-based metric to evaluate extensions to a 
(possibly null) hypothesis of a concept definition. The extensions may be proposed either 
by an inductive component or by an explanation-based component. We demonstrate that 
FOCL, with prior knowledge, learns more accurate Horn clause concept definitions and 
with less computational costs. 

Given a set of examples and a correct domain theory, the output of FOCL is similar 
to that of applying explanation-based learning on each unexplained positive example. Con- 
versely, without any background knowledge, FOCL operates like FOIL. In Section 5, we 
describe how FOCL learns with an incomplete or incorrect domain theory. In this case, 
some clauses of a rule may be learned purely analytically, others may be learned purely 
empirically, and some clauses may be learned by a combination of methods (i.e., some 
literals of a single clause are added empirically while others are added analytically). 

We take a broad view of prior knowledge that includes typing information, both exten- 
sionally and intensionally defined predicates, and an initial, approximate definition of the 
concept to be learned. In Section 5, we demonstrate the effects of each form of knowledge 
with a complexity analysis of FOIL and with a series of experiments on learning concepts 
from the domains of list relations and chess end game relations. 

Throughout this paper we use the simple domain of list relations to illustrate FOCL's 
learning mechanisms. A more severe test is provided by the more complex domain of chess 
end games. This was the most difficult problem on which FOIL has been tested. A domain 
theory for this particular chess problem is succinct and amenable to systematic experimen- 
tation by mutation. In fact, FOCL has been tested on a variety of problems, including a 
number of standard EBL problems, and a larger problem that includes a domain theory 
describing when a student loan is required to be repaid (Pazzani & Brunk, 1990). 

Section 6 relates FOCL to other systems that combine empirical and explanation-based 
learning. Section 7 summarizes FOCL,s current characteristics and suggests future 
extensions. 

2. Background: FOIL 

In this section, we review FOIL so that we can analyze its complexity. We begin by intro- 
ducing some definitions. Formally, predicates can be defined extensionally, as a list of tuples 
for which the predicate is true, or intensionally, as a set of (Horn) clauses for computing 
whether the predicate is true. FOIL permits predicates with variables but does not allow 
them to contain function symbols, including constants. Syntactically, a literal is a predicate 
or its negation. Semantically, FOIL adopts PROLOG's negation-as-failure rule to define 
the meaning of a negated predicate. Under this interpretation, if no proof that a tuple satisfies 
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the predicate exists, then the tuple satisfies the negated predicate. Literals that are unnegated 
predicates are called positive literals. Literals that are the negation of predicates are called 
negative literals. A clause body is a conjunction of literals. A Horn clause consists of a 
clause head, which is a predicate, and a clause body. It has the form P *- Ll, /-~, ..  • 
where each L i is a literal. A rule for P is a collection of Horn clauses each with the head P. 

For completeness, we will define the semantics of a rule. In general, a k-tuple is a finite 
sequence of k constants, denoted by <a l  . . . . .  ak> .  The meaning of a rule for a k-arity 
predicate is the set of k-tuples that satisfy the predicate. A tuple satisfies a rule if it satisfies 
one of the Horn clauses that define the rule. A tuple satisfies a Horn clause if there is 
a mapping ~b of the variables of the head onto the tuple and an extension ~b' of all the variables 
in the positive literals of the clause body into constants such that for each literal in the 
clause body, the bindings resulting from ~b' result in a satisfiable literal. Note that a negative 
literal is satisfiable if there do not exist any bindings for the remaining variables (if any) 
that make the predicate satisfiable. 

Given positive and negative examples of some concept, and a set of extensionally defined 
background predicates, FOIL inductively generates a logical concept definition or rule for 
the concept. FOIL and FOCL share the restriction that the induced rule must not involve 
any constants or function symbols, 2 but does allow negated predicates. FOIL also permits 
restricted use in clause bodies of the predicate it is learning. This allows FOIL to learn 
some recursive concepts. Like ID3 (Quinlan, 1986), FOIL is a non-incremental learner 
that hill climbs using a metric based on information theory to construct a rule that covers 
the data. Pagallo and Haussler (1990) introduced the idea of separate-and-conquer to define 
their GROVE and GREEDY3 algorithms. Unlike ID3 and like AQ (Michalski, 1980), FOIL 
uses this separate-and-conquer approach rather than a divide-and-conquer approach. 
Separate-and-conquer approaches concentrate on creating one rule at a time, collecting 
the uncovered examples into a single pot that will be handed to the induction algorithm again. 

Table 1 presents a high-level view of the FOIL algorithm. The algorithm has two main 
stages: separate and conquer. The separate stage of the algorithm begins a new clause while 
the conquer stage constructs a conjunction of literals to serve as the body of the clause. 
Each clause describes some subset of the positive examples and no negative examples. Note 
that, in effect, FOIL has two operators: start a new, empty clause, and add a literal to the 
end of the current clause. FOIL adds literals to the end of the current clause until no negative 
example is covered by the clause, and starts new clauses until all positive examples are 
covered by some clause. 

To more precisely present FOIL's algorithm, we need to define carefully what an exam- 
ple is. For example, suppose FOIL's task is to learn the relation grandfather(X, Y) given 
the relations father(X, Y) and parent(X, Y), defined extensionally. Furthermore, suppose 
that the current clause (Body in Table 1) is grandfather(X, Y) *- parent(X, Z). This clause 
can be extended by conjoining the body with any of the literals father(X, X), father(Y, 
Z), father( U, Y), parent(Y, Z), parent(Y, Y), as well as many others. From this example, 
we see that to create a literal to extend a clause, not only must a predicate-name be selected, 
but also a particular set of variables for the predicate-name. We call the choice of variables 
for a predicate-name a variabilization of the predicate. If  the variable chosen already oc- 
curs in an unnegated literal of the clause (i.e., in either the head or the current body), 
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Table L FOIL Design I. 

Let Pred be the predicate to be learned. 
Let Pos be the positive examples. 
Until Pos is empty do: 

Let Neg be the negative examples. 
Set Body to empty. 
Call LearnClauseBody. 
Add Pred '-- Body to the rule. 
Remove from Pos all examples that satisfy the Body. 

Procedure LearnClauseBody 
Until Neg is empty do: 

Choose a literal L. 
Conjoin L to Body. 
Remove from Neg examples that do not satisfy L. 

then the variable is called oM. Otherwise, the variable is called new. One restriction that 
FOIL and FOCL place on literals is that they contain at least one old variable. 

I f  an extension of a clause is formed by conjoining a literal that uses only old variables, 
then the new set of positive and negative examples is the subset of old positive and negative 
examples that satisfy the additional predicate. As expected, these examples retain their same 
classifications as positive or negative. The situation is much different if the extension of 
the clause involves new variables. 

For example, suppose FOIL extends a clause grandfather(X, Y) ~- true by conjoining 
the literal parent(X, Z), introducing the new variable Z. Now the positive examples con- 
sist of those of values <X,  Y, Z >  such that grandfather(X, Y) is true and parent(X, Z) 
is true. To reinforce the fact that these examples are very different from the original positive 
examples, and following the language of Quinlan, we will call these positive tuples. For 
a given pair <X, Y> there may be zero or more values of Z such that parent(X, Z) is 
true. Similarly, the set of negative tuples consists of  those values of <X, Y, Z >  such that 
grandfather(X, Y) is false, but parent(X, Z) is true. In effect, an example is an ordered 
tuple of bindings for the variables of  the clause. When a new variable is introduced, the 
tuples are extended to include values for that variable. 

With this understanding, we can elaborate the original algorithm in Table 2. For simplicity, 
we refer to the original positive examples as positive tuples. At a high level of abstraction, 
FOIL is quite simple. It uses hill climbing to add the literal with the maximum information 
gain to a clause. For each variabilization of  each predicate P, FOIL measures the informa- 
tion gain. In order to select the literal with maximum information gain, it is necessary 
to know how many of the current positive and negative tuples are satisfied by the variabiliza- 
tions of  every extensionally defined predicate. 3 

3. Analysis of FOIL 

In general, the cost of hill-climbing search, such as FOIL and FOCL carry out, is the 
branching factor times the depth at which a solution is found. Usually the branching factor, 
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Table 2. FOIL Design II. 

Let Pred be predicate to be learned. 
Let Pos be the positive tuples. 
Until Pos is empty do: 

Let Neg be the negative tuples. 
Let Body be empty. 
Let Old be those variables used in Pred. 
Call LearnClauseBody. 
Add Pred ' -  Body to the rule. 
Remove from Pos all tuples that satisfy the Body. 

Procedure LearnClauseBody 
Until Neg is empty do: 

For each predicate-name P. 
For each variabilization L of P. 
Compute information gain of L and its negation. 
Select literal L with most information gain. 
Conjoin L with Body. 
Add any new variables to Old. 
Let Pos be all extensions of Pos that are satisfied by the literal. 
Let Neg be all extensions of Neg that are satisfied by the literal. 

while not constant, is at least bounded. In FOIL,  the branching factor grows dramatically, 

roughly exponentially in the arity of the available predicates, the arity of  the predicate to 
be learned, and the length of the clause that is being learned. In this section, we make 
these statements precise. 

To begin, we estimate the cost of  adding a single literal to a clause. There are two 
reasonable measures we might use to estimate this cost. One measure, we call the theory 
cost, indicates the number of different literals that can be chosen to extend the body of 
the given clause. The second measure, called the evaluation cost, measures the cost of 
computing the information gain of each literal. Note, the evaluation cost is a function of 
the number of training examples, while the theory cost is not. 

3.L Theory cost of FOIL 

In order to compute the number of different literals to be considered for evaluation, let 
us first consider the number of  different variabilizations of a single predicate P of arity 
m when the current clause has k old variables. Let  this number be v(m, k). In Appendix 
I we provide a detailed analysis of this value. At  this point we present an approximation 
which will be sufficient for a qualitative understanding. The first few values of v(m, k) 
are displayed in Table 3, indicating the rapid growth of v(m, k) in both rn and k. 
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Table 3. Growth of v(m, k). 

v(m, k) OLD variables 

Arity 1 2 3 4 5 6 7 k 

1 1 2 3 4 5 6 7 k 
2 3 8 15 24 35 48 63 ( k +  1) 2 
3 10 32 72 136 230 360 532 = k 3 
4 37 136 357 784 1525 2712 4501 ~ k 4 
5 151 622 1863 4684 10,375 20,826 38,647 ~ k 5 
6 674 3060 10,278 29,168 72,810 163,764 338,030 ~ k 6 

Let Pred(i)  be the number of predicates of arity i. Let MaxA be the maximum arity 
of any predicate. As before, k is the number of old variables. The total number of literals 
to be considered is given by: 

TheoryCost = 2 • Z 
i=1 

Pred(i)  * v(i,  k) .  

The factor of 2 reflects the fact that for each predicate we also consider its negation. 
Although v(m, k) is complex (see Appendix I), we can easily compute an upper bound. 

