
Machine Learning, 9, 205-260 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On the Computational Complexity of Approximating
Distributions by Probabilistic Automata

NAOKI ABE
Information Basic Research Laboratory, C&C Information Technology Research Laboratories,
NEC Corporation, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216 Japan

MANFRED K. WARMUTH
Computer Engineering and Information Sciences, University of California, Santa Cruz, CA 95064

Abstract. We introduce a rigorous performance criterion for training algorithms for probabilistic automata (PAs)
and hidden Markov models (HMMs), used extensively for speech recognition, and analyze the complexity of
the training problem as a computational problem. The PA training problem is the problem of approximating an
arbitrary, unknown source distribution by distributions generated by a PA. We investigate the following question
about this important, well-studied problem: Does there exist an efficient training algorithm such that the trained
PAs provably converge to a model close to an optimum one with high confidence, after only a feasibly small
set of training data? We model this problem in the framework of computational learning theory and analyze the
sample as well as computational complexity. We show that the number of examples required for training PAs
is moderate--except for some log factors the number of examples is linear in the number of transition probabilities
to be trained and a low-degree polynomial in the example length and parameters quantifying the accuracy and
confidence. Computationally, however, training PAs is quite demanding: Fixed state size PAs are trainable in time
polynomial in the accuracy and confidence parameters and example length, but not in the alphabet size unless
RP = NP. The latter result is shown via a strong non-approximability result for the single string maximum likelihood
model probem for 2-state PAs, which is of independent interest.

Keywords. Hidden Markov models, PAC learning model, density estimation, Kullback-Leibler divergence,
computational learning theory

1. Introduction

We address the p rob lem of approximating an arbitrary, unknown source dis t r ibut ion by

-distributions generated by probabil is t ic automata. Probabil is t ic automata (PAs), and hid-
den Markov models 1 (HMMs) which are closely related to PAs, are used extensively as

models for probabil is t ic generat ion of speech signals for the purpose of speech recogni t ion
"(see for example Levinson, Rabiner & Sondhi, (1983))• The problem addressed in the pres-
ent paper corresponds to that of t raining a parameter ized hidden Markov model for a par-
t icular spoken word with a set of actual speech signals for that word. In particular, we
are interested in the quest ion of whether there exists an algori thm that, when given a sam-

ple generated from an arbitrary unknown target distr ibution, outputs a probabilist ic autom-
aton that approximates the unknown dis t r ibut ion 'as closely as possible, ' that is, with high

• probabil i ty the dis t r ibut ion induced by the output PA is sufficiently close to an 'opt imal '
one among all possible probabil is t ic automata satisfying a certain prescribed constraint.

Here a constraint is given to the algori thm in the form of a subset of the state set specifying

206 N. ABE AND M.K. WARMUTH

the legal initial states and a labeled directed graph specifying the set of legal transitions;
The training problem, therefore, is the problem of finding a near optimal setting of the
initial and transition probabilities on the legal initial states and transitions in the input con-
straint. A class of constraints is said to be trainable with sample complexity q (. . .) if there
exists an algorithm which trains every constraint in the class, and the sample size required
for a given acuracy, confidence, length of the example strings, and the size of the input
constraint is bounded above by the function q of these parameters. Here the size of the
input constraint translates to the number of probability parameters being trained. A class
of constraints is said to be polynomially trainable if there is a training algorithm with
polynomial sample complexity whose running time is polynomial in the total sample length.
Of particular interest to us is the special case of this problem in which the input constraint
is null, namely all initial states and transitions are legal. This special case translates to
the problem of finding a near optimal probabilistic automaton with a given number oJ
states.

Our model is a natural adaptation of the PAC-learning paradigm of Valiant (1984) and
Blumer, et al. (1989) and is inspired by the model of efficient unsupervised learning of Laird
(1988). It is also related to the models for learning languages from stochastic data in the
limit proposed and studied by Angluin (1988). Our formulation requires the algorithm to be
particularly robust in the sense that we do not assume anything about the target distribution--
a formulation which is closely related to the 'robust' generalization of the PAC paradigm
proposed by Haussler (1991). The distance measure between the distributions used in this
paper to evaluate the accuracy of a hypothesis with respect to the target distribution is the
well-known 'Kullback-Leibler divergence' (Kullback, 1967). Other commonly used meas-
ures of distance between probability distributions are, for example, the X 2 distance, the
variation distance, the quadratic distance (Kearns & Schapire, 1990), and the Hellinger
distance (Barron & Cover, 1989). The Kullback-Leibler divergence is a standard notion
of distance, which enjoys many desirable properties (see Section 2). Furthermore, the Kull-
back-Leibler divergence is known to bound from above the Hellinger distance as well as half
the square of the variation distance and of the quadratic distance. These relationships for
the more general case of conditional distributions are surveyed by Yamanishi (1991).

Using this model, we give a number of results: We show that an arbitrary class of con-
straints is trainable by exhibiting a training algorithm whose sample comlexity is essen-
tially linear in the size of the constraint being trained and a low-degree polynomial in the
example length and parameters quantifying the accuracy and confidence. In addition, the"
running time of our training algorithm is polynomial in the total sample length if the size
of the input constraint is bounded by a constant, thus showing that finite classes are
polynomially trainable. In particular, an arbitrary fixed constraint is trainable in time
polynomial in the accuracy and confidence parameters and the example length. If the alphabet
size is variable, however, no polynomial time training algorithm exists for the class of 2-state
null constraints 2, unless RP = NP.

To the best of our knowledge, our upper bound is the first rigorous result on the sample
complexity of training PAs and HMMs, with respect to the classical measure of Kullback-
Leibler divergence. Our proof is also interesting in the sense that we manage to get around"
the problem caused by the fact that the Kullback-Leibler divergence is unbounded. This
property prohibits the direct use of certain useful techniques such as Hoeffding's inequality

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 207

"for showing uniform convergence of empirical estimates of random variables to their true
means. We get around this problem roughly as follows: We bound the smallest transition
probabilities in the training algorithm's hypotheses from below by a decreasing function
'of the sample size m. We show uniform convergence for these successive classes ,of 'bounded'
probabilistic automata using Hoeffding's inequality. We then show that for sufficiently large
m, an optimum automaton in the m-th bounded class is close to an optimum one in the
entire class with high probability. Interestingly, the trick of bounding probabilities away
from zero is often used in practice in an attempt to solve what is known as the 'finite sam-
ple problem' (Levinson, Rabiner & Sondhi, 1983). Our result provides a rigorous justifica-
tion for a particular way of setting those probability bounds, from the point of view of
proving bounds on the sample complexity.

The sample complexity bound we obtain allows us to extend the classical equivalence
between the minimization of the Kullback-Leibler divergence with respect to tJhe empirical
distribution and the maximization of the likelihood of the given data: We show that the
polynomial time trainability of a class of constraints C is equivalent to the polynomial
time approximability of the 'maximum likelihood model' problem (MLM) for the same
class G--the problem of setting the initial and transition probabilities in a given constraint
in G so that the probability assigned on a given finite sample is maximized. More pre-
cisely, we show that the polynomial time trainability of a class of constraints G is equivalent
to the approximability of the MLM problem for C with a factor 1 + e in random time
polynomial in 1/e and the size t of the input constraint. Furthermore, we show that this
latter notion of approximability of the MLM problem for G is also equivalent to a seem-
ingly much weaker notion of approximability: Approximability within factor 2 p(n't)m~ in
random polynomial time, where m is the sample size, c~ is an arbitrary constant less than
1, andp(n,t) is a polynomial in the example length n and the size of the input constraint
t. We use the above equivalence between the training and MLM problems to show our
hardness result: For variable alphabet size, the MLM problem for 2-state null constaints,
or the problem of finding a 2-state PA assigning the maximum likelihood on the input sam-
ple, is hard to approximate (unless P = NP), and hence the class of 2-state null constraints
is not polynomially trainable (unless RP = NP).

The hardness result for the MLM problem for 2-state null constaints is shown via the
following non-approximability result for the single string MLM problem for the same
class--the special case of MLM in which the input sample consists of a single string. We

"show that it is hard to approximate the single string MLM problem for the; 2-state null
constraints within a factor of 2 Iwll-~ for any positive constant c~, where w is the input

. word, in time polynomial in the word length and alphabet size, unless P = NP. Note that
it is a very strong non-approximability result 3, since there is a trivial training algorithm,
using only I-state probabilistic automata, that can guarantee approximation within a factor

Iwl of 2 of the best 2-state PA. The proof of the hardness result uses as a starting point the
type of technique commonly used in the learning theory literature for showitng the hard-
ness of a 'sample consistency' or 'minimum consistent concept' problem in discrete do-
mains such as automata and boolean formulas (Gold, 1978; Angluin, 1978; Pitt & War-

' muth, 1989). In particular, our proof makes use of notions used in Angluin's proof of the
NP-completeness of the sample consistency problem for 2-state DFA (Angluin, 1989). The
proof given here is, however, significantly more complex than the proof of the discrete

208 N. ABE AND M.K. WARMUTH

case, since corresponding to 'consistency' we have 'probability,' which is continuous an6
is thus much harder to get a hold of. For example, in our reduction of the satisfiability
problem to the MLM problem for the 2-state null constraints, it is already non-trivial to
formalize how a truth assignment is is to be simulated by a PA. We let each truth assign-'
ment correspond conceptually to one of 2 n many deterministic PAs of a particular kind,
and for all the other (infinitely many) PAs, we quantify how 'far ' they are from those cor-
responding to truth assignments. We then show that any PA that assigns the input word
w a probability at least 1/2 Iwll-= times the probability assigned on w by an optimum PA
must be 'close' to a deterministic PA corresponding to a satisfying assignment.

This paper is outlined as follows. We begin in Section 2 with some preliminary defini-
tions and give the proof of the sample size bounds for training PAs in Section 3. In Section
4 we show the equivalence between the training problem and the approximate MLM prob-
lem for any class of constraints. In Section 5 we give the hardness result for the single
string MLM problem for 2-state null constraints. Parts of this lengthy proof are given in
Appendices A and B. In Section 6 we discuss briefly how the results of this paper apply
to HMMs. We conclude by discussing a number of open problems inspired by this research
in Section 7.

2. Preliminaries

This paper deals with approximating a probability distribution over words over some finite
alphabet, P~. For simplicity, we assume that all words with positive probability have the
same length, n, i.e. the distribution is over the domain ~n. We call an element of ~ an
example. A sample E of En is a finite sequence of examples of ~", E = (Wl, . . . , Wm),
where m is the sample size. We abuse notation and write x ~ ~ to mean that x appears
in the sequence N. We let #(x, ~) denote the number of occurrences of example x in sam-
ple E. Using the above notation, we define the notion of the empirical distribution of a
sample.

Definition 2.1. Given a sample ~ of size m of S n, the empirical distribution of E over
~ , written [)~, is defined by:

vx ~ ~" Dz(x) - #(x, ~)
m

Note that for any y not in ~, we have Dz(y) = O.

The probabilistic automation is formalized as a stochastic matrix M together with an
'initial distribution' 7r over the set of states. Intuitively, the probabilistic automation is much
like a non-deterministic finite state automaton except that the transitions take place with
probabilities prescribed by M. (See Figure 1.) To start the process, the machine chooses
the initial state according to the initial distribution 7r, and then at any given point after
that, the machine is in some state i, and at the next time step moves to another state j out-
putting some letter z, with probability specified by M(i, j, z). I f one stops the machine

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 209

a:O.4 a:O.1
b:O.1

a:0.6 .~ ~ - . ~

a:0.4 ~ 0 / a:0.8
b:0.6 ~

Figure 1. An example probabilistic automaton.

at time step n the machine ends in some state having generated a string of length n. In
this way, a probabilistic automaton naturally defines a probability distribution over the set
of strings of length n, for any particular n.

Def in t i on 2 . 2 (Probabi l i s t ic A u t o m a t a (PA)). A probabilistic automaton P is a quadru-
ple (Sp, ~e, 7re, Me) where Sp is a finite set o f states, E e is a finite alphabet, 7r e : Sp --*
[0, 1] is a probability distribution over Se, and M e : Sp × Sp × El, ~ [0, 1] is a stochastic
matrix 4, i.e.

~] 7re(i) = 1 a n d V i ~ Se ~] M e (i , j , z) = 1 (2.1)
iESp jESp, ZEZp

Each 7re (i) is called an initial probability, and each Mp (i, j , z) is called a transition prob-
e

ability. For any string w = w 1 . . . w n ~ Ee, the generation probability assigned on it by
P = (Se, Ee, roe, Alp) is computed as follows.

n-1

P(wl . . . w,,) = Z 7re(io)" IX Mp(ij, ij+l, Wj+I) (2.2)
(i 0 in}~p +1 j=O

Thus, for any given example length n, P defines a probability distribution over ~np.

For example, the probability assigned by the probabilistic automaton P shown in Figure
1 on the string w = aab is calculated as follows:

P (w) = re(O) • Me(O, 0, a) • Me(O, 1, a) • Me(l, 1, b)
+ we(O) • Me(O, 1, a) • Me(I , 1, a) • Me(I , 1, b)
+ ~re(O) • Me(O, 1, a) • Me(l, 2, a) • Me(2, O, b)
+ 7re(l) • M e (l , 1, a) • Me(l, 1, a) • Me(I, 1, b)
+ we(l) • Me(l, 1, a) • Me(l, 2, a) • Me(2, O, b)

210 N. ABE AND M.K. WARMUTH

= 0 . 5 . 0 . 4 . 0 . 6 " 0 . 1 + 0 . 5 . 0 . 6 " 0 . 1 " 0 . 1 + 0 . 5 . 0 . 6 " 0 . 8 - 0 . 6 + "
0 . 5 . 0 . 1 . 0 . 1 . 0 . 1 + 0 . 5 . 0 . 1 . 0 . 8 - 0 . 6

= 0 . 0 1 2 + 0 . 0 0 3 + 0 . 1 4 4 + 0 . 0 0 0 5 + 0 . 0 2 4 = 0 . 1 8 3 5

Note that for a probabilistic automaton P we use the same letter P to denote the probability
distribution defined by P on ~ , where n will be clear from the context. A PA constraint
is a quadruple C = (Z, S, I, G) where I is the inital state set and G is the transition graph
of C. I is a subset of the set S of all states. G is a subset of the set S x S × E of all transi-
tions. Note that a transition graph is a labeled directed graph with the state set S as the
vertices, and the alphabet E as the set of labels. We write] II for the number of states in
/, I G I for the number of transitions in G. We then define the size of a constraint C, written
I C I, as [C I = I I] + [G I. Note that the size of C corresponds to the number of probability
parameters included in C.

We say that there is a path in C for a string wl • • • wn ~ En, if there is a sequence of
states (i0 , in) from S n+l such that i 0 E l a n d for all j , 1 <_ j < n, (ij_~, ij, wj) E G.
We say that a probabilistic automaton P satisfies a constraint C = (Z, S, I, G), if and
only if Sp = S and ~ p = ~ and

Vi ¢ I, 7re(i) = 0 and

V(i, j , z) ¢ G, MR(i, j, z) = 0 (2.3)

Note that if a probabilistic automaton p satisfies a constraint C then for every word on
which P assigns a positive probability, there is a path for it in C. If P satisfies C, one
can think of r e as a function from I into [0, 1], and Me as a function from G into [0, 1].
We let Ya.~(C) denote the class of probabilistic automata satisfying the constraint C. Note
that Y~.~'(C) C [0, 1] 1 × [0, 1] G, where we let [0, 1] I denote the class of all functions
from I into [0, 1], and [0, 1] a from G into [0, 1]. We also let Y-K(G) denote the class of
stochastic matrices Me satisfying (2.3).

The notion of 'distance' among distributions we employ in this paper is a well-known
measure in information theory called 'Kullback-Leibler divergence,' also known as the
'relative entropy.'

Definition 2.3 (Kullback-Leibler Divergence). Let D and Q be probability distributions"
over countable domain X. The 'Kullback-Leibler divergence' of Q with respect to D,
dr~ (D, Q) is defined as follows.

dKL(D, Q) = Z D(x) log D(x)
x~X Q(x)

(Normally we think of D as the actual distribution against which a 'candidate' distribution
Q is being compared. By convention, we let 0 log 0 = O, and 0/0 = 1.)

