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Abstract. We introduce a rigorous performance criterion for training algorithms for probabilistic automata (PAs) 
and hidden Markov models (HMMs), used extensively for speech recognition, and analyze the complexity of 
the training problem as a computational problem. The PA training problem is the problem of approximating an 
arbitrary, unknown source distribution by distributions generated by a PA. We investigate the following question 
about this important, well-studied problem: Does there exist an efficient training algorithm such that the trained 
PAs provably converge to a model close to an optimum one with high confidence, after only a feasibly small 
set of training data? We model this problem in the framework of computational learning theory and analyze the 
sample as well as computational complexity. We show that the number of examples required for training PAs 
is moderate--except for some log factors the number of examples is linear in the number of transition probabilities 
to be trained and a low-degree polynomial in the example length and parameters quantifying the accuracy and 
confidence. Computationally, however, training PAs is quite demanding: Fixed state size PAs are trainable in time 
polynomial in the accuracy and confidence parameters and example length, but not in the alphabet size unless 
RP = NP. The latter result is shown via a strong non-approximability result for the single string maximum likelihood 
model probem for 2-state PAs, which is of independent interest. 
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1. Introduction 

We address the p rob lem of approximating an arbitrary, unknown  source dis t r ibut ion by 

-distributions generated by probabil is t ic  automata.  Probabil is t ic  automata (PAs), and hid- 
den Markov models  1 (HMMs)  which are closely related to PAs, are used extensively as 

models  for probabil is t ic  generat ion of  speech signals for the purpose of speech recogni t ion 
"(see for example Levinson,  Rabiner & Sondhi,  (1983))• The problem addressed in the pres- 
ent paper corresponds to that of t raining a parameter ized hidden Markov model  for a par- 
t icular spoken word with a set of actual speech signals for that word. In  particular,  we 
are interested in the quest ion of whether  there exists an algori thm that, when  given a sam- 

ple generated from an arbitrary unknown target distr ibution,  outputs a probabilist ic autom- 
aton that approximates the unknown  dis t r ibut ion 'as closely as possible, '  that is, with high 

• probabil i ty  the dis t r ibut ion induced by the output PA is sufficiently close to an 'opt imal '  
one  among all possible probabil is t ic  automata satisfying a certain prescribed constraint. 

Here a constraint is given to the algori thm in the form of a subset of the state set specifying 
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the legal initial states and a labeled directed graph specifying the set of legal transitions; 
The training problem, therefore, is the problem of finding a near optimal setting of the 
initial and transition probabilities on the legal initial states and transitions in the input con- 
straint. A class of constraints is said to be trainable with sample complexity q ( . . . )  if there 
exists an algorithm which trains every constraint in the class, and the sample size required 
for a given acuracy, confidence, length of the example strings, and the size of the input 
constraint is bounded above by the function q of these parameters. Here the size of the 
input constraint translates to the number of probability parameters being trained. A class 
of constraints is said to be polynomially trainable if there is a training algorithm with 
polynomial sample complexity whose running time is polynomial in the total sample length. 
Of particular interest to us is the special case of this problem in which the input constraint 
is null, namely all initial states and transitions are legal. This special case translates to 
the problem of finding a near optimal probabilistic automaton with a given number oJ 
states. 

Our model is a natural adaptation of the PAC-learning paradigm of Valiant (1984) and 
Blumer, et al. (1989) and is inspired by the model of efficient unsupervised learning of Laird 
(1988). It is also related to the models for learning languages from stochastic data in the 
limit proposed and studied by Angluin (1988). Our formulation requires the algorithm to be 
particularly robust in the sense that we do not assume anything about the target distribution-- 
a formulation which is closely related to the 'robust' generalization of the PAC paradigm 
proposed by Haussler (1991). The distance measure between the distributions used in this 
paper to evaluate the accuracy of a hypothesis with respect to the target distribution is the 
well-known 'Kullback-Leibler divergence' (Kullback, 1967). Other commonly used meas- 
ures of distance between probability distributions are, for example, the X 2 distance, the 
variation distance, the quadratic distance (Kearns & Schapire, 1990), and the Hellinger 
distance (Barron & Cover, 1989). The Kullback-Leibler divergence is a standard notion 
of distance, which enjoys many desirable properties (see Section 2). Furthermore, the Kull- 
back-Leibler divergence is known to bound from above the Hellinger distance as well as half 
the square of the variation distance and of the quadratic distance. These relationships for 
the more general case of conditional distributions are surveyed by Yamanishi (1991). 

Using this model, we give a number of results: We show that an arbitrary class of con- 
straints is trainable by exhibiting a training algorithm whose sample comlexity is essen- 
tially linear in the size of the constraint being trained and a low-degree polynomial in the 
example length and parameters quantifying the accuracy and confidence. In addition, the" 
running time of our training algorithm is polynomial in the total sample length if the size 
of the input constraint is bounded by a constant, thus showing that finite classes are 
polynomially trainable. In particular, an arbitrary fixed constraint is trainable in time 
polynomial in the accuracy and confidence parameters and the example length. If the alphabet 
size is variable, however, no polynomial time training algorithm exists for the class of 2-state 
null constraints 2, unless RP = NP. 