Let OM be the maximum number of old variables. Let AlIPred be the total number of 
predicates. To add a new predicate we may choose from one of  AllPred predicates. If  the 
predicate has arity MaxA (the worst case), then we must consider choosing MaxA variables 
from OM old variables and MaxA - 1 new variables. A simple upper bound on this cost 
is: (Old + MaxA - 1) ~t°-~a. Consequently, an upper bound of the theory cost is: 

TheoryCost <_ 2 • AlIPred • (OM + MaxA - 1) ~ta~a (~) 

One can make a number of qualitative inferences from this formula. In particular, it shows - 
that additional predicates increase the cost (branching factor) by a linear amount, while 
increasing the arity of the predicates increases the size of the search space exponentially. 
Also, the amount of work increases exponentially with the number of distinct variables 
in the clause. 

We have developed this analysis to measure the branching factor at any point in the search 
process. Now, let us illustrate this analysis by measuring the complexity of learning a par- 
ticular concept, for example, the concept of list membership. This domain, as defined by 
Quinlan (1990), has three predicates, null, member, and component, with arities one, two, 
and three, respectively. Components (A, B, C) is true if, in PROLOG notion [A I B] = C. 
The definition of member is given in Table 4. 

Let us concentrate our attention on learning the boxed conjunct of the second clause, 
which is the point at which the branching factor is maximized. At this point the number 
of old variables is four. There are three available predicates, one of each arity from one ~ 
to three. Using Table 3 we see that the number of extensions is 2 * (1 * 4 + 1 • 24 + 
1 * 136) = 328. 
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Table 4. Definition of member. 

member(X, Y) ~ component(X, Z, Y). 
member(X, Y) ~- component(A, B, Y), member(X, B) . 

There are two important points that should be noted. First, the branching factor is largely 
due to the predicates with the largest arity. Second, the branching factor of the last con- 
junct of the longest clause, measured in the number of distinct variables, is significantly 
larger than at other points in the search space. 

Putting these observations together yields the following approximation for the TheoryCost 

in learning a rule R. Let Var be the largest number of distinct variables in any clause of 
R, excluding the last conjunct. Let MaxP be the number of predicates with largest arity 
MaxA. Then an approximation of the total number of nodes generated to learn R is: 

NodesSearched -- 2 * MaxP • v(MaxA, Var) < 2 * MaxP • (Var + MaxA - 1) ~t°~. 

Now that we know how many literals there are, we turn our attention to estimating the 
cost of evaluating each literal. 

3.2. Evaluation cost o f  FOIL 

In the previous section, we computed the number of different extensions of the current 
clause. Each extension needs to be evaluated, and this is the main computational cost in 
running FOIL. This requires testing each literal on the current set of positive and negative 
tuples. Regardless how it is implemented, we suppose that this cost is a proportional to 
the number of tuples. This gives us our first estimate of the evaluation cost, namely: 

EvaluationCost = TheoryCost * TupleSize. (2) 

As the literals in a clause are generated, the number of tuples can vary greatly. If  the 
extension introduces no new variables, then the number of tuples will decrease, possibly 
by a very small amount. For example, it is possible that the extension will exclude only 
one negative tuple. In this case, an upper bound on the tuple size is simply the old tuple 
size. On the other hand, if the extension introduces new variables, then the number of 
tuples may increase dramatically. To estimate the new tuple size, we introduce a few new 
concepts. 

First, we consider the case when no new variables are introduced by the literal. We define 
the density of a predicate to be the proportion of cases when the predicate is true. For 
example, suppose the domain is the integers from one to ten. Then the density of the suc- 
cessor(X, Y) predicate is 9/100 and the density of less(X, Y) is 45/100. If  a literal in- 
troduces no new variables, then the tuple size will not increase as it consists of the subset 
of the current tuples that satisfy the literal. In this case, we expect that the new tuple size 
will be the density of the predicate times the old tuple size. 
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Now we consider the case when the literal introduces new variables. We define thepower 
of a predicate to be the maximum number of solutions of the predicate when one variable ~ 
is bound. For the predicate less (X, Y) on the domain of integers from one to ten, the power 
is nine, which is achieved by less (1, Y) and by less (X, 10). Similarly, the power of the 
successor predicate is one. Since negative literals do not introduce new variables, we define 
their power to be 1. The power of a predicate limits the amount of growth in the tuple 
size, since NewTupleSize <_ OldTupleSize * PowerOfPredicate. 

We now use the notion of Power to get an upper bound on the growth of the tuple size. 
Let Pi, for i = 1 to k be the literals in the body of a clause. Define Growth(Pi) = 1 if 
Pi uses only old variables and Growth(P i) = Power(Pi) if P~. uses new variables. Then 
a conservative estimate for the tuple size is 

k 

TupleSize < I X  Growth(Pi). 
i=1 

(3) 

We can achieve a more reasonable estimate for the expected tuple size. Define the 
AveragePower of a predicate to be the average number of solutions of the predicate when 
one variable is bound. Since neither successor(X, 1) or successor(lO, Y) have any solu- 
tions in the domain, the AveragePower of the successor predicate is 18/20. Over the same 
domain, the predicate less has AveragePower 4.5. The importance of the power of a predicate 
is that, in the worst case, the number of tuples can increase by no more than the power 
of the predicate. Consequently, we expect that the tuple size grows proportional to 
AveragePower, rather than Power. 

Define the AverageGrowth(Pi) to be the density of Pi if Pi uses only old variables and 
Average Power(Pi) if Pi uses new variables. This yields the following approximation for 
the tuple size: 

k 

TupleSize ~. ~ AverageGrowth (Pi). 
i=1 

(4) 

The importance of these estimates indicates that in order to reduce the evaluation cost, 
we should prefer predicates that have low average power and low density. A predicate like 
successor, which has power of 1, is guaranteed not to increase the tuple size. Of course, 
we always prefer predicates.that most increase the information gain. In Section 5.1, Tables 
11 and 12 illustrate the accuracy of these approximations. 

Our general conclusions from this analysis are that the number of literals to add to the 
end of a clause grows exponentially with the arity of the predicates and the number of 
variables, which is likely to be proportional to clause length. The number of examples 
can also grow, but this growth is bounded by the power of the predicate. Consequently, 
one might choose predicates with low power when representing a domain. Indeed, to bound 
the induction process, GOLEM (Muggleton & Feng, 1990) restricts its predicates in exactly 
this manner. 
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In the subsequent sections, we will show that by adding knowledge, we can reduce, 
sometimes dramatically, these costs. Somewhat surprisingly, this analysis will also show 
that sometimes large amounts of knowledge will have very little effect on reducing the search 
space. 

4. FOCL: Adding knowledge to FOIL 

FOCL extends FOIL in a variety of ways. Each of these extensions affects only how FOCL 
selects literals to test while extending a (possibly empty) clause under construction. These 
extensions allow FOCL to use domain knowledge to guide the learning process. One set 
of extensions allows FOCL to use constraints to limit the search space. A second set of 
extensions allows FOCL to use intensionally defined predicates (i.e., predicates defined 
by a rule instead of a collection of examples) in a manner similar to the extensionally defined 
predicates in FOIL. A collection of intensionally defined predicates is identical to the do- 
main theory of EBL. A final extension allows FOCL to accept as input a partial, possibly 
incorrect rule that is an initial approximation of the predicate to be learned. If this rule 
is defined in terms of extensionally defined predicates, it is analogous to a partial concept 
definition constructed by an incremental inductive learning system. If this rule is defined 
in terms of intensionally defined predicates, it is analogous to the target concept of EBL. 
Indeed, when we discuss explanation-based extensions to FOCL, we will use the terms 
"non-operational" and "intensionally defined" as synonyms. Similarly, the extensionally 
defined predicates correspond to the observable facts (or the operational predicates) of EBL. 
The goal of FOCL, like FOIL, is to create a rule (i.e., a set of clauses) in terms of the 
extensionally defined predicates, that covers all of the positive examples and none of the 
negative examples. Unlike FOIL, FOCL integrates background knowledge and EBL methods 
with an inductive learner. 

In the following sections, we describe these extensions in more detail and evaluate the 
effect of each extension on either the number of literals tested by FOCL Or the accuracy 
of FOCL. To illustrate these extensions, we use two domains. In the first domain, that 
of list relations, we illustrate how FOCL learns a simple recursive concept, the member 
predicate. FOCL is provided with positive and negative examples of the member predicate 
(e.g., member(b,[a, b, c]) notmember(a,[b, c]) and the component predicate (e.g., com- 
ponent(a, [b, c], [a, b, c]) and learns the correct recursive definition for member, as given 
in Table 4. 

The second domain is more complicated and was introduced by Muggleton and Feng 
(1989). This domain suggests that FOCL can handle moderately-sized realistic domains. 
Several hundred examples are used to build a concept description that varies from four to 
eleven clauses, depending upon the extensional predicates that are provided. The predicate or 
concept to be learned is illegal(A, B, C, D, E, F). This is true if a chess board containing 
a white king and rook and black king is in an illegal state if it is white's turn to move. A 
state is illegal if either king is in check or more than one piece occupies the same space. A 
and B are the position of the white king (rank and file), C and D are the white rook's posi- 
tion, and E and F are the black king's position. The ranks and files are represented by 
a number between 1 and 8. In this example, the operational predicates used are between (X, 
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Y, Z) (the value of Y is between the values of X and Z), adjacent(X, Y) (the value of X 
is either one greater or one less than the value of Y) and equal(X, Y) (the values of X ~ 
and Y are equal). 

Where appropriate, we present two sorts of experiments with this domain. First, we pre- 
sent experiments using a large number of examples that enables FOCL to learn a concept 
description that is extremely accurate ( >  99%), and we measure the effect of the knowledge 
on the size of the hypothesis space searched. Second, we present experiments using a smaller 
number of examples and evaluate the impact of the knowledge on the accuracy of the rule 
learned. 

4.L Zero knowledge differences in FOIL and FOCL 

The goal of our analysis and experimentation is to gain an understanding of the impact 
of each type of knowledge on acquiring Horn clause theories. However, even when FOCL 
is provided with no knowledge, it has some differences with FOIL that we should mention. 

As noted in Section 3, the theory cost and the evaluation cost grow exponentially in the 
number of distinct variables. Consequently, to lessen this cost, in FOCL, we have intro- 
duced an iterative widening search strategy 4 that is analogous to iterative depth-first search 
(Korf, 1985). FOCL first attempts to learn a clause by introducing no free variables. If  
this fails because no variabilization of any predicate has positive gain, then additional free 
variables are allowed. On each failure, an additional free variable is allowed until the number 
of free variables exceeds the maximum arity of any predicate. As with iterative deepening, 
there is a small cost for using iterative widening search when it is not needed. However, 
when iterative widening reduces search, there is a major benefit. 