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 211

Note in the above definition that the base of logarithm is 2, following the COlwentions in
coding theory. (Throughout this paper we let in denote the natural logarithm and log the
logarithm base 2.) The Kullback-Leibler divergence enjoys many natural properties: We
.can rewrite dr~(D, Q) as ED(lOg l/Q(')) - H(D) where ED(lOg l/Q(')) is the expecta-
tion according to D of the random variable log l/Q(.), and H(D) is the entropy 5 of D,
defined as ~xeX D(x) log 1/D(x). Recall that log 1/D(x) is the code length for x with
respect to the "ideal code ''6 for D, and H(D) is the expected code length of that code for
the source distribution D (see Hamming (1986)). In other words, for the source distribution
D, the divergence d~(D, Q) measures the expected additional code length required when
using the ideal code for Q instead of the ideal code for D. Thus, the ideal code of the distri-
bution which minimizes the Kullback-Leibler divergence with respect to the source distribu-
tion also minimizes the expected code length of the future data. It is also well-known that
minimizing the Kullback-Leibler divergence with respect to the empirical distribution/)z
observed in a sample ~ = (w 1 Wm) (Definition 2.1) corresponds to maximizing the
likelihood of the sample, as demonstrated below. Minimizing dr~ (/)z; Q) corresponds to
minimizing Ez5 z (log l/Q(-)), and the following always holds:

Eb, ~ log 1 1 _ 1 . ~ l o g 1 _ 1 log f i 1 (2.4)
O(.) m i=1 Q(wi) m i=1 Q(wi)

Thus, d~L(~)Z; Q) is minimized when IIm=l Q(wi) is maximized, i.e. when Q maximizes
the probability of having generated the sample. We summarize this as a lernma.

Lemma 2.1. Let J-~ be an arbitrary class of distributions over E n, E = (Wl, . • . , win) an
arbitrary sample of E n, and Dz the empirical distribution of E. Then,

EzS~ ~log 1 1 inf{Eb= I l o g 1 1 _ _ = _ _ : p ~ Y ~ }
- Q (.) - p (.)

if and only if

f i m Q(wi) = sup { I I P(wi) : P ~ T -~}
i=1 i=1

Below we give the definition of a training algorithm which is the central definition in this
paper. Here we assume that a randomized algorithm has access to a fair coin and can flip
it in a single time unit.

Definition 2A (Training PA Constraints). A training algorithm takes as input a constraint
C, a string length n, and a finite sample E of En for some alphabet E, and outputs a prob-

"abilistic automaton which satisfies C. We say that a (possibly randomized) training algorithm
A trains a class of constraints G with sample size q(1/e, 1/6, n, t), if A, when given as

212 N. ABE AND M.K. WARMUTH

input an arbitrary constraint C E C of size t, a string length n, and a finite sample ~ drawa
independently at random from an arbitrary unknown distribution D over En, is such that
whenever the sample size m exceeds q(1/e, 1/6, n, t), then provided that inf {dKL(D, P) :
P E Q'~,.~(C)} isfinite, A's output Q satisfies the following with probability at least 1 - 6:

dKL(D, Q) - dKL(D, Opt) <_ e

where Opt is a member of Q'9~(C) satisfying:

dKL(D, Opt) = min {dKL(D, P) : P E QvJ~(C)}

Here the probability is taken over the product distribution of D producing the sample and
the random coin flips of A, if A is randomized. I f there exists such a training algorithm
then we say that G is trainable with sample complexity q(1/e, 1/6, n, t). If there exists
a training algorithm with a polynomial sample complexity which also runs in time polynomial
in the total sample length, then we say that G is polynomially trainable.

Note that inf{dKL(D, P) : P E Y ~ ' (C) } is infinite if and only if there is a word x E En
such that D(x) > 0 and there is no path in C for x. In this case, dKL(D, P) = co for any
P in 5~.~(C). We still need to verify that Opt in the above definition is well-defined, when
inf{dKL(D, P) : P E Q-J.~t(C)} is finite. Define a function ~D : Q'9"~(C) ~ [0~ 1] for an
arbitrary target distribution D by:

~D(P) = I-I P(x) D<x)
xE~ n

Then since ~D is a continuous function, for an arbitrary D, mapping a compact subset of
the parameter space [0, 1] l × [0, 1] o, it attains a maximum at a particular PA, say Opt ':

~D(Opt ') = max{~D(P) : P E Jg,-~'(C)}

Hence,

log 1 ~ = ~ D(x) log 1
Opt '(') x~" Opt '(x)

1
= log

~D(Opt ')

1
= log

max {~D(P) : P E J~.~'(C)}

1
= min {log - - : P E Q'~..~(C)}

~D(P)

min{ED ~log 1 ~ = - - : P E 9~,~(C)}
P(')

(2.5)

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 213

"Noting that dr~(D, P) = ED(log l/P(')) - H(D), the equality (2.5) implies that dKL(D,
Opt ') equals min {d~L(D, P) : P ~ Yg.~(C)}. Now let Opt = Opt' and we see that Opt
is well-defined.

We define two versions of the maximum likelihood model problem for PAs considered
in this paper.

Definition 2.5 Sample MLM Problem for C

Input: A constraint C E C, a string length n and a finite sample ~ = (wl Wm)
of strings from ~".

Output: A probabilistic automaton Q satisfying C which asigns the maximum genration
probability (or the maximum likelihood) on ~, among all such probabilistic automata, i.e.

f i Q(wi) = max (f i P(wi) " p E ff9"7](C) t
i=1 i=1

Again note that m a x {IIm=l P(wi) : P ~ ~.~(C)} is well-defined because ~" " Yg.~(C)
[0, 1] defined by

~(P) = f i P(wi)
i=1

is a continuous function mapping a compact domain YJ~(C) into the range [0, 1].
The following definition is a special case of the sample maximum likelihood model prob-

lem in which the input sample consists of a single string. Note that for a single string, the
initial probability distribution plays no significant role, because among probabilistic automata
assigning the maximum probability on a given string there is always a probabilistic automaton
in which exactly one state has initial probability one and other states have probability zero.

Definition 2.6 For a stochastic matrix M and a word w, let M (w) be the maximum genera-
tion probability assignable on w by M with the best initial state.

Note that with this definition M(uv) < M(u) . M(v), in general. The single string MLM
. problem is defined as the problem of finding a stochastic matrix M satisfying the input

constraint, which maximizes M(w) on the input string w.

Definition 2.7 Single-String MLM Problem for C

Input: A constraint C = (~, S, L G) ~ C and a string w in ~*.
Output: A stochastic matrix M* satisfying G which assigns the maximum generation

• probability on w among all such stochastic matrices, i.e.

M*(w) = max {M(w) : M e 97C(G)}

214 N ABE AND M.K. WARMUTH

As usual let P denote the class of decision problems decidable in polynomial time and"
NP the class of decision problems acceptable in non-deterministic polynomial time. RP
denotes the class of decision problems that are acceptable in random polynomial time (Gill,
1977): A decision problem L is said to be accepted in random polynomial time if and only '
if there exists a randomized algorithm A, that is, A has access to a fair coin, such that
A halts in polynomial time on all inputs, and A always outputs 'no' on a negative instance
and outputs 'yes' with probability at least a half on a positive instance. It is widely conjec-
tured that P is strictly contained in NP, and also that RP is strictly contained in NP. All
hardness results of this paper only hold modulo one of the above conjectures.

3. Sample complexity bounds for training PAs

Our main positive result on the training problem is the following bound on the sample
complexity of the PA training problem.

Theorem 3.1. An arbitrary class of PA constraints G is trainable with sample complexity
O((n/e)2t • log 3 nt/e • log 1/6 • log 2 log 1/6), where t is the size of the input constraint.

Note that the above sample complexity bound is essentially linear in the size of the input
constraint t, and a low-order polynomial in n, l/e, and log 1/6. As an easy corollary, the
following bound on the sample complexity of the training problem for the null constraints
follows.

Corollary 3.1. The class of null PA constraints is trainable with sample size: O((n/e))Zs2a
• log 3 nsa/e • log 1/6 • log 2 log 1/6), where s is the number of states and a is the alphabet
size of the null constraint to be trained.

Outline of the proof of Theorem 3.1

Let an input constraint C = (~, S, L G) E G be given, and let t be its size, i.e. t =]I[
+ I G I. Here I is a subset of the set S of all states, and G ~ S x S x E. Assume that
min {d~(D, P) : P ~ P .~ (C)} is finite with respect to the target probability distribution
D, since if the minimum is infinite then by the definition of trainability any sample corn- "
plexity suffices. Our objective is to show that there exists a training algorithm such that
for any sufficiently large sample E, its output Q ~ QZ~t(C) is likely to approximately
minimize drc(D, Q), where D is the source distribution. Recall that dr~(D, Q) = Eo(log
l/Q(')) - H(D). Since the second term (the entropy of D) is independent of Q, in order
to find a Q that minimizes d~(D, Q), it suffices to find a Q that minimizes ED(log l/Q(')).
Thus a natural attempt would be to find a Q that minimizes Ebz(log l/Q(')) and show that
the empircial estimates converge to their true means uniformly for the class of random
variables ~7(~-9J/(C)) = {log l/P(') : P e Y~.~(C)} for moderate sample size. The dif-
ficulty here is the fact that ,.7(YL,~(C)) is unbounded in the sense that log 1/P(x) diverges "
to infinity with P(x) goes to zero. This fact prohibits the direct application of certain lem-
mas on the convergence of bounded random variables, such as Hoeffding's inequality.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 215

It turns out, however, that we do not need to show uniform convergence for the entire
class. We let our training algorithm output a probabilistic automaton Q for which Ebz (log
l/Q(')) is minimized when Q is restricted to be in a finite subclass .79-~.~(C)m of Yg.~(C).

• (If there is more than one member in the finite class that achieves the minimum we make
no further assumption about how our algorithm picks its hypothesis.) To describe
.TQ'9.~'(C)m, first note that Q'L~(C) is nothing but the subset of the 'parameter space' [0,
1] 1 x [0, 1] ~ satisfying the stochastic condition. For convenience we redefine Yg.~(C) by
relaxing the equalities in the stochastic condition to inequalities:

¥i ~ S ~ Mp(i,j,z) --- 1 and ~ 7rp(j) _< 1 (3.1)
j~S,z~Z j~l

Note that any member P of the parameter space satisfying this weaker condition can
easily be converted to a probabilistic automaton P ' satisfying the strict stochastic condition
which assigns at least as large a probability on every word as P:

¥i, j ~ S, z E E Me,(i, j, z) =
Me(i, j, z) 7re(i)

and 7r e, (i) -
E~S,z'e~ Mp(i, k, z') r~j~l re(j)

Let us say that P ' is the stochastic correction of P. Note that P ' has less divergence than
P with respect to any distribution 7.

JJJ~l(C)m is defined for each sample size m and is the set of stochastic corrections
of all 'bounded grid points' of Y ~ (C) , that is, those members of Y9~7/(C) satisfying (3.1),
in which all transition and initial probabilities are bounded from below by some decreas-
ing function of m and are powers of (1 - 3') where 3' also is a decreasing function of m.

Now, since J(.~Yg.Yl(C)m) = {log l/F(') : F ~ 57Y~.Y/(C)m} is a finite class of bounded
random variables of moderate cardinality, we can show fast uniform convergence (of em-
pirical estimates to true means) for them. We then show that for sufficiently large m, for
each P in Y~.~(C), there exists F ~ .7Y.71(C)m which is 'close to' P everywhere in the
domain:

YP ~ YgJI(C) 3F ~ ..,U'~.~(C)m VX ~. ~n log - - 1 - log - - 1 _< 2(n + 1) (3.2)
F(x) P(x) m - 1

This immediately implies that for an arbitrary source distribution D o v e r '~n, we have:

VP ~ Q-JJI(C) 3F ~ YQ'P,.,~(C)m dKL(D , F) - dl~(D, P) <-
2(n + 1)

m - 1
(3.3)

So if we let Opt be a member of Q'a~/(C) satisfying dKL(D, Opt) = min {dKL(D, P) : P
Y ~ (C) } , then we have:

3F ~ .~Jg..~(C)m dKL(D, F) - dKL(D, Opt) <
2(n + 1)

m - 1

216 N. ABE AND M.K. WARMUTH

Then if we let F* be a member of ~TY~.Y/(C),~ such that for all F ~ ffQ-A~.~(C)m , dKL(D,"
F*) <_ dKL(D, F), then we have:

dKL(D, F*) - dKL(D, Opt) <_
2(n + 1)

m - 1
(3.4)

Suppose that m is at least 4(n + 1)/e + 1. Thus 2(n + 1)/m - 1 -< d2 and

dKL(D, F*) - dKL(D, Opt) <_ e (3.5)
2

Now by the uniform convergence for the random variables ,.7(JqQ-),.,~(C)m) a s stated in
Lemma 3.1, for moderately large m (m >_ q(4/e, log 1/6, n, t) where q is polynomially
bounded and will be specified in Lemma 3.1), we have with probability at least 1 - 6:

(- -1 1 --ED (log 1 1 - _< e-- (3.6) ¥F E Y~'o,-~(f)m Eb z log F(.) F(.) 4

Now let Q ~ ,J~Q"A~(C)m be the output of our training algorithm, minimizing the empirical
estimate of log l/Q(-)over Q ~ ~Yv~(C)m. Then, by (3.6), we have that with probability
at least 1 - 6, both of the following hold:

(1 i 1 1 e E D log - - 1 - Eb= log - - _< - and (3.7)
Q (.) " Q (') 4

Ebb. log - 7 - - - ED log _< -- (3.8) 4
Also by the definition of our training algorithm

Eb= (l o g 1 ~ ~ 1 ~ - Q(.~--~ - Eb.~ log ~ - ~ < 0 (3.9)

By summing the inequalities, (3.7), (3.8) and (3.9), we have the following with probability
at least 1 - 6:

ED I l o g _ _ 1 ~ _Eo IlOg~O ~ _< e_ (3.10)
O(.) 2

This implies:

dKL(D, Q) - dKL(D, F*) <_ ~ (3.11)
2

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 217

"Then from (3.5) and (3.11) we have with probability at least 1 - 6:

d~(D, Q) - drL(D, Opt) <_ e (3.12)

Thus any training algorithm that minimizes the empirical divergence over ,.~.~9,~(C)m also
approximately minimizes the actual divergence over Y~.7/(C) within accuracy e with prob-
ability 1 - 6, whenever m _> max{4(n + 1)/e + 1, q(4/c, log 1/6, n, t)}.

P r o o f o f T h e o r e m 3.1

We need to show that (3.2) holds and that whenever m >_ q(4/e, log 1/6, n, t) the inequality
(3.6) holds with probability at least 1 - 6, for some q for which q(4/e, log 1/6, n, t) is
at least 4(n + 1)/e + 1 and which fulfills the order bound promised in the statement of
the theorem.

We begin by defining .~Y~I(C)m. We define a finite subset (grid points), denoted by
.9(3,, 0), of Y).~(C) as the set of all members P in 9v~7/(C) satisfying the r e l i e d stochastic
condition (3.1), such that each of re(i) and Mp(i, j , z) is some power of 1 - 3', and is
at least 0. Let .9'(3,, 0) be the set of stochastic corrections of the members of if(3', 0).
We then define . 7 ~ (C) m as ~'(1/m, 1/2tm).

We next verify (3.2) in two steps (inequalities (3.13) and (3.14) below). We define
Y3Y~S~(C)m, a subclass of J L ~ (C) in which all transition and initial probabilities are
bounded from below by 8 1/tm.