To the best of our knowledge, our upper bound is the first rigorous result on the sample 
complexity of training PAs and HMMs, with respect to the classical measure of Kullback- 
Leibler divergence. Our proof is also interesting in the sense that we manage to get around" 
the problem caused by the fact that the Kullback-Leibler divergence is unbounded. This 
property prohibits the direct use of certain useful techniques such as Hoeffding's inequality 
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"for showing uniform convergence of empirical estimates of random variables to their true 
means. We get around this problem roughly as follows: We bound the smallest transition 
probabilities in the training algorithm's hypotheses from below by a decreasing function 
'of the sample size m. We show uniform convergence for these successive classes ,of 'bounded' 
probabilistic automata using Hoeffding's inequality. We then show that for sufficiently large 
m, an optimum automaton in the m-th bounded class is close to an optimum one in the 
entire class with high probability. Interestingly, the trick of bounding probabilities away 
from zero is often used in practice in an attempt to solve what is known as the 'finite sam- 
ple problem' (Levinson, Rabiner & Sondhi, 1983). Our result provides a rigorous justifica- 
tion for a particular way of setting those probability bounds, from the point of view of 
proving bounds on the sample complexity. 

The sample complexity bound we obtain allows us to extend the classical equivalence 
between the minimization of the Kullback-Leibler divergence with respect to tJhe empirical 
distribution and the maximization of the likelihood of the given data: We show that the 
polynomial time trainability of a class of constraints C is equivalent to the polynomial 
time approximability of the 'maximum likelihood model' problem (MLM) for the same 
class G--the problem of setting the initial and transition probabilities in a given constraint 
in G so that the probability assigned on a given finite sample is maximized. More pre- 
cisely, we show that the polynomial time trainability of a class of constraints G is equivalent 
to the approximability of the MLM problem for C with a factor 1 + e in random time 
polynomial in 1/e and the size t of the input constraint. Furthermore, we show that this 
latter notion of approximability of the MLM problem for G is also equivalent to a seem- 
ingly much weaker notion of approximability: Approximability within factor 2 p(n't)m~ in 
random polynomial time, where m is the sample size, c~ is an arbitrary constant less than 
1, andp(n,t) is a polynomial in the example length n and the size of the input constraint 
t. We use the above equivalence between the training and MLM problems to show our 
hardness result: For variable alphabet size, the MLM problem for 2-state null constaints, 
or the problem of finding a 2-state PA assigning the maximum likelihood on the input sam- 
ple, is hard to approximate (unless P = NP), and hence the class of 2-state null constraints 
is not polynomially trainable (unless RP = NP). 

The hardness result for the MLM problem for 2-state null constaints is shown via the 
following non-approximability result for the single string MLM problem for the same 
class--the special case of MLM in which the input sample consists of a single string. We 

"show that it is hard to approximate the single string MLM problem for the; 2-state null 
constraints within a factor of 2 Iwll-~ for any positive constant c~, where w is the input 

. word, in time polynomial in the word length and alphabet size, unless P = NP. Note that 
it is a very strong non-approximability result 3, since there is a trivial training algorithm, 
using only I-state probabilistic automata, that can guarantee approximation within a factor 

Iwl of 2 of the best 2-state PA. The proof of the hardness result uses as a starting point the 
type of technique commonly used in the learning theory literature for showitng the hard- 
ness of a 'sample consistency' or 'minimum consistent concept' problem in discrete do- 
mains such as automata and boolean formulas (Gold, 1978; Angluin, 1978; Pitt & War- 

' muth, 1989). In particular, our proof makes use of notions used in Angluin's proof of the 
NP-completeness of the sample consistency problem for 2-state DFA (Angluin, 1989). The 
proof given here is, however, significantly more complex than the proof of the discrete 
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case, since corresponding to 'consistency' we have 'probability,' which is continuous an6 
is thus much harder to get a hold of. For example, in our reduction of the satisfiability 
problem to the MLM problem for the 2-state null constraints, it is already non-trivial to 
formalize how a truth assignment is is to be simulated by a PA. We let each truth assign-' 
ment correspond conceptually to one of 2 n many deterministic PAs of a particular kind, 
and for all the other (infinitely many) PAs, we quantify how 'far '  they are from those cor- 
responding to truth assignments. We then show that any PA that assigns the input word 
w a probability at least 1/2 Iwll-= times the probability assigned on w by an optimum PA 
must be 'close' to a deterministic PA corresponding to a satisfying assignment. 

This paper is outlined as follows. We begin in Section 2 with some preliminary defini- 
tions and give the proof of the sample size bounds for training PAs in Section 3. In Section 
4 we show the equivalence between the training problem and the approximate MLM prob- 
lem for any class of constraints. In Section 5 we give the hardness result for the single 
string MLM problem for 2-state null constraints. Parts of this lengthy proof are given in 
Appendices A and B. In Section 6 we discuss briefly how the results of this paper apply 
to HMMs. We conclude by discussing a number of  open problems inspired by this research 
in Section 7. 