Additionally, there are three features of FOIL that we do not consider in this paper. First, 
FOIL contains a limited form of backtracking to allow it to solve some problems that can- 
not be solved with hill climbing alone. It is difficult to estimate how often this backtrack- 
ing is needed. All of the examples in this paper can be solved without backtracking. Sec- 
ond, FOIL contains a branch-and-bound pruning heuristic that allows it to avoid testing 
the variabilizations of some predicates. It is difficult to analyze the impact of the pruning 
heuristic on the number of literals tested. In the worst case, it will have no impact. Moreover, 
it can never affect the accuracy of the hypothesis. Since this heuristic is not compatible 
with the iterative widening search, we do not make use of it. s Finally, FOIL contains an 
information-based stopping criteria that allows it to learn from noisy data. We do not con- 
sider noisy data in our analysis or experiments. 

Now we will describe the extensions and modifications of FOIL that permit various forms 
of background knowledge to be exploited. We also evaluate the benefit that these exten- 
sions have. After we have considered each of these extensions separately, we present the 
complete FOCL algorithm. At this point, we present the specification of FOCL in Table 5. 

The subsequent sections discuss the modifications necessary to use each of the forms 
of knowledge that may be presented to FOCL. 
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Table 5. FOCL specification. 

Given: 

1. The name of a predicate of known arity. 
2. A set of positive tuples. 
3. A set of negative tuples. 
4. A set of extensionally defined predicates. 
5. (optionally) A set of intentionally defined predicates. 
6. (optionally) A set of constraints (e.g., typing) on the inten- 

sional and extensional predicates. 
7. (optionally) An initial (operational or non-operational) rule. 

Create: A rule in terms of the extensional predicates such that 
no clause covers any negative examples and some clause covers 
every positive example. 

4.2. Single argument constraints 

Type constraints provide a useful and inexpensive way of incorporating a simple form of 
background knowledge. FOCL can easily use typing information. 6 Typing is implemented 
by associating a type for each argument of a predicate. For example, the predicate illegal(A, 
B, C, D, E, F)  has a type definition: 

illegal(rank, file, rank, file, rank, file). 

A type can then be associated with a variable the first time it is used in a clause and all 
other uses of that variable in the clause must be consistent with that type. 

Introducing typing may require introducing additional predicates. In the illegal exam- 
ple, the predicate adjacent is overloaded in that it can compare ranks or compare files. 
However, it should never be used to compare ranks to files. Therefore, we add the predicate 
adjacent__rank(X, Y) with the type adjacent__rank(rank, rank). Similarly, 
adjacent___file(A, B) is used to compare files. 

Typing reduces the search space by avoiding testing literals where the types of old variables 
conflict with the usage of  these variables as arguments to a predicate. More precisely, let 
us assume that a domain has Ttypes and, in the best case, these types are distributed equally 
among the variables. Then, with typing, the theory cost approximately reduces to TheoryCost 
= AllPred*((Var + MaxA)/T) ~t°-~, a savings of T M~xa. This shows that, in the best case, 
typing can reduce the exponent of the search space. In practice, the reduction, though signifi- 
cant, is less than the best case. 

In the chess domain, typing information was used to ensure that the predicates between, 
equal, and adjacent were only applied to either all ranks or all files. The benefit of  typing 
is illustrated by the fact that FOCL using typing tests 3240 literals and 242,982 tuples as 
compared to 10,366 literals and 820,030 tuples for FOCL without typing when learning 
illegal from 641 randomly selected positive and negative training examples, of which 233 
were positive and 408 were negative. 
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In addition to reducing the size of the search space explored, typing can also improve 
the accuracy of the hypothesis produced. The effect of typing on the hill-climbing search 
is to eliminate some literals that may (coincidentally) have the maximum information gain. 
For example, in the chess domain, it can occur that a literal that violates the typing con- 
straints has the maximum information gain (e.g., the rank of the white king is equal to 
the file of the black king). Typing prevents FOCL from considering these literals. 

In order to test the hypothesis that typing can improve the accuracy of FOCL, we ran 
an experiment in which we compared FOCL without typing to FOCL with typing on the 
illegal problem. Twenty trials of FOCL with typing and without typing were run on 10, 
20, 40, 60, 80, 100, 150, 200, 250 and 300 randomly selected training examples. We 
measured the accuracy at each point on 1000 randomly selected testing examples. Figure 
1 shows the mean accuracy plotted as a function of the number of training examples. FOCL 
with typing is labeled "Typed Induction." FOCL without typing is labeled "Untyped?' 
("Irrelevant Pred" will be used in the next experiment.) An analysis of variance indicates 
that typing has a significant effect on the accuracy of FOCL (F(1,380) = 75.8, p = < 
.0001). A similar effect could be achieved by not permitting a data value to belong to two 
types. In the representation used for illegal, numbers are used to represent the ranks and 
files. If numbers were used for the ranks, and letters for files, it wouldn't be possible for 
a rank to have the same value as a file. However, without explicit typing, FOCL would 
still have to consider the possibility that a rank could equal a file. 

With a small number of examples, typing improves the accuracy of the resulting hypotheses 
produced by FOCL. As the number of examples increases, the effect of typing on accuracy 
is reduced. This occurs because it is unlikely in a larger training set for a predicate 
variabilization that does not obey the typing restriction to have the maximum information 
gain. However, typing is still useful since it is an inexpensive way to reduce the number 
of literals tested. 
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Figure 1. The effect of adding irrelevant predicates and variable typing on the accuracy of FOCL. 
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4.3. Multiple arguments constraints 

A second type of a constraint involves inter-argument constraints, the relationship between 
the arguments of a predicate. For example, equal(X, X) is trivially true and between(X, 
X, Y) is trivially false. Such expressions should not play a part in a concept definition 
and, therefore, it is wasteful to test hypotheses including these literals. 

One multiple argument constraint we have implemented handles predicates where all 
the variables must be distinct. This is declared in the input to FOCL via a unique variables 
declaration on designated predicates. Providing such constraints on literals when FOCL 
learns illegal further reduces the size of the hypothesis space explored. Like typing, inter- 
argument constraints reduce the number of variabilized literals that must be tested. 

The value of inter-argument constraints is illustrated by the fact that FOCL, using typing 
and inter-argument constraints, tests 1296 literals and 109,350 examples as compared to 
3240 literals and 242,982 examples for FOCL using only typing when learning illegal from 
641 randomly generated training examples. 

This unique variables inter-argument constraint does not affect the accuracy of the resulting 
hypotheses. A trivially true or trivially false predicate cannot have positive information 
gain. Nonetheless, like variable typing, it is an effective constraint for reducing the number 
of literals that are tested by the inductive component of FOCL. These constraints reduce 
CPU time as well as the theory cost and evaluation cost. For example, without these con- 
straints, FOCL took 220 CPU seconds on a SUN 4/65 computer running Common Lisp. 
With these constraints, 21.6 CPU seconds were consumed during learning illegal. This 
illustrates that both the run time and the size of the search space explored are reduced 
by an order of magnitude by these simple constraints on inductive learning. 

Another implemented inter-argument constraint is the requirement that for some 
predicates, variables must commute. For example, it is not necessary to test 
adjacent__rank(F, X) since this has the same meaning and information gain as 
adjacent_rank(X, F). Binary predicates may be declared to be commutative, reducing the 
number of literals explored. In the illegal example, adjacent and equal are commutative. 
Adding this knowledge reduces the number of variabilizations of commutative predicates 
by half. Therefore, a total of 711 literals were tested with this additional knowledge. Note 
that commutafivity does not affect accuracy, but merely avoids testing equivalent variabiliza- 
tions of the same literal. 

Finally, we have also implemented a third constraint that reduces the number of variabiliza- 
tions of a predicate that must be checked. A predicate may have a mode declared. The 
mode indicates whether each argument to the predicate may be bound to an old variable 
or a new variable. Mode information is commonly used by a compiler to create more effi- 
cient compiled predicates. In FOCL, we use it to avoid computing the information gain 
of variabilizations of a predicate that violate the mode restriction. The mode interacts with 
the iterative widening search used in FOCL, because FOCL initially considers only those 
variabilizations that have no new variables. As a consequence, it does not decrease the 
amount of search performed on the illegal problem. However, when new variables are needed 
in a concept representation, and modes are declared for predicates, the mode declarations 
can significantly decrease the amount of search performed during learning. 
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4.4. Operational initial rules 

In the next sections,, we consider ways in which background knowledge can improve in- 
ductive learning. First, we will consider the case where the background knowledge is a 
(possibly incorrect) partial, operational rule that approximates the concept to be learned. 
For the subsequent discussion, we regard an operational predicate as one that is given ex- 
tensionally. If a predicate is defined by other predicates, we say the definition is non- 
operational. Such an initial rule might be provided by a teacher, or, in an incremental learn- 
ing system (e.g., Widmer, 1990), learned from an initial subset of the examples. 

The extension to FOCL to use a partial, operational Horn clause rule is straightforward. 
In FOIL, the information gain of a literal is computed as a function of the original and 
extended positive and negative tuples covered by the literal. A clause is merely a conjunc- 
tion of literals. Therefore, the information gain of a clause is simply a function of the number 
of tuples covered by the conjunction of literals. When deciding to add a new literal, FOCL 
computes the information gain of each clause in the initial concept. If any clause has positive 
information gain, the conjunction of operational literals is added to the end of the clause 
under construction. If the current clause covers some negative tuples, additional literals 
are added inductively to rule out the negative tuples. 

The analysis of the complexity of FOIL provides insight into the benefit of including 
an operational partial rule for the predicate to be learned. In general, search in FOIL is 
dominated by the last literal of the clause with the largest number of variables. This means 
that a partial rule that is nearly complete, but omits the last literal of the clause with the 
largest number of distinct variables, reduces the search by only a negligible amount. 

The following experiments support this analysis. We gave FOCL three partial defini- 
tions of the member function, namely: 

1. member(X, 
2. member(X, 

member(X, 
3. member(X, 

Y) *- component(X, Z, Y). 
Y) ~- component(X, Z, Y). 
Y) ~ component(A, B, Y). 
Y) ~- component(X, Y, Z). 

The first two definitions are partial and correct. The second clause of the second partial 
definition must be extended by adding an additional literal. The last partial definition is 
incorrect. For the first definition, FOCL tests 268 literals and considers 20,140 tuples. 
In the second definition, the corresponding figures are 228 literals and 12,167 tuples. Us- 
ing the third definition, these figures are 311 literals and 23,358 tuples. Without any par- 
tial definition, FOIL tests 308 literals and considers 23,057 tuples. Note that the correct 
partial definitions given do not significantly reduce the number of literals tested because 
the majority of the work is needed to add the last literal to the last clause of member. The 
incorrect partial definition only slightly increases the number of literals and tuples tested 
since FOCL checks the possibility that the partial definition may have some information 
gain, and ignores the definition when there is not positive gain. 

In general, a partial operational concept definition reduces search in FOCL since FOCL 
saves the work needed to generate this partial definition. However, since this search is 
dominated by the last literal of the clause with the largest number of distinct variables, 
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a partial definition that does not contain this clause does not save a significant amount 
of work. Note that an initial partial operational concept definition might improve the ac- 
curacy of FOIL if FOIL could not find an accurate concept definition using greedy search. 