~Q'9,~(C)m ~- {B E Yg.~(C) : Vi, j E S, z E E MB(i, j, z) > __1 and a'B(i) ~ 1 }
tm tm

We then show that for arbitrary P in Yg.Y/(C), there exists B E ~-'~ff'9,-~(C)m which is close
to P in the following sense:

VP E Y ~ (C) 3B E ~-'~Q'o,~(C)m VX ~ ~n log - - --
1 1 n + l

log -< - - - - (3.13)
B(x) P(x) m - 1

" In addition, we show that for each member of ~-'~'9,~(C)m there is one in ,~"9,~(C)m
that is close to it:

VB E Q3JL~(C) 3F E ff3"9.~(C)m Vx E ~n log - -
1 1 n + l

- l o g - - < - - (3 . 1 4)
F(x) B(x) m - 1

(3.2) clearly follows from (3.13) and (3.14). To verify the first inequality (3.13), let an
arbitrary P E YL~(C) be given. We obtain Pm from P by shifting each Mp(i, j, z) towards
the 'uniform stochastic matrix' to obtain Pro--the matrix in which each transition in G out
of any state i receives the same probability 1/t(i), where we let t(i) denote the number
of transitions out of state i. Formally:

218 N. ABE AND M.K. WARMUTH

Vi, j E S Vz E ~ Mpm(i, j , z) =
(m - 1) • Mp(i, j , z) + (1/t(i))

m
(3.15)

Similarly we shift each 7rp(i) towards the uniform distribution over I:

qi E S 7rPm(i) = (m - l) " re (i) + (1/I l l) (3.16)
m

Note that for all i, j , z, MPm(i, j , z) >- 1/mt(i) > 1/I G]m >_ 1/tm and 7rPm(i) ~ 1/llIm
>_ 1/tm, and hence Pm E Q3Q'~.~(C),~. Now since each of the initial and transition prob-
abilities in Pm is at least as much as (m - 1)/m times the corresponding probability in P,
the probability assigned by Pm on any path (and hence on any string) is at least ((m -
1)/m) ~+1 times that assigned by P. Hence we have for any string x E ~":

P(x) _< ~ 1 + 1 l n + l _ _ _ _ ~ e n + l / m - 1

Pm(x) m - 1

Hence, for every x E E n, we have

1 1 n + l
l o g - - - l o g - - _<

Pro(x) P(x) m - 1

This completes the proof of (3.13). The second inequality (3.14) is straightforward to verify.
Let B be an arbitrary member of Q3Yg~(C)m. We round off each initial probability and
each transition probability in B to a power of (1 - 1/m). Denote the obtained PA by R
and its stochastic correction by F. Each probability in F is at least (1 - 1/m) times the
corresonding probability in B and this leads to two consequences. First, since B E
Q3Q-9~(C)m each initial and transition probability in F is at least 1/tm(1 - 1/m) >_ 1/2tm,
since the final choice of m will be larger than 2. This implies that the 'nearest grid point'
R next to B lies in gO~m, 1/2tm) and the stochastic correction F lies in J Y g ~ (C) m =
5~'(1/m, 1/2tm). Second, each probability in B is at most (1 + 1/(m - 1)) times the cor-
responding probability in F. Therefore, for any x E Zn we must have:

B(x) < I 1 + 1 I n+l _ - - < e n + l / m - 1

F(x) m - 1

and hence:

1 1 n + l
l o g - - - l o g - - _< - -

V(x) B(x) m - 1

This proves (3.14) and completes the proof of (3.2).
The next lemma shows that whenever m >_ q(4/e, log 1/6, n, t) the inequality (3.6) holds

with probability at least 1 - 6.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 219

"L emma 3.1. Let `7(Y~'9,.~(C)m) = {log l/F(') : F E `TQ'9~,~(C)m }. Let D be an arbitrary
distribution over E ~ for some n E N, and D m denote the product distribution induced by
D over (~n)m. I f E = (w 1 Wm) E (En)m then we let E b z (f) denote the empirical

" estimate of the random var iab le fby the sample ~, i.e. E b z (f) = Em=l f (w i) /m , and let
E o (f) denote the expectation (according to D) o f f Then we have, for all e <- 1 and
6 > O, for all n, t E N, whenever m >_ q (l/e, log 1/6, n, t),

O m {~ E (~n)m : 3 f ~ `7(`TQ'9..~(f)rn) such that IEb~(f) - ED(f) I > e} < 6,

where q(l/e, log 1/6, n, t) is defined as

max Q_32(n + 1)2t in 3 64t(n + 1)2t 8(n + 1) 2 In 1/6
(~2 C2 62

log 2 8t(n + 1) 2 In 1/6_~
C 2 _)

Proof of Lemma 3.1. We use the following lemma which follows from Hoeffding's inequal-
ity. (See for example Pollard (1984).)

Lemma 3.2 (Hoeffding). Let ,7 be a finite class of bounded random variables on a set
X, that is for each f E `7, f : X -+ [0, M] for some real M E R. Let D be an arbitrary
distribution over X. Then we have:

I f m >_ - - In[`71 + in 1
6 2

then D m {~ E X m : ~f E `7 I Ebz(f) - ED(f) I > e} < (5

To apply Lemma 3.2, we compute an upper bound on the random variables in
.7(`73v~(C)m), and the cardinality of `7YL.~(C),~. Since by our assumption at the begin-
ning of the proof rain {dKr(D, P) : P E Y~.~(C)} is finite, for any string x in Zn assigned
a positive probability by the target distribution D, there is a path for x in the input con-

- straint C. Now any path in C is produced with probability at least (1/2tm) n+l, since any
state is chosen as the inital state with probability at least 1/2tm and each transition in the
path has probability at least 1/2tm. Hence log 1/F(x) is bounded from above by (n + 1)
log 2tm. Since `7Y.Yl(C)m equals .~'(1/m, 1/2tm), and the cardinality of if ' (' / , 0) is at
most (1/y in 1/0) t, the cardinality of `7YgJt(C) m is at most (m In 2troy. Plugging in
M = (n + 1) log 2tm and [`TQ'o,~(C)m I ~ (m in 2 t m f into the inequality in Lemma
3.2 gives the following inequality:

m_> (n + 1)eloge2tm (- -) | t l n (m l n 2 t m) + l n l | - (3.17)
e 2 k._ .)

220 N. ABE AND M.K. WARMUTH

To show that i fm is at least the bound in Lemma 3.1 then (3.17) holds, it suffices to show"
that the following two inequalities hold under the same condition.

m _> (n + 1) 2 log 2 2tm

2 4 2
t In (m In 2tm) (3.18)

m _> (n + 1) 2 l o g 2 2 t m l n 1

2 4 2 6
(3.19)

To get a simple argument for (3.18) we first show that

log 2 2tm In (m In 2tm) <_ - -
In 2 2tm

In 2 2
In (tm In 2tm) < 2 In 3 2tin (3.20)

For tm _> 1 the latter inequality is equivalent to In In 2tm < (2 In 2 2 - 1) In 2tm + In
2 which holds for tm = 1 and only improves for larger m. We now return to the proof
of (3.18): Since (3.20) holds it suffices to show

4(n + 1)2t
m -> c~ In 3 tim, for c~ - and/3 = 2t. (3.21)

e 2

If m > c¢ In 3/3m holds for some choice of m then it also does for all larger m. We set
m to 8c~ In 3 8a/3 which is the first bound in the maximization clause of q(1/e, log 1/6, n,
t). Then m _> ce In 3/3m is equivalent to 8~/3 _> In 3 8~/3. Since n, t -> 1, c~/3 = 4(n +
1)2t/e 2 • (2t) is always at least 32. Now observe that the last inequality holds for c¢/3 = 32
because (In 256) 3 ~ 170.51 < 256, and thus for all larger ~13. We conclude that (3.21)
and hence (3.18) holds.

The proof of (3.19) is simpler. We need to show

2(n + 1) 2 1
m _> c~ log 2/3m, for c~ - In - and /3 = 2t.

e ~ 6

One can show that if m > 4c~ log 2 2c~/3 (which is the second bound in the maximization
clause of q(1/4, log 1/6, n, t)) then m -> c~ log 2 13m.

To complete the proof of Theorem 3.1 observe that q(4/e, log 1/6, n, t) of Lemma 3.1 "
is at least 4(n + 1)/4 + 1 and fulfills the order bound promised in the statement of the
theorem. []

As an immediate corollary to the proof of Theorem 3.1, we have the following positive
result for training PAs of a fixed number of parameters.

Corol lary 3.2. Any finite class o f PA constraints is polynomially trainable.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 221

Proof of Corollary 3.2

Since the sample size m required in Theorem 3.1 is polynomial in 1/c, 1/6, n and t, this
"immediately follows from the observation that I . 7 ~ 1 (C) m] < (m log 2tin) t is
polynomial in m when t is bounded from above by a constant. []

4. The equivalence between the training and maximum likelihood model problems

The sample complexity of Theorem 3.1 can be used to establish the equivalence between
the efficient trainability of a class of cosntraints and the efficient approximability of the
sample MLM problem for the same class. We first define what it means for a randomized
algorithm to approximate the sample MLM problem within a given factor.

Definition 4.1 (Approximate Sample MLM problem). A randomized algorit, hm A is said
to approximate the sample MLM problem for a class of constraints G within factor K,
possibly a function of various parameters of the problem, in random T(. . .) time, if given
a constraint C ~ Gand an input sample E = (Wl win) of Enfor some n > 0 and
some finite alphabet F,, A terminates in T(. . .) many steps and outputs a PA Q ~ Qv~,~(C),
which with probability at least a half satisfies:

1-Im=l OPT(wi) <-- K

IXm=l Q(wi)

where OPT is a member of JL~(C) which maximizes the likelihood of E, i.e.

(;I "t f i OPT(wi) = max P(wi) " P ~ ~J~(C)
i=1 i=1 j

By convention, we let 0/0 = 1

As before, OPT is guaranteed to exist because of the compactness of Y~.~(C) and the con-
~tinuity of the likelihood function on a finite sample.

Theorem 4.1. For an arbitrary class of PA constraints C, the following four statements
"are equivalent. Below, we let t denote the size of the input constraint C ~ G to be trained,
m the sample size, and n the length of each example.

1. There exists a training algorithm for G with sample complexity polynomial in i/e, 1/6,
t and n, running in time polynomial in the total sample length.

2. There exists a training algorithm for G with sample complexity polynomial in l/e, log
1/6, t and n, running in time polynomial in the total sample length.

3. The sample MLM problem for G is approximable within a factor of 1 + e in random
time polynomial in l/e, t, n and m.

222 N. ABE AND M.K. WARMUTH

4. The sample M L M problem for G is approximable within a factor o f 2 p(n't)m~ in random
time polynomial in t, n and m, for some polynomial p and o~ < 1.

Proof of Theorem 4.1

(1 ~ 3) The idea of the proof is as follows. We use the hypothetical training algorithm
A for a class of constraints G to construct a randomized approximation algorithm B for
the sample MLM problem for the same class.

In order to do this, we take advantage of the robustness of the training algorithm. In
particular, the algorithm must meet its performance guarantee when it is fed examples
generated by the empirical distribution observed in the input sample ~, for the sample MLM
problem. We then appeal to the classical equivalence between minimizing the divergence
with respect to the empirical distribution and maximizing the likelihood of a given sample
(see Lemma 2.1).

Let e > 0, a finite sample E = (wl, . •. , Wm) with [wil = n for each w i, and a con-
straint C ~ G be given. We use the hypothetical training algorithm A on the empirical
distribution/3~ of Z, as defined in Definition 2.1. We can assume without loss of generali-
ty that min {dKr(/)~, P) : P ~ Y-~J~(c)} is finite, since otherwise max {IIm=l P(wi) : P
Y~.~Z¢(C)} = 0 and the MLM problem is trivial. B then computes a sample size m' for
A large enough for accuracy e/m and confidence 1 - 1/4. For example, m' = [q(m/e,
4, n, t)] suffices where q (. . .) is an upper bound on the sample complexity of the
hypothetical training algorithm A, which by assumption is polynomially bounded. Now,
B gives A a sample ~ ' of size m' obtained by sampling from ~ according to/)z , the em-
pirical distribution of E, or the uniform distribution over the m elements of the sequence
E. Here note that while it is not always possible to simulate the empirical distribution of
a finite sample with a fair coin, there exists an algorithm which generates a new sample
of an arbitrary size acording to the empirical distribution of the original sample with high
probability. We make this precise below.

l~mma 4.1. There exists a randomized algorithm, U, which, given a finite sample E =
{w 1 w m } of size m, an integer m', and a confidence parameter v > O, always term-
inates in time polynomial in m, m' and 1/v and outputs a sample ~ ' o f size m ' which with
probability at least 1 - v is drawn according to the empirical distribution £)~ o f ~.

Proof of Lemma 4.1. The algorithm U first calculates i = [log m ~ and iterates the follow-
ing: U flips a fair coin i times to obtain a bit string x of length i. I fx < m, then U appends.,
Wx+l to the end of the sequence ~,"~' and does nothing otherwise. It is clear that each ex-
ample of ~ ' is drawn independently at random according to/3z. Notice that at each iter-
nation the length of ~ ' increases by one with probability at least a half. It is easy to see,
by applying ChernofFs bound (c.f. Valiant (1984)) that in p(m', I/v) many iterations, the
length of E ' becomes m' with probability at least 1 - v, where p is some polynomial.
If this fails to occur, i.e. the length o f ~ ' is shorter than m' aflerp (m', 1/v) many iterations,
U pads ~ ' with arbitrary examples to make its length m'.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 223

"End of proof of L e m m a 4.1

We run U on E, m' and 1/3 to obtain a sample E', and let Q be the output obtained by
running A on E'. Thus, A is run on a sample of size m' generated with respect to/)~ with
probability at least 2/3. Furthermore, when this is the case, by the performance guarantee
on A, the divergence of Q with respect to/)~ is e/m close to the divergence of the best
PA satisfying C, with probability at least 3/4. Hence, with probability at least 3/4 • 2/3
= 1/2, the following holds:

dicc(Dz, P) - dr~(Dz, OPT) = ~] bz(x) log OPT(x------2) <_ e__ (4.1)
X ~ n P(x) m

where OPT is a PA in Y~.~(C) satisfying:

dr~(bz , OPT) = min {d~(/}z, P) : P ~ Y~.Y/(C)}

Substituting bz(x) = #(x, E)/m in (4.1) above,

dr~(E)~, Q) - dr~(Dz, OPT) = 1 m___~_] log OPT(wi) < E

m i=1 Q(wi) m

We thus obtain ~m= 1 log oPr(wi)/Q(wi) ~ e. So for e E (0, 1], we have

i OPT(wi) <- 2' <- 1 + e

i=1 Q(wi)

Since OPTis a probabilistic automaton in Y~7/(C) minimizing the divergence with respect
to/3~ on E, by the 'classical equivalence' given in Lemma 2.1, it is also an optimal solu-
tion in YgJ~(C) of the sample MLM problem on E. Thus we have obtained a 1 + e ap-
proximation to the sample MLM problem with probability at least a half. The running
time of B is clearly bounded by a polynomial in l/e, n, t, m, since m' is polynomial in
these parameters, the time spent on generating the sample ~ ~ ' using the algorithm U is

"polynomial in n, m and m', and the running time of A is polynomial in the total length
of the sample E', i.e. polynomial in m' and n.

. (3 -~ 2)
We will use the hypothetical approximation algorithm for the MLM problem for a class

of constraints G to construct B that trains G. Let D be the target distribution over ~n and
let a constraint C ~ G be given as input. Assume without loss of generality that
min {d~(D, P) : P ~ Y9~7/(C)} is finite, since otherwise the training problem is trivial.
The finiteness of min {dxL(D, P) : P ~ J).~(C)} guarantees that for each x ~ ~n assigned
a positive probability by D, there is a path in C labeled with x.

II m Hence it follows that for an arbitrary sample E generated by D, max { i= l P(wi) : P
Y ~ (C) } is positive. First we show that any approximation algorithm (in the sense of

224 N. ABE AND M.K. WARMUTH

Theorem 4.1, part 3) can be modified so as to output a PA Q8 in the finite clasg
,YYL~(C)m, defined for C as in the proof of Theorem 3.1, which with probability at least
1 - 6/2 satisfies:

1 1 -~ _ 3(n + I)

OPT(.) -.) m - 1
(4.2)

where OPT ~ YL71(C) is an optimal solution for the sample MLM problem with input
sample E satisfying the input constraint C. Second, we show that in fact such an algorithm
leads to a training algorithm for PAs with a slightly larger sample complexity than the training
algorithm exhibited in the proof of Theorem 3.1.

It is easy to verify the first of these two claims. First note that any algorithm which ap-
proximates the sample MLM problem for G within factor 1 + e with probability at least
a half in time polynomial in l/e, n, t and m can be "boosted" to one which achieves the
same approximation factor with probability at least 1 - 6/2 in time polynomial in log 2/6,
I/e, t, n and m. This can be done by iteratively running the former algorithm Flog 2/6-]
times and then selecting, from among its outputs, one that assigns the maximum likelihood
on the input sample. (Note that using dynamic programming it is easy to compute for a
given sample and PA the likelihood of that sample in time polynomial in the total length
of the sample and t.) Now set e = n and run this boosted algorithm on the input sample
S and obtain a PA P, which with probability at least 1 - 6/2 approximates the sample MLM
problem for G within a factor of 1 + n:

i OPT(wi) < 1 + n <_ e 1+~

i=1 P(wi)

Hence we have:

1 : p (.) - OPT(.)

