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Abstract. This paper presents a reinforcement connectionist system which finds and learns the suitable situation- 
action rules so as to generate feasible paths for a point robot in a 2D environment with circular obstacles, The 
basic reinforcement algorithm is extended with a strategy for discovering stable solution paths. Equipped with 
this strategy and a powerful codification scheme, the path-finder (i) learns quickly, (ii) deals with continuous- 
valued inputs and outputs, (iii) exhibits good noise-tolerance and generalization capabilities, (iv) copes with dynamic 
environments, and (v) solves an instance of the path finding problem with strong performance demands. 
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1. Introduction 

An important problem in robotics is that of generating a path between initial and goal robot 
configurations that avoids collisions with obstacles. This is called the robot path finding 
problem. Many attempts at solving the problem have been made in the fields of Artificial 
Intelligence and Computational Geometry (for reviews, see: Brady, et al., 1982; Whitesides, 
1985; Yap, 1987; Torras, 1990). All these approaches are based on planning. The time com- 
plexity of exact geometric approaches grows exponentially with the number of degrees of 
freedom of robot motion (Canny, 1988), thus being of practical use only when this number 
is very low. This fact has led to the emergence of numerous heuristic approaches, which 
either rely on potential fields (Khatib, 1986) or carry out a search through a state space. 
These approaches trade reliability for speed, in that they do not guarantee to find a solu- 
tion when it exists and they can even produce unfeasible solutions because of the use of 
discretized representations. 

There have been some attempts at combining exact and heuristic approaches, so as to 
exploit their respective strong points and minimize their deficiencies. Along this line, Donald 
(1987) proposes to carry out a local heuristic search process on an algebraic (exact) model 
of configuration space, 1 while Ilari and Torras (1990) propose a two-stage process, where 
first an exact model of physical space--i.e., disregarding both the shape and the kinematics 
of the robot--is used to plan a path and then this path is refined through local search to 
conform to a trajectory in configuration space. 

The above two-stage decomposition of the path finding problem suggests a possible separa- 
tion between the path-planning and motion-control aspects of the problem. In path planning, 
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the environment is considered at a coarse enough level of detail to be assumed fixed and 
known a priori--through access to a map--and the goal is to determine, prior to its execu- 
tion, a sequence of displacements in physical space for reaching a given place. Once a 
path through physical space is planned at this coarse level, a high-level motion control prob- 
lem arises since commands must be sent to the different motors to make the robot follow 
the path previously computed, while transforming a discrete path in physical space into 
a continuous, obstacle-avoiding trajectory in configuration space. Note that, with this prob- 
lem decomposition, it seems natural to include within motion control the possibility to 
accommodate for slight deviations in the positions of obstacles, so that it is no longer re- 
quired that the environment be completely known a priori and static. 

In Torras (1990), we have argued that motion planning and motion control involve two 
different types of processing. Global planning involves reasoning symbolically upon an ex- 
plicit representation of the environment, whilst local obstacle-avoidance capabilities rely 
on subsymbolic pattern processing. This distinction applies to learning as well. Learning 
to plan would be done symbolically (at a central level), while the learning of reflexes would 
be carried out at a subsymbolic peripheral level. 

This paper focuses on the second aspect above, namely the subsymbolic learning oJ 
obstacle-avoidance reflexes for an instance of the robot path finding problem characterized 
by (i) a continuous set of robot configurations and of robot actions, (ii) a partially unknown 
and dynamic environment, (iii) a need to react in real-time, and (iv) strong performance 
demands such as finding short paths with wide clearances. Specifically, we present a 
reinforcement-based connectionist system able to generate feasible paths for a mobile robot 
in a non-maze-like 2D environment, while appropriately dealing with the four problem 
characteristics above. By saying "non-maze-like" we stress that finding a path in that envi- 
ronment does not require sophisticated planning capabilities, but mainly obstacle-avoidance 
skills. Maze-like environments require the previous concourse of a path-planner that pro- 
vides the connectionist system with a series of subgoals along a feasible path, so that the 
environment around every two consecutive subgoals becomes non-maze-like. 

Discovering suitable obstacle-avoidance reflexes by using only a reinforcement signal 
is a very general approach whose simplest formulation could be characterized as a weak 
search method. This means that reinforcement methods have theoretically limited learning 
abilities; i.e., they might require heavy learning phases and they might be unable to capture 
complex features of the problem. These theoretical limitations can be overcome if domain- 
specific heuristics are incorporated into the basic reinforcement-based search method 
(Langley, 1985). The codification scheme adopted in the present work and the algorithm 
used to discover stable solution paths are instances of such heuristics for the path finding 
domain. The algorithm allows to greatly speed up learning and to deal with continuous- 
valued actions. To the best of our knowledge, this is the first reinforcement system in which 
continuous-valued actions are used in conjunction with a critic. The codification scheme, 
besides contributing to solving the problem in a short time, is responsible for the noise- 
tolerance and generalization capabilities, for satisfying the strong performance demands 
concerning path length and clearance and, partially, for the ability to cope with dynamic 
environments exhibited by the path-finder. 

The paper is structured as follows. In Section 2, previous works relevant to the path- 
finder developed are reviewed. These are connectionist approaches that either deal with 
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the same particular problem, namely path finding, or tackle the general class of associative 
reinforcement learning (ARL) problems. The relation of the latter approaches to the system 
developed becomes clear in Section 3, where path finding is formulated as an ARL prob- 
lem. Section 4 is devoted to the description of the connectionist path-finder developed. 
The results of an experimental comparative study of different versions of the general learn- 
ing rule adopted, as well as the simulation results obtained with the path-finder equipped 
with the best of such versions are presented next in Section 5. Finally, in Section 6, some 
conclusions from this work are provided and future work is addressed. 

2. Previous work 

A general approach to path finding in partially unknown environments is to build a map- 
ping from perceived situations to correct actions, and iterate this mapping until the goal is 
reached. Systems that use this kind of situation-action rules are known as reactive systems. 

Reactive systems normally rely on knowledge-based techniques. However, most of them 
are not adaptive, i.e., they do not learn (Agre & Chapman, 1987; Arkins, 1987; Schoppers, 
1987; Blythe & Mitchell, 1989). In some systems, the situation-action rules are prepro- 
grammed explicitly by their designers (Agre & Chapman, 1987; Arkins, 1987). In other 
systems, the rules result from a compilation of previous planning activities (Schoppers, 
1987; Blythe & Mitchell, 1989). In any case, the main limitation of the knowledge-based 
systems developed up to now is the need to specify actions to be taken in all possible situa- 
tions the agent may find itself in. 

The knowledge-based reactive systems able to construct by themselves an internal model 
of the environment have only been applied to simple tasks (Rivest & Schapire, 1987). Mozer 
and Bachrach (1989) have implemented the Rivest and Schapire's system in a connectionist 
network, which has been shown to perform better that the original symbolic version in 
several respects. 

Brooks' approach (1986) is a novel way of building reactive systems. Its originality is 
based on the subsumption architecture and also on hard-wiring sensors to effectors rather 
than representing the rules. This approach does not overcome the above-mentioned limita- 
tion, but it emphasizes a key issue: reactive behavior should involve parallel distributed 
processing. 

2.1. Connectionist approaches to path finding 

Subsymbolic systems--connectionist or not--process information in a massively-parallel 
distributed manner. In Torras (1990) and Mill~n and Torras (1991a), we stress that subsym- 
bolic techniques should be used to handle the motion control part of robot path finding. 
Previous subsymbolic attempts to tackle the problem above fall into two categories: con- 
structive and pattern-matching systems. 