4.5. Non-operational predicates 

Next, we consider domain theories using non-operational predicates, i.e., ones defined 
in terms of operational and other non-operational predicates. Non-operational predicates 
will bias the search for a concept definition, but do not appear in the final concept defini- 
tion. Systems such as CIGOL (Muggleton & Buntine, 1988) make use of (or invent) 
background knowledge of this form. For example, if an operational definition of the predicate 
between (X, Y, Z) is not provided, it could be defined in terms of the operational predicate 
less than by I 

between(X, Y, Z) ~ less_than(X, Y), less_than(Y, Z). 
between(X, Y, Z) 4- less-than(Z, Y), less-than(Y, X). 

One advantage of the non-operational predicates is illustrated by the fact that between (X, 
Y, Z) may have positive information gain, while less-than(X, Y) and less_than(Y, Z) may 
have negative gain. Therefore, FOIL's hill-climbing search may not learn a concept that 
~nvolves less-than (X, Y), less_than (Y, Z). More generally, non-operational predicates 
allow the hill-climbing search to take some larger steps that can allow the hill climber to 
solve problems that cannot be solved with smaller steps. 

Note that it would be computationally prohibitive to consider all conjunctions of length 
two of the operational predicates. In general, this would more than square the theory cost. 
Non-operational predicates provide information on what particular combinations of opera- 
tional predicates may be useful and allow FOCL to simulate a selective look-ahead. 

Non-operational predicates are evaluated in the same manner as operational predicates 
in FOCL. The information gain of all variabilizations of non-operational predicates is com- 
puted in a manner similar to that used by FOIL with operational predicates. Computing 
the information gain of a non-operational literal requires counting the number of positive 
and negative tuples (and extensions of these tuples if the variabilization includes new 
variables) covered by the literal. 7 If the literal with the most gain is non-operational, then 
the literal is operationalized and the operational definition is added to the clause under 
construction. Note that, unlike operational predicates, the computation of the information 
gain of non-operational predicates involves a potentially expensive Prolog proof. 

The operationalization process in FOCL differs from that of EBL in that it is guided 
by an information gain metric over a set of both positive and negative examples rather than 
by the proof of a single positive example. As in EBL, the operational definition for a predicate 
lnay specialize the predicate if the domain theory is disjunctive (i.e., if there are multiple 
clauses for any non-operational predicate). In EBL, the predicates that are the leaves of 
the proof tree of the single training example are used as the operational definition. In FOCL, 
the information gain metric is used to determine how to construct a proof tree which is 
likely to cover many cases. This process is formalized in Table 6. 
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Table 60perationalization. 

Procedure: Operationalize(Literal, Pos, Neg) 
If Literal is operational 

Return Literal 
Initialize OperationalLiterals to the empty set. 
For each clause in the definition of Literal 

compute gain(clause, Pos, Neg). 
For the clause with the maximum gain, 

for each literal L in the clause, 
Add operationalize(L, Pos, Neg) to OpemtionalLiterals. 

The compute_gain function uses Prolog to prove a clause (i.e., a conjunction of opera- 
tional and non-operational literals). The operationalization process uses the information 
gain metric to select which clause of a non-operational rule should be expanded. The result 
of this process is that an operational specialization of a non-operational literal is selected 
that covers many positive tuples and few negative tuples. 

Due to its reliance on hill-climbing search, FOIL and FOCL are unable to learn a com- 
pletely correct definition of illegal using only less_than, equal and adjacent. When FOCL 
is also given a non-operational definition of between in terms of less_than, it finds a com- 
pletely correct definition in terms of the operational predicates less_than, equal and 
adjacent, 

A disadvantage of using non-operational predicates in this manner is that each additional 
non-operational predicate, particularly those with many arguments, increases the search 
space. This has the undesirable consequence that the more one knows, the slower one learns. 
This became obvious when we added rules from a domain theory of chess to FOCL. These 
rules indicate facts such as: A king is in check if there is an opposing rook in the same 
file as the king and there is not another piece between the rook and king. Table 7 contains 
definitions of these non-operational predicates. 

With this extended domain theory, FOCL tested 3063 literals and 283,602 tuples before 
finding an operational concept definition, as opposed to 1296 literals and 109,350 tuples 
when only the operational predicates were used. This experimental finding agrees with 
the analysis of FOIL presented in Section 3. In particular, since the number of predicates 
increased, the number of literals tested increased. 

A slight modification to the operationalization procedure described so far increases FOCUs 
ability to tolerate overly specific domain theories caused by clauses having one or more 
extra literals. In particular, the information gain of the conjunction of literals produced 
by operationalization may be increased by the deletion of one of the literals of the conjunc- 
tion. When deleting a literal increases the information gain and the ratio of negative tuples 
to total tuples is decreased by the deletion, then the literal is deleted from the operationaliza- 
tion. This process is repeated until no deletion results in additional information gain. Note 
that this scheme is a greedy search for the subset of an operationalization with the max- 
imum information gain. An optimal algorithm that is guaranteed to find the subset with 
the maximum information gain would operate by finding the information gain of all subsets 
of the operationalization. However, this expensive scheme is not practical in large applica- 
tions. In Pazzani, Brunk, and Silverstein (1991), we provide experimental evidence that 
the greedy method is an efficient approximation of the optimal algorithm. 
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Table 7. Partial domain theory for chess. 

Predicate to be learned: illegal (A, B, C, D, E, F) 
Type: (rank file rank filerank file) 
Pos: (5 3 1 8 1 6 ) ( 3  7 5 6 1 6 )  . . .  
Neg: (3 8 6 1 8  5)(8 6 4 1 1 8 )  . . .  

NonOperational Predicates: 
sameJoc(R1,F1,R2,F2) ~- equal_rank(R1,R2), equal~le(F1,F2). 
type: (rank file rank file), unique variables. 
king attack~king(R1,F1,R2,F2) ~- adjacent_rank(R1,R2), adjacent~ile(F1,F2) 
king~attack_king(R1,F1,R2,F2) ~- adjacent_rank(R1,R2), equaLffile(F1,F2) 
king_attack~king(R1,F1,R2,F2) ~- equal_rank (R1,R2), adjacent~/~le (F1,F2) 
type: (rank file rank file), unique variables. 
rook_attack~cing (R1,F1,R2,F2,R3,F3) *- equalJank (R2,R3), king~ot_between~eile (R1,F1,R2,F2,F3). 
rook_attack~cing (R1,F1,R2,F2,R3,F3) ~- equal~ile (F2,F3), king~ot~between~'ank (R1,F1,R2,F2,F3). 
type: (rank file rank file rank file), unique variables. 
king_not~between~ile(R1,F1,R2,F2,F3) ~- not(equal~'ank(R1,R2)). 
king_not~etween~ile (R1,F1,R2,F2,F3 ) ~- equal_rank (R1,R2 ), not (between_file (F2,F1,F3) ). 
type: (rank,file,rank,file,file), unique variables. 
king~ot_between~'ank(R1,F1,R2,F2,R3) ~ not(equal~ile(F1,F2)). 
king_not~etween__rank(R1,F1,R2,F2,R3) ~ equal~ile(F1,F2)), not(between_rank(R2,R1,R3)). 
type: (rank,file,rank,file,rank), unique_variables. 

Operational Predicates: 
between~'ank(rank,rank,rank ), unique_variables 
Pos: (123)(124)(124) . . . (234) ,  (235) .. .  (678) 
equal~'ank(rank,rank ), unique_variables. 
Pos: (11)(22)(33)(44)(55)(66)(77)(88) 
adjacent~'ank (rank, rank ), unique_variables. 
Pos: (12)(21)(23)(32)(34)...(78) 

A positive effect of a domain theory is that it may provide the right predicates to allow 
a hill-climbing search to find the concept description. On the negative side, it increases 
the search space and can decrease the accuracy. This can occur if the predicates present 
in the domain theory are irrelevant to the task. A variabilization of  an irrelevant predicate 
may have the maximum information gain, and be used incorrectly as a literal in a clause. 
This problem is not limited to just non-operational predicates. This is analogous to an ir- 
relevant attribute in propositional learning. 

In order to test the hypothesis that irrelevant predicates degrade the accuracy of FOCL, 
we ran an experiment in which we compared FOCL without irrelevant predicates to FOCL 
with irrelevant predicates on the illegal problem. Irrelevant predicates such as odd(X) ,  
p r i m e ( X ) ,  successor(X,  Y),  p lus (X ,  Y, Z ) ,  t imes(X,  Y, Z) ,  square(X,  Y), cube(X,  Y), and 
greater(X,  Y) were added. Both versions of FOCL did not use typing. The experiment 
follows the same design as the previous experiment. Figure 1 also plots the mean accuracy 
of FOCL with irrelevant predicates. An analysis of  variance indicates that irrelevant 
predicates have a significant effect on the accuracy of FOCL (F(1,380) = 37.6, p < .0001). 
When learning with extra irrelevant predicates, especially greater and successor, FOCL 
learned concepts that were not as accurate on test data. The original operational predicates, 
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equal, between and adjacent were carefully chosen because these concepts are useful in 
learning about rooks attacking kings, kings attacking kings, and blocking a rook from at- o 
tacking a king. When less care is taken in selecting predicates, or if the relevant predicates 
are not known beforehand, more data is needed to create accurate hypotheses. In this man- 
ner, the available predicates in a Horn clause learner are analogous to the attributes used 
by a propositional learning program. In summary, irrelevant predicates can increase the 
amount of work, by a linear amount, and increase the number of training examples re- 
quired to achieve a given accuracy. 

4.6. Non-operational initial rules 

In the previous section, we pointed out how adding background knowledge in the form 
of a domain theory can increase the ability of FOCL to find solutions. However, increasing 
the size of the domain theory may increase the search space explored by the learning pro- 
gram and decrease the accuracy of the resulting hypothesis. In explanation-based learning, 
the search for a concept definition is facilitated by providing the learning system with a 
target concept, an abstract description of the concept to be learned. For example, Table 
8 shows a representation of an initial non-operational rule (target concept) for illegal. In 
EBL, the target concept is assumed to be correct. In FOCL, we relax the assumptions o 
that the target concept and the domain theory are correct. 

When a non-operational initial rule is provided to FOCL, it is treated in a manner similar 
to an operational rule (i.e., a rule using just extensionally defined predicates). In particular, ~ 
it is possible to compute the information gain of a conjunction of extensionally and inten- 
sionally defined literals, by using a Prolog style proof process to determine which examples 
(and extended examples) are covered by each clause of the initial rule. If a clause of the 
initial rule is non-operational and has maximum gain, literals are added to the current clause 
by operationalization of the target concept in the manner described in Section 4.5. 