2. Preliminaries 

This paper deals with approximating a probability distribution over words over some finite 
alphabet, P~. For simplicity, we assume that all words with positive probability have the 
same length, n, i.e. the distribution is over the domain ~n. We call an element of ~ an 
example. A sample E of En is a finite sequence of examples of ~", E = (Wl, . . . ,  Wm), 
where m is the sample size. We abuse notation and write x ~ ~ to mean that x appears 
in the sequence N. We let #(x, ~) denote the number of occurrences of example x in sam- 
ple E. Using the above notation, we define the notion of the empirical distribution of a 
sample. 

Definition 2.1. Given a sample ~ of  size m of S n, the empirical distribution of E over 
~ ,  written [)~, is defined by: 

vx  ~ ~" Dz(x)  - #(x, ~)  
m 

Note that for any y not in ~, we have Dz(y) = O. 

The probabilistic automation is formalized as a stochastic matrix M together with an 
'initial distribution' 7r over the set of states. Intuitively, the probabilistic automation is much 
like a non-deterministic finite state automaton except that the transitions take place with 
probabilities prescribed by M. (See Figure 1.) To start the process, the machine chooses 
the initial state according to the initial distribution 7r, and then at any given point after 
that, the machine is in some state i, and at the next time step moves to another state j out- 
putting some letter z, with probability specified by M(i, j, z). I f  one stops the machine 
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a:O.4 a:O.1 
b:O.1 

a:0.6 .~ ~ - . ~  

a:0.4 ~ 0 / a:0.8 
b:0.6 ~ 

Figure 1. An example probabilistic automaton. 

at time step n the machine ends in some state having generated a string of length n. In 
this way, a probabilistic automaton naturally defines a probability distribution over the set 
of strings of length n, for any particular n. 

Def in t i on  2 . 2  (Probabi l i s t ic  A u t o m a t a  (PA)). A probabilistic automaton P is a quadru- 
ple (Sp, ~e, 7re, Me) where Sp is a finite set o f  states, E e is a finite alphabet, 7r e : Sp --* 
[0, 1] is a probability distribution over Se, and M e : Sp × Sp × El, ~ [0, 1] is a stochastic 
matrix 4, i.e. 

~ ]  7re(i) = 1 a n d V i  ~ Se ~]  M e ( i , j ,  z)  = 1 (2.1) 
iESp jESp, ZEZp 

Each 7re (i) is called an initial probability, and each Mp (i, j ,  z ) is called a transition prob- 
e 

ability. For any string w = w 1 . . .  w n ~ Ee, the generation probability assigned on it by 
P = (Se, Ee, roe, Alp) is computed as follows. 

n-1  

P(wl  . . .  w,,) = Z 7re(io)" IX Mp(ij, ij+l, Wj+I) (2.2) 
(i 0 . . . . .  in}~p +1 j=O 

Thus, for  any given example length n, P defines a probability distribution over ~np. 

For example, the probability assigned by the probabilistic automaton P shown in Figure 
1 on the string w = aab is calculated as follows: 

P ( w )  = re(O) • Me(O, 0, a) • Me(O, 1, a) • Me(l, 1, b) 
+ we(O) • Me(O, 1, a) • Me( I ,  1, a) • Me( I ,  1, b) 
+ ~re(O) • Me(O, 1, a) • Me(l,  2, a) • Me(2, O, b) 
+ 7re(l) • M e ( l ,  1, a) • Me(l,  1, a) • Me(I, 1, b) 
+ we(l) • Me(l,  1, a) • Me(l,  2, a) • Me(2, O, b) 
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= 0 . 5 . 0 . 4 . 0 . 6 " 0 . 1 + 0 . 5 . 0 . 6 " 0 . 1 " 0 . 1 + 0 . 5 . 0 . 6 " 0 . 8 - 0 . 6 + "  
0 . 5 . 0 . 1 . 0 . 1 . 0 . 1 + 0 . 5 . 0 . 1 . 0 . 8 - 0 . 6  

= 0 . 0 1 2 + 0 . 0 0 3 + 0 . 1 4 4 + 0 . 0 0 0 5 + 0 . 0 2 4 = 0 . 1 8 3 5  

Note that for a probabilistic automaton P we use the same letter P to denote the probability 
distribution defined by P on ~ ,  where n will be clear from the context. A PA constraint 
is a quadruple C = (Z, S, I, G) where I is the inital state set and G is the transition graph 
of C. I is a subset of the set S of all states. G is a subset of the set S x S × E of all transi- 
tions. Note that a transition graph is a labeled directed graph with the state set S as the 
vertices, and the alphabet E as the set of labels. We write ] II  for the number of states in 
/, I G I for the number of transitions in G. We then define the size of a constraint C, written 
I C I, as [ C I = I I] + [ G I. Note that the size of C corresponds to the number of  probability 
parameters included in C. 