1 ~-~ OPT(wi) n + 1 n + 1
log < Z..a

m i=1 P(wi) m m - 1
(4.3)

Now, using the trick of shifting, rounding-off and stochastic correction as done in the proof
of Theorem 3.1, we obtain from P a member QB of .7Y°..Tl(C)m, such that

Yx ~ ~n log - - 1 - log _ _ 1 _< 2(n + 1) (4.4)
Qs(x) P(x) m - 1

From (4.3) and (4.4), (4.2) follows.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 225

Next we can show that the boosted approximation algorithm for the sample MLM prob-
lem indeed trains G. This can be shown similarly to the way the algorithm exhibited in
the proof of Theorem 3.1 was proved to successfully train G. Let us first recall the nota-
tion of that proof: We denoted by Q the output of the training algorithm which, for the
input sample ~, minimized Eb~ (log l/F(')) over F ~ ~ 7 ~ (C) , , . The PA Opt was a
member of Y :~ with the minimum divergence with respect to the target distribution. F*
denoted a member of .TYL.~(C),n that is closest to Opt. In order to prove that ED(log
I/Q(')) is close to ED(lOg 1~Opt(')) with high probability (inequality (3.12)), we showed
in the proof of Theorem 3.1 that (inequality (3.4)):

F(-)I 1 (1 ~ 2(n + 1) Eo log ~ - Eo log - - < (4.5)
Opt(') m - 1

and whenever m _> q(4/e, 1/6, n, t) with probability at least 1 - 6 (inequality (3.10)),

E° I I °g - -Q(.) 1 I - E ° I I ° g ~ o ~ < e - --2 (4.6)

Since (4.5) always holds, we only need to show an analogue of (4.6) for any algorithm
satisfying (4.2). Recall that in the earlier proof, in order to show (3.10), we applied triangle
inequality to the inequalities (3.7), (3.8), and (3.9). (3.7) and (3.8) followed from the
uniform convergence for .7Yg.~(C)m, and (3.9) followed from the fact that the training
algorithm minimized Eb~ (log l/Q(.)) within .7~.~(C)m.

In this proof, the output Q8 of our training algorithm approximately minimizes Eb~ (log
l/Q(')) within .TY~(C)m . More precisely, by the optimality of OPT, it follows from (4.2)
that the following holds with probability at least 1 - 6/2:

Eb~ " (lOg--Q~(.)l I _Ez~. "- ~ l O g ~ O 1 _< 3(n + 1) m - 1 (4.7)

As before, for m > q(4/e, log 2/6, n, t) both of the following hold with probability at
least 1 - 6/2:

1 ~ I 1 e ED log Q;(.) - Eb~ log 1
QB(') 4

Eb~ log ---7--- - Eo log 1 e
4

(4.8)

(4.9)

By summing up the inequalities (4.7), (4.8), and (4.9), we obtain that the following holds
.with probability at least 1 - 6 whenever m _> q(4/e, log 2/6, n, t):

226 N. ABE AND M.K. WARMUTH

(- - ~ - (F (.) I 1 e 3(n + 1) - - - E o log 1 Eo log ---y-- < -- + (4.10)
QB(') 2 m - 1

Hence from (4.5) and (4.10), it follows that whenever m _> q(4/e, log 2/6, n, t), with
probability at least 1 - 6,

1 I,og 1 ~ <L+
Opt(') 2

5(n + 1)

m - 1
(4.11)

Hence, whenever m > max {q(e/4, log 2/6, n, t), 10(n + 1)/e + 1}, with probability at
least 1 - 6,

ED I l o g ~ l ~ --ED I l o g 1 ~ 1
QB(') Opt(')

_< e

We have thus shown that the above algorithm trains C, which was an arbitrary constraint
in G, with sample complexity polynomial in l/e, log 1/6, n, t and running time polynomial
in the same parameters and m. It is easy to convert such an algorithm to one whose run-
ning time is polynomial in the total sample length and which has sample complexity still
polynomial in l/e, log 1/3, n, t.
(2 ~ 1)

This is obvious from the definitions.
Thus far, we have shown that the first three statements of the thorem are equivalent.

Now we proceed to show that 3 is equivalent to 4.
(4 ~ 3) Suppose that algorithm A, running in random time polynomial in l/e, n, t, m,
approximates the sample MLM problem for G within factor 2 p(n't)mc' for some polynomial
p. Let a constraint C E G and a sample ~ = (Wl , Wm) be given. Again, assume
without loss of generality that Hm=l OPT~(wi) = max{Hm=l P(wi) : P E Qv.~(C)} is
positive. We then repeat the sample r = [-(2/e(ln 2)p(n, t)m~) vl-~] times to obtain a
new sample E' = (Vl V~m) of length rm, and feed this into A to obtain a hypothesis
Q. Then, by definition, Q must satisfy:

II~= 10PT~,(t i) <_ 2p(n,t)(m)~
Hrm i=1 Q(ti)

where we used OPTs, to denote the PA in Ya=,~(C) that assigns the maximum probability
on the sample E'. Since each example of S is repeated exactly r times in ~',

IIr[n= 10PTz , (w i) <_ (2P(n,t)(mr)~) l/r
Hrm

i=1 Q(wi)

<-- 2P(n,t)m%C~ 1 (4.12)

a.PPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 227

By substituting r into the exponent in (4.12) we obtain:

log I I%10PT~ ' (w i) ~ p(n, t)rn ~ F(2 (ln 2)p(n, t)m~)l/1-~ ~-1
II~l Q(wi)

<_ p(n, t)m ~ ((2 (In 2)p(n, t)m~)Vl-~) ~-1, since c~ - 1 < 0

= p(n, t)m ~ (2 (In 2)p(n, t)m~) -1
C

- l o g e

2

Hence, we have:

IIm=l OPT~'(Wi) <_ 2~/2 log e

11m= 1 Q(wi)

= e e/2

___ 1 + ~, f o r e E (0, 1].

We next show that OPT~ and OPTz, assign the same likelihood on ~:

f i m OPTs(we) = max { I - [P(w~) : P ~ ~.7/(C)}
i=1 i=1

(4.13)

m r

= (max {IX P(vi) : P ~ ~ t (C) }) 1/r
i=1

m r

= (H OeT~'(vi))l/r
i=1

= f i oe~,(wi)
i=1

By plugging (4.14) in (4.13), we finally obtain:

(4.14)

228 N. ABE AND M.K. WARMUTH

Hm=l OPTz(wi) < 1 + c

Hm=l Q(wi)

(3 ~ 4) This is obvious from the definitions. E5

From Theorem 4.1 and Corollary 3.2, the following positive result on the approxima-
tion problem for the sample MLM problem follows at once.

Corol lary 4.1. The sample MLM problem for any finite class of PA constraints is approx-
imable within a factor of 1 + e for any c > O, in time polynomial in 1/e and the total
length of the sample.

Note that this does not give rise to a practical training algorithm, since the running time
of the algorithm we exhibit is exponential in the number of probability parameters specified
by the input constraint, which may grow quite large in practical applications.

We mention a simple class of constraints which can be trained efficiently. A constraint
C = (~, S, L G) is said to be deterministic, if I contains exactly one start state i0 and
if for a given state i and a given letter a, there is at most one transition from i labeled
with a, in G. It is well known in the literature that the M L M problem for the class of
deterministic constraints is solvable in polynomial time. We repeat the proof of this fact
briefly, as it makes use of a lemma that will be used again in the hardness proof in Section
5. Let a deterministic constraint C = (E, S, {io}, G) and a sample ~ = (w 1 , Wm)
be given. For each w k fi ~ there is at most one path in C labeled with wk starting at i0.
Denote by O the set of all such paths. I f there is a word in ~ for which there is no path
in (9, then the maximum probability assignable on S is zero and the problem is trivial.
Let #(j, z] i) denote the total number of times the transition to state j outputting letter
z was taken from state i in all paths of O and #(i) denote the number of times a transition
was taken from state i in all paths of O. Clearly ~j~S,z~Z #(J, z] i) = #(i). Now note that
for any probabilistic automaton P, we can calculate P (~) = IIm=i P(wi) as follows.

P(~) = 1-I Mp(i, j , z) #(j'zli)
i,j~S, zE~

We wish to maximize the above expression, subject to the constraint:

¥i ~ S ~] Me(i, j, z) = 1
j~S , z~

We can show that this is maximized when we define P as follows, using the following well-
known technical lemma, which we state without proof. (See for example Levinson, Rabiner
and Sondhi (1983).)

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 229

¥i, j ~ S Yz E P~ Me(i, j , z) - #(j' z I i)
#(i)

Lemma 4.2. A function o f the form f (X l , . . . , Xn) = X ~ 1 " X~22 " . . . " X an subject to the
constraint Xl + x2 + . • • + xn = c attains its maximum when xi = (ai/~}*=l a i) " C.

From the above observation and Theorem 4.1, it follows that the class of deterministic
constraints is polynomially trainable. The sample complexity obtained in this way can prob-
ably be improved significantly for this restricted case.

Corollary 4.2. The class o f deterministic PA constraints is polynomially trainable.

5. Computational complexity of training probabilistic automata

The hardness of training the 2-state null PA constraints is shown via a strong non-
approximability result for the single string MLM problem for the same class. We emphasize
again that the training problem for the class of s-state null constraints is the natural prob-
lem of finding a near optimal probabilistic automaton of a given number o f states. It should
be noted that showing that the class of null constraints is hard to train is much more signif-
icant and also more difficult than constructing an artificial class of constraints that is hard
to train.

Theorem 5.1. For any c~ > 0, the single strine MLM problem for the class o f 2-state null
PA constraints is not approximable within 2 in time polynomial in the alphabet size
a and I w [, where w is the input word, unless P = NP.

As we noted in Section 1, Theorem 5.1 is a strong non-approximability result, since
guaranteed approximation ratio of 2 bwl for the MLM problem for 2-state PAs is trivially
achievable.

Theorem 5.2. For arbitrary s ~ N, the single string MLM problem for the s-state null
• constraints is approximable within s Iwl in time polynomial in the alphabet size a and

I w l, where w is the input word.

• The proof of Theorem 5.2 is simple but uses one of the technical lemmas to be stated
and used in the proof of Theorem 5.1, so we defer the proof of Theorem 5.2 till after
the proof of Theorem 5.1.

Corollary 5.1. The class o f 2-state null PA constraints is not polynomially trainable, unless
l iP = NP.

230 N. ABE AND M.K. WARMUTH

Proof of Corollary 5.1 given Theorem 5.1

Suppose that a training algorithm A trains 2-state PA constraints in time polynomial in
l/e, 1/6, n and a. Then, by Theorem 4.1, it follows that there exists an algorithm B which"
approximates the MLM problem within factor 1 + e in random time polynomial in n,
m, and a. We can then use B to solve 3-SAT in random polynomial time, using the reduc-
tion of Theorem 5.1. Thus 3-SAT, which is NP-complete, would be shown to be in RE
which would imply that RP = NP. []

The proof of Theorem 5.1 is lengthy, so we will begin by giving a very high level descrip-
tion of the proof. We will then give a proof sketch, introducing some key definitions and
then give the formal proof. We reduce 3-SAT, the satisfiability problem for 3-CNF form-
ulas, to the approximation problem for the single string MLM problem for the 2-state null
constraints with a guaranteed approximation ratio of 2 Iwj for any fixed c~ > 0. For an
arbitrary c~ > 0, we exhibit a polynomial time reduction which maps any CNF formula
F to a string w such that the maximum probability assignable by a 2-state stochastic matrix
on the string w is at least C(F) if the formula is satisfiable, and less than 1/2 Iw11-~ C(F)
otherwise, where C(F) is easily computable. Thus any approximation algorithm for the
single string MLM for this class with guaranteed approximation ratio of 2 Iwl1-~ can be
used to solve 3-SAT, and hence the problem is NP-hard. The rough idea of the reduction
is as follows: Let us imagine that an agent (the hypothetical approximation algorithm) is
attempting to find a stochastic matrix which assigns an approximately maximum probability
to the string. The string w is conceptually divided into two parts: w = WaW b. We design
the first half of the string in such a way that if the agent is to maximize the probability
on it, it will have to 'lean towards' one of 2 n deterministic stochastic matrices of a par-
ticular kind, which we call 'canonical stochastic matrices.' These correspond to the 2 n
truth assignments for the n variables in F. More precisely, we define a notion of distance
between stochastic matrices and show that if the matrix in question is A-far from the closest
canonical stochastic matrix, then the probability assigned on the first half is less than the

r Iwar optimal by roughly a facto of (1 - A) . Now the second half of the string tests
whether any of these canonical matrices corresponds to a satisfying assignment for the
formula E For any canonical stochastic matrix, or one that is A-close to one, the genera-
tion probability assigned on the second half of the string will be high if the corresponding
truth assignment satisfies F and otherwise will be less by roughly a multiplicative factor
of A Iwbl. Thus the agent faces the following dilemma: (i) If it tries to be near-optimal on "
the first half and chooses a small value of A, that is, its stochastic matrix is in fact close
to one of the canonical matrices, then it would have to in effect solve 3-SAT to determine
an approximately maximum generation probability assignable on the second part. (ii) If "
it tries to avoid solving 3-SAT on the second part and chooses a large enough value of
A, that is, its stochastic matrix is sufficiently far from any of the canonical matrices, then
it loses so much probability on the first half that it cannot guarantee an approximately
optimal generation probability.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 231

Proof Sketch of Theorem 5.1

We now give a fuller proof sketch, defining key notions used in the proof in doing
"so. For each c~ > 0, we exhibit a transformation ~0, mapping any 3-CNF-formula F to a
string over an alphabet that depends on the number of variables, for which a gap of factor
K = 2qw~(F)l 1-~ is forced in tile optimal solution depending on the satisfiability of the form-
ula. Let n be the number of variables in F, and s the number of clauses in F. We let En
denote the alphabet used for ~% (F), and Y-)T~ the set of all 2-state stochastic n~tatrices over
r~ n. We begin by describing the alphabet En. The letters in ~ , can be classified into the
following categories: global control letters a and b, f ixed funct ion letters f and e, and for
each variable xi, literal letters xi xi, control letters ci, di, and a dummy letter vi. The literal
letters directly correspond to the literals in the formula F, whereas the remaining letters
play a support role. We refer to the two states as state 0 and state 1, and let S denote the
state set {0, 1}. We now give the string ~b~(F), or w for short.

W = WoW1W2W3W4W 5 (5.1)

Wo = (ab) k°

w l = (a fabyo) k'

w 2 = f i v i (c idi) k2 v i

i=1

W 3 = f i (c~c id i fd i) k3

i=1

w 4 = f i (axibxiciYidi2ibeaeab) k4
i=1

w5 = ~-I (ab(lj, llj,2lj,3)b) ~s
j = l

In the above, we let lj,k denote the k-th literal in the j- th clause of F, and the k i are the
integers defined as follows.

k 5 = log K

k 4 = s211(log K + I w5 l)

232 N. ABE AND M.K. WARMUTH

k3 = s211(log K + I WaW5 I)

k2 = s211(log K + I w3w4w5])

kl = s211(log K + [w2w3w4w5 1)

ko = s211(log K + I wlw2w3w4w5 [)

The ki were chosen as moderately growing functions of K, the intended gap, so that [w l
< p(n, s) log K for some polynomialp . Ifc~ > 1 then reset it to 1. Now o:~ is obtained
by setting log K = p(n, s) 1-°e" which makes [wl less than or equal top(n , s) 1/~ and hence
log K _> [w [1-~ as desired. We may assume without loss of generality that log K as set
above is an integer because if p(n, s) 1-~/~ was not an integer then by at most halving c¢
one could find a smaller c~' such that p(n, s) 1-~'m' is an integer.

To explain the intent of the transformation given above, we need to introduce some term-
inology concerning stochastic matrices. A deterministic stochastic matrix is a stochastic
matrix in which for each state i and each letter z, there is at most one transition with a
positive probability out of i labeled with z. Thus any deterministic stochastic matrix M,
induces for each letter z a (possibly partial) transition function from states to states. Since
for this proof the number of states is 2, these transition functions are Boolean. I f the letter
has transitions out of each of the two states, then the associated function must be one of
the four possible total boolean functions over one variable. Borrowing Angluin's terminology
(Angluin, 1989), these are: 0-reset (0), 1-reset (1), identity (id) and flip (flip), and are
defined as follows: (i) 0(0) = 0(1) = 0, (ii) 1(0) = 1(1) =1 , (iii) id(0) = 0, id(1) = 1,
and (iv) flip(0) = 1, f l ip(l) = 0. (See Figure 2.) With a letter that has a transition out

ID

FLIP ~

1-RESET O ~

0-RESET

Figure 2. The four boolean functions on two variables.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 233

Of only one of the two states we associate one of the four possible par t ia l one-variable
boolean functions: (v) 0 ~ 0, (vi) 0 ~ 1, (vii) 1 -+ 0, and (viii) 1 -~ 1. We refer to
letters with a total (partial) transition function as total (respectively par t ia l) letters. I f in
]a stochastic matrix M a letter z is associated with flip, for example, we write; z =M flip.
I f a pair of letters x and y are id and flip respectively, then we write (x, y) =~t (id, flip).
(When M is clear from the context, we will drop M and write (x, y) = (id, flip).)