When FOCL is provided with a correct non-operational target concept and the domain 
theory of the previous section, it finds a correct operational definition of illegal by testing 
72 literals. In contrast, with the correct domain theory, but no target concept, FOCL tests 
3063 literals. The reason for this savings is that with no target concept, FOCL must test 
every variabilization of every predicate. When provided with a target concept, the proof 
structure determines which variabilizations are tested. FOCL computes the information 
gain of illegal(Rl, FI, R2, F2, R3, F3) and operationalizes it if it has positive information 
gain. As a result, only three variabilizations of same_loc are tested when the target con- 
cept is provided to FOCL. Without this knowledge, FOCL tests 2712 different variabiliza- 
tions of same_loc, (since there are six variables and same_loc has arity four). Without 
the target concept, the constraints of typing and unique variables, and iterative widening 
search reduce this number to 36. Similarly, unconstrained induction checks 163,764 
variabilizations of rook attack~cing, constrained induction checks 36, and operationaliza- 
tion checks only one. 
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Table 8. Chess target concept. 

illegal (R1,F1,R2,F2,R3,F3) ~ same_loc(R1,F1,R2,F2). 
illegal(R1,F1,R2,F2,R3,F3) ~ same_loc(R1,F1,R3,F3). 
illegal(R1,F1,R2,F2,R3,F3) ~- same loc(R2,F2,R3,F3). 
illegal(R1,F1,R2,F2,R3,F3) *- king~attack~king(R1,F1,R3,F3). 
illegaI (R1,F1,R2,F2,R3,F3) *- rook attack king (R1,F1,R2,F2,R3,F3). 

Note that typing, unique variables, and iterative widening are not needed by the analytic 
learning component, since the domain theory and the target concept control the selection 
of predicate variabilizations. A good domain theory will not violate typing, use predicates 
trivially, or introduce unnecessary new variables. 

In addition to reducing the search space, a correct target concept and domain theory 
will improve accuracy. In order to test the hypothesis that a correct domain theory will 
increase the accuracy of FOCL, we ran an experiment in which we compared FOCL without 
a domain theory to FOCL with a domain theory for illegal. Although typing is always 
valuable, to focus just on the value of the domain theory in this experiment, both versions 
of FOCL did not use typing. The experiment follows the same design as the previous ex- 
periments. Figure 2 plots the mean accuracy of FOCL with and without a correct domain 
theory. FOCL with a correct domain theory is labeled "Correct DT." FOCL without a 
correct domain theory is labeled "Untyped." ("Incorrect DT" will be used in the next ex- 
periment.) An analysis of variance indicates that typing has a significant effect on the ac- 
curacy of FOCL (F(1,380) = 75.8, p < .0001). An analysis of variance indicates that a 
correct domain theory has a significant effect on the accuracy of FOCL (F(1,380) = 337.9, 
p < .0001). As expected, the correct target concept and domain theory improve the ac- 
curacy of the resulting hypothesis. FOCL does require close to 200 examples to typically 
achieve 100% accuracy with a correct domain theory on this problem because some of 
the clauses in the correct concept are rare and FOCL requires that at least one positive 
example be covered by any operationalization. 
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Figure 2. The effect of adding a correct domain theory and a 76.2 % accurate domain theory on the accuracy of FOCL. 



76 M. PAZZANI AND D. KIBLER 

A domain theory and target concept does reduce the CPU time in FOCL. A total of 
11.6 CPU seconds on a Sun 4/60 were consumed using purely explanation-based learning ° 
as compared to 220 .CPU seconds using induction with no constraints. The current im- 
plementation makes use of a backward chaining rule interpreter implemented in Common 
Lisp that runs at approximately 1500 logical inferences per second. 

4.7. Summary of FOCL 

Now that the components of FOCL have been explained, we show how they are integrated 
in Table 9. This high level design emphasizes the main differences with FOIL. FOCL ex- 
tends FOIL in several ways. First, FOCL constrains the inductive process so that not all 
variabilizations of a predicate need be checked. Second, FOCL computes the information 
gain of intensionally defined predicates as well as extensionally defined predicates. Third, 
FOCL operationalizes intensionally defined predicates by finding an operational specializa- 
tion that covers many positive and few negative examples. Fourth, FOCL computes the 
information gain of an initial (operational or non-operational) rule for the concept to be 
learned and can decide to use this in favor of induction. In this view, the value of an initial 
rule (i.e., target concept) is that it indicates the variabilizations of a non-operational predicate 
that are likely to be useful. For simplicity, we do not consider the case where FOCL is 
instructed not to operationalize intensionally defined predicates, s 

By using a uniform information gain metric, FOCL can deal with incomplete and incor- 
rect domain theories. The only difference between inductively formed and analytically 
formed literals is that the search for an analytically formed literal is more directed. The 
decision about whether to use inductive or explanation-based techniques to extend a clause 
is based on the likelihood of producing an accurate hypothesis, as measured by the infor- 
mation metric. 

5. Incorrect and incomplete domain theories 

FOCL is capable of utilizing incorrect and incomplete domain theories. FOCL tolerates 
such theories because the literals proposed by analytic methods are tested by an information- 
based metric to make sure they have positive gain (or the maximum gain). If  an analytical 
extension is not selected, then FOCL selects literals inductively. 

To illustrate how FOCL learns in spite of incorrect domain theories, we simultaneously 
introduced four errors into the correct domain theory for illegal. The errors are indicated 
in Table 10. 

These errors correspond to the assumption that rooks only attack in files, kings may 
move like knights, kings may attack anywhere in the same rank, and two pieces may occupy 
the same square provided the black king is not in an adjacent file. With these four errors, 
the domain theory correctly classified 76.2 % of the examples when tested on 10,000 training 
examples. Appendix II provides an edited trace of FOCL operating with this domain theory. 
FOCL tests 705 literals to generate this definition. Analysis of the definition, confirmed 
by testing on 10,000 training instances, indicates that the concept acquired is 100% correct. 
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Table 9. Design of FOCL. 

Let Pos be the positive tuples. 
Let IR be the initial rule. 
Let Body be empty. 

Until Pos is empty 
Leg Neg be the negative tuples. 
Call LearnClauseBody. 
Remove from Pos those tuples covered by Body. 
Set Body to empty. 

Procedure LearnClauseBody: 
If a ClauseBody of IR has positive gain, 

Choose best ClauseBody 1 
Operationalize and delete superfluous literals from it? 
Conjoin result with Body, 
Update Pos and Neg, 
Call ExtendBody? 

Else 
Choose best literal, 
Operationalize and delete superfluous literals from it? 
Conjoin result with body, 
Update Pos and Neg, 
Call LearnClauseBody. 

Procedure ExtendBody: 
While Neg is non-empty 

Choose best literal? 
Operationalize and delete superfluous literals from it. 
Conjoin result with Body. 
Update Pos and Neg. 

ITakes advantage of good prior clauses. 
aAllows use of non-operational predicates. 
3Allows correction of old clause bodies. 

Table 10. Domain errors. 
. 

Deleted Clause: (Theory loses coverage) 
rookJttack~cing(R1, F1, R2, F2, F3) *- equal_rank(R2, R3), 

kingJot~etween~file(R1, F1, R2, F2, /73). 

Added Clause: (Theory too general) 
kingjttack~ing(R1, F1, R2, F2) *-- knight_move(R1, F1, R2, F2). 

Deleted Literal: (Clause too general) 
Changed: king_attack~ing(R1, F1, R2, F2) ~ equal_rank(R1, R2), adjacent file(F1, F2) 
To: king attack~cing(R1, F1, R2, F2) ~- equal_rank(R1, R2). 

Added Literal: (Clause overly specific) 
illegal(R1, FI, R2, F2, R3, F3) ~- sarne_loc(R1, F1, F2, F2), adjacent file(F1, F3). 

Through  a single mechan i sm,  F O C L  responds to each  type of  modi f i ed  domain  theory 

in a diferent manner.  I f  these  modif ica t ions  result  in negat ive gain, F O C L  wil l  not  opera-  

t ionalize this rule  but  instead finds an accurate defini t ion using as m u c h  of  the domain  
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theory as possible and fills in the remainder with its bottom-up inductive method. In general, 
FOCL responds to the four types of correctness destroying transformations as follows: - 

* Literal Deletion: If  the literals defining a clause have positive gain, then FOCL can 
operationalize the clauses that are not altered in a purely explanation-based fashion. If  
the clause with the literal deleted has positive gain, then FOCL operationalizes this clause 
and then uses inductive methods to complete the clause by finding a predicate that cor- 
rectly classifies the remaining positive tuples and doesn't cover any negative tuples. Quite 
often, using induction to finish a clause results in finding the literal that was deleted. 

• Clause Deletion: FOCL can operationalize the clauses that are not deleted. Operational 
descriptions equivalent to the remaining clauses (i.e., they cover the positive training 
tuples not covered by the remaining clauses and do not cover any negative tuples) are 
added in an inductive fashion. 

• Literal Addition: Often, the unchanged clauses will have greater positive gain than the 
modified clause and the unchanged clauses will be operationalized first. At this point, 
the altered clause will not have positive gain, and an operational description equivalent 
to the clause before modification is added inductively. If  an altered clause has positive 
gain, the greedy deletion of literals will usually remove the superfluous literal. I f  this 
fails, an overly specified clause is included in a concept definition. To cover additional 
positive tuples, FOCL inductively adds clauses. 

• Clause Addition: FOCL operationalizes clauses with maximum gain and it is unlikely 
that randomly added clauses will have more gain. In effect, FOCL uses information gain 
as a method to find a subset of the domain theory that is accurate. FOCL iteratively 
finds an operational specialization with the highest positive gain on all training tuples 
and makes this the next clause. It removes those positive training tuples covered by that 
clause, and finds other operational clauses to cover the remaining positive tuples. 

It is important to stress that FOCL does not contain any special code to deal with each 
type of modification. Rather, the above behavior falls out of using a uniform, information- 
based heuristic to judge the usefulness of operationalizing the target concept or using bottom- 
up methods to extend a clause. 

In order to test the hypothesis that an incorrect domain theory will also increase the 
accuracy of FOCL, we ran an experiment in which we compared FOCL without a domain 
theory to FOCL with the above incorrect domain theory for illegal. Both versions of FOCL 
did not use typing. Figure 2 also plots the mean accuracy of FOCL with an incorrect do- 
main theory. An analysis of variance indicates that even an incorrect domain theory has 
a significant effect on the accuracy of FOCL (F(1,380) = 120.1, p < .0001). The figure 
illustrates that FOCL learns more quickly with a domain theory that is only 76.2% ac- 
curate, than with no domain theory. This is a result of using the information-based heuristic 
to judge the usefulness of  the domain theory and to switch between explanation-based and 
emoirical methods. 
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5.1. Experiments on the size of the hypothesis space searched 

In the previous section, we presented several experiments demonstrating that prior knowledge 
improves the accuracy of FOCL. The following experiments demonstrate that FOCL, us- 
ing a combination of explanation-based and empirical learning methods, can advantageously 
use partial domain theories to reduce the size of the search space explored, even when 
these theories contain severe errors. Incorrect domain theories for the definition of illegal 
are generated from a correct theory by four different perturbation operators. 