Constructive path-finders codify the environment through connectionist techniques so 
as to permit the exploration of configuration space in parallel. Some of them (Steels, 1988) 
work on a direct discretized representation of the environment, while others capture complex 
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relationships in the environment through recourse to a learning phase (Jorgensen, 1987; 
Graf & LaLonde, 1988; Mel, 1989). Constructive path-finders, however, suffer from the 
inherent limitations of needing to carry out a search through a state space, namely off-line 
processing, static environment and discretization. 

Pattern-matching connectionist path-finders are adaptive reactive systems, where the map- 
ping from perceived situations to correct actions is learned as paths are generated. They 
do not need to codify explicitly all the situation-action rules, since they exhibit strong gen- 
eralization capabilities. However, these systems have only been applied to relatively simple 
instances of the robot path finding problem. The system Dyna (Sutton, 1990) is the only 
pattern-matching path-finder that considers the existence of obstacles in the robot's work- 
space. Although it tackles the path-finding problem as an ARL problem (see the following 
subsection), as the system presented in this paper does, it has some of the limitations that 
we would like to overcome. Thus, Dyna relies on a discretization of the workspace, con- 
siders a limited set of possible robot steps, and assumes a static environment. In addition, 
it needs to perform a new learning phase each time the workspace changes. 

For a detailed review of these previous connectionist approaches to robot path finding, 
together with an assessment of their merits and limitations, see Mill~n and Torras (1991a). 

2.2. Connectionist approaches to the ARL problem 

The associative reinforcement learning (ARL) problem (Barto, et al., 1981; Sutton, 1984; 
Barto & Anandan, 1985) offers a simple and general framework for developing adaptive 
reactive systems. Simply stated, the ARL problem is that of learning to associate with each 
stimulus X the action Y that maximizes reinforcement z--either present, future or 
cumulative. 

Supervised learning can be used to tackle the ARL problem through the system identifica- 
tion approach. As illustrated in Figure 1, this approach consists in training a connectionist 
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Figure 1. System identification approach to the ARL problem. 
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network--the model network--to identify the function that relates each agents' output with 
the subsequent reinforcement received from the environment. Once this function is encoded 
in the model network, the weights of this network are frozen and the supervised learning 
process shift to the action network--i.e., the agent. The gradient of the reinforcement signal 
with regard to the agent's output, Oz/OY, required for training the action network is estimated 
by back-propagating derivatives through the model network. This approach has been sug- 
gested by Werbos (1987), but the only implementations are those of Munro (1987), Robinson 
(1989), and Jordan and Jacobs (1990). Although ingenious and analytically well-defined, this 
approach has the important limitation of assuming that the model has been learned with 
enough accuracy to allow to compute a good approximation of the reinforcement gradients. 

A simpler approach to the ARL problem is to approximate Oz/OY by its sign. This idea 
has been proposed, and successfully applied, by Saerens and Socquet (1989) in the field 
of control. The signs of the partial derivatives are obtained from qualitative knowledge 
about the direction in which the action components must be modified to increase the rein- 
forcement signal. 

Finally, the most common approach to the ARL problem is to estimate Oz/OY by measuring 
the correlation between variations in actions and variations in reinforcement. This learning 
paradigm, known as reinforcement learning, relies on performing different actions in re- 
sponse to each stimulus, observing the resultant reinforcement, and incorporating the best 
action into the situation-action rules of the system. Several reinforcement systems have been 
developed for solving nontrivial problems (Barto, et al., 1983; Anderson, 1987; Chapman 
& Kaelbling, 1990; Lin, 1990; Mahadevan & Connell, 1990). Anderson (1987) illustrates 
the kind of situation-action rules learned by a particular reinforcement system. 

The two main limitations of the basic reinforcement learning algorithm are a possibly 
long learning phase and the inability to capture complex features of the problem. To palliate 
these limitations, several extensions to the basic algorithm have been proposed, such as 
adding an action model for relaxation planning (Lin, 1990; Sutton, 1990) and combining 
several modules, each one specialized in solving a particular primitive task (Singh, 1991). 

One contribution of this paper is in this direction, since we show that adding a stabilizing 
strategy to the learning algorithm and incorporating domain-specific knowledge in the codi- 
fication scheme permits avoiding the above limitations. 

Note also that the reinforcement learning approach is open to improvement through the 
incorporation of supervised learning methods. One classic example of this is the introduc- 
tion of a critic element to predict the amount of reinforcement that would follow a given 
action (Barto, et al., 1983; Sutton, 1984). Anderson (1986) also used a supervised learning 
rule for updating the hidden layers of a reinforcement-based system. 

3. Path finding as an ARL problem 

Because the aim of this work is to carry out a feasibility study on a new approach to robot 
path finding, we assume a point robot and circular obstacles. The evaluation criterion used 
is a compromise between minimizing path length and maximizing the distance to the obstables 
and walls. Finally, the goal is considered to have been reached if the current configuration 
of the robot is below a certain constant distance from the goal, namely goal,: 
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dist[conf~tan, confgo~t] <goal , .  (1) 

To formulate the above instance of the path finding problem as an ARL problem, we 
need to specify what the input, output and reinforcement signal are. 

3.L Input information 

The input to the path-finder consists of an attraction force exerted by the goal and several 
repulsion forces exerted by the obstacles. The robot has a limited perception range, giving 
higher consideration to closer obstacles. 

Let the shortest path vector (SPV) be the vector that connects the current and the goal 
robot configurations. The line supporting the SPV and its perpendicular at the current con- 
figuration divide the workspace into four quadrants. 

The intensity ia of the attraction force is an inverse exponential function of the distance 
x between the current and goal configurations: 

ia(x) = e -ko.*x, (2) 

where ka, is a constant. The direction of the attraction force is that of the SPV, but since 
the output of the path-finder is computed with respect to this direction (see the next subsec- 
tion), it need not be included in the input to the system. 

Each repulsion force represents the resistance of an obstacle to the fact that the robot 
follow the SPV. Each such force follows the bisector of the quadrant where the obstacle 
lies and heads towards the opposite quadrant. For example, in the upper situation in Figure 
2, an obstacle is to the southeast of the current configuration and its repulsion force is 
northwestward. Because the directions of the repulsion forces are specified with respect 
to the direction of the attraction force, they are implicit in the codification and therefore are 
not included in the input to the system. Note also that this specification permits grouping 
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Figure 2. Factors of the repulsion force. 
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all the repulsion forces into four resulting signals, each being the magnitude of a vector 
starting at the current configuration and following the bisector of a quadrant. 

The intensity of each single repulsion force depends on three factors: (i) the shortest 
distance between the obstacle and the SPV, ra, (ii) the distance from the current configura- 
ition of the robot to the point of conflict--i.e., the point of the SPV nearest to the obstacle-- 
r b, and (iii) in the case that the SPV intersects the obstacle, the shortest translation of the 
obstacle perpendicular to the SPV that leads to nonintersection, r c. If for a configuration 
and an obstacle several points of conflict exist, then the one nearest to the current robot 
configuration is taken. Figure 2 illustrates these factors for two different situations and 
the resulting repulsion forces. 

The first factor is aimed at avoiding obstacles in the proximity of the SPV. The second 
allows to avoid obstacles near to the robot current configuration. The third ensures that, 
m the case that the SPV intersects an obstacle, the next robot movement is the more distant 
from the SPV, the deeper is the penetration into the obstacle. 

In sum, the number of  input signals to the path-finder is independent of the number oJ 
obstacles in the environment, and these signals are five: the intensity of the attraction force, 
ia, and the intensity of the environmental repulsion from each quadrant, r ~, r ~, r 3 and r ~, 
quadrants being numbered counterclockwise. The detailed way in which the repulsion signals 
are computed is described in Appendix A. Since the input signals are factors in the learn- 
ing equations of the system (see Section 4.4), signals with larger magnitudes would have 
a greater influence on leaming than would other signals. To remove this bias all input signals 
are scaled to lie within the same interval, and are thus codified as real numbers in [0, 1]. 