We say that there is a path in C for a string wl • • • wn ~ En, if there is a sequence of 
states (i0 . . . .  , in) from S n+l such that i 0 E l a n d  for all j ,  1 <_ j < n, (ij_~, ij, wj) E G. 
We say that a probabilistic automaton P satisfies a constraint C = (Z, S, I, G), if and 
only if Sp = S and ~ p  = ~ and 

Vi ¢ I, 7re(i) = 0 and 

V(i, j ,  z) ¢ G, MR(i, j, z) = 0 (2.3) 

Note that if a probabilistic automaton p satisfies a constraint C then for every word on 
which P assigns a positive probability, there is a path for it in C. If  P satisfies C, one 
can think of r e  as a function from I into [0, 1], and Me as a function from G into [0, 1]. 
We let Ya.~(C) denote the class of probabilistic automata satisfying the constraint C. Note 
that Y~.~'(C) C [0, 1] 1 × [0, 1] G, where we let [0, 1] I denote the class of all functions 
from I into [0, 1], and [0, 1] a from G into [0, 1]. We also let Y-K(G) denote the class of 
stochastic matrices Me satisfying (2.3). 

The notion of  'distance' among distributions we employ in this paper is a well-known 
measure in information theory called 'Kullback-Leibler divergence,' also known as the 
'relative entropy.' 

Definition 2.3 (Kullback-Leibler Divergence). Let D and Q be probability distributions" 
over countable domain X. The 'Kullback-Leibler divergence' of Q with respect to D, 
dr~ (D, Q) is defined as follows. 

dKL(D, Q) = Z D(x) log D(x) 
x~X Q(x) 

(Normally we think of D as the actual distribution against which a 'candidate' distribution 
Q is being compared. By convention, we let 0 log 0 = O, and 0/0 = 1.) 
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Note in the above definition that the base of logarithm is 2, following the COlwentions in 
coding theory. (Throughout this paper we let in denote the natural logarithm and log the 
logarithm base 2.) The Kullback-Leibler divergence enjoys many natural properties: We 
.can rewrite dr~(D, Q) as ED(lOg l/Q(')) - H(D) where ED(lOg l/Q(')) is the expecta- 
tion according to D of the random variable log l/Q(.), and H(D) is the entropy 5 of D, 
defined as ~xeX D(x) log 1/D(x). Recall that log 1/D(x) is the code length for x with 
respect to the "ideal code ''6 for D, and H(D) is the expected code length of that code for 
the source distribution D (see Hamming (1986)). In other words, for the source distribution 
D, the divergence d~(D, Q) measures the expected additional code length required when 
using the ideal code for Q instead of the ideal code for D. Thus, the ideal code of the distri- 
bution which minimizes the Kullback-Leibler divergence with respect to the source distribu- 
tion also minimizes the expected code length of the future data. It is also well-known that 
minimizing the Kullback-Leibler divergence with respect to the empirical distribution/)z 
observed in a sample ~ = (w 1 . . . . .  Wm) (Definition 2.1) corresponds to maximizing the 
likelihood of the sample, as demonstrated below. Minimizing dr~ (/)z; Q) corresponds to 
minimizing Ez5 z (log l/Q(-)), and the following always holds: 

Eb, ~ log  . . . .  1 1 _ 1 . ~ l o g  1 _ 1 log f i  1 (2.4) 
O(.) m i=1 Q(wi) m i=1 Q(wi) 

Thus, d~L(~)Z; Q) is minimized when IIm=l Q(wi) is maximized, i.e. when Q maximizes 
the probability of having generated the sample. We summarize this as a lernma. 

Lemma 2.1. Let J-~ be an arbitrary class of distributions over E n, E = (Wl, . • . ,  win) an 
arbitrary sample of E n, and Dz the empirical distribution of E. Then, 

EzS~ ~log  1 1 inf{Eb= I l o g  1 1 _ _  = _ _  : p ~  Y ~ }  
- Q ( . )  - p ( . )  

if and only if 

f i  m Q(wi) = sup { I I  P(wi) : P ~ T -~} 
i=1 i=1 

Below we give the definition of a training algorithm which is the central definition in this 
paper. Here we assume that a randomized algorithm has access to a fair coin and can flip 
it in a single time unit. 

Definition 2A (Training PA Constraints). A training algorithm takes as input a constraint 
C, a string length n, and a finite sample E of En for some alphabet E, and outputs a prob- 

"abilistic automaton which satisfies C. We say that a (possibly randomized) training algorithm 
A trains a class of constraints G with sample size q(1/e, 1/6, n, t), if A, when given as 
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input an arbitrary constraint C E C of size t, a string length n, and a finite sample ~ drawa 
independently at random from an arbitrary unknown distribution D over En, is such that 
whenever the sample size m exceeds q(1/e, 1/6, n, t), then provided that inf {dKL(D, P) : 
P E Q'~,.~(C)} isfinite, A's output Q satisfies the following with probability at least 1 - 6: 

dKL(D, Q) - dKL(D, Opt) <_ e 

where Opt is a member of Q'9~(C) satisfying: 

dKL(D, Opt) = min {dKL(D, P)  : P E QvJ~(C)} 

Here the probability is taken over the product distribution of D producing the sample and 
the random coin flips of A, if  A is randomized. I f  there exists such a training algorithm 
then we say that G is trainable with sample complexity q(1/e, 1/6, n, t). If  there exists 
a training algorithm with a polynomial sample complexity which also runs in time polynomial 
in the total sample length, then we say that G is polynomially trainable. 