1. Randomly deleting a term from a clause of a rule (subject to the constraint that a clause 
must have at least one term). This modification will cause the rule to make errors on 
negative training examples. 

2. Randomly deleting a clause from a rule (subject to the constraint that a rule must have 
at least one clause). This modification will cause the rule to make errors on positive 
training examples. 

3. Randomly adding a term to a clause of a rule. A term was constructed randomly from 
the set of operational predicates and from the existing variables of a clause. This modifica- 
tion will cause the rule to make errors on positive training examples. 

4. Randomly adding a clause to a rule. A clause was constructed with random terms. All 
clauses were at least 1 term long. There was a 0.5 probability that clauses had at least 
2 terms, a .25 probability of at least 3, etc. This modification will cause the rule to 
make errors on negative training examples. 

We train FOCL on a large number (641) of training examples, and in all cases, the resulting 
hypothesis is greater than 99% accurate. In each case, we measure the amount of search 
that is required to create a hypothesis. 

In the first set of experiments, each perturbation operator was applied individually. Fig- 
ure 3 plots the accuracy of the resulting domain theory (averaged over 20 trials) and the 
number of literals tested by FOCL for each operation as a function of the number of modifica- 
tions to the domain theory. Note that FOCL is able to exploit extremely inaccurate domain 
theories to constrain the search for a concept definition. 

The easiest problem for FOCL occurs when additional clauses are added to the domain 
theory. This problem can be solved entirely by explanation-based means. A subset of the 
possible operationalizations of the target concept is chosen in a greedy manner to cover 
the positive examples and exclude the negative examples. The more difficult problems for 
FOCL occur when the inductive component of FOCL is required to make up for an inade- 
quate domain. Induction is needed when no subset of the possible operationalizations of 
the domain theory will result in a correct hypothesis. 

We also ran experiments in which all of the above modifications were performed 
simultaneously on the domain theory, yielding a domain theory that misclassifies both 
positive and negative tuples. Figure 4 plots the accuracy of the domain theory and the number 
of literals expanded by FOCL with and without a domain theory, when the domain theory 
was modified by adding or deleting clauses and literals as a function of the number of 
modifications to the domain theory (averaged over 20 trials). The results of adding and 
deleting clauses and literals indicate that FOCL with an incorrect and incomplete domain 
theory explores a smaller portion of the search space than FOCL without a domain theory. 
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Figure 3. Upper: The effect of modifying a domain theory by individually adding literals, deleting literals, adding 
clauses and deleting clauses on the amount of search required by FOCL to learn an accurate concept. Lower: 
The accuracy of the modified domain theory. 

5.2. Types of incomplete and incorrect domain theories 

The accuracy of the domain theory is not the only important characteristic for predicting 
FOCL's ability to accurately learn a concept. In order for FOCL to tolerate incomplete 
and incorrect domain theories, the inductive process must be able to "patch" the opera- 
tionalized conjunctions of literals derived from the domain theory. Since the inductive process 
does hill-climbing search guided by an information gain evaluation heuristic, there is no 

guarantee that the resulting clause will be best. For example, consider the chess domain 
where we mutate a few of the predicates. In particular, we replace the predicate equal(X, 
Y) with the predicate half_eq(X, Y), defined as {(1, 1), (2, 2), (3, 3), (4, 4), (7, 8)}. 
Similarly, we replace adjacent and between by extensional predicates that cover half of the 
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Figure 4, The effect of modifying a domain theory by combinations of adding literals, deleti~ag literals, adding 
clauses and deleting clauses on the accuracy of the domain theory and on the amount of search required by FOCL. 

positive examples of the proper predicates and a few negative examples. Since such a do- 
main theory would have positive information gain, FOCL would create clauses by opera- 
tionalization. For example, operationalizing rook_attack__king yields 

illegal(A, B, C, D, E, F ) : -  half eq(E, C), not(half eq(C, A)). 

Because this covers some negative examples, FOCL patches it inductively. Assuming the 
inductive learning can use the predicate equal (as well as halfeq),  then the best possible 
patch is: 

illegal(A, B, C, D, E, F): - half~eq(E, C), not(half eq(C, A)), 
equal(E, C), not(equal(C, A)). 

However, this covers fewer positive examples than the ideal clause, so FOCL would have to 
learn another clause inductively to cover the remaining positive examples. The best clause is: 
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illegal(A, B, C, D, E, F): - equal(E, C), not(equal(C, A)). 

In this case, a 78 % correct domain theory does not help FOCL. Instead, it creates an ar- 
bitrary subdivision of the examples such that to achieve 100 % accuracy, the inductive learner 
must learn the same literals from each set of positive examples. We ran FOCL with such 
an incorrect domain theory and with no domain theory on 25 trials of 40, 80, and 160 
examples. In this experiment, the presence of a domain theory resulted in decreased ac- 
curacy (F(1,144) = 9.11, p > .01). 

This experiment indicates that the accuracy of a domain theory is not the only factor 
that affects the accuracy of the learned concept. Rather, the domain theory must have the 
property that an accurate concept description can be achieved by inductively patching its 
operationalizations. The ability to patch the domain theory inductively depends on the 
predicates available for induction. In the examples in Section 4 and Section 5.1, the induc- 
tive component corrected for an imperfect domain theory by adding the literal that was 
deleted from a clause. Similarly, it could delete a literal that was added to the domain theory, 
ignore parts of the domain theory, or induce a clause that was deleted from the domain 
theory. However, in the above example, the only way to exclude some negative examples 
from a conjunction of literals formed by operationalization was to conjoin them with a 
set of literals formed by induction? If  the inductive learner had a predicate 
not__7_and__8(X, Y) that was true except when X = 7 and Y = 8, then it would be able 
to conjoin this predicate with half_eq(X, Y) to rule out negative examples: illegal(A, B, 
C, D, E, F): -half__eq(E, C), not_7_and__8(E, C), . . .  

We have explored a method for addressing this problem. As we have described FOCL 
so far, it operationalizes the domain theory provided it has positive gain. Another alter- 
native is to compare the gain of the domain theory to the gain of literals formed solely 
by induction. On this problem, this variant of FOCL performed equally as well as FOCL 
with no domain theory. However, it achieves this accuracy by simply ignoring the domain 
theory. A better approach might be to consider a "paradigm shift" by replacing the exten- 
sional definition of halfeq with that of equal in the domain theory. Ofcourse,  this is 
much simpler if the definition of equal were known. On the other hand, a true paradigm 
shift often requires inventing such a new predicate. 

5.3. Experiments on the prediction of the tuple size growth 

Now that we have given experimental support for the utility of various semantic constraints, 
we also give experimental support for the estimates of the tuple size, as developed in Sec- 
tion 3. To verify our estimate, we consider the task of learning the illegal predicate. ~° We 
trace the tuple size as each literal is selected and compare it with the tuple size predicted 
by equation 4 from Section 3.2. In order to apply this equation, we need the densities of 
all the predicates (see Table 11). The comparison of the predicted tuple size versus the ac- 
tual tuple size is presented in Table 12. 
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Table 11. Predicate densities. 

Predicate Density 

equal-rank .125 
not equal~xank .875 
adjacent_rank .25 
not adjacent_rank .75 
between__rank .21875 
not between_rank .78125 

Table 12. Predicted versus actual tuple size. 

initial predicate predicted actual 

641 equal~rank 80 98 
98 not equal-rank 86 87 
554 equal_file 69 75 
75 not equal_file 66 67 

487 adjacent_ file 122 102 
102 adjacent_jank 25.5 24 
463 equal_rank 58 70 
70 adjacent_ file 17.5 16 

447 equal_file 56 71 
71 adjacent~rank 18 13 
434 equal_file 53 56 
56 equal~rank 7 8 

426 equal-rank 53 54 
54 equal_file 7 8 

~418  equal_file 52 6 
6 not between~rank 5 5 

~413  equal~rank 52 7 
7 not between_file 5 5 

All these results are from one entire episode of FOCL learning i l l ega l .  As Table 12 in- 

dicates, the estimates are very reasonable, giving empirical support to our earlier analysis. 
Our analysis assumed no interaction between the predicates and no intelligent choice of 
predicates. In the ranks marked ~', the achieved tuple size is much less than the predicted 
one. In these two cases, the sample is not a mixture of positive and negative cases, but 
nearly entirely negative. In these two cases, the bias of FOCL is to select the predicate 

that picks out the few positive instances. 

6. Comparison to related work 

Ir~ this section, we compare FOCL to a variety of related work on either learning relational 
concepts or combining empirical and inductive learning methods, focusing on the types 
of knowledge exploited by the systems to constrain learning and how this knowledge is used. 
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6.L IOU 

IOU (Mooney & Ourston, 1989) is a system that is designed to learn from overly general 
domain theories. IOU operates by first forming a definition via a process similar to m-EBG 
(Flann & Dietterich, 1989) for the positive examples. Next, IOU removes any negative 
examples from the training set that are correctly classified by the results of m-EBG. Final- 
ly, IOU deletes those features that are not used in the result of m-EBG from the remaining 
negative and all positive examples, and runs an induction algorithm on the features. The 
final concept is formed by conjoining the result of induction over the unexplained features 
with the result of m-EBG. Due to the limitations of its induction algorithm, IOU is limited 
to training examples expressed as attribute-value pairs as opposed to the more general rela- 
tional descriptions typically used by EBL algorithms. As already mentioned, FOCL allows 
Horn clause descriptions of the background knowledge. In addition, the provided target 
concept need not be correct nor overly general. 

6.2. EITHER 

Like FOCL, the EITHER system (Ourston & Mooney, 1990) is one of the few systems 
designed to work with either overly general or overly specific domain theories. Further- 
more, unlike FOCL, EITHER revises incorrect domain theories, rather than just learning 
in spite of incorrect domain theories. EITHER contains specific operators for generalizing 
a domain theory by removing literals from clauses, and by adding new clauses and operators 
for specializing a domain theory by adding literals to a clause. Due to its induction compo- 
nent and the algorithm EITHER uses to assign blame for proving a negative example or 
failing to prove a positive example, EITHER is restricted to using propositional domain 
theories and training examples represented as attribute-value pairs. 

6.3. A-EBL 

The A-EBL system (Cohen, in press) is also designed to handle overly general domain 
theories. It operates by finding all proofs of all positive examples, and uses a greedy set 
covering algorithm to find a set of operational definitions that cover all positive examples 
and no negative examples. Unlike IOU, A-EBL will not specialize the result of EBL, unless 
required, to avoid covering any negative examples. 