It is worth noting that one of the aims of adopting the above codification scheme has 
been to favor the generalization abilities of the path-finder. Since the goal is codified in 
the input information and the input is independent of the environment used during the learn- 
~ng phase, the knowledge acquired for a situation should be transferable to a different one. 

3.2. Output information 

The output of the path-finder represents the step taken by the robot and it is codified as 
a move in relative cartesian coordinates with regard to the SPV. That is, the positive x 
axis is the SPV. Both increments, Ay and zLr, are real values in the interval [-1, 1]. 

The output signals determine a direction and a length. Nevertheless, the actual length 
of the move made by the robot is computed by the following expression: 

length * radius, if length * radius > step~, 
actual__length = (3) 

k_ step~, otherwise, 

where step, is a constant and 

radius = min(perceptionrange, dist[confstar~, cOnfgoal] ). (4) 
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The motivation of this postprocessing of the output signals is twofold. Firstly, because 
the robot concentrates on its neighboring obstacles, the maximum distance the robot can 
cover in a single step should be limited by the perception range. Otherwise, the robot could! 
collide with obstacles "not completely" perceived. Secondly, the path-finder is intended 
to be a reactive system, so it should react to each stimulus with some action, step, repre- 
sents the minimum action. 

Two important consequences of the manner in which the output signals are codified and 
postprocessed are that the space of attainable configurations is continuous and that there 
is no predetermination whatsoever of the direction and length of each step, with the only 
constraint imposed by the perception range. A final benefit is that the output postprocessing, 
in combination with the input codification that supports the generalization capabilities and 
the reactive napare of the path-finder, offers the robot the possibility of coping with dynamic 
environments. The step the robot takes is mainly aimed at avoiding neighboring obstacles 
and it never goes beyond the perception range, therefore the probability of colliding with 
a mobile obstacle is low. 

3.3. Reinforcement signal 

The reinforcement signal is a measure of how good is the answer of the system to a par- 
ticular stimulus. It is calculated on the basis of the quality of the configuration reached 
by the robot--a combination of its attraction and repulsion factors--and the way in which 
this configuration has been reached--as measured by the step clearance. The quality of 
a configuration is an indication of the effort still remaining to reach the goal. ! 

Each robot configuration has two values associated. The first is the attraction factor, I 
a, that corresponds to the intensity of the attraction force. The second is the repulsion fac- 
tor, r, that is a function of both the repulsion intensities of the obstacles in front of the 
robot and the step clearance--i.e., the shortest distance to the obstacles and walls of the 
step with which that configuration is reached: 

r = max(r 1, r 4, 1 - step__clearance). (5) 

The reinforcement signal, z, is a real number in [-1,  1]. It equals 1 when the goal con- 
figuration is reached and it equals -1  when a collision with an obstacle or a wall happens: 

i f a  - -  l ,  

z = i f r  > 1 - rep,, (6) 
kar * r, otherwise, 

where rep, and kar a r e  constants. 
The present system differs from previous systems tackling the ARL problem in that the 

latter were intended for single-criterion tasks. In this work we demonstrate that by enriching 
the reinforcement signal with information that both is available from sensorial data and 
reflects all the desired criteria (proximity to the goal and clearance), then it is possible 
to solve problems with strong performance demands (reaching the goal quickly and safely). 

146 



ROBOT PATH FINDING 371 

Table I. Actual values of the factors 
and thresholds used for computing the 
signals. 

Name Value 

goal~ 0.05 

k~t t O. 1 

kpa 100.0 

perceptionrang e 2.0 

kra 0.2 

krb 0.1 

krc 5.0 

kre p 1.0 

step~ 0.01 

kar 0.75 
repe O. 1 

Finally, the way in which the reinforcement signal is computed allows to reduce the com- 
plexity of the task to be solved. In the robot path finding problem, the consequences of 
an action can emerge later in time. Thus, actions must be selected based on both their 
short- and long-term consequences. Since the reinforcement signal is computed using global 
information--i.e., it is based not on the current robot configuration but on the SPV--the 
path-finder gets a measure of the short- and long-term consequences of an action only one 
time-step after executing it. Thus the task is reduced to learn, for each stimulus, to perform 
the action which maximizes the reinforcement signal? 

The determination of both the input and the reinforcement signals is reminiscent of the 
potential field approach to path finding (Khatib, 1986). 

Table 1 summarizes all the constants--coefficients and thresholds--and their actual values 
used to compute the different signals. 

4. A reinforcement connectionist path-finder 

The path-finder is made of two elements, namely the step generator and the critic, and 
interacts with its environment as depicted in Figure 3. At each time t, the environment 
provides the path-finder with the input pattern X(t) = (xl(t), x2(t), x3(t), x4(t), xs(t)), together 
with the environmental reinforcement signal z(t). The input pattern is fed to both the step 
generator and the critic. Nevertheless, the step generator does not receive directly the envi- 
ronmental reinforcement signal but the heuristic reinforcement signal h(t) elaborated by 
the critic. The latter is an enrichment of the former based on past experience of the path- 
finder when interacting with the environment. The step generator produces instantaneously 
an output pattern Y(t) = (y~(t), yz(t)) that it is the output of the path-finder. The environ- 
ment receives this action Y(t) and, at time t + 1, sends to the path-finder both an evalua- 
tion z(t + 1) of the appropriateness of the action Y(t) for the stimulus X(t) and a new 
stimulus X(t + 1). 
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Figure 3. Connectionist path-finder according to the ARL architecture. 

Of the two kinds of reinforcement learning algorithms proposed to solve the ARL prob- 
lem, namely associative reward-penalty, AR-e, (Barto & Anandan, 1985) and associative 
search, AS, (Barto, et al., 1981; Sutton, 1984; Williams, 1986, 1987), we adopt the second 
one because it fits better the specifications of the output and reinforcement signals we have. 
The AR_p algorithm has been mainly designed for instances of the ARL problem where 
the action network--the step generator in our case--produces binary output signals and 
where the reinforcement has only two possible values, namely success or failure. 

A central issue for any reinforcement system is to explore alternative actions for the same 
stimulus. Stochastic units provide this source of variation. Thus, the step generator--or, 
at least, its output layer--is built out of this kind of unit. The different architectures of 
the step generator--i.e., number of hidden layers, kinds of hidden units, and connectivity-- 
tested during the simulations will be described in the next section. Nevertheless, the sto- 
chastic behavior of the path-finder should tend to be deterministic with learning. Otherwise, 
the path-finder could not generate stable solution paths after it eventually discovers them. 

4.1. The basic AS algorithm 

Continuous stochastic units compute their output in three steps (Gullapalli, 1988), as depicted 
in Figure 4 and expressed in Equations (7) through (10). 

Since the signals we are interested in are continuous, a separate control of the location 
being sought (mean) and the breadth of the search around that location (variance) is needed. 
The first step is to determine the value of these parameters. The mean # shonld be an estima- 
tion of the optimal output. A simple way is to let iff, i (t)  equal a weighted sum of the inputs 
sj(t) to the unit i plus a threshold Oi(t): 

tzi(t) - (wij(t)sj(t)) + Oi(t). 
j = l  

(7) 
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Figure 4. Structure and functionality of a stochastic unit. 

The standard deviation a should be small if the expected output of the step generator is 
close to the optimal, and it should be high in the opposite case. Since the heuristic rein- 
forcement signal provides this comparative measure of output goodness, a(t) should depend 
on the expec t ed  heur is t ic  re in forcement ,  /fit): 

a(t) = g(~( t ) ) ,  (8) 

where the function g will be made explicit in Section 4.3, once the different ways of com- 
puting the heuristic reinforcement signal will be presented. 