As explained in the high level description at the beginning of this section, the idea of
our proof is that w a = wowlw2w3w 4 forces any near-optimal stochastic matrix to be close

to one of 2 n many determinist ic stochastic matrices corresponding to truth assignments,
and w b = w 5 distinguishes those corresponding to satisfying assignments from those cor-
responding to non-satisfying assignments. Below we describe how this is intended to be
achieved at a high level, leaving the exact nature of the notion of 'closeness' among stochastic
matrices to be specified later. The intended function of the first part w0 of the string w a

is to force the two 'control letters' a and b to go from 0 to 1, and 1 to 0, respectively or
vice-versa. The intuitive reason why (ab) ko forces these settings is as follows: Any sto-
chastic matrix which has two transitions for either a or b will lose probability, and hence
there can be only one transition for each of a and b. Furthermore, to be able to generate
(ab) ko, the single transition for a and the single transition for b must form a cycle. So,
we must have (i) (a, b) = (0 --+ 0, 0 ~ 0), (ii) (a, b) = (1 ~ l , 1 --+ 1), (iii) (a, b) =
(1 -+ 0, 0 ~ 1), or (iv) (a, b) = (0 -+ 1, 1 -+ 0). But because the length of w 0 is almost
the entire length of w, approximately optimal stochastic matrices must let these two transi-
tions have very large probabilities (close to one). This is impossible if both of these transi-
tions are out of the same state, so the option (i) and (ii) are eliminated, leaving (iii) and (iv).
We assume without loss of generality that we have (iv), that is, (a, b) = (0 -* 1, 1 -+ 0).
It is easy to see that with these particular settings of a and b, Wl forces f to be a flip.
WE performs the analogous function for each (ci, di) pair as w 0 did for (a, b), but since
w2 is not the overwhelming majority (and there are n such pairs), at this point all four
(i-iv) options for a cycle are possible for each (ci, di) pair. w3 uses f, which has been set
to flip by Wl, to eliminate (i) and (ii), and forces each (ci, di) pair to be either (1 ~ 0,
0 -+ 1) or (0 -+ 1, 1 ~ 0). The crucial observation is that for each i, the direction of
(c i, di) in relationship to the direction of (a, b) is left unspecified. Utilizing this degree of
freedom, w 4 sets the literal letters xi, xi in a particular way: For each i, (xi, xi) is forced to
be either (1, id) (see Figure 3) or (id, 1) (see Figure 4), corresponding respectively to the

"assignment of ' true' and 'false' to the variable xi. In this way, stochastic matrices assigning
a near optimal generation probability on WoW1W2W3W 4 are forced to be close to, one of these
deterministic stochastic matrices, which we called earlier 'canonical stochastic matrices.'

m

e , x i a, di, x i x i ' xi

Q ~ ~ b, ci, e " ~

Figure 3. The deterministic automaton corresponding to 'True.'

234 N. ABE AND M.K. WARMUTH

e, x i a, ci, x-i xi ' xi

~) ~ b, di, e " ~ ~
Figure 4. The deterministic automaton corresponding to 'False.'

Observe that there are 2 n of these, corresponding to the 2 n truth assignments on n variables.
Finally, w 5 is designed so that any canonical matrix 'satisfying' F will assign it a probabil-
ity exceeding some bound, whereas any canonical matrix not satisfying F will assign it
probability zero. Here we use a trick related to that used by Angluin in Angluin (1989).
For a given clause Cj in F, (xb 9~4, X2) for example, W4j is ab (XlX4Xz)b. Since each W4d

is preceded by an 'ab' and followed by a 'b,' (xl, 24, x2), is forced to map 0 to 1. Now
the crucial observation is that if all three letters xt, £4, and xz are set id (or the correspond-
ing truth assignment assigns all three literals 'false') then so is (xl, Y4, x2), and hence it
must map 0 to 0. Since for any non-satisfying truth assignment there is a clause not satisfied
by it, any canonical matrix corresponding to a non-satisfying assignment assigns the string
w probability zero. Hence if F is unsatisfiable then any canonical matrix must assign zero
probability on w = c% (F).

Proof of Theorem 5.1

Now we make our argument precise. We begin by defining the notion of canonical (deter-
ministic) stochastic matrices.

Definition 5.1 (Canonical Stochastic Matrices). Let Tn denote the set o f truth assignments
on n variables, each mapping {X i [1 <_ i <_ n} to {True, False}. For each r ~ T n, we
define the 'canonical stochastic matrix for T,' written M~ as follows.

1. M~ is deterministic.
2. (a, b) =M~ (0 -* 1, 1 --* 0), f =My nip,
3. For each variable X i,

(ci, di) = M r (1 ~ 0, 0 ~ 1) i f r (X i) =

=MT (0 ~ 1, 1 -~ O) i f ~(Si) =
vi =M~ flip i f 7"(Xi) =

=MT id i f r(Xi)
(xi, £i) =My (1, id) i f T(Xi)

=Me (id, 1) i f 'r(Xi)
4. Each non-zero transition probability in

and e = M~ O.

True.
False.
True.

= False.
= T r u e .

= False.
M~ is either equal to or twice the frequency in

w o f the letter z labeling the transition where this frequency is defined as the number
o f occurrences o f z in w, written #(z, w), divided by [w[.
(i) For any partial letter z, M~(i, j , z) = 2#(z,w)/]wl i f and only i f M~(i, j , z) ~ O. "

60 For any total letter z, M~(i, j , z) = #(z,w)/[w] i f and only i f MT(i, j , z) ~ O.
(Notice that a and b, and all c i and di are partial letters and all other letters are total.)

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 235

We still need to show that M~ is stochastic. For convenience we will defer this proof till
(the paragraph following (5.5)), after we have developed some more notation for stochastic
matrices. Note that in the above definition we have arbitrarily chosen a to go from 0 to

"1 and b to go from 1 to 0. Given a canonical stochastic matrix M r, we let M r denote its
mirror image, obtained by reversing the states 0 and 1 in M~. M~(w) can be calculated
easily because canonical stochastic matrices are deterministics: Mr(w) is zero, if r does
not satisfy F, and otherwise is just the product of the probabilities assigned on all the trans-
itions occurring in the unique path for w that is assigned a positive probability by M~. If
we define C(w) as follows, regardless of whether F is satisfiable or not,

C(w)= i-i Ie#(Z,W)~#(z'w~
Z partial I W [

z~o~ I #(z' w)-l J (5.2)

then we have Mr(w) = C(w) just in case r satisfies F, and Mr(w) = 0 otherwise. We
are now ready to state the key lemma in the proof of Theorem 5.1.

L e m m a 5.1 Let c% be as defined in (5.1), and let M* (w) denote the maximum probability
assignable on w by an3~ 2-state PA, i.e. M*(w) = maxMeCTcn M (w). Then for ,any CNF for-
mula F and K = 2 rwl - , we have:

1. If F is satisfiable, then M*(c%(F)) >_ C(o~(F)).
2. If F is unsatisfiable, then M*(c%(F)) < C(o~(F))/K.

Proof of Lemma 5.1

The proof of part 1 is immediate: If F is satisfiable then let r satisfy F and we have M~(w)
= C(~%(F)). The other direction is more involved and requires more definitions. The
key is to find a useful way of quantifying the distance 6 between an arbitrary stochastic
matrix M and canonical stochastic matrices such that the generation probability assigned
on w by M can be shown to degrade rapidly as a function of minr~rt(M, MO. We can
then use it to carry out the dilemma argument described in the proof sketch. We need
some preliminary definitions.

Recall that for a given stochastic matrix M, M(i,j, z) denotes the transition probability
from state i to j labeled with letter z. We introduce the following notation for sums of
transition probabilities o f various forms:

M(*, *, z) = 1"I M(i, j, z)
i,jES

M(i, *, z) = I I M(i, j, z)
j~s

236 N. ABE AND M.K. WARMUTH

M(*, j, z) = Z M(i, j, z)
iES

We call M (i , . , z) the out-share of z at i in M, M(*, j, z) the in-share ofz a t j in M,
and M(., *, z) the share of z in M. We partition our alphabet ~n into letter groups, in
which the pairs of partial letters (a, b) and (ci, di) are grouped together and each total
letter forms a group with itself as the only letter. 9 Let Fn denote the set of these letter
groups, that is, F , = {{a, b}} LJ {{ci, di} : i = 1 , n} U {{z} : z total}. We then
define the share of a letter group H in a stochastic matrix M, written M(*, *, H) , to be
the total sum of the probabilities of all transitions in M labeled with a letter in H. That is,

M(*, ., H) = Z M(i, j, z)
i,jE S,zEH

The out-share and in-share of a letter group are defined analogously to those of a letter
and #(H, w) is defined as ~z~14 #(z, w). Recall that in a canonical stochastic matrix, there
is one transition out of each state for each total letter whose probability is the frequency
of that letter, and there is exactly one transition for each partial letter, whose probability
is twice the frequency of that letter. This implies that the share of each letter group in
Me is set according to twice the total frequency of the letters from that letter group:

YH E I~n M~-(*, ~:, H) = 2 #(H, w) (5.3)
Iwl

For example, for the letter group consisting of a single total letter f, we have the following
from the definition of Me.

MT(*, ., f) = Mr(O, *, f) + Mr(l, *, f) = 2 #(f' w) (5.4)
Iwl

For a letter group consisting of two partial letters, for example (a, b) we can derive the -
following also from the definition of M~.

M~(*, *, (a, b)) = M~(*, *, a) + M~(*, *, b) = 2 2#(a, w) _ 2 #((a, b), w) (5.5)
Iwl Iwl

For each letter group the share is split evenly to the two states, and hence M~(O, *, H)
= MT(1, . , H) = #(H, w)/I wl. By summing over all letter groups it follows that MT(0,
• , *) = M~(1, *, *) = 1 and thus M~ of Definition 5.1 is stochastic. The generation prob-
ability C(w) can now be rewritten as follows, by plugging (5.3) into (5.2).

A P P R O X I M A T I N G DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 237

c(w)= II iwi = II 2 '
HEI' n HEr n

(5.6)

Note that we can straightforwardly generalize C(w) to an arbitrary substring u of w:
We define C(u) by replacing each occurrence of #(H, w) by #(H, u):

Mr(*, *, H) ~ #(H,u)
c(u)= H i

HEr n

(5.7)

It can be shown that C(u) is the probability that any satisfying canonical stochastic matrix
assigns on u, but in this proof we only use the above definition for C(u). We also introduce
a version of C(u) which is relativized to the letter group shares of an arbitrary stochastic
matrix M. That is, for an arbitrary string u we define the quantity C[M](u) as follows:

I M(,, ,, H) ~ #(H,u)
C[MI(u) = I " I 2 (5.8)

HEF n

Again there is an interpretation of C[M](u) as the probability assigned on u, when r satisfies
F, by a variant Mr [M] of the canonical stochastic matrix M, which is defined exactly
analogously to M~ except the letter group shares of M~ [M] are the same as those of M.
Note that C[Ml(uv) = C[MI(u)C[MI(v).

We now formalize the notion of distance between an arbitrary stochastic matrix M and
any canonical stochastic matrix M~. The H-leak of an arbitrary stochastic matrix M with
respect to M, at state i, written Xin(M, M~), is the fraction of H 's share out of i which
is assigned by M to transitions assigned zero probability by M~:

kin(M, M~) = ~ M(i, j, z) (5.9)

zEH,jeS, Mr(i,j,z)= 0 M(i, *, H)

Also,

XH(M, M~) = m a x i ~ S kin(M, M~) (5.10)

We then define the leak of M with respect to M~ as the maximum kin(M, M~) over all states
"and letter groups.

X(M, M~) = maxHer, ~ k H (M , Mr) (5.11)

The skew, written v(M), is twice the maximum deviation of the ratio M(0, *, H)/M(,,
*, H) from a half, where the maximum is over all letter groups H.

238 N, ABE AND M.K. WARMUTIq

uH(M) = 2 [M(0, *, H) 1 [and

M(*, , , H) 2

u(M) = maxHer, pH(M) (5.12)

Note that since 0 _< M(O, *, H) /M(, , , , H) _< 1, we have, for an arbitrary letter group H:

0 _< uH(M) _< 1 (5.13)

Recall that M~(0, , , H)/M,(, , *, H) = 1/2 and thus for motivational purposes the skew
of M for a letter group H can be expressed as the ratio at which the ratio M(O, *, H) /M(, ,
*, H) deviates from MT(0, , , H)/M~(,, , , H):

..--77--M(0' *, H) M~(0, *, H)

vH(M) ----- M(*, *, H) M~(*, *, H)

M~(O, *, H)

Mr(*, *, H)

We then define the distortion of M with respect to any deterministic stochastic matrix M~,
written f(M, M~), as follows:

5(M, M~) = max {),(M, MT), v(M) 2} (5.14)

The distortion of M is then defined as the distortion of M with respect to the closest canonical
stochastic matrix, including their 'mirror images.'

6(M) = minueT, min {6(M, M~), 6(M, Mr)}

For each of leak, skew and distortion, we define the restriction of it to an arbitrary subset
of the letter groups by maximizing over • instead of Fn in the above definitions. We

use readable names such as (a, b) and (a, b, c, d) to refer to subsets of Fn such as {{a,
b}} and {{a, b}} tO {{ci, di}} : i = 1 , n}, respectively. We then let symbols such.
as k (a'b), u ~ , and 6 (a'b'c'a) denote the corresponding restrictions of k, u and f. Note that
the only information in MT that was used to define X(M, MT) is the transition function
associated with M~, and to define XH(M, M~), only the restriction of it to H. Thus, for.
any transition function f : S × Zn ~ S, restricted to a letter group H, we define XH(M,
f) to be maXies, H~Vn ~zgH, jESJ(i,z)¢j M(i, j, z)/M(i, *, H), and define fig(M, f) "accordingly.
For readability, we use notation such a s ~k(a'b)(M, {a : 0 - + 1, b : 1 ~ 0}) and
6(a'b'ci'di)(M, {a : 0 ~ 1, b : 1 ~ O, c i : 0 --* 1, di : 0 ~ 0}).

The notion of distortion just defined quantifies how bad an arbitrary stochastic matrix
is in comparison to canonical stochastic matrices which are near optimal, from the point
of view of maximizing the generation probability on the unique path on the substring
WoWlW2W3W 4, which is assigned a positive generation probability by canonical stochastic

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 239

matrices. Any leak causes a loss of probability on this path as is obvious from its defini-
tion. Any skew also causes a loss of probability on the path, essentially because the path
in question for the string wowlw2w3w4 is almost perfectly symmetric in the following sense:
For each letter group (except the dummy letters vi) there are exactly the same number of
transitions out of state 0 as there are out of state 1. We demonstrate this via an example.

Example 5.1. Let M be an arbitrary stochastic matrix, and M r a canonical stochastic
matrix. Consider the string ab and the path for ab which is assigned a positive probability
by Mr, namely, 0 ~ 1 ~ O. We will show that the probability assigned by M on this path,
M(0, 1, a) • M(1, O, b) is at most (1 - 6(a'b)(M))(M(*, *,(a, b))/2) 2. Notice that (M(*,
• , {a, b})/2) 2 is the maximum probability assignable on ab by any matrix Yl such that l~l(*,
• , (a, b)) = M(*, *, (a, b)). To show the above inequality first observe that

M(0, 1, a)" M(1, 0, b) _< (1 - X(oa'b)(M, Mr))M(O, *, (a, b))" (1 -)~a'b)(M, Mr))M(1, *, (a, b))

- (1 - max{)x~a'b)(M, Mr) , ~,ta'b)(M, M0})M(0 , *, (a, b))M(1, *, (a, b))

By (5.10) the above maximization clause can be replaced by x(a'b)(M, Mr). Also assume
without loss of generality that M(O, *, (a, b)) > M(1, *, (a, b)). From the definition of
v (a'b) in (5.12), #follows that M(0, *, (a, b)) --- (1 + v(a'b))M(*, *, (a, b))/2 which implies
that M(1, *, (a, b)) = (1 - v(a'b))M(*, *, (a, b))/2 and we continue as follows:

M(O, 1, a) • M(1, O, b) -< (1 - ~k(a'b)(M, Mr))(1 q - p(a 'b)(i)) (1 -- P(a'b)(M))

(M(*' *' (a'b)~

<- (1 - x(a'b)(M' Mr)) (1 - v(a'b)(M)2) " ~M(*' *'

<(1-max{X(a 'b) (M' MO' /"(a'b)(m)2})" I M(*' *'2 (a,b))~

=(1 -6 (a ,b) (M, Mr)). I_M(*' *' (a'b))_~ 2 2 by (5.14)

The following technical lemmas are useful for proving Lemma 5.1, part 2. Their proofs
- are deferred to Appendix A.