A similar set covering behavior occurs in FOCL when dealing with overly general do- 
main theories caused by having superfluous clauses (see Figure 3). However, FOCL is 
not required to find every proof of every positive example. Furthermore, due to its induc- 
tion component, FOCL can learn from overly specific domain theories as well as overly 
general theories caused by a clause lacking a precondition (i.e., a missing literal), in addi- 
tion to overly general domain theories caused by extra clauses. 
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6°4. ML-SMART 

In many respects, FOCL is similar to ML-SMART (Bergadano & Giordana, 1988). ML- 
SMART also is designed to deal with both overly general and overly specific domain theories. 
The major differences between ML-SMART and FOCL are involved with the search con- 
trol strategy. FOCL uses hill climbing while ML-SMART uses best-first search. The best- 
first search may allow ML-SMART to solve some problems that cannot be solved with 
hill-climbing, at the cost of retaining all previous states. However, the cost of running a 
best-first algorithm is very high, being proportional to Branching Factor Depth a. As we 
have already indicated by our analysis in Section 3, the branching factor grows exponen- 
tially in the length of the clauses. This means that ML-SMART will run doubly exponen- 
tial time and, therefore, is restricted to relatively small problems. 

ML-SMART has a number of statistical, domain independent, and domain dependent 
heuristics for selecting whether to extend a rule using inductive or deductive methods. In 
contrast, FOCL applies a uniform information-gain metric to extensions. The heuristics 
in ML-SMART have not been subject to systematic experimentation of the type we per- 
formed in Section 5.5. As a consequence, it is unclear how well they deal with various 
types of incomplete and incorrect domain theories. 

Finally, ML-SMART is only able to use its domain knowledge for explanation-based 
learning. In contrast, FOCL can also use domain knowledge in inductive learning, by search- 
ing for non-operational predicate variabilizations. 

6.5. FOIL 

The goal of this research has been to measure the effects of adding various types of knowledge 
to FOIL, rather than to produce a system that performs better than FOIL. Nonetheless, 
direct comparison of FOIL and FOCL is possible. 

Although very similar, FOCL has a slightly different control strategy from FOIL. In 
particular, FOCL attempts to constrain search by using variable typing, exploiting inter- 
argument constraints, and uses an iterative-widening approach to adding new variables. 
FOIL contains an admissible pruning heuristic that conflicts with the iterative-widening 
approach. Using variable typing, inter-argument constraints, and iterative-widening, FOCL 
learned the illegal concept by testing 1296 literals. With a domain theory, this number is 
reduced to 72 literals. Using the same number of examples and its pruning heuristic, FOIL 
requires considering 5166 literals to find a similar definition. With the exception of iterative 
widening, the other constraints on induction analyzed here could easily be incorporated 
with the pruning method of FOIL. 

The typing constraints of FOCL have proved useful in improving the accuracy of the 
resulting hypotheses. Since these do not conflict with the pruning heuristic, they can also 
easily be incorporated into FOIL to reduce the search space. 

The stopping criteria used by FOIL to learn from noisy data, may also be useful in stop- 
ping the learning process when there are a large number of irrelevant predicates and a 
small number of examples. For example, Figure 2 shows that adding irrelevant predicates 
decreases the accuracy of FOCL. We ran a version of FOIL provided by Quinlan on the 
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same 60, 100, 200, and 641 training examples, learning illegal both with and without 20 
irrelevant predicates. The accuracy of the resulting hypotheses were 92.9, 96.4, 97.4 and " 
99.3 with only relevant predicates and 86.1, 90.2, 96.1, 99.0 with irrelevant predicates 
added. With fewer than 200 examples, FOIL typically underfit a concept, yielding a rule 
that was not consistent with all the training examples. This is due to the stopping criterion 
that partially mitigates the effects of introducing irrelevant predicates into the concept descrip- 
tion. However, the accuracy of the results of FOIL does decrease when operational predicates 
are introduced. 

7 .  C o n c l u s i o n s  

In this paper we have described a relational concept learner, FOCL, that combines induc- 
tive and analytic learning in a uniform manner. The resulting program employs a number 
of different types of knowledge. In particular, it advantageously uses both inconsistent and 
incomplete theories. We provided both a mathematical and an experimental evaluation of 
FOCL. 

From our mathematical analysis, we can draw a number of important conclusions about 
the complexity of FOCL and the effect of different sorts of knowledge on this complexity. 
Some of these conclusions are summarized here: 

- -  The branching factor grows exponentially in the arity of the predicate to be learned, 
in the maximum arity of the available predicates, and in the number of new variables 
required. 

--  The branching factor grows linearly in the number of available predicates. 
- -  The difficulty in learning a rule is primarily determined by the difficulty in learning 

the longest Horn clause, where length is measured in the number of new variables. 
--  The difficulty in learning a rule is only linearly proportional to the number of clauses 

in the rule. 
- -  Partially operational rules that do not include the longest clause barely reduce the search 

in finding the rule. 
--  Typing knowledge provides an exponential decrease in the amount of search necessary 

to find a rule. 

In addition to supporting the theoretical claims made above, our experimental evidence 
suggests a number of other important conclusions. 

- -  Non-operational predicates aid by improving the shape of the hill-climbing landscape. 
- -  Any method (argument constraints, semantic constraints, typing, symmetry, etc.) that 

eliminates fruitless paths will decrease the search cost and potentially increase the 
accuracy. 

--  The uniform evaluation function applied to literals learned by induction or by explanation- 
based methods allows FOCL to tolerate domain theories that are both incorrect and 
incomplete. 
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- -  Irrelevant background predicates marginally slow learning and marginally decrease ac- 

curacy, since the system has more opportunities to make incorrect decisions. In this 
respect, irrelevant predicates in Horn clause learning are similar to irrelevant attributes 

in propositional learning. 
- -  Iterative widening reduces the cost of search. 
- -  A domain theory that consists of rules that are overly general by virtue of having 

superfluous clauses is the easiest to tolerate. In this case, only a subset of the opera- 
tionalizations are needed and the information-gain metric of FOCL selects, in a greedy 

manner, operationalizations that cover positive examples. Other forms of incomplete 
and incorrect domain theories require FOCL to use induction to overcome domain theory 

errors. 

In this paper, we have presented the core of FOCL. Our current research with FOCL 

includes dealing with noise in the context of relational learning (Brunk & Pazzani, 1991), 
revising incorrect domain theories (Pazzani & Brunk, 1990), exploiting knowledge of com- 

monly occurring patterns of literals called relational clichds (Silverstein & Pazzani, 1991), 
allowing restricted function symbols and both nominal and ordinal constants into the 
representation language (Silverstein & Pazzani, 1991), exploring heuristics other than in- 

formation gain or entropy such as Laplacian error estimators, creating new extensionally 
defined predicates, and including non-operational literals in learned concept descriptions. 
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No~s  

1. In the context of this paper, we use the term "domain theory" to refer to a set of (possibly incorrect and 
incomplete) Horn clauses that may be useful in defining the concept to be learned. The more general term, 
"prior knowledge" also includes information such as the types of predicates. 

2. For some problems, this is not a severe representational restriction. For example, color (X, red) may be 
represented as color(X, Y), red(Y),  although this representation can greatly increase the search cost. 

3. The information gain metric used by FOIL is 
Gain(Literal) = T ++ * (log2(Pl/(P l + NI)) - log2(Po/(P o + No))) 

where P0 and N O are the number of positive and negative tuples before adding the literal to the clause, P1 
and N 1 are the number of positive and negative tuples after adding the literal to the clause, and T ++ is the 
number of positive tuples before adding the literal that have at least one corresponding extension in the positive 
tuples after adding the literal (Quinlan, 1990). 

4. It is also similar to the iterative broadening technique (Ginsberg & Harvey, 1990) where heuristics are used 
to order the nodes expanded. In our case the heuristic is to favor nodes with few new variables. Their analysis 
assumed a constant branching factor and the success of the method relied on having enough goal nodes. In 
our case, the branching factor is dependent on the extension chosen. 
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5. Since FOCL first searches a smaller hypothesis space then FOIL, it is possible that it will produce a different 
answer than FOIL on the same data. We have not observed this on the experiments reported in this paper. 
However, when testing on noisy data (Brunk & Pazzani, 1991), we have observed that the larger hypothesis 
space results in more accurate concepts. 

6. Quinlan (1990) mentions how type constraints may be used (in combination with the closed-world assump- 
tion) to generate negative examples of the predicate to be learned from the positive examples. However, type 
constraints are not used to eliminate literals from consideration. 

7. The Prolog predicate setofcan be used to find all extensions of a tuple. For example, if the current tuple 
is (1 2 3 4 5 6) (corresponding to the variables A, B, C, D, E, and F), then the extensions of this tuple for 
the literal between(A, G, E) require finding all bindings of G such that between(i, G, 5) is true. 

8. To avoid conjoining two different clauses of an initial rule, the InitialRule is set to empty if it is used to 
add literals to a clause. It is reset on the start of a new clause, so that other clauses may be used. 

9. One could attempt to use a postprocessor to correct the output of FOCL. However, if the given predicates 
and domain theory are too misleading, then the sets of remaining positive and negative examples are smaller 
than they would be with no domain theory at all. Consequently, induction is more likely to make a mistake 
that cannot be corrected by postprocessing. 

10. The definition learned for illegal is: 
illegal(A, B, C, D, E, F):- equaljank(E, C), not(equal rank(C, A)). 
illegal(A, B, C, D, E, F):- equal file(F, D), not(equal file(D, B)). 
illegal(A, B, C, D, E, F):-  adjacent__file(F, B), adjacent~rank(E, A). 
illegal(A, B, C, D, E, F):- equal__rank(E, A), adjacent file(F, B). 
illegal(A, B, C, D, E, F):-  equal file(F, B), adjacent_rank(E, A). 
illegal(A, B, C, D, E, F):-  equal file(D, B), equal~rank(C, A). 
illegal(A, B, C, D, E, F):-  equal__rank(E, A), equal file(F, B). 
illegal(A, B, C, D, E, F):- equal file(F, D), not(between__rank(E, A, C)). 
illegal(A, B, C, D, E, F):-  equal_rank(E, C), not(between~le(F, B, D)). 

11. This recurrence was determined by Dan Hirschberg. 
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Appendix  I. Detai led analysis  o f  v (m, k) 

In the text we approximated v(m, k). Here we compute it exactly. To count the total number 
of  distinct variabilizations, it is convenient to count the number of distinct variabilizations 
that use exactly j positions for old variables. We use p (m, k, j )  to represent this number. 
Since we require at least one old variable, 

v(m k ) = 
j=m 

Z p(m, k, j). 
i=1 
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N o w p  (rn, k, j )  is the product of the number of ways of pickingj  positions, the number of 
ways of assigning old variables to them, and number of ways of assigning the new variables to " 
the remaining positions. The number of ways of pickingj  positions from rn is (~). The num- 
ber of ways of filling these j  positions with any of the k old variables is k j. Now we have 
to count the number of ways to fill the remaining rn - j positions to fill with new variables. 
Since the name of a new variable is not important (i.e., they are dummy variables), we 
must count them carefully. For example, i fXis  an old variable and Yand Z are new variables 
then between (Y, X, Z) and between (Z, X, Y) are equivalent variabilizations of between. 