Note that inf{dKL(D, P)  : P E Y ~ ' ( C ) }  is infinite if and only if there is a word x E En 
such that D(x) > 0 and there is no path in C for x. In this case, dKL(D, P)  = co for any 
P in 5~.~(C).  We still need to verify that Opt in the above definition is well-defined, when 
inf{dKL(D, P)  : P E Q-J.~t(C)} is finite. Define a function ~D : Q'9"~(C) ~ [0~ 1] for an 
arbitrary target distribution D by: 

~D(P) = I-I  P(x) D<x) 
xE~ n 

Then since ~D is a continuous function, for an arbitrary D, mapping a compact subset of 
the parameter space [0, 1] l × [0, 1] o, it attains a maximum at a particular PA, say Opt ': 

~D(Opt ' )  = max{~D(P) :  P E Jg,-~'(C)} 

Hence, 

log 1 ~ = ~ D(x)  log 1 
Opt '(') x~" Opt '(x) 

1 
= log 

~D(Opt ') 

1 
= log 

max {~D(P) : P E J~.~'(C)} 

1 
= min {log - -  : P E Q'~..~(C)} 

~D(P) 

min{ED ~log 1 ~ = - -  : P E 9~,~(C)} 
P( ' )  

(2.5) 
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"Noting that dr~(D, P) = ED(log l/P(')) - H(D), the equality (2.5) implies that dKL(D, 
Opt ') equals min {d~L(D, P) : P ~ Yg.~(C)}. Now let Opt = Opt' and we see that Opt 
is well-defined. 

We define two versions of the maximum likelihood model problem for PAs considered 
in this paper. 

Definition 2.5 Sample MLM Problem for C 

Input: A constraint C E C, a string length n and a finite sample ~ = (wl . . . . .  Wm) 
of strings from ~". 

Output: A probabilistic automaton Q satisfying C which asigns the maximum genration 
probability (or the maximum likelihood) on ~, among all such probabilistic automata, i.e. 

f i  Q(wi) = max ( f i  P(wi) " p E ff9"7](C) t 
i=1 i=1 

Again note that m a x  {IIm=l P(wi) : P ~ ~.~(C)}  is well-defined because ~" " Yg.~(C) 
[0, 1] defined by 

~(P) = f i  P(wi) 
i=1 

is a continuous function mapping a compact domain YJ~(C) into the range [0, 1]. 
The following definition is a special case of the sample maximum likelihood model prob- 

lem in which the input sample consists of a single string. Note that for a single string, the 
initial probability distribution plays no significant role, because among probabilistic automata 
assigning the maximum probability on a given string there is always a probabilistic automaton 
in which exactly one state has initial probability one and other states have probability zero. 

Definition 2.6 For a stochastic matrix M and a word w, let M (w) be the maximum genera- 
tion probability assignable on w by M with the best initial state. 

Note that with this definition M(uv) < M(u) .  M(v), in general. The single string MLM 
. problem is defined as the problem of finding a stochastic matrix M satisfying the input 

constraint, which maximizes M(w) on the input string w. 

Definition 2.7 Single-String MLM Problem for C 

Input: A constraint C = (~, S, L G) ~ C and a string w in ~*. 
Output: A stochastic matrix M* satisfying G which assigns the maximum generation 

• probability on w among all such stochastic matrices, i.e. 

M*(w) = max {M(w) : M e 97C(G)} 



214 N ABE AND M.K. WARMUTH 

As usual let P denote the class of decision problems decidable in polynomial time and" 
NP the class of decision problems acceptable in non-deterministic polynomial time. RP 
denotes the class of decision problems that are acceptable in random polynomial time (Gill, 
1977): A decision problem L is said to be accepted in random polynomial time if and only '  
if there exists a randomized algorithm A, that is, A has access to a fair coin, such that 
A halts in polynomial time on all inputs, and A always outputs 'no' on a negative instance 
and outputs 'yes' with probability at least a half on a positive instance. It is widely conjec- 
tured that P is strictly contained in NP, and also that RP is strictly contained in NP. All 
hardness results of this paper only hold modulo one of the above conjectures. 

3. Sample complexity bounds for training PAs 

Our main positive result on the training problem is the following bound on the sample 
complexity of the PA training problem. 

Theorem 3.1. An arbitrary class of  PA constraints G is trainable with sample complexity 
O((n/e)2t • log 3 nt/e • log 1/6 • log 2 log 1/6), where t is the size of  the input constraint. 

Note that the above sample complexity bound is essentially linear in the size of the input 
constraint t, and a low-order polynomial in n, l/e, and log 1/6. As an easy corollary, the 
following bound on the sample complexity of the training problem for the null constraints 
follows. 