Lemma 5.2. For an arbitrary stochastic matrix M E Y-~,, we have:

C(w) >_ C[Ml(w)

L e m m a 5.3. For arbitrary M ~ YT(~ and x E r,* we have:

1. M(x) <__ 1Iz~. (max{M(O, *, z), M(1, *, z)}) #(z'z~.
2. M(x) < IIz~E, ' (max{M(*, O, z), M(*, 1, z)}) #(z'x~.

240 N. ABE AND M.K. WARMUTH

1.emma 5.4. For an arbitrary stochastic matrix M E Y-)T~ and an arbitrary string x E r,*,
we have:

M(x) < 21xlC[M](x)

Lemma 5.5. Let M E Y2Un be an arbitrary stochastic matrix. Let 6(M) = A and let
M~ be a canonical stochastic matrix to which M is closest, namely 6(M, MO = A. I f
M~(x) = 0 then we have for an arbitrary string x:

M(x) <_ Ixl "A(I +)lxIc[m](x)

Using the above technical lemmas, we are now ready to prove Lemma 5.1, part 2. The
following lemma summarizes the key steps of this proof. Its proof also uses the above tech-
nical lemmas and is relegated to Appendix B.

Lemma 5.6. For an arbitrary stochastic matrix M E .72U, all o f the following hold.

1. I f M(w) >_ 1/K C(w), then ~(a'b)(M) ~-- 2-1°/s.

2. M(Wo) <- C [M] (w o) .

3. I f ~)(a'b)(M) <-- 2-10/S then M(Wl) < (1 - 6(a'b'f)(M)/2)klC[M](Wl).
4. For each i <- n let A i = min{6(c"d')(M, {c i : 0 --* O, di : 0 ~ 0}), 3(c"4)(M, {ci : 0

-~ 1, d i : 1 ~ 0}), (~(c"di)(M, {Ci : 1 ~ O, d i : 0 ~ 1}), ~i(ci'4)(M, {Ci : 1 ~ 1, di :
1 ~ 1})}. and let A = maxi<<_A i. Then, i f M (w) >_ C(w)/K then A <_ 2-1°/s.

5. I f A <_ 2-10/s, where A is as defined above, and 6(f)(M) <- 2-1°/s, then U(w3) <
(1 -- b(c'd~f)(M)/2)k3C[M](w3).

6. I f 6(a'b'c'd'f)(M) <-- 2-10/S then M(w4) < (1 - 6(a'b'c'dd'x'¢'e)(M)/2)k'C[Ml(w4).
Z If6(a'b'~'dd'x'~'e)(M) <-- 2-10/S and F is unsatisfiable, then M(ws) < (1/2)k'C[M](ws).

Proof of Lemma 5.1, part 2, given Lemmas 5.2, 5.4 and 5.6. Assume that M*(w) >_
C(w)/K, and let a particular M witness this fact. We will show that this will imply that
F is satisfiable. First, the following follows immediately from Lemma 5.6, part 1.

(3(a,b)(M) ~ ~ (5.15).
s210 •

Next, suppose for contradiction that 6(f)(M) > 2-1°/s. Then, 6(a'bf)(m) = 6 (f) (m) , since.
6(f)(M) > 6(a'b)(M). It follows from Lemma 5.6, part 3:

M(wl) < i1 6~f~M). 1 k, _ - - - C [M] (W l)

Substituting kl = s2n(log K + [w2w3w4w5 1) into the above gives us:

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 241

M (w 0 < i1 6(f~M)_ls2,(logl(+kw~w 3
_ - - • C [M I (w 0

e-6(f)(M)/2"s211(logK+lw [). C [M] (Wl)

....
< ~ . • C [M l (w ~) (5.16)

Lemma 5.4 provides us with an upper bound on how large M(w2w3w4w5) could possibly
be in comparison to C[M](w2w3waws), that is,

M(W1W2W3W4W5) ~ 2]wlw]C[M](wIw2w3w4w5)

We can use this bound and (5.16) to bound M(w) above by 1/K C(w) as follows:

M(w) < M(wo)M(wl)M(wzw3w4ws)

<-- C [M] (w o) M (w 1) M (w 2 w 3 w 4 w 5) , by Lemma 5.6, part 2

aIlllw2w3w,w~'
< C[M](w0) "~. C[M](w1) "M(w2w3w4w5) , by (5.16)

1 (wwww
= ~ " C[M](w0) • C[M](w1) " ~ M(w2w3weW5) , by rearranging

terms

1
< ~ . C[M](w0) • C[M](wl) • C[M](w2w3w4ws), by Lemma 5.4

1 < ~ . C[M](w), by definition of C[M](w)

1
< g " C(w), by Lemma 5.2 (5.17)

This contradicts our assumption, and hence together with (5.15), we conclude:

1
¢3(a'b~f)(M) = max{6(a'b)(M), ¢3(f)(M)} _< s21~. (5.18)

• Since by assumption, M(w) > C(w)/K, A as defined in the statement of Lemma 5.6, part
4, does not exceed 2-1°/s. Suppose now for contradiction that b(C~(M) > 2-1°/s. Then,
since 6(a'b)(M), h and 6(f)(M) are now known not to exceed 2-1°/s, it follows from Lemma
5.6, parts 2 through 5, and a similar argument as before, that this would imply M(w) <
1/K C(w). Thus, we conclude:

1
6(a'b'¢'a:)(M) -- s21~ (5.19)

242 N. ABE AND M.K. WARMUTH

Given the above, it follows from Lemma 5.6, parts 2 through 6, by an analogous argument
as before, that the distortion of M with respect to all letters is small, that is,

1
6(M) _< - - (5.20)

s f °

Finally, suppose that F is unsatisfiable. Then by Lemma 5.6, part 7, we must have

M(ws) < I ~ l k S " C [M] (w s)

Now again using Lemma 5.6, parts 2 through 6, and the fact that k5 = log K, we can show
that M(w) < 1/K C(w), contradicting our assumption. Hence we conclude that F must
be satisfiable.
End of proof of Lemma 5.1 and proof of Theorem 5.1

Proof of Theorem 5.2. First note that 1-state PAs are deterministic. Thus, by Corollary
4.2, it is clear that the MLM problem for the 1-state constraints is solvable in polynomial
time. We then show that if we use the optimal 1-state PA for the MLM problem for s-state
null constraints, then it achieves the guaranteed approximation factor of s Iwl . The optimal
1-state PA sets the transition probability of each letter proportionally to the frequency of
that letter in the input string w. More precisely, the optimal matrix, denoted M* is defined
as follows: For each letter z E E, we set

#(z, w)
M*(0, 0, z) -

Iwl

where we let 0 be the unique state in the 1-state PA. Hence, the probability M* assigns
on w is easily computed as follows:

M*(w) = H (#(z, #(z,w)
IwlJ

Now, using Lemma 5.3, we can compute the following upper bound on M(w) for any
s-state stochastic matrix M.

M(w) < I I (maxi~sM(i, *, z)) #(z'w) (5.21)
zE~

Here we have the constraint that ~z~ maxi~sM(i, *, z) -< s. Hence, by Lemma 4.2, we
have:

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 243

M(w) < 1-'1 fs#(Z' wy] #(z,w)

L_ IwlJ

slwl 1I F L-F J
= slWlM*(w)

End of proof of Theorem 5.2

6. Application to training hidden Markov models

Hidden Markov models are used extensively as probabilistic models for generation of speech
signals for the purpose of speech recognition. See Levinson, Rabiner and Sandhi (1983)
for an excellent tutorial on this material. Hidden Markov models are defined similarly
to probabilistic automata, except that the generation of letters is associated with the states
rather than with the transitions. We briefly review the definition below.

Definition 6.1 (Hidden Markov Models(HMM)). A hidden Markov model P is a quin-
tuple (Sp, ~e, 7rp, Alp, LI,) where Sp is a finite set of states, Zp is a finite alphabet, re
: Sp --* [0, 1] is the initial probability distribution over Sp, Me : Sp × Sp ~ [0, 1] is
a stochastic matrix, and L e : Sp × ~e ~ [0, 1] specifies the letter generation distribu-
tion at each state, i.e.

~] re(i) = 1 and ¥ i ~ Sp ~] Me(i, j) = 1 and ¥ i ~ S e ~_a Le(i, a) = 1 (6.1)
iESp jESp aE~p

For any string w = wl . • • Wn ~ ~ , the generation probability assigned on it by P =
(Sp, ~p, 7rp, Alp, Lp) is computed as follows.

n-1

P(Wl . . . wn) = ~ zce(io)" H Lp(ij, Wj+l)Mp(ij , i j+ l) (6.2)
(i 0 i n)Es~ +1 j=0

As before, for any given example length n, P defines a probability distribution over Enp.

Any hidden Markov model can be simulated by a probabilistic automaton of the same
number of states. For an arbitrary hidden Markov model P = (Sp, r.p, 7rp, Mp, Lp],
define a probabilistic automaton Q = (SQ, ~Q, 7rQ, MQ) by letting SQ = Se, ~Q = Ep,
7rQ = 7rp, and

¥i, j E S O Yz ~ ~a Ma(i, j , z) = Lp(i, z) " Mp(i, j) (6.3)

Then, P and Q define the same distribution over E~ for any n, as demonstrated below.

244 N. ABE AND M.K. WARMUTI-

Q(wl • . . W n) ~] 7rQ(io) •
(i0 in}~s~ + t

7r e(io) •
(i0 in)~s~ ÷~

n-1

II
j=O

mQ(ij, 6+1, Wj+l) by (2.2)

n - 1

H Lp(ij, Wj+l)Mp(ij, 6+1) by (6.3)
j=0

= P(wl . . . wn) by (6.2)

Note that the ratio Ma(i, j , z')/MQ(i, j , z ') equals Lp(i, z)/Le(i, z ') and is independent
of j . In other words, the class of s state hidden Markov models is equivalent to the class
of s state probabilistic automata satisfying the following condition:

¥i, j , k ~ Sp Yz, z' E ~e
MQ(i, j , z) _ MQ(i, k, z)

Ma(i, j , z ') Ma(i, k, z ')

We define the training problem for hidden Markov models exactly analogously to the
training problem for probabilistic automata (c.f. Definition 2.4). The only difference is
that the input constraint that an HMM training algorithm receives is an HMM constraint,
in place of a PA constraint. Here, an HMM constraint is a five-tuple C = (~, S, I, G,
L }, specifying respectively the finite alphabet, set of states, legal initial states, legal transi-
tions and legal letter generations. Formally,, I ___ S, G c S x S and L ___ S x ~. As
before, we measure the size of the input constraint by the total number of probability
parameters in it, I I [+] G] +] L I, and denote this by t. We say that an HMM P satisfies
C = {E ,S , L G , L) if an only i fSp = S a n d r . e = E a n d

Vi ~ I, 7re(i) = 0
¥(i, j) ~ G, Mp(i, j) = 0
¥(i, z) ~ L, Lp(i, z) = 0 (6.4)

For an arbitrary HMM constraint C = (P., S , / , G, L}, let Y/-YTFY-~(C) denote the class
of HMMs satisfying C. We can think of oZ/-~TYT((C) as the subset of [0, 1] I × [0, 1] a ×
[0, 1] L satisfying the stochastic condition (6.1). The training problem for a class G of HMM"
constraints is defined analogously to the training problem for a class of PA constraints (see
Definition 2.4). We can show the same sample complexity bound (up to a constant factor)
for training a class of HMM constraints as we did for PAs in Theorem 3.1. We only sketch"
how this is shown, since the proof is almost identical to the proof of Theorem 3.1. We
define ~-'~,)Tt/r~7~-~f)m by bounding the initial, transition and letter generation probabilities
from below by 1/tm, where t is the size of the input constraint. We define ..7.7/-Y-TgYT((C) m
by quantizing all the probabilities in the same way as before. The rest of the proof is essen-
tially the same. The analogues of inequalities (3.13) and ~(3.14) for .7-/Y-~((C,
J-J.Y/-YTFY-Y'(C) m and .7.Y/-YTFY-3V(C) m can be shown the same way, noting the fact that the
probability assigned on a string of length n by an HMM is a product of 2n + 1 probabilities,
as opposed to n + 1 for PAs.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 245

Corollary 6.1. An arbitrary class of HMM constraints G can be trained with sample com-
plexity O((n/e)2t • log 3 nt/e • log 1/8 • log 2 log 1/6), where to is the size of the input
constraint.

Corollary 6.2. Any finite class of HMM constraints is polynomially trainable.

7. Concluding remarks

We were able to show that training an arbitrary class of PAs and HMMs can be done with
polynomial sample complexity when computational efficiency is ignored. The sample com-
plexity bounds given in Theorem 3.1 for training a class of PAs and in Corollary 6.1 for
training a class of HMMs may perhaps be improved significantly. Lower bounds for these
training problems should be investigated.

Our method for obtaining sample complexity bounds can be summarized as follows:

(i) We bound the parameter values away from zero to avoid the unboundedness of the
Kullback-Leibler divergence.

(ii) We quantize the bounded parameter space to obtain a hypothesis class of a moderate
cardinality.

(iii) We show that the resulting quantized hypothesis class 'finely covers' the whole hypoth-
esis class with respect to log loss.

(iv) Finally we apply Hoeffding's inequality on a class of bounded random variables defined
in terms of the quantized hypothesis class to obtain an upper bound on the sample
complexity for uniform convergence.

It would be interesting to use this method to establish sample complexity bounds for various
other parameterized distribution learning problems with respect to the Kullback-Leibler
divergence and for such problems with respect to the other measures of distance between
distributions mentioned in the introduction. ~° All our sample complexity bounds with respect
to the Kullback-Leibler divergence rely on Hoeffding's inequality and thus grow with 1/e 2.
Is the l& 2 growth in the sample complexity really necessary?

We showed in Section 6 that s-state HMMs can easily be simulated by s-state PAs. How
c a n HMMs be used to simulate PAs?

There are many open problems related to the hardness results of Section 5. First, we
would like to know whether the following decision problem is in NP.

Input: two numbers s and a encoded in unary, a string w E ~* where I E [= a, a probabil-
ity q ~ [0, 1] encoded in binary.

Question: Does there exist an s-state P A P with alphabet size a such that P(w) > q?

It would also be interesting to determine the precise computational complexity of various
formulations of the approximate MLM problem as a kind of decision problem.

246 N. ABE AND M.K. WARMUTE

Second, Osamu Watanabe has brought to our attention that the reduction we exhibit in
the proof of Theorem 5.1 can probably be modified so as to strengthen our result and show
that the approximate single string MLM problem, perhaps with a more strict requirement
of approximation, is in fact A~-complete.

Third, we would like to know whether the single string MLM problem for the null 2-state
HMM constraints (with variable alphabet size) is approximable in polynomial time or can
we obtain a similar hardness result for this problem as the one proven in Theorem 5.1 for
the single string MLM problem for 2-state PAs with variable alphabet size?

Fourth, can the latter hardness result on the single string MLM problem be strengthened
from a factor of 2 rwl~-~ from the optimum (for any c~ > 0) to a factor of 2 (1-~)'lwl from
the optimum (for any o~ > 0)?

Fifth, recall that we have shown in Theorem 4.l that for an arbitrary class of constraints
the approximability of the sample MLM problem for it within a factor 2 m~-" (for any
> 0) where m is the sample size, would imply polynomial trainability of the same class.
Could this be strengthened so that polynomial approximability within a factor 2 (1-c~)'m (for
some c~ > 0) would already imply polynomial trainability of the class in question? Could
we perhaps show that polynomial approximability of the single string MLM problem within
a factor of 2 Iw]~-~ or 2 (1-~'lwl (for some oe > 0) would imply polynomial trainability?

Finally, we emphasize that even though the hardness results may be disappointing they
can serve as guidance in the search for constructive results. Perhaps the most significant
open problem inspired by the results of the present paper is to determine practically rele-
vant classes of PAs and HMMs that are provably polynomially trainable. For example, the
class of HMM constraints used in speech recognition (Levinson, Rabiner & Sondhi, 1983)
consist of chains of states in which only transitions that go forward in the chain or stay
stationary in the chain are legal. What is the lowest sample complexity required for train-
ing this important class of HMM constraints? Is this class polynomially trainable or is train-
ing this class hard modulo some weak assumption such as RP ~ NP?