As a second step, the unit calculates its activat ion level ai(t) which is a normally distrib- 
uted random variable: 

ai(t  ) = N(p i ( t ) ,  a( t)) .  (9) 

Finally, the unit computes its output Si(t): 

2 
si(t) = f ( a i ( t ) )  - 1 + e -3ai(t) 1, (10) 

where 3 is a constant in [0, 1]. 
In the AS family of algorithms, the weights are modified according to the following general 

expression: 

Awij( t )  = o~h(t)eij(t - 1), (11) 

where c~ is the learning rate and eij is the eligibil i ty f ac to r  of wij. The eligibility factor 
of a given weight measures how influential that weight was in choosing the action• We 
have explored twenty-five versions of this general rule, each particular version differing 
from the others in the way h and eij are calculated• These versions result from combining 
the five heuristic reinforcement signals with the five eligibility factors which shall be pre- 
sented in Sections 4.3 and 4.4. 
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4.2. A strategy for  discovering stable (quasi) optimal paths 

It has been stated above that in order to obtain stable solution paths, stochastic units should 
become deterministic as learning proceeds. The way in which o is computed guarantees 
that the breadth of search will diminish asymptotically to zero as the path-finder learns. 
But this is not acceptable to solve the problem efficiently. 

We have extended the basic AS algorithm with a mechanism for accelerating the genera- 
tion of stable solution paths (Mill~n & Torras, 1990). When the path-finder, after a certain 
experience with the environment, discovers an acceptable path, the search for a solution 
path proceeds in a more "controlled" manner by transforming the stochastic units of  the 
step generator into deterministic units. In addition, the weights are not updated after each 
step, but after the path has been generated and only if it is not a (quasi) optimal path, 
qo-path. The acceptability and optimality criteria are defined by the boolean expressions: 

acc.__path = (length < kacciength * dist[confstart, cOnfgoa l ]  ) 

/x (minimum clearance < kaccclear), (12) 

qo._path = (length < kqo~e~gth * dist[confstart, confgoat]) 

A (minimum___clearance < kqoclear) , (13) 

where kac c , kacc , k~o . and kqo . are workspace-dependent constants. len. gth. clear ~ length .ctear . 
A deterministic unit is like a stochastic one but without the random component: the acti- 

vation level is a weighted sum of the input. The weights arriving at a deterministic unit 
are modified using the same learning rule as for the weights arriving at stochastic units. 

The weight updates are delayed and not applied when a qo-path is generated because, 
otherwise, the changes to the weights could probably prevent the path-finder from reproduc- 
ing it. Since the output signals are continuous and the optimality criterion is very severe, 
even little weight modifications could alter the step generator so as to produce actions suf- 
ficiently away from the quasi-optimal ones. 

The process for discovering stable qo-paths requires a further refinement. The fact of 
obtaining an acceptable path does not necessarily imply that a qo-path is nearby. The accept- 
able path discovered could be around a local optimum. Thus, if after consuming a fixed 
quantity of computational resources the path-finder does not discover a qo-path, then the 
deterministic units are turned back to being stochastic again and another acceptable path 
is looked for. Specifically, the deterministic phase is finished when either a single path 
reaches a certain number of steps or a given number of paths are generated without finding 
a qo-path. 

The strategy above is sufficient for finding a stable qo-path. Nevertheless, we have found 
that sometimes the trajectory followed by the weight configuration of the step generator 
reaches bad states. The algorithm eventually allows to escape from them, but at the cost 
of spending a lot of time. This time could be significantly reduced if these states were 
detected as quickly as possible and a new state (at least as good as the initial one) was 
readily imposed. An easy way of implementing this idea is not to allow the path-finder 
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Algori thm discoverer able_qo-path 
begin 

repeat  
counter := 0 
initializations 
repeat  

repeat  
generate_path (immediateAearning, stochastic_units) 

until (acceptable_path and enough_experience) 
repeat  

generate_path (delayedAearning, deterministic_units) 
until (qo-path or no_more_resources) 
counter := counter q- 1 

until (qo-path or limit_ofJterations) 
until qo-path 

end 

Figure 5. Strategy for discovering a stable qo-solution. 

to alternate the deterministic and stochastic phases more than a fixed number of times. 
If this limit is reached, the step generator and the critic are reinitialized. 

Figure 5 shows the final algorithm for discovering a stable qo-path. 

4.3. The  critic 

As stated above, the goal of the critic is to transform the environmental reinforcement signal 
into a more informative signal, namely the heuristic reinforcement signal. This improve- 
ment is based on past experience of the path-finder when interacting with the environment, 
as represented by the reinforced baseline b: 

h(t) = z(t) - b(t - 1). (14) 

The critic receives the input pattern X(t) and predicts the reinforcement baseline b(t) with 
which to compare the associated environment reinforcement signal z(t + 1). 

A first alternative for the reinforcement baseline is to make it a constant--zero in the 
simulations presented here. This is equivalent to shutting the critic off. One has to expect 
a long learning phase before obtaining a qo-path, since the robot may receive a positive 
environmental reinforcement when moving away from the goal, in cases where it can ap- 
proach it. 

In order to avoid this shortcoming, the environmental reinforcement received at the cur- 
rent step should be compared with that received at previous steps. Two possibilities for 
making this comparison arise: short-term, and long-term. In the first case, the reinforce- 
ment baseline is the environmental reinforcement received at the preceding time step. In 
the second case, it is a trace of all the environmental reinforcement received by the path- 
finder. There are, however, reasons to doubt that these techniques would work well on 
the task at hand. The main of them is that the best move the robot can make in a certain 
situation may correspond an environmental reinforcement lower than the preceding one. 
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A third comparison technique, p r e d i c t e d  c o m p a r i s o n  (Sutton, 1984), tries to overcome 
this limitation by computing the reinforcement baseline as a prediction based on the envi- 
rormaental reinforcement received when the same--or similar--input patterns occurred. 
That is, the critic has to predict the environmental reinforcement signal z( t  + 1) to be received 
by the path-finder when the stimulus X(t) is present. In order to undertake this task, the 
critic is built as a second network out of deterministic units, and since it is provided with 
input/output pairs, a supervised learning algorithm is used to learn to associate each stimulus 
with the corresponding environmental reinforcement signal. In particular, we have used 
the "on-line" version of the backpropagation algorithm with a m o m e n t u m  term: 

O(z(t) - $(t - 1))2/2 
Avij( t)  = --e  Ovij + rlAvij(t  -- 1), (15) 

where V is the weight matrix of the critic, e is the learning rate, ~7 is the momentum factor, 
and ~ is the output of the critic--i.e., the expected environmental reinforcement signal. 

The critic has to be updated after each path-finder/environment interaction because as 
the step generator improves, the mapping from stimuli to reinforcement changes. 

We have found that using a large learning rate e for the critic and a small learning rate 
a for the step generator accelerates the learning process. The rationale is the following. 
By allowing the critic to adapt more rapidly than the step generator, the critic has the oppor- 
tunity to predict acceptably the next environmental reinforcement signal associated to the 
current stimulus as the step generator is, during a certain period of time, almost stable. 
Then, the step generator can take full advantage of the reinforcement baseline. 

A potential benefit of the momentum term when applied to d y n a m i c  t a s k s - - i . e . ,  tasks  
where the training information changes over time--like that faced by the critic is that it 
prevents V from oscillating dramatically. Since, at the beginning of the learning phase, 
the step generator explores a wide range of alternative actions, to each stimulus perceived 
by the path-finder will correspond a large variety of environmental reinforcement signals. 
Consequently, the error between the actual and the predicted environmental reinforcement 
is not only due to a misfunction of the critic, but also to the "chaotic" mapping the critic 
is dealing with. So, there is the risk that the weight modifications made at a certain time 
change V too much. The momentum tackles this problem by reducing the intensity of oppo- 
site weight modifications at consecutive times. 