Corollary 3.1. The class of null PA constraints is trainable with sample size: O((n/e ))Zs2a 
• log 3 nsa/e • log 1/6 • log 2 log 1/6), where s is the number of  states and a is the alphabet 
size of  the null constraint to be trained. 

Outline of the proof of Theorem 3.1 

Let an input constraint C = (~, S, L G) E G be given, and let t be its size, i.e. t = ]I[ 
+ I G I. Here I is a subset of the set S of all states, and G ~ S x S x E. Assume that 
min {d~(D, P) : P ~ P .~ (C)}  is finite with respect to the target probability distribution 
D, since if the minimum is infinite then by the definition of trainability any sample corn- " 
plexity suffices. Our objective is to show that there exists a training algorithm such that 
for any sufficiently large sample E, its output Q ~ QZ~t(C) is likely to approximately 
minimize drc(D, Q), where D is the source distribution. Recall that dr~(D, Q) = Eo(log 
l/Q(')) - H(D).  Since the second term (the entropy of D) is independent of Q, in order 
to find a Q that minimizes d~(D, Q), it suffices to find a Q that minimizes ED(log l/Q(')). 
Thus a natural attempt would be to find a Q that minimizes Ebz(log l/Q(')) and show that 
the empircial estimates converge to their true means uniformly for the class of random 
variables ~7(~-9J/(C)) = {log l/P( ')  : P e Y~.~(C)} for moderate sample size. The dif- 
ficulty here is the fact that ,.7(YL,~(C)) is unbounded in the sense that log 1/P(x) diverges " 
to infinity with P(x) goes to zero. This fact prohibits the direct application of certain lem- 
mas on the convergence of bounded random variables, such as Hoeffding's inequality. 
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It turns out, however, that we do not need to show uniform convergence for the entire 
class. We let our training algorithm output a probabilistic automaton Q for which Ebz (log 
l/Q('))  is minimized when Q is restricted to be in a finite subclass .79-~.~(C)m of Yg.~(C). 

• (If there is more than one member  in the finite class that achieves the minimum we make 
no further assumption about how our algorithm picks its hypothesis.) To describe 
.TQ'9.~'(C)m, first note that Q'L~(C) is nothing but the subset of the 'parameter space' [0, 
1] 1 x [0, 1] ~ satisfying the stochastic condition. For convenience we redefine Yg.~(C) by 
relaxing the equalities in the stochastic condition to inequalities: 

¥i ~ S ~ Mp(i,j,z) --- 1 and ~ 7rp(j) _< 1 (3.1) 
j~S,z~Z j~l 

Note that any member  P of the parameter space satisfying this weaker condition can 
easily be converted to a probabilistic automaton P '  satisfying the strict stochastic condition 
which assigns at least as large a probability on every word as P: 

¥i, j ~ S, z E E Me,(i, j, z) = 
Me(i, j, z) 7re(i) 

and 7r e, (i) - 
E~S,z'e~ Mp(i, k, z') r~j~l re(j) 

Let us say that P '  is the stochastic correction of P. Note that P '  has less divergence than 
P with respect to any distribution 7. 

JJJ~l(C)m is defined for each sample size m and is the set of stochastic corrections 
of all 'bounded grid points' of Y ~ ( C ) ,  that is, those members  of Y9~7/(C) satisfying (3.1), 
in which all transition and initial probabilities are bounded from below by some decreas- 
ing function of m and are powers of (1 - 3') where 3' also is a decreasing function of m. 

Now, since J(.~Yg.Yl(C)m) = {log l/F( ')  : F ~ 57Y~.Y/(C)m} is a finite class of bounded 
random variables of moderate cardinality, we can show fast uniform convergence (of em- 
pirical estimates to true means) for them. We then show that for sufficiently large m, for 
each P in Y~.~(C), there exists F ~ .7Y.71(C)m which is 'close to' P everywhere in the 
domain: 

YP ~ YgJI(C) 3F ~ ..,U'~.~(C)m VX ~. ~n log - -  1 - log - - 1  _< 2(n + 1) (3.2) 
F(x) P(x) m -  1 

This immediately implies that for an arbitrary source distribution D o v e r  '~n, we have: 

VP ~ Q-JJI(C) 3F ~ YQ'P,.,~(C)m dKL(D , F) - dl~(D, P) <- 
2(n + 1) 

m - 1  
(3.3) 

So if we let Opt be a member  of Q'a~/(C) satisfying dKL(D, Opt) = min {dKL(D, P) : P 
Y ~ ( C ) } ,  then we have: 

3F ~ .~Jg..~(C)m dKL(D, F) - dKL(D, Opt) < 
2(n + 1) 

m -  1 
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Then if we let F* be a member of ~TY~.Y/(C),~ such that for all F ~ ffQ-A~.~(C)m , dKL(D," 
F*) <_ dKL(D, F), then we have: 

dKL(D, F*) - dKL(D, Opt) <_ 
2(n + 1) 

m - 1  
(3.4) 