Acknowledgments

Most of this work was done while the first author was at the Department of Computer
and Information Sciences, University of California, Santa Cruz, supported by the Office
of Naval Reserach under contract number N0014-86-I-0454. Part of this work was done"
after the first author began employment by NEC Corporation, and while the second author
was visiting IIAS-SIS Fujitsu, Limited, Japan.

We thank David Haussler for teaching us many of the tools applied in this paper. In"
particular, he suggested the idea of bounding transition probabilities from below for showing
sample complexity bounds. We thank Dana Angluin for showing us her hardness proof
for the 2-state DFA consistency problem (Angluin, 1989) which served as a starting point
for the non-approximability result for the single string MLM problem for the 2-state PA
constraints. Thanks to Ron Rivest for bringing the single string MLM problem to our
attention. Thanks to Nicolo Cesa-Bianchi, Yoav Freund, Phil Long, Aleksandar Milo-
savljevic, Dirk Van Compernolle, and Osamu Watanabe for fruitful discussions.

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 247

Notes

1. HMMs are similar to probabilistic automata, except that outputs in an HMM are associated with the states
rather than the transitions, and thus the transitions are unlabeled state to state pairs.

2. The existence of an algorithm for training hidden Markov models which always outputs a near local optimum
on a given sample is well-known ('Baum-Welch' algorithm (Baum, 1972)) and is used extensively in practice.
Note that in applications to speech recognition, the alphabet size is determined by how precitse the acoustic
signals are quantized. The alphabet size is often in the hundreds.

3. Contrary to what may seem to be the case from the equivalence result described in the previous paragraph
(of approximability within a factor of 1 + e and that within 2p(n,t) ma for the sample MLM problem), we
cannot use this equivalence to obtain the non-approximability result whtin a factor of 21w11-= from that within
1 + e, since the non-approximability result is for the single string MLM problem.

4. The probabilistic automaton is often formulated as a probabilistic acceptor in the literature. Here we view
PAs as generators. Thus the stochastic condition in this definition states that, for each state, the total prob-
ability of transitions out of that state sums to one, rather then the total probability for each state-letter pair
as is the case for PAs as acceptors. Tzeng considers the incomparable problem of learning PAs as acceptors
from queries (Tzeng, 1989).

5. In Physics, it is customary to use the natural logarithm for the definition of entropy. We use the binary logarithm
for the entropy and the Kullback-Leibler divergence as is done in information and coding theory.

6. Note that the ideal code may have codeword lengths that are not integers.
7. We have also implicitly extended the notion of divergence for the generalized notion of probability distribu-

tions in which the total sum of probabilities over the domain may be less than one.
8. Note that these bounds can be made slightly larger, which would result in a slight improvement on the sam-

ple complexity. In particular, the bound on the transition probabilities can be 1/t*m where t* denotes the
maximum number of transitions in G out of any state. The bound on the initial probabilities can be l/Ill m.

9. Thus, a letter group consists of either one or two letters.
10. This has recently been done in Abe, Takeuchi and Warmuth (1991) for various classes of probabilistic con-

cepts with respect to both the Kullback-Leibler divergence and the quadratic distance.
11. Each path for the string u can be formalized as a length 6 sequence from S × S x Zn, where each ith member

bas the ith symbol in u as its third component (its label) and consecutive transitions end and start in the
same state. Here we simplify our notation by viewing a path simply as a sequence of states, leaving the label-
ings by u implicit.

References

Abe, N., Takeuchi, J., & Warmuth, M.K., (1991). Polynomial learnability of probabilistic concepts with respect
to the Kullback-Leibler divergence. In Proceedings of the 1991 Workshop on Computational Learning Theory.
San Mateo, CA: Morgan Kaufmann.

Angluin, D., (1978). On the complexity of minimal inference of regular sets. Information and Control, 39, 337-350.
Angluin, D., (1988). Identifying languages from stochastic examples (Technical Report YALEU/DCS/RR-614).

Yale University.
" Angluin, D., (1989). Minimum consistent 2-state DFA problem is NP-complete. Unpublished manuscript.

Barron, A.R. & Cover, T.M., (1989). Minimum complexity density estimation. 1EEE Transactions on Informa-
tion Theory.

Baum, L.E., (1972). An inequality and associated maximizaton technique in statistical estimation for probabilistic
functions of a Markov process. Inequalities, 3, 1-8.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, (1989). Learnability and the Vapnik-Chervonenkis dimen-
sion. Journal of the ACM, 36, 929-965.

Gill, J., (1977) Probabilistic Turing machines. SlAM J. Comput., 6, 675-695.
Gold, E.M., (1978). Complexity of automaton identification from given data. Information and Control, 37, 302-320.

248 Y. ABE AND M.K. WARMUTH

Hamming, R.W., (1986). Coding and Information Theory, Second Edition. Prentice-Hall.
Haussler, D., (1991). Decision theoretic generalizing of the pac model for neural net and other learning applica-

tions. Information and Computation. To appear. (An extended abstract appeared in the Proceedings of FOCS '89.)
Kearns, M., & Schapire, R., (1990). Efficient distribution-free learning of probabilitic concepts. In Proceedings

of lEEE Symposium on Foundations of Computer Science.
Kullhack, S., (1967). A lower bound for discrimination in terms of variation. IEEE Transactions on Information

Theory, 126-127.
Laird, P.D. (1988). Efficient unsupervised learning. In Proceedings of the 1988 Workshop on Computational Learning

Theory. San Mateo, CA: Morgan Kaufmann.
Levinson, S.E., Rabiner, L.R., & Sondhi, M.M., (1983). An introduction to the application of the theory of

the probabilistic functions of a Markov process to automatic speech recognition. The Bell System Technical
Journal, 62.

Pitt, L., & Warmuth, M.K., (1989). The minimum consistent DFA problem cannot be approximated within any
polynomial. In Proc. 19th ACM Symp. on Theory of Computation. To appear in JACM.

Pollard, D., (1984). Convergence of Stochastic Processes. Springer-Verlag.
Tzeng, W., (1989). The equivalence and learning of probabilistic automata. In Proceedings of the 30th IEEEAnnual

Symposium on the Foundations of Computer Science.
Valiant, L.G., (1984). A theory of the learnable. Communications ofA.C.M., 27, 1134-1142.
Yamanishi, K., (1991). A learning criterion for stochastic rules. Machine Learning, 9, .

A. Proofs of technical lemmas

In this appendix we prove the technical l emmas 5.2 through 5.5.

Proof of Lemma 5.2. Recall that C [M] (w) = II~rN(M(*, *, H) / 2) #(14'w) with the constraint

that ~H~rnM(* * H) / 2 = 1. By L e m m a 4.2, the function of the form f (x l xn) =

x~' • x~ ~ • . . . • x~ n subject to the constraint Xl + x2 + • • • + xn = c attains its m ax im um

when xi = (ai/r,~=l ai) " c. Thus the m a x i m u m of C [M] (w) is obtained when M (* * H) / 2

of each letter group H is set to the frequency of H in w. Thus C [M] (w) <_ II/t~rn(#(H, w)/

]wl) #(n'w) and the product equals C (w) by equali ty (5.6).

End of proof of Lemma 5.2.

Proof of Lemma 5.3. Let M ~ _/~ be an arbitrary stochastic matrix and x = XlX 2 . . .

xt E r.~, be an arbitrary string, and let l denote Ixl, the length o fx . For any k, 1 _< k _< l,

let Pk,j denote the c o n d i t i o n a l probabil i ty that the machine M is in state j , g i ven that it"

has jus t generated x l x 2 • • • xk-1. Note that Pk,o + Pk,1 ---- 1 for any k. We can write M (x l

. . . xk) as follows:

M (x l . . . xk) <-- M(x~ . . Xk_l) " Pk,o " M(0, *, Xk) + M (X l . . . Xk-1) " Pk,1 ° M(1, *, xk)

= M (X l . . . Xk-1)(Pk, o " M (O , *, xk) + Pk,1 " M(1, *, xk))

<_ M (x I . . . X k _ l) m a x { M (O , *, xk) , M(1, *, xk)}, since Pk,o + Pk,1 = 1.

Hence it follows that:

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 249

Ixl
M(x) <_ I I max{M(0, *, xi), M(1, *, xi) } (A. I)

i=1

Part 2 of the lemma follows from a similar argument. First , analogously to Pk,j, let qk,j
denote the conditional probabili ty that the machine M was in state j at t ime step k, given
that it generated Xk+lX2 • • • xt after step k. Note that qk,0 + qk,1 = 1 for any k. We can
write M(xk . . . Xl) as follows:

M(x k . . . xl) <. M(*, O, xk) • qk,O " M(Xk+l . . . xt) + M(*., 1, Xk) " qk,1 " M(Xk+l . . . xt)

= (q~,o " M(*, 0, x~) + qk, l " M(*, 1, xk))M(xk+ 1 . . . xl)

_< max{M(*, 0, xk), M(*, 1, xk)}M(Xk+l . . . xl), since qk,o + qk, l = 1.

Hence it follows that:

Ixl
M(x) <_ I - I max{M(*, 0, xi), M(*, 1, xi) } (A.2)

i=1

End of proof of Lemma 5.3.

Proof of Lemma 5.4. This lemma follows straightforwardly from Lemma 5.3. By the defini-
tion of C[M](x),

C[M](x) = I I I M(*' *' H)~ #(H'x)
HEFn 2

But by Lemma 5.3, part 1, we have:

M(x) <_ 1--[(M(*, *, H)) #(a'x)
H(:F n

SO it follows:

m(x) <_ 2 Ixl. C[Ml(x)

End of proof of Lemma 5.4.

Proof of Lemma 5.5. Since Mr(x) = 0, m every path for x there must he at least one tran-
sition assigned zero probabil i ty by M r. Now since 6(M, Mr) = A, we have:

M(i, j , z)
X(M, Mr) = maxHErn,iES Z < 6(M, Mr) = A M(i, H) zEH, j~S,Mr(i,j,z) =0

250 N. ABE AND M.K. WARMUTH

Hence, in every path for x, there must be at least one transiton, say the k-th one, with
probability not exceeding A • maxiesM(i ' *, H(xk)), where we wrote H(xk) for the letter
group to which Xk belongs. But since u(M, M 0 = maxHern,ies 2 IM(i, * H)/M(* * H)
- 1/2 I _< x/5(M, M,) = x/A,

A • maxies{M(i, *, H(Xk))} < m(1 + x/~) M(*, *, H(xk))
-- 2

Let O = S t+l be the set of all paths of length l = [xl. Partition O into O1, 0 2 , • - . , O l

according to the first occurrence k of a transition probability not exceeding A(1 + x/~)
M(* * H(xk))/2. Notice that O = tA ~=~ Ok and Ok are mutually disjoint. Therefore if we
define M(x, Ok) = ~(i il)EOk IIJ= 1 M(ij_l, ij, xj), then we have M(x) = ~=1 M(x, Ok).
Applying a similar argument as in the proof of Lemma 5.3, part 1, on each Ok, we obtain:

M(x, Ok)_< ~ - I I max{M(0, *, xj), M(I, *, xj)}-~ • A(1 + x/A)M(*, *, H(xk))

L j#k 9 2

-< ~j~ek(1 +x/-A) M (* ' * ' H (x i)) I ' A (1 +x/-A) M (* ' * ' H (x k)) 2 2

_< A(1 + x/A) t . C[M](x)

Hence we have:

M(x) < IA(1 + x/A) l . C[M](x) (A.3)

End of proof of L e m m a 5.5.

B. Proof of Lemma 5.6

In this appendix we prove Lemma 5.6, the key lemma used in the proof of Lemma 5.1,
part 2. The proof uses the technical lemmas 5.2 through 5.5.

Proof of Lemma 5.6, part 1. Assume that M(w) > 1/K C(w). For an arbitrary letter z,
let i z be the state i E S with the maximum out-share for z. (Let i z = 0, if M(0, *, z) =
M(1, *, z).) Similary letjz be the state with the maximum in-share for z. Then by Lemma
5.3, part 1, we have:

M(wo) = M((ab) ko)

<--_ M(~, *, a) ~ • M(ia, *, b) k°

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 251

< QM(qa,* ,a) + M(ib, *,b)~2k°
- 2 , because xy <_ I X ~ 2 Vx, yE R

(B.1)

Let Ao~t denote the fraction of the total (z, b)-share not given to the states with maximum
out-shares for a and b, that is, Aout = (Eieia M(i, * a) + Zieib M(i, * b))/M(* * (a, b)).
Alternatively, we can write Ao~t as 1 - (M(ia, * a) + M(ib, * b))/M(* *, (a, b)). Noting
that M(ia, * a) + M(ib, * b) = (1 - Aout)M(*, * (a, b)), we obtain from (B.1):

M(w°) < (1 - - A°ut)2~°Q M(*' *'2 (a, b)) ; 2k°

= (1 - Aout)2k°f[M](wo), by definition of C[M] and noting Wo = (ab) ~°

Similarly, if we define Ain to be EJ¢Ja M(* j, a) + ~JeJb M(* j, b)/M(* *, (a, b)) = 1 -
(M(* Ja, a) + M(* Jb, b))/M(* * (a, b)), we obtain the following from Lemma 5.3, part 2.

M(wo) <- (1 - Ai.)2k°C[M](wo) (B.2)

So if we now let A = max{Aout, Ain}, then we have:

M(wo) <- (1 - A)2k°C[M](wo) (B.3)

Suppose for contradiction that A > 2-11/s. Then by the choice of k 0 = s211 (log K +
] WlW2W3W4W5 [), we must have

I1 ~') 2ko
1 j C[M](wo) (B.4) M(wo) < s211

< e-(2 ll/s)s2"(logg÷lwlwzw 3C[M](wo)

1 I i 1 [. . . . w3w,wsI < ~5" C[Ml(wo) (B.5)

Thus we can show via an argument of the style that was used in the proof of Lemma 5.1,
part 2, given lemmas 5.2, 5.4 and 5.6:

M(w) <_ M(wo)M(w 1 w 2 w 3 w 4 Ws)

< ~ C[Ml(wo) • 2 b IC[M](w1w2w3w4w5), by Lemma 5.4

1
< ~ C[M](wo)C[M](w~w2w3w4ws)

252 N. ABE AND M.K. WARMUTH

1 C[M](w)
K

1 C(w), by Lemma 5.2 -<~

This contradicts our assumption, so we must conclude that A < 2-U/s. Intuitively, we
have shown that both the out-share and in-share of each of a and b must be highly concen-
trated on one of the two states, and hence that for each of a and b, there is exactly one
transition in M which has almost all of the letter's share. Let era = (ia, j~) and erb = (ib, Jb)
these two dominating transitions for a and b, respectively. Formally we can derive the follow-

ing, recalling that Aout = (~ieia M(i, * a) + ~ieib M(i, * b))/M(* * (a, b)), and Ain =
~jej: (M(* j , a) + ~JeJb M(*, j , b))/M(*, * (a, b))

Z M(i, j, a) < - 2 M(i, *, a) + Z M(*, j, a)
(i,j) ;~ (i a,ja) i ~ i a J ~Ja

< AoutM(*, *, (a, b)) + AinM(*, *, (a, b))

< 2AM(*, *, (a, b))

1
< ~ M(*, *, (a, b)) (B.6)

Similarly, for the letter b, we can show:

1
Z M(i, j , b) < s-~f 6 M(*, *, (a, b)) (B.7)

(i,j) ~ (ib,Jb)

Next we will show that oa and erb must form a cycle, that is, Ja = ib and Jb = ia. For sup-
pose otherwise, then each of the 2 5 possible paths for the substring abab contains at least
one transition other than er a and erb which by (B.6) and (B.7) has probability at most 2-1°/s
M(* * (a, b)). Thus, each of the 2 5 paths has probability at most 2-1°/s M(*, * (a, b)) •
max{M(* * a), m(* * b)} 3 and

M(abab) <- 25 . 1 s~T6 M(*, *, (a, b)) • max{M(*, *, a), M(*, *, b)} 3

1
-< s-~ M(*, *, (a, b)) 4

1 ~M(*, *, (a, b))~ 4 1
<- 2 2 = ~ C[M](abab) (B.8)

a.PPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 253

Recalling that Wo = (ab) k°, the above implies that M(wo) <- (1/2)~°/2C[M](wo). As before,
by the choice of ko, this implies that M(w) <_ 1/K C(w). We have thus shown that aa and
% must for a cycle. More precisely, we must have one of the following four possibilities.

1. (Oa, %) = (0 --" 1, 1 ~ 0) .
2. (% oh) = (0 --' O, 0 --" 0) .
3. (aa, %) = (1 ~ 1, 1 ~ 1).
4. (oa, oh) = (1 ---, 0 , 0 - 1).