A second advantage of using a predicted-comparison reinforcement baseline is to mitigate 
the possibility of over learn ing .  Since the goal of the step generator is to produce the opti- 
mal action in the presence of every stimulus, learning should stop when the step generator 
has discovered the suitable situation-action rules. A predicted-comparison mechanism ac- 
complishes this effect because the expected and the actual environmental reinforcement 
signals tend to be the actual and the optimal ones, respectively, as the critic and the step 
generator improve. 

Predicted comparison, however, may not cope adequately with collisions--a frequent 
situation during the learning phase. The reason is that when a collision happens, one would 
like to punish severely the step generator. This is satisfied if no baseline is used, whereas 
predicted comparison fails when the prediction is close to the environmental reinforcement 
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signal. Consequently, the performance of the path-finder should improve if the reinforce- 
ment baseline were computed as a heuristic predicted comparison: 

0, if z(t + 1) = - 1 ,  
Z(t) = (16) 

£(t), otherwise 

The following expression summarizes the five alternative ways used to calculate the rein- 
forcement baseline: 

z(t), 
b(t) = J bt(t), (17) 

| ~(t), 
L~(t), 

where 

bt(t) = Xz(t) + [1 - X]bt(t - 1), (18) 

with k being a constant in [0, 1]. 
Let us now specify the function g used to calculate the standard deviation a of the sto- 

chastic units in the step generator. Remember  that a should be small if the expected output 
of the step generator is close to optimal, and it should be high in the opposite case. The 
last four ways of computing the reinforcement baseline lead to a heuristic reinforcement 
signal whose absolute value is close to zero if the environmental reinforcement is close 
to the expected one, and it is high in the opposite case. Consequently, a(t) should be pro- 
portional to the expected heuristic reinforcement f~(t): 

o(t) = k~ * ~(t), (19) 

where ko is a constant and ~(t) is a trace of the absolute value of past heuristic reinforce- 
ment received: 

ft(t) = ~ * abs(h(t)) + [1 - ~]/~(t - 1), (20) 

~ being a constant in [0, 1]. Gullapalli proposes the following expression to compute or: 

o ( t )  = ~:o • [1  - ~ ( t ) ] ,  (19 ') 

where ~(t) is the expected environmental reinforcement. Both expressions are equivalent 
only in the case that the highest environmental reinforcement is recieved for every pair 
(stimulus, optimal action). This condition does not hold in the path finding problem where 
the highest environmental reinforcement is only received when the goal is reached. 
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In the case that no reinforcement baseline is used, the heuristic reinforcement is the envi- 
ronmental one. This means that (19) provides a standard deviation that is not the desired 
one when the expected output is good, as ~ will be high when it should be small. For 
this particular case, (19') will be used. 

4.4. The eligibility factor  

The eligibility factor of a weight measures the contribution of that weight to the action 
taken. We have used two kinds of rules to compute this contribution. The first measures 
the correlation between the outputs of the units linked by the connection under considera- 
tion. Two ways of implementing this intensity-based mechanism are the Hebbian rule and 
a trace of it. 

The second kind of rule consists of a discrepancy-based mechanism which evaluates the 
difference between the actual output and the expected one: 

eij(t) = sj(t)[si(t) - f(#i(t))], (21) 

where f( . )  is the same function as in (10). A slightly different implementation proposed 
by Gullapalli (1988) is the following: 

eij(t ) = sj(t) ai(t) o-(t)l~i(t) . (22) 

Finally, a third discrepancy-based rule makes the learning algorithm perform gradient 
ascent on the expected environmental reinforcement, as proved by Williams (1986, 1987): 

OlnN ai(t)_~r~._~( ~i(t  ) (23) eij(t ) = ~ (t) = sj(t) t ' 

where N is the normal distribution function in (9). 
In the three cases, the greater the discrepancy between the actual and the expected out- 

puts, the greater the intensity of the weight modification. The sign of this modification 
is such that if the heuristic reinforcement signal is positive, then the next time the current 
stimulus--or similar ones--will be presented, the expected output of the stochastic unit 
will be closer to the current one. Conversely, if the heuristic reinforcement signal is nega- 
tive, then the weights are modified so as to reduce the probability of generating the current 
output. 

Sutton (1984) proved experimentally that such a mechanism allows a binary stochastic 
unit to discriminate between similar input vectors, and Barto (1985) argued that it helps 
to cope with situations where two or more of the actions the path-finder can take in the 
presence of a given stimulus have associated environmental reinforcement signals of similar 
intensity. 

The following expression summarizes the five alternative ways in which the eligibility 
factor has been calculated: 
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eij(t)  = 

rs i (Osj(O,  

etij(t), 

sj(t)[si(t ) - f(tzi(t))],  

ai(t ) - txi(t) 
sj(t) a(t) ' 

ai(t) - tzi(t) 
<. sj(t) ~rz( t )  , 

(24) 

where 

etij(t  ) = -~sj( t)si( t)  + [1 - ~]et i j ( t  - 1), (25) 

3' being a constant in [0, 1]. 
Note that only the first two rules--i.e., those corresponding to the intensity-based mecha- 

nism-are  applicable when deterministic units are in use. The other three eligibility factors 
depend on the stochastic behavior of the units. 

5. Experimental results 

The system has been implemented in Common Lisp on a VAX station 2000. The feasibility 
study has been carried out in two main steps. The first step is an experimental comparison 
of the twenty five versions of the general AS algorithm described in the preceding section. 
The objective of this comparative study is to identify the version that best suits the robot 
path finding problem. Then, the most promising version is used to try to build a path- 
finder with powerful generalization abilities so as to produce, after a limited learning proc- 
ess, qo-paths in any non-maze-like workspace and to cope with dynamic environments. 

The workspace depicted in Figure 6 has been employed in the simulations. There exist 
three obstacles--shown as circles--and the goal configuration is represented by a square. 
The workspace is a room of 10 * 10 units. The centers of the obstacles are located at (3.0, 
6.0), (6.0, 6.0) and (6.0, 3.0), and their radii are equal to 0.75 units. The goal configuration 
is located at (8.0, 8.0). 

In the simulations, a path is considered to end either at the goal or with a collision. 
A path could be alternatively defined to finish only when the goal is reached. This second 
definition, however, presents the following shortcoming. During the learning phase, the 
path-finder needs to be s u f f i c i e n t l y  s t i m u l a t e d - - i . e . ,  the training data should be both suffi- 
ciently varied to reveal the reinforcement function and sufficiently repetitive to make learn- 
ing possible--to discover the set of suitable situation-action rules. But, if the robot is allowed 
to leave the collision situations by itself, then the proportion of inputs corresponding to 
a collision with respect to all the other kinds of inputs is very high. So, the training data 
is biased to a particular kind of stimuli, which makes learning harder. 

A desirable feature for any system is its robustness to changes in the values of the param- 
eters governing it. Thus, no attempt has been made to search for the best set of parameter 
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Figure 6. Behavior of the first path-finder. 

values. Instead, we have chosen values that intuitively seem adequate for all the versions 
of  the general AS rule. The values of  the constants used in the learning rules appear in 
Table 2. 

In the implementation of the strategy described in Section 4.2, the deterministic phase 
is finished when either a single path reaches 500 steps or 500 paths are generated without 
finding a qo-path. 

Table 2. Actual values of the 
factors used in the learning 
rules. 

Name V~ue 

/3 0.4 

a o. 125 
e 0.5 
~ 0.5 
)~ 0.2 

3' 0.2 
ko 2.0 
~ 0.75 

kacciength 1.5 
k~%z~ O. 15 

k q%~g~h 1.15 
kq%~a~ 0.2 
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5.1. Tuning the learning rule: A comparative study 

The step generator used to carry out the comparative study has only two layers of units, 
input and output. The critic has a hidden layer of four units. 