Suppose that m is at least 4(n + 1)/e + 1. Thus 2(n + 1)/m - 1 -< d2 and 

dKL(D, F*) - dKL(D, Opt) <_ e (3.5) 
2 

Now by the uniform convergence for the random variables ,.7(JqQ-),.,~(C)m) a s  stated in 
Lemma 3.1, for moderately large m (m >_ q(4/e, log 1/6, n, t) where q is polynomially 
bounded and will be specified in Lemma 3.1), we have with probability at least 1 - 6: 

( - -1  1 --ED (log 1 1 -  _< e-- (3.6) ¥F E Y~'o,-~(f)m Eb z log F(.) F(.) 4 

Now let Q ~ ,J~Q"A~(C)m be the output of our training algorithm, minimizing the empirical 
estimate of log l/Q(-)over Q ~ ~Yv~(C)m. Then, by (3.6), we have that with probability 
at least 1 - 6, both of the following hold: 

( 1 i 1 1 e E D log - - 1  - Eb= log - -  _< - and (3.7) 
Q (.) " Q (') 4 

Ebb. log - 7 - -  - ED log _< -- (3.8) 4 
Also by the definition of our training algorithm 

Eb= ( l o g  1 ~ ~ 1 ~ - Q(.~--~ - Eb.~ log ~ - ~  < 0 (3.9) 

By summing the inequalities, (3.7), (3.8) and (3.9), we have the following with probability 
at least 1 - 6: 

ED I l o g _ _  1 ~ _Eo IlOg~O ~ _< e_ (3.10) 
O(.) 2 

This implies: 

dKL(D, Q) - dKL(D, F*) <_ ~ (3.11) 
2 
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"Then from (3.5) and (3.11) we have with probability at least 1 - 6: 

d~(D,  Q) - drL(D, Opt) <_ e (3.12) 

Thus any training algorithm that minimizes the empirical divergence over ,.~.~9,~(C)m also 
approximately minimizes the actual divergence over Y~.7/(C) within accuracy e with prob- 
ability 1 - 6, whenever m _> max{4(n + 1)/e + 1, q(4/c, log 1/6, n, t)}. 

P r o o f  o f  T h e o r e m  3.1 

We need to show that (3.2) holds and that whenever m >_ q(4/e, log 1/6, n, t) the inequality 
(3.6) holds with probability at least 1 - 6, for some q for which q(4/e, log 1/6, n, t) is 
at least 4(n + 1)/e + 1 and which fulfills the order bound promised in the statement of 
the theorem. 

We begin by defining .~Y~I(C)m. We define a finite subset (grid points), denoted by 
.9(3,, 0), of Y).~(C) as the set of all members P in 9v~7/(C) satisfying the r e l i e d  stochastic 
condition (3.1), such that each of re(i)  and Mp(i, j ,  z) is some power of 1 - 3', and is 
at least 0. Let .9'(3,, 0) be the set of  stochastic corrections of the members  of if(3', 0). 
We then define . 7 ~ ( C ) m  as ~'(1/m, 1/2tm). 

We next verify (3.2) in two steps (inequalities (3.13) and (3.14) below). We define 
Y3Y~S~(C)m, a subclass of J L ~ ( C )  in which all transition and initial probabilities are 
bounded from below by 8 1/tm. 

~Q'9,~(C)m ~- {B E Yg.~(C) : Vi, j E S, z E E MB(i, j, z) > __1 and a'B(i ) ~ 1 }  
tm tm 

We then show that for arbitrary P in Yg.Y/(C), there exists B E ~-'~ff'9,-~(C)m which is close 
to P in the following sense: 

VP E Y ~ ( C )  3B E ~-'~Q'o,~(C)m VX ~ ~n log - -  -- 
1 1 n + l  

log -< - - - -  (3.13) 
B(x) P(x) m -  1 

" In addition, we show that for each member  of ~-'~'9,~(C)m there is one in ,~"9,~(C)m 
that is close to it: 

VB E Q3JL~(C) 3F E ff3"9.~(C)m Vx E ~n log - -  
1 1 n + l  

- l o g - -  < - -  ( 3 . 1 4 )  
F(x) B(x) m -  1 

(3.2) clearly follows from (3.13) and (3.14). To verify the first inequality (3.13), let an 
arbitrary P E YL~(C) be given. We obtain Pm from P by shifting each Mp(i, j, z) towards 
the 'uniform stochastic matrix'  to obtain Pro--the matrix in which each transition in G out 
of any state i receives the same probability 1/t(i), where we let t(i) denote the number 
of transitions out of state i. Formally: 
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Vi, j E S Vz E ~ Mpm(i, j ,  z) = 
(m - 1) • Mp(i, j ,  z) + (1/t(i)) 

m 
(3.15) 

Similarly we shift each 7rp(i) towards the uniform distribution over I: 

qi E S 7rPm(i ) = (m - l ) "  re ( i )  + (1/I l l)  (3.16) 
m 

Note that for all i, j ,  z, MPm(i, j ,  z) >- 1/mt(i) > 1/I G]m >_ 1/tm and 7rPm(i ) ~ 1/llIm 
>_ 1/tm, and hence Pm E Q3Q'~.~(C),~. Now since each of the initial and transition prob- 
abilities in Pm is at least as much as (m - 1)/m times the corresponding probability in P, 
the probability assigned by Pm on any path (and hence on any string) is at least ((m - 
1)/m) ~+1 times that assigned by P. Hence we have for any string x E ~": 