Next, we will show that in fact only options 1 and 4 are possible, given the assumption that
M(w) > 1/K C(w): if we had either option 2 or 3, then we would have M(w) < 1/K C(w).
Assume without loss of generality that we have option 2, that is, (%, %) = (0 ~ 0,
0 ~ 0). Then, note that ia = 0 and ib = 0. Hence we conclude:

M(ia, *, a) + M(ib, *, b) = M(O, *, a) + M(O, *, b) < 1 (B.9)

Now let #((a, b), w) be the number of all letters other than a and b in w and let h denote
the inverse of the frequency of these letter in w, that is, h = Iw[/#((a, b), w). Note that
h > Lwl/Iwlw2w3w4wsI > s211 holds by the way w is defined. Also note that M~(* *
(a, b))/2 = #((a, b), w)/Iwl = 1 - 1/h. Using (B.9), we can derive:

M(ia'*'a)M(ib'*'b) < IM(ia'*'a) + M (i b ' * ' b) 1 2 - 2 , s incexy _< ~(x + Y) ; e 2

2

_< , by (B .9)

because M~(*, *, (a , b)) = 1 - _1
2 h

1 I1 1 12 IM~(*'*'(a'b))12
= 4 + h ~ " 2

1 IM~(*,*,(a,b));2
- 2 " 2 noting that h > s211. (B.10)

Note that the above quantifies how much M loses on the letters a and b in w, as compared
to a canonical matrix Mr: M loses by at least a factor of 1/2 per each pair of a and b, if
we have option 2. Next, we will bound how much M could possibly gain on the remaining
letters as compared to a canonical matrix, by the fact that option 2 gives a and b less share.
This will again be quantified in terms of h. From Lemma 5.3, part 1, we know that the

254 N. ABE AND M.K. WARMUTI~

total generation probability assigned on these letters is at most IIz~zn\{a.b} M(* * Z) #(z'w:
and this quantity is maximized when M(* * z) are set proportionally to their frequencies
in w within their total share r~z~Zn\{a,b } M(* * z) = 2 - Zz~{,,.b} M(* * Z) -< 2. Hence,

But, by the definition of M~, we have that:

from (B.11) and (B.12), it follows that:

Here, the second to last inequality follows from the observation that by (5.4) for any partial
letter z in letter group H, M~(* *, H) = 4(#(z, w)/[w]) and by (5.5) for any total letter
z, M~(* * {z}) = 2(#(z, w)/lwl) . Now recalling that C(w) = HI4~v,(MT(* * H)/2) #~H'w~,
we can use (B.10) and (B.13) to bound M(w) from above by 1/K C(w), again contradicting
our assumption.

(B.11)

(B. 12)

(B.13)

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 255

= C(w), since #((a, b), w) = (h - 1)#((a, b), w)

= IQll(h-3-1°gh)/2~#((a'b)'W)c(w)

<_ C(w),

(-1-~ h-3-1°gh/2 1 h - 3 - 21ogh
since (~ _ j < ~ because clearly 2 > 1 given h > s211

1 < ~ C(w), since #((a, b), w) > log K (B. 14)

Thus, we have verified that o a and ab are either 0 ~ 1 and 1 --, 0, or 1 - , 0 and 0 - , 1.
By (B.6) and (B.7), and the definition of ~(a'b)(M, {a " 0 ~ 1, b : 1 --* 0}) and k (a'b)
(M, {a : 1 ~ 0, b : 0 -~ 1}), we conclude that one of the following must hold:

1
~k(a'b)(M, {a ' 0 ~ 1, b : 1 --* 0}) _< s~-g , or

1
x(a'b)(M, {a : 1 ~ 0, b : 0 ~ 1}) __<_ s21--- 6

Assume without loss of generality that the first of these two holds. Note that most of a's
share is out of 0 and most of b's share is out of 1. Then, again by Lemma 5.3, part 1,
we must have:

M(Wo) <- (M(O, *, a)M(1, *, b)) k°

< (1 - ~ ' (a ' b) (M) 2) k ° I M (* ' *' (a 'b)) ~ 2k° - 2 , as shown in Example 5.1

By an argument which is by now familiar, this implies that p(a'b)(M)2 <_ 2-10/s. Hence,
.together with the earlier assumption that x(a'b)(M, {a : 0 ~ 1, b : 1 -~0}) -~" 2-1°/s, this
implies that

6(,,,b)(M) (a b) = min~rnmax{X ' (M, Mr), p(a'b)(M)2}

<- max{X(a'b)(M, {a : 0 ~ 1, b : 1 ~ 0}), v(a'b)(M) 2}

1
- s21O •

256 N. A B E A N D M . K . W A R M U T ~

Proof of L e m m a 5.6, pa r t 2. This part follows directly from Lemma 5.3.

P roof of L e m m a 5.6, pa r t 3. This part follows at once if we establish the following claim
since (2-1°/s) _< 2 -1° as long as the formula F is not empty (s > 1).

Claim B.1. Let u = afabfb. Then, i f t~(a'b)(M) <_. (1/2) l° then M(u) <_ (1 - ~(a'b'f)(M)/2~
C[M](u).

Proof of Claim B.1. What we wish to show is roughly as follows: Given that a and b gc
essentially as intended, that is a mostly goes from 0 to l, and b mostly goes from 1 to 0,
thenfmus t also go essentially as intended, that i s fmus t go mostly from 0 to l, and 1 to 0.
(In the mirror image of a canonical matrix, the roles of a and b are flipped, but here we
assume without loss of generality that a goes from 0 to l, and not the other way round.)
We call these four transitions intended transitions, and all others unintended transitions.
Note that [u [= 6, and so the length of each path (state sequence) for u is] u [+ 1 = 7.
Let i2 denote the set of all paths 1~ possibly generating u, or f~ = S 7. We then let i21 denote
the set of those paths in f~ containing only intended transitions (for u), except possibly
at the two ends. For example, 1 ~ 1 ~ 0 ~ 1 ~ 0 ~ 1 ~ 1 is in 121 because the only
unintended transitions in it are the first 1 ~ 1, labeled with a, and the last 1 --, 1, labeled
with b. On the other hand, 0 ~ 1 ~ 1 ~ 1 ~ 0 ~ 1 ~ 0 is not in f~l because the sec-
ond transition, 1 ~ 1 labeled w i t h f and the third, 1 ~ 1 labeled with a are unintended.
Let f~l denote 12\fl 1. Let M(x, ~), in general, denote the probability that the string x is
generated by one of the paths in fL That is, letting x = Xl . . . xl and ~ = (io il),
M(x, I2) is defined as follows.

I

M(x, f]) = ~ H M(ij_l, i], xj)
(io,...,il)E~ j=l

Then by the definition of M(u) (Definition 2.5), ~1 and ~ it follows that

M(u) <_ M(u, ~1) + M(u, f~l) (B.15)

Given t h a t ~(a'b)(M) <_ (1/21°), we will bound M(u) from above as in the statement of thee
claim, by bounding from above the two terms M(u, ~1) and M(u, f]l) in (B.15) separately.
For computing M(u, f]l), recall from Example 5.1 that:

M(O, 1, a)M(1 O, b) < (1 - 6(a'b)(M)) r-M(*' *, (a, b))-~2
' ~ I._ 2 J

Similarly we can also show

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 257

Using these, we can bound M(u, 91) as follows:

M(u, 91) ~_~ M(*, 1, a)M(1, 0, f)M(O, 1, a)M(1, 0, b)M(O, 1, f)M(1 , *, b)

<_ M(*, *, a)M(*, *, b) • M(0, 1, a)M(l , 0, b) • M(0, 1, f)M(1 , 0, f)

2 • (1 - 6(a'b)(M)) M(*, *, (a, b)) 2
- 2

• (1 - ~ (f) (M)) I M (* ' - 2 * ' f) ~ 2

_< (1 - ~i(f)(M))(1 - ?9(a'b)(M))C[M](u)

__- (1 - 5(a'b'f)(M))C[M](u) (B. 16)

The last inequality followed because gl(a'b'f)(M) = max{6(___f)(M), 6(~'b)(M)}.
Now we bound from above the rest of M(u), i.e., M(u, 91). First note that by definition

every path, say ~o, in 91 contains at least one unintended transition which is at neither end
of u. The crucial observation is that because such an unintended transition has a transition
before and after it, there must be at least two consecutive unintended transitions in o~. Now
since u = afabfo, this implies that there must be at least one unintended (a, b)-transition,
and another unintended transition in ~0. Now note that there are at most five possible places
for two consecutive unintended transitions in a path in 91. I f one fixes one of these five
places as the place for the first occurrence of two consecutive unintended transitions, then
the total probability of generating u via these paths is less than C[M](u) by an approximate
factor of k(a'b)(M, M 0 times ~k(a'b'f)(M, Mr), accounting for the presence of unintended
transitions at two specific positions, disregarding any favorable skews that might be present.
For example, if we let 91,1 denote the set of paths in which the first two consecutive tran-
sitions (for a and f) are unintended, then we can bound M(u, 91,1) from above as follows.
First, from a generalization of Lemma 5.3 to any subset of paths, we have:

M(u, 91,1) ~--. max{M(0, 0, a), M(1, *, a)} • maxissM(i, i, f) • maxi~sM(i, *, a).

maxi~sM(i, *, b) • maxi~sM(i , *, f) • maxiesM(i , *, b) (B.17)

" Now by the definitions of leak and skew, if we let M r be an arbitrary canonical matrix,
we have:

max{M(0, 0, a), M(1, *, a)} _ max{X~a'b)(M, Mr) • M(O, *, (a, b)),

k]a'b)(M, Mr) • M(1, *, (a, b))} by (5.9)

<- k(a'b)(M, MO • rnaxiesM(i, *, (a, b)) by (5.10)

258 N. ABE AND M.K. WARMUTI~

M(* (a, b)) < x(a'b)(M, Mr) " (1 + v(a'b)(M)) •
- - 2

by (5.12)

Similarly,

maxiEs{M(i , i, f) } < x(f)(M, Mr) " (1 + v(f)(M)) • M(*, *, f)
- 2

For an arbitrary letter z in an arbitrary letter group H,

maxi~sM(i, *, z) <- (1 + vH(M)) • M(*, *, H) 2 by (5.12)

Plugging these into (B.17), we obtain:

M(*, "7 (a, b)) M(u, QI,1) < ~k(a'b)(M, MOO + v(a'b)(M))
- - 2

),(f)(M, Mr)(1 + v(f)(M)) M(*, *, f)
2

p(a,b)(M)) 3 ~_(-M(*' *'2 (a, b))-] 3_3 • (1 + v(f)(M)) M(*,2*, f) (1 +

= x(a'b)(M, Mr) " x(f)(M, Mr) " (1 + g(a'b)(M)) 4 • (1 + v(f)(M)) 2.

I M(*, *,2(a, b))14 . ~M(* , .2* , f) l 2

<_ ~k(a'b)(M, Mr)")~(a'b'f)(M, Mr)" (1 + v(a'b)(M)) 4" (1 + v(f)(M)) 2" C[Ml(u)

Since we can derive the same inequality for each of the five possible places for the first "
two consecutive postions of unintended transitions, we obtain the following.

M(u, f~--11) <- 5x(a'b)(M, Mr))t(a'b/)(M, MOO + v(a'b)(M))4(1 + v(f)(M))2C[M](u) "

Now since we have 6(a'b)(M, Mr) = max{~k(a'b)(M, Mr), (v(a'b)(M)) 2} <-- (1/2) a°, and 1 +
v(U)(M) _< 2 by (5.13), we obtain:

M(u, ~1) ~-~ 5 ° x(a'a'f)(M, MO + 22C[M](u)

APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 259

1 < _ ~k(a,bf)(M, Mr)C[M](u)
2

(B.18)

Putt ing (B.14), (B.16) and (B.18) together, we obtain:

M(u) < M(u, f~l) + M(u, i l l)

<_- - ~(a'b'f)(M) + ~ ~k(a'b'f)(M, M r C[M](u)

t~(a'b'f)(M) 1
2 C[M](u)

Proof of L e m m a 5.6, p a r t 4. This par t follows f rom an analogous a rgument to the p roof of
L e m m a 5.6, par t 1, except the par t that e l iminates two of the four poss ib le 'cycles, ' s ince
that par t makes use of the fact that the f requency of a and b in w is very c lose to one. Firs t ,
if we define A i for each i <- n, ana logous ly to A in the ear l ier proof , then we can show
that maxi<_nA i <_ 2-1°/s. We can also show that (v~Ci'di)(M))2 <_ 2-1°/s by the same argu-

ment . So, it follows that i f we let A = maxi<nmin{t3~c~'di~(M, {ci : 0 ~ 0, d i : 0 ~ 0}),
~(ci'di)(M, {Ci : 0 ~ 1, di : 1 ~ 0}), t~(ci'di)(M, {ci : 1 --+ 0, di : 0 ~ 1}), ?9(ci'di)(M, {Ci :
1 ~ 1, di : 1 ~ 1})}}, then we have that if M(w) >_ C(w) /K then A < 2-1°/s.

Proof of L e m m a 5.6, p a r t 5. There are two cases. Firs t , suppose that for some i, (ci, di)
pa i r is not ei ther (0 -o 1, 1 -o 0) or (1 ~ 0, 0 ~ 1). M o r e precisely, suppose that one
of the fol lowing holds:

1
Ai = 8(ci'di)(M, {c i : 1 ~ 1, di: 1 ~ 1}) < s21-- ~ (B.19)

1
A i = t3(ci'di)(M, { C i : 0 ~ 0, d i : 0 -o 0}) < s21-- ~ (B.20)

In this case, each of the 2 7 paths for the string w3, i = cifcidi fd i must contain at least two
unintended t ransi t ions, that is, two t ransi t ions o ther than f : 0 ~ 1, f : 1 ~ 0, ci : 1 ~ 1,
d i : 1 ~ 1 when (B.19) holds, and two transi t ions other than f : 0 ~ 1, f : 1 -o 0, ci :
0 ~ O, di : 0 ~ 0, when (B.20) holds. Since all of Ai, ~k(f)(M, Mr) <__ t~(f)(M, Mr) , and
u(c'd'f)(M) < max{Ai , 6(f) (M, M~)} are at mos t 2-1°/s, we can bound M(w3,i) f rom above
as follows.

M(w3,i) <- 27(max{Ai, ~,(f)(M, Mr)}) e

• (1 + g(C'd'f)(M))6 (-M(* , *, (ci, di))
2

1
< _ C[M](w3,i)

2

260 N. ABE AND M.K. WARMUTIq

It follows that in fact in this case M(w3) < (1/2)k3C[M](w3), since each w3, i occurs k3 times
in w 3. Next, we assume that each (ci, di) pair is set as intended, namely (0 --* 1, 1 ---, 0)
or (1 ~ 0, 0 ~ 1). Given this, we can prove the analogue of Claim B.1 in the proof oI
Lemma 5.6, part 3, where the string afabfb is replaced by cifcidifdi. The desired conclu-
sion follows at once.

Proof of L e m m a 5,6, p a r t 6. The proof of part 6 is similar to the proof of part 3. Using
the same technique of dividing the set of paths for each substring of the form u i =
axibxicixidixibeaeab we can obtain the following claim, exactly analogous to the claim
in the earlier proof.

Claim B.2. Letu i = axibx icixidixibeaeab. Then, i f ~(a'b'ci'di)(M) ~ (1/2) 1° then M(ui) <
(I - 6(a'b'ci'di'xi'xi'e)(M)/2)C[M](ui).

I f we divide the path set of ui into f]l and ill, defined as before, then if we let M~ be an
arbitrary canonical matrix, we can show the following

M(ui) <-- M(ui, ~1) + M(ui, f]l)

I <_ -- ~3(a'b'ci'di'xi'xi'e)(M) + -~ ~k(a'b'ci'di'xi'~i'e)(M, M, C[M](u)

=~1-?)(a 'b 'ci 'di '2-- '~ii 'e)(M))lC[M](u)

Proof of L e m m a 5.6, p a r t 7. As we observed in the proof sketch of Theorem 5.1, if F
is unsatisfiable, then for any canonical stochastic matrix M~, we must have M~(ws) = O.
But we have shown that iS(M) _< 2-1°/s. In other words, for some particular truth assign-
ment r, t3(M, M~) < 2-1°/s. Therfore we can apply Lemma 5.5 to each substring u = II}=l
ab(lj,llj,21j,3)b and obtain the following.

M(u) <_ 6s--}T 6 + C[M](u)

Clearly M(u) <_ (1/2)C[M](u) holds, and thus we obtain M(ws) -< (1/2)k~C[M](ws).
End of proof of L e m m a 5.6.