We define new(i, j )  to be the number of distinct (non-equivalent) ways of filling i posi- 
tions with exactly j new variables. We note the following recurrence: 11 

new(i, j )  = new(i - 1, j - 1) + j * new(i - 1, j )  

To understand this recurrence, consider two cases. In case one, the last of the i positions 
is filled with a distinct new variable, giving rise to new(i - 1, j - 1) distinct variabiliza- 
tions. In case two, all of  the j variables are already placed in the first i - 1 positions. 
This yields the second summand. 

The boundary conditions are: 

new(i, O) = 0 
new(i, 1) = 1 
new(i, j )  = O, i f  i < j 

We define anynew(i) to be the number of distinct ways of filling i positions with any 
number of new variables. By the definition of new(i, j )  we have 

l=i 

anynew(i) = ~]~ new(i, l). 
1=1 

Now the total number of variabilizations of  a predicate of arity rn using j positions for 
old variables, p(rn, k, j ) ,  is: 

m ) k j anynew(m j ) .  p(m, k, j )  = j * * - 

Summing this function as j ranges from 1 to rn will give the total number of ways of 
variabilizing a predicate of  arity m. 

Appendix II. An annotated trace of FOCL 

We present here an annotated trace of  FOCL using the incorrect domain theory of illegal 
from Section 5. To create an operational definition for illegal, FOCL first computes the 
information gain of each given clause for illegal: 
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king-attack-king(R1,F1,R3,F3) 
rook-attack-king(R1,F1,R2,F2,R3,F3) 
same-loc(Rl ,F1 ,R2,F2),adjacent-file(F 1 ,F3) 
same-loc(R2,F2,R3,F3) 
same-loc(R1,FI,R3,F3) 

+61.6 
+ 124.1 

+0.0 
+18.9 

11.6 

In this case, rook attack~ing has the highest information gain, and is operationalized. 
Since there is only one clause for rook_attack~ing in this incorrect domain theory, it 
is selected for operationalization. This clause uses one operational predicate equal file 
and one non-operational, king_not between_rank. There are two clauses for 
king_not between__rank and the clause with the maximum information gain is opera- 
tional. Therefore, the first clause for illegal is created entirely with explanation-based 
methods in FOCL: 

OPERATIONALIZING rook-attack-king(R1 ,F1 ,R2,F2,R3,F3) 
OPERATIONALIZING 
equal-file(F2,F3),king-not-between-rank((R1,F1,R2,F2,F3) 
OPERATIONALIZING king-not-between-rank(R1 ,F 1 ,R2,F2,F3) 

equal-file(F1,F2),not-between-rank(R2,R1,R3) +0.135 
not(equal-file(F 1,F2 )) + 1.299 

CLAUSE 1: 
illegal(R 1,F 1, R2, F2, R3,F3 ) :-equal-file(F2,F3 ),not(equal- file(F 1,F2)) 

This clause indicates that a chess board is in an illegal state if the white rook and black 
king are in the same file, and the white king is not in the same file. The positive examples 
that are satisfied by this clause are removed and the same process is repeated. Note that 
since the set of positive tuples is reduced, the information gain of the clauses for illegal 
is different when learning the first and second clause. 

The second clause operationalizes king attack~zing. The most common way for this 
to occur is for the two kings to be in adjacent ranks and adjacent files. The third clause 
also operationalizes king attack__king. This time the operationalization indicates that the 
kings are in the same file and adjacent ranks. 

king-attack-king (R 1, F 1, R3, F 3) + 70.7 
rook-attack-king(R1 ,F 1, R2,F2 ,R3 ,F3) + 14.8 
same-loc(R1,F1,R2,F2),adjacent-file(F1,F3) +0.0 
same-loc(R2 ,F2,R3 ,F3) + 1.8 
same-loc(R1 ,F1 ,R3,F3) + 14.8 

OPERATIONALIZING king-attack-king(R1 ,F 1 ,R3,F3) 
CLAUSE 2: 

illegal(R1,F1,R2,F2,R3,F3):-adjacent-rank(R1,R3),adjacent-file(F1,F3) 

CLAUSE 3: 
illegal (R 1, F 1, R2, F2, R3, F 3 ): -adj acent-rank(R 1, R3 ), equal-file (F 1, F 3 ) 



92 M. PAZZANI AND D. KIBLER 

If the domain theory were correct and complete, this process would be repeated until 
all positive examples are covered by at least one operational clause. Clauses would be created 
in a greedy manner .by selecting the operationalization that covers the most positive ex- 
amples (i.e., if no operationalization covers any negative examples, then the operationaliza- 
tion that covers the most positive examples has the highest information gain). However, 
since an incorrect domain theory will misclassify some negative examples, and an opera- 
tionalization of an incomplete theory will fail to cover some positive examples, it is also 
necessary to use the inductive component. Clause 4 provides one example where both the 
inductive and the explanation-based components are needed. 

In Clause 4, FOCL operationalizes k ing_at tack~ing  again. However, the clause with 
the maximum information gain is the clause with the deleted literal. This indicates that 
a king attacks a king if they are in the same rank: 

king-attack-king(R 1 ,F1 ,R3 ,F3) 
rook-attack-king(R1,F1,R2,F2,R3,F3) 
same-loc(R1,F1,R2,F2),adjacent-file(F1,F3) 
same-loc(R2,F2,R3,F3) 
same-loc(R1,F1,R3,F3) 

OPERATIONALIZING king-attack-king(R1,F 1, R3,F3) 
adjacent-rank(R1,R3),adjacent-file(F1,F3) 
equal-rank(R 1 ,R3) 
knight(R1,F1,R3,F3) 
adjacent-rank(R1,R3),equal-file(F1,F3) 
BEST CONDI'rlON equal-rank(R1,R3) 

+23.9 
+13.1 

+0.0 
+0.0 

+17.5 

0.0 
+26.7 

+ -0 .1  
+0.0 

Because some negative examples are covered by this clause, the clause is extended in- 
ductively. FOCL computes the information gain of every variabilization of every opera- 
tional predicate (and its negation) and selects the literal with the maximum gain: 
adjacent__file ( F3 ,F1) . 

between-file(F1,F2,F1) +0.0; 
between-file(F 1, F2,F3) + - 3.26; 

• . . 

equal-file(F3,F1) + 10.17; 
adjacent-file(F3,F 1) + 20.34; 

CLAUSE 4 

- 0 . 0  

- 4 . 6  

- - 6 . 1  

- - 1 0 . 2  

illegal(R1 ,F1 ,R2, F2,R3,F3):-equal-rank(R 1 ,R3),adjacent-file(F3,F 1) 

This excludes all negative examples and the clause added indicates that a chess board 
is in an illegal state if the kings are in the same rank and adjacent files. 

Clause 5 is learned by operationalizing same_loc. It indicates that a chess board is in 
an illegal state if the two kings are on the same square. 
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CLAUSE 5 
illegal(R1 ,F1 ,R2,F2,R3,F3):-equal-rank(R1 ,R3),equal-file(F1 ,F3) 

Clause 6 is learned by op~rationalizing rook_attack~king. It covers the case that is less 
common than the first clause. In this case, the white rook and black king are in the same 
file. The white king is in this file, but not between the rook and black king. 

CLAUSE 6 
illegal(Rl ,F1 ,R2,F2,R3,F3):-equal-file(F3 ,F2),equal-file(F 1 ,F2) 

not(between-rank(R2,R1,R3)) 

Clause 7 is learned entirely by inductive techniques. It indicates that a chess board is 
illegal if the white rook and black king are in the same rank, and the white king is not 
in that rank. Note that after the first literal is added inductively, FOCL again tries to opera- 
tionalize the target concept. In this case, no operationalization of the target concept has 
positive information gain when extending this clause. However, it can occur that the first 
literal of a clause is learned inductively, and some of the remaining literals are learned 
via explanation-based techniques. 

king-attack-king(R1 ,F1,R3,F3) + - 1.0 
rook-attack-king(R1 ,F 1 ,R2,F2,R3,F3) + 0.0 
same-loc(R1 ,F1,R2,F2),adjacent-file(F1,F3) + 0.0 
same-loc(R2,F2,R3,F3) + 0.0 
same-loc(R1 ,F 1,R3,F3) + 0.0 

between-file(F 1 ,F2,F3) + 5.5; 
• . , 

equal-rank(R3,R2) + 192.4; 
BEST CONDITION equal-rank(R3,R2) 

king-attack-king(R1,F 1, R3,F3) + - 2.1 
• . . 

between-file(F 1 ,F2,F3) + 0.9; 
• , . 

equal-rank(R1,R2) + -2 .2 ;  
BEST CONDITION not(equal-rank(R1,R2)) 

CLAUSE 7 

- - 5 . 0  

- -25 .3  

- - 0 . 9  

- 2 . 6  

illegal(R1,F1,R2,F2,R3,F3):-equal-rank(R3,R2),not(equal-rank(R1,R2)) 

After the set of positive examples that matches this clause is removed, a clause of the 
target concept now has positive information gain (king_attack_king). Once again, the 
clause with the maximum information gain is the clause with the deleted literal. This in- 
dicates that a board is in an illegal state if the two kings are in the same rank. Inductive 
techniques finish this clause by adding the restriction that the rook be in this rank, but 
not between the two kings. In effect, this clause had been extended to cover the case where 
the white rook is attacking the black king. 
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king-attack-king(R1,F1,R3,F3) +4 .5  
rook-attack-king(R1,F1,R2,F2,R3,F3) + 0 . 0  
same-loc(R1 ,F1 ,R2,F2),adjacent-file(F 1 ,F3) +0 .0  
same-loc(R2,F2,R3,F3) +0 .0  
same-loc(R1,F1,R3,F3) +0 .0  

O P E R A T I O N A L I Z I N G  king-attack-king(R 1 ,F 1 ,R3,F3) 

adjacent-rank(R1,R3),adjacent-file(F 1,F3) + 0.0 
equal-rank(R 1,R3) + 9.0 
knight(R1,F1,R3,F3) +0 .0  
adjacent-rank(R1,R3),equal-file(F1,F3) +0 .0  

BEST CONDITION equal-rank(R1 ,R3) 

betweenrfile(F1,F2,F3) +4.4;  - - 1.6 
equal-rank(R3,R2) + 13.5; - 0.0 
BEST CONDITION equal-rank(R3,R2) 

between-file(F 1,F2,F3) + 1.9; - - 1.1 
between-file (F2, F 1,F3) + 0.0; - - 2.4 

BEST condition not(between-file(F2,F1,F3)). 
CLAUSE 8 i l legal(R1,F1,R2,F2,R3,F3):-equal-rank(R1,R3),  

equal-rank(R3,R2), notCoetween-file(F2,F 1 ,F3)). 

Finally, the last clause is learned entirely inductively and indicates that a board is in 
an illegal state if the white king and rook are in the same square. 

CLAUSE 9 
il legal(R1,F1,R2,F2,R3,F3):-equal-file(F2,F1),equal-rank(R2,R1) 