The following computer experiment has been designed. The initial configuration is located 
at (3.0, 3.0), in such a manner that the obstacles lie in between it and the goal. Thus the 
path-finder is required to produce a nontrivial qo-path. A run finishes when a qo-path is 
discovered. 

For each version, twenty qo-paths have been generated. Before beginning the generation 
of each qo-path, all the weights of the step generator are set to zero and the weights of 
the critic are initialized randomly. 

Given the difficulty of generating acceptable paths, the experience acquired by the path- 
finder for producing the first acceptable path is considered sufficient to finish the stochastic 
phase of the algorithm. 

Versions using a discrepancy-based rule for computing the eligibility factor turn to using 
the Hebbian rule when units become deterministic (see the next subsection for a justifica- 
tion of this choice). 

Table 3 gives the average number of steps required to generate a stable qo-path for every 
version. The types of reinforcement baseline and eligibility factor are numbered according 
to their positions in (17) and (24), respectively. The results of these experiments show that 
every version, if given enough time, produces a stable qo-path from the initial to the goal 
configurations. Nevertheless, important differences exist in the performance of the various 
versions. 

5.1.1. Eligibility factor 

Let us firstly concentrate on the role of the eligibility factor in the performance of the path- 
finder. Three main conclusions can be extracted from the data in Table 3. 

First, discrepancy-based rules (three last columns in the table) clearly outperform intensity- 
based ones. 

The second conclusion is that the performance of the versions adopting the Hebbian rule-- 
first column--is always better than the performance of the versions using a trace of this 
rule--second column. This is the reason for using the Hebbian rule in the deterministic 
phase, as mentioned in the preceding subsection. 

Table 3. Average number of steps for finding a stable qo-path. 

Eligibility 

1 2 3 4 5 

Baseline 

1 34939 46122 15559 14527 10457 
2 59599 66791 48753 24810 32332 
3 31870 52202 28379 17494 27645 
4 25997 27999 12675 13839 08473 
5 21362 22840 16301 11789 17907 
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Finally, of the three discrepancy-based rules, none outperforms the others for all choices 
of reinforcement baseline. However, the fifth eligibility factor leads to the two best versions 
of the algorithm. 

5.1.2. Reinforcement baseline 

The influence of the reinforcement baseline on the performance of the path-finder is not 
so clear and does not agree so exactly with the theoretical expectations as the influence 
of the eligibility factor. 

As expected, short-term and long-term comparisons--second and third rows of the table, 
respectively--are not suitable for solving our formulation of the path finding problem. In 
addition, the long-term versions work better than the short-term ones. 

Surprisingly, the performance of the versions adopting a null reinforcement baseline-- 
first row--is very similar to the performance of the versions using predicted comparison 
as reinforcement baseline--fourth row--when combined with discrepancy-based eligibility 
factors. Nevertheless, the former never outperforms the latter. An explanation for this fact 
could be that a null reinforcement baseline deals better with collisions than predicted com- 
parison, as we hypothesized in Section 4.3. However, the performance of the versions using 
heuristic predicted comparison--fifth row--which combines a null reinforcement baseline 
and predicted comparison, does not support this hypothesis, since it is considerably worse 
than the performance of plain predicted comparison when two of the three best eligibility 
factors are used--third and fifth columns. 

So, it seems that predicted comparison is the best kind of reinforcement baseline. 

5.1.3. Conclusions 

Since the performance of the versions combining the first, fourth and fifth types of rein- 
forcement baseline--i.e., null, predicted comparison and heuristic predicted comparison, 
respectively--with the third, fourth and fifth types of eligibility factors--i.e., the three 
discrepancy-based rules--are all quite similar, we will look at some other information to 
better discriminate which of these nine versions is the best. 

One of these criteria is the average number of times that the path-finder has been reinitial- 
ized until a stable qo-path is found. This information is implicit in Table 3, as all the steps 
taken by the robot for finding a stable qo-path are recorded. Nevertheless, this information 
provides a picture of the sensitivity of each version to the initial conditions. Clearly, the 
less a version depends on its initial conditions, the more it should be preferred. Table 4 
shows the average number of reinitializations of the nine most promising versions identi- 
fied before. 

Table 4 confirms the ranking we have outlined in the preceding subsections. The rein- 
forcement baseline and the eligibility factor most suitable for our formulation of the robot 
path finding problem are predicted comparison and the discrepancy-based rule proposed 
by Williams (1986), respectively. This version, however, is not far better than some other 
versions. 

Appendix B provides an analysis of variance for the most promising versions that sup- 
ports these conclusions. 
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T a b l e  4. Average number of reinitializations of the 
most promising versions. 

Eligibility 

3 4 5 

Baseline 
1 1.5 1.4 1.1 
4 1.4 1.4 0.9 
5 1.6 1.3 1.5 

5.2. Configuring the path-finder 

The second phase of the feasibility study is aimed at building a path-finder with powerful 
generalization abilities which, after a limited learning process, produces qo-paths in any 
non-maze-like workspace and is able to cope with dynamic environments. 

The workspace and the goal used in the experiments are the same as before. The training 
set consists of a certain number of initial configurations that are representative of the whole 
workspace. Because of the symmetry of this workspace, the training set consists of pairs 
of symmetrical configurations. 

Training is carried out in an incremental way, using an extension of the algorithm shown 
in Figure 5. That is, the path-finder has to learn to generate a qo-path from the first starting 
configuration in the training set. Then, it tries to generate a qo-path from the second start- 
ing configuration. As the necessary knowledge required for solving this new situation is 
discovered and codified, part of the previous knowledge could be lost. So, the path-finder 
must learn again to generate a qo-path from the first starting configuration, but this time 
using directly deterministic units. The iteration "learn to generate a qo-path from the new 
starting configuration--recover the ability to generate qo-paths from the previous starting 
configurations" is repeated until the path-finder is able to generate qo-paths from all the 
starting configurations. 

The fact that the path-finder deals with the starting configurations one at a time is a 
constraint imposed by the stability strategy. 

To verify if it is still able to generate qo-paths from a previous starting configuration, 
the path-finder is made to produce a path, without modifying the critic and step generator 
networks, and the optimality criterion is applied. The steps in this path are not counted 
in the performance records. 

All the system parameters but two have the values appearing in Table 2. The two parameters 
modified are ko and k_o In the simulations reported in this section, k~ = 1.0 and the 

~1 length" . 
following distinction has been introduced with regard to kqolength. The path-finder has to 
deal now with two kinds of initial configurations, namely those such that there is no obstacle 
in between them and the goal and those such that there are. For the first group of initial 
configurations, the path-finder should generate qo-paths as straight as possible. So, a stronger 
optimality criterion has been defined by choosing a smaller k_ o This value is 1.05. For 

*4 length" 
the second kind of initial configurations, kqoze~gth continues to be 1.15. 
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5.2.1. Problem non-linearity 

The first path-finder we have experimented with is the very simple one used to carry out 
the comparative study. That is, the step generator does not have any hidden layer of units 
and the critic has four hidden units arranged in a layer. 

Unfortunately, the path-finder is not able to tackle satisfactorily the problem at hand. 
The reason is that, for our formulation of the robot path finding problem, nonlinear associa- 
tions between the input and output signals are required. An illustration of one of these 
nonlinear associations follows. 

Let us assume that there is no obstacle behind the current configuration of the robot, 
that is, r e = r 3 = 0. Let us consider now how the output of the ~x unit should be for 
different obstacle situations. Since the current and goal configurations are fixed, the intensity 
of the attraction force is constant. So, we will only consider the values of z~x for different 
instances of the pair (r 1, r4). Figure 7 depicts the sign of z~x when the values r 1 and r 4 
lie in three different ranges, namely low, medium and high. 

The robot tries normally to approach the goal--i.e., z~x is positive. The only exception 
is when there are obstacles at the two sides of the SPV and they are close to the current 
configuration. The figure shows that the two regions of the space, one where ~x is positive 
and the other where zLr is negative, are not linearly separable. 

Even though the simple path-finder used in the comparative study does not solve com- 
pletely the instance of the path finding problem we are interested in, it illustrates the poten- 
tiality of a reinforcement learning connectionist approach. Figure 6 shows the behavior 
of the path-finder after knowing how to produce qo-paths from a particular set of starting 
configurations, namely those such that there is no obstacle in between them and the goal. 
Panel A depicts the paths generated by the path-finder from every starting configuration 
in the training set. Each initial configuration is represented by a triangle. In panel B, instances 
of the situation-action rules discovered by the path-finder are illustrated; for every starting 

1"4 

med _________...,s__ s , .__. . , . . .  2 

r l  

Figure 7. Nolllinearity of the mapping (r 1, r 4) "-~ z~C. 
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configuration considered--little circles--the move to be taken by the robot is shown. From 
the figure it is evident that the path-finder is able to tackle many more situations than those 
perceived during the learning phase. But, the most relevant feature is that this simple path- 
finder knows the right direction, left or right, for the moves to avoid obstacles. The cost 
of generating this particular path-finder has been 515 steps. 

5. 2.2. System performance 

Given the abilities of this simple path-finder, we would like to add a hidden layer to the 
step generator in such a manner that these abilities are preserved when the missing nonlinear 
constraints are incorporated and the situation-action rules already discovered are tuned. 
To this end, the second path-finder we have tried has the same critic above, and its step 
generator is a network where all the units in a layer are connected to all the units in all 
the layers above. The weights associated to the direct links between the input and output 
layers are those of the first step generator and are not modified during the second learning 
phase. The hidden layer of the step generator is made of four units. The weights of the 
critic are initialized to the weights resulting from the first phase. 

During this second learning phase, the new path-finder is made to deal with those starting 
configurations that have obstacles in between them and the goal, following the same incre- 
mental strategy as above with regard to previously learned situations. Besides, the path- 
finder is considered to have the necessary experience with the environment when it has 
generated three acceptable paths. 

The purpose of the hidden layer is to encode the missing nonlinear features of the robot 
path finding problem. This layer can be built according to an extension-and-homogeneity 
(EH) principle or to a modular-and-functionality (MF) principle. If the first principle is 
,adopted, the resulting step generator is totally made up of stochastic/deterministic units 
following the same version of the AS learning rule. 

Anderson (1986) has found that this approach to the ARL problem leads to an inefficient 
!earning process. He overcomes this limitation by adopting the second principle above. 
That is, the step generator is broken down into two modules--input-hidden layers and hidden- 
output layers--and the most suitable learning algorithm for each module's functionality 
is applied. In particular, Anderson developed an approximate gradient method for discovering 
the internal representations required. This method is an adaptation of the backpropagation 
algorithm where the error back-propagated from the i th output unit to the f h  hidden unit 
at time t is h(t)eij(t - 1)/sj(t- 1). 

Formally, if Anderson's version of the MF principle is adopted, the step generator is 
made of two modules. The first module consists of the output units and the connections 
arriving at them. The output units are stochastic/deterministic and the AS learning rule 
is used to update the connections. The second module consists of the hidden units and 
the connections arriving at them. The hidden units are deterministic and the weights asso- 
ciated to those connections are updated according to the expression: 

Awjk(t) = Othr3j(t)sk(t -- 1), (26) 

where ah is the learning rate and 
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2 fh(t)eij(t -~)1) )~ ~)j(t) = Z  wij(t- 1 sj(t-  1)[1 - S j ( t -  1)], i=1 L sj(t- 
(27) 

where k ranges over the input units, j over the hidden units, and i over the output units. 
We have compared these two principles on the generation of qo-paths for a pair of sym- 

metrical initial configurations that have obstacles in between them and the goal. In the 
simulations, o~ h = 0.125, therefore the learning rate is the same for all the units of the step 
generator. For each principle, five qo-paths have been generated. The average number of 
steps taken for networks adopting each principle appear in Table 5. 

The computer experiments confirm that the performance of the MF principle is better 
than that of the EH principle. Nevertheless, the difference is negligible, perhaps because 
the task is not sufficiently difficult and, above all, because the system does not begin from 
scratch but with the "approximate" desired knowledge. 

The most important result of this comparative study is illustrated in Figure 8. Panel A 
and panel B depict the behavior of two of the path-finders generated, one using the EH 
principle and the other the MF principle. Similar behaviors have been observed for other 
path-finders using these principles. The unexpected feature is that the EHprinciple is able 
to modify correctly all the situation-action rules already discovered, while the MF princi- 
ple is not. 

Table 5. Average number of steps 
required by each principle. 

Principle Steps 

EH 3487 
MF 3307 
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Figure 8. Behavior of two path-finders adopting each principle. 
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Figure 9. Behavior of the second path-finder. 

Figure 9 shows the behavior of a pure reinforcement path-finder (EH principle) that is 
able to produce qo-paths from almost all the initial configurations in the training set. The 
number of steps required to reach this state of the path-finder has been 77315. The only 
situations not properly handled by the path-finder are a subset of the most difficult ones, 
that is those in which an obstacle lies in between the goal and the current robot configura- 
tion and is very close to the latter. These situations may be handled by getting appropriate 
guidance from a symbolic path-planner (Mill~n & Torras, 1991b). 

It is worth noting that no two-layered step generator trained in one phase succeeded. 

.5. 2.3. Noise-tolerance, generalization and dynamic capabilities 

Until now, we have assumed that the robot can perceive the workspace perfectly. Neverthe- 
less, a robot navigating in a real environment is subject to noisy and inaccurate measure- 
ments. Figure 10 depicts the behavior of the path-finder when sensory data are disrupted 
with 20% of white noise. In panel A, the noise is added to each input signal of the path- 
finder--i.e., r 1, r 2, r 3, r 4 and ia. In panel B, it is added to the basic sensory input of the 
robot--i.e., r a, rb, rc and ia. Comparing the two panels of Figure 10 with Figure 9, panel 
B, it is evident that the path-finder exhibits a large noise tolerance, since the "maps" are 
very similar. The behavior of the path-finder is slightly better when the noise is added 
to the basic sensory inputs, because its effects are reduced by the preprocessing applied 
to obtain the input signals. 

Figure 9, panel B, illustrates some of the generalization abilities of the path-finder. It 
can face many more situations than those perceived during the learning phase. In addition, 
the path-finder is also able to navigate in workspaces different from. the one used during 
learning. Figures 11 through 13 show the behavior of the path-finder when only the goal 
is changed, more obstacles are added to the original workspace, and both the goal and 
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Figure 10. Noise tolerance exhibited by the path-finder. 
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Figure 11. Generalization abilities: New goals. 

the number of obstacles have changed. The results of these three experiments show that 
the situation-action rules learned are both goal-independent and workspace-independent 
and that, even in the worst cases, only a "light" additional learning phase suffices to readapt 
the path-finder to the new workspace. 

Finally, Figure 14 shows how the path-finder copes with dynamic environments. If the 
robot has taken one or more steps toward the goal and either the obstacles (panel A) or 
the goal (,panel B) move, the path-finder is still able to generate feasible paths. In the first 
case, the obstacles are moving toward the northwest, therefore approaching the goal, and 
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Figure 12. Generalization abilities: More obstacles. 
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Figure 13. Generalization abilities: New goal and more obstacles. 

the path-finder avoids them. In the second case, the goal is moving toward the northeast 
and the path-finder tracks it. This ability could be enhanced if a module to predict the 
motion of the goal and the obstacles were incorporated into the system. 

6. Conclusions and future work 

The simulations carried out in this paper demonstrate the adequacy of a reinforcement con- 
nectionist learning approach to implement local obstacle-avoidance capabilities. The formu- 
lation of the problem used to test this approach is a difficult one, since the input and output 
are continuous, the environment is partially unknown, and the optimality criterion (finding 
short paths with wide clearances) is severe. The problem, however, has been simplified 
by assuming a point robot and circular obstacles. These simplifications are dropped in the 
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Figure 14. (a) D y n a m i c  obs tac les .  (b) D y n a m i c  goa l .  

extended prototype we are currently working on, which deals with a 2D mobile robot and 
polygonal obstacles. 

The codification scheme adopted and the algorithm used to discover qo-paths can be 
thought of as domain-specific heuristics (Langley, 1985) for the robot path finding problem, 
which greatly improve the basic reinforcement-based weak search method. Equipped with 
these two modules, the path-finder not only learns the necessary situation-action rules in 
a very reduced time, but also exhibits good noise-tolerance and generalization capabilities, 
and is able to cope with dynamic environments. 

In the Introduction we claimed that the robot path finding problem could be solved effi- 
ciently if symbolic planning were interfaced to subsymbolic obstacle avoidance. Our current 
research is oriented towards designing a hybridpath-finder by coupling a geometric global 
planning approach such as that in Ilari and Torras (1990) with the connectionist local obstacle 
avoidance approach described in this paper. 

In Mill~in and Ton'as (1991b) we illustrate with a very simple example the potential benefits 
of integrating symbolic and subsymbolic techniques according to this general framework. 
A symbolic path-planner suggests intermediate configurations--subgoals or landmarks-- 
that the path has to go through. The path-planner is invoked both at the beginning of the 
task and whenever the course of action seems to be wrong. This happens when the path- 
finder cannot find suitable action to handle the current situation or when the robot deviates 
considerably from the planned physical path. 
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N o ~ s  

1. Although the notion of configuration space is that of a "state space" and thus it is quite old, the term itself 
was first introduced by Lozano-P~rez and Wesley (1979) and subsequently developed in Lozano-P~rez (1983). 
Roughly speaking, it is the space of degrees of freedom of motion in which a given motion planning problem 
is to be solved. 

2. If the reinforcement signal were computed using local information, then the task would be to select actions 
that optimize the cumulative reinforcement received by the path-finder over time. A prediction problem would 
have to be solved, temporal-difference methods (Sutton, 1988; Barto, et al., 1989; Watkins, 1989) having proved 
to be useful for this kind of task. 
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Appendix A: Computation of the repulsion forces 

The intensity of each repulsion force depends on three factors, namely r~, r b and re. As- 
suming circular obstacles, each obstacle is determined by three parameters: the coordinates 
of the center of the circle (Xo, yo) and the radius ra. I f  the current and goal configurations 
are the points (xa, Ya) and (xg, yg), respectively, then the points of the SPV are defined 
by the equation: 

(XsPV, YSPV) = (1 -- p)(Xa, Ya) + p(Xg, yg), (28) 

where p ~ [0, 1]. So, each point of conflict (xc, Yc) is determined by the value Pc which 
solves the differential equation: 

d dist[(Xo, Yo), (Xc, Yc)] = 0, (29) 
dp 

and by the additional constraint that it must be outside the corresponding obstacle. This 
value is: 

pc = box1 I _  (x o - x~)(x~_~a ---- Xg) -t- ~- (y~ - Y~)(Yayg)Z - Yg) ~ ' (30) 

where 

1, i f x  > 1, 
boxl(x) = 0, if x < 0, (31) 

x, otherwise. 

Now, the three repulsion factors are given by the expressions: 

ra = boxz(dist[(x o, Yo), (xc, Yc)], ra), (32) 

rb = box3(dist[(xa, Ya), (Xc, Yc)], dist[(Xo, Yo), (Xc, Yc)], ra), (33) 

rc = box4(dist[(Xo, Yo), (Xc, Yc)], ra), (34) 

where 
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0, 
box2(x, y) = ~ 

limit(x - y),  

i f x  < y, 

otherwise, 
(35) 

box3(x, y, z) = (~limit(x)' 

~_limit(x - ~ - y2 ), 

i f y  > z, 

otherwise, 
(36) 

b°x4(x ,Y)  = ( i ' _  x ' 

i f x  > y, 

otherwise, 
(37) 

and 

l imi t~)  = (~a 
~ x ,  

* X, if x > perceptiOnrange, 

otherwise. 
(38) 

This limit function is defined in such a way as to keep the repulsion forces very small in 
those cases where obstacles are located outside the perception range of the robot (see (39) 
below), kpa and perceptiOnrange are constants, kpa ~> 1, and perceptionrange is chosen to be 
a fifth of the dimension of the workspace 

Once ra, rb and rc have been calculated, the intensity of a repulsion force is: 

ir(ra, r b, rc) = e-(kra*ra+krb *rb) -b 1 1 
1 - ekrc *re 2 '  (39) 

where kr,, krb a n d  krc are constants. 
The intensity of the environmental repulsion force from a quadrant is: 

(i ri(x) = 1 

q- e-(krep *x) ' 

if a collision happens in the quadrant i, 

otherwise, 
(40) 

where kre p is a constant and x is the sum of the intensities of the repulsion forces from 
quadrant i. 

Appendix B: Analysis of variance 

Table 6 provides the standard deviation in the number of steps for finding a stable qo-path 
of the most promising versions. Table 7 shows the significance degree o f  the means differ- 
ences when every version is compared with each other. 
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Table 6 Standard deviation in the number of steps for finding 
a stable qo-path. 

Eligibility 

3 4 5 

Baseline 
1 15654 11477 5249 
4 9541 9814 8655 
5 9145 9318 10948 

Table 7. Significance degrees of the means differences. /z~ < t~z, where t~i is the mean of the sample i. 

Sample 2 

Sample 1 v4s v15 v54 v43 V44 VI4 V13 "V53 V55 

v45 80.23% 87.08% 92.07% 96.25% 96.64% 95.73% 99,65% 99.84% 
v15 70.54% 81.06% 90.66% 91.92% 90,99% 99,20% 99,62% 
v5~ 61.03% 74.54% 78.81% 81.59% 93.32% 96.78% 
v~ 64,43% 70,54% 75.49% 88.49% 94.18% 
v4~ 57.53% 65.54% 78.81% 88.49% 
v~ 59.10% 69.85% 82.12% 
v~3 56.75% 70.19% 
v~3 68.79% 
V55 

In order to compute the significance degree of the difference between a pair of sample 

means tzl and tz2, the following discriminant function is built: 

•J 
1 

u - -  ( , ,  - . 2 )  

+ 
n l  - 1 n2 - 1 

(41) 

where n I and n2 are the size of each sample, and o l and o 2 are the sample standard devia- 

tions. Now, if experimentally ~2 > ~1, then for estimating the significance degree 1 - e 

it is necessary to find ul-e,  in the table of the normal distribution, such that u < -Ul-e. 
Data in Table 7 confirm the results of Section 5.1. In addition, it is possible to draw the 

following two main conclusions. First, the versions are ranked in the following order: v~5-- 

i.e., the version using the fourth baseline an fifth eligibility factor--vxs, v54, v43, v4~, v14, 

v~3, v53 and v55. Second, v45 is significantly better then v53 and v55--the corresponding sig- 
nificance degrees are greater than 99 %-- i t  is quasi-significantly better than v~, v14 and 
v~4--the corresponding significance degrees are greater than 95 %--i t  is presumably better 
than v43--the significance degree is greater than 90%--and  it is likely better than v15 and 
v54--the corresponding significance degrees are greater than 80%. 
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