P(x)  _< ~ 1  + 1 l n + l  _ _  _ _  ~ e n + l / m - 1  

Pm(x) m - 1 

Hence, for every x E E n, we have 

1 1 n + l  
l o g - -  - l o g - -  _< 

Pro(x) P(x)  m -  1 

This completes the proof of (3.13). The second inequality (3.14) is straightforward to verify. 
Let B be an arbitrary member of Q3Yg~(C)m. We round off each initial probability and 
each transition probability in B to a power of (1 - 1/m). Denote the obtained PA by R 
and its stochastic correction by F. Each probability in F is at least (1 - 1/m) times the 
corresonding probability in B and this leads to two consequences. First, since B E 
Q3Q-9~(C)m each initial and transition probability in F is at least 1/tm(1 - 1/m) >_ 1/2tm, 
since the final choice of m will be larger than 2. This implies that the 'nearest grid point' 
R next to B lies in gO~m, 1/2tm) and the stochastic correction F lies in J Y g ~ ( C )  m = 
5~'(1/m, 1/2tm). Second, each probability in B is at most (1 + 1/(m - 1)) times the cor- 
responding probability in F. Therefore, for any x E Zn we must have: 

B(x) < I 1  + 1 I n+l _ - -  < e n + l / m - 1  

F(x)  m - 1 

and hence: 

1 1 n + l  
l o g - -  - l o g - -  _< - -  

V(x) B(x)  m -  1 

This proves (3.14) and completes the proof of (3.2). 
The next lemma shows that whenever m >_ q(4/e, log 1/6, n, t) the inequality (3.6) holds 

with probability at least 1 - 6. 
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"L emma 3.1. Let `7(Y~'9,.~(C)m ) = {log l/F(') : F E `TQ'9~,~(C)m }. Let D be an arbitrary 
distribution over E ~ for  some n E N, and D m denote the product distribution induced by 
D over (~n)m. I f E  = (w 1 . . . . .  Wm) E (En)m then we let E b z ( f )  denote the empirical 

" estimate of  the random var iab le fby  the sample ~, i.e. E b z ( f )  = Em=l f (w i ) /m ,  and let 
E o ( f )  denote the expectation (according to D)  o f f  Then we have, for  all e <- 1 and 
6 > O, for  all n, t E N, whenever m >_ q (l/e, log 1/6, n, t), 

O m {~ E (~n)m : 3 f ~  `7(`TQ'9..~(f)rn) such that IEb~(f  ) - ED(f) I > e} < 6, 

where q(l/e, log 1/6, n, t) is defined as 

max Q_32(n + 1)2t in 3 64t(n + 1)2t 8(n + 1) 2 In 1/6 
(~2 C2 62 

log 2 8t(n + 1) 2 In 1/6_~ 
C 2 _ )  

Proof of Lemma 3.1. We use the following lemma which follows from Hoeffding's inequal- 
ity. (See for example Pollard (1984).) 

Lemma 3.2 (Hoeffding). Let ,7 be a finite class of  bounded random variables on a set 
X, that is for  each f E `7, f : X -+ [0, M] for  some real M E R. Let D be an arbitrary 
distribution over X. Then we have: 

I f m  >_ - -  In[ `71 + in 1 
6 2 

then D m {~ E X m : ~f E `7 I Ebz(f) - ED(f) I > e} < (5 

To apply Lemma 3.2, we compute an upper bound on the random variables in 
.7(`73v~(C)m),  and the cardinality of `7YL.~(C),~. Since by our assumption at the begin- 
ning of the proof rain {dKr(D, P) : P E Y~.~(C)} is finite, for any string x in Zn assigned 
a positive probability by the target distribution D, there is a path for x in the input con- 

- straint C. Now any path in C is produced with probability at least (1/2tm) n+l, since any 
state is chosen as the inital state with probability at least 1/2tm and each transition in the 
path has probability at least 1/2tm. Hence log 1/F(x) is bounded from above by (n + 1) 
log 2tm. Since `7Y.Yl(C)m equals .~'(1/m, 1/2tm), and the cardinality of if ' ( ' / ,  0) is at 
most (1/y in 1/0) t, the cardinality of `7YgJt(C) m is at most (m In 2troy. Plugging in 
M = (n + 1) log 2tm and [ `TQ'o,~(C)m I ~ (m in 2 t m f  into the inequality in Lemma 
3.2 gives the following inequality: 

m_> (n + 1)eloge2tm (- -) | t l n ( m l n 2 t m )  + l n l | -  (3.17) 
e 2 k._ .) 
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To show that i fm is at least the bound in Lemma 3.1 then (3.17) holds, it suffices to show" 
that the following two inequalities hold under the same condition. 

m _> (n + 1) 2 log 2 2tm 

2 4 2 
t In (m In 2tm) (3.18) 

m _> (n + 1) 2 l o g  2 2 t m l n  1 

2 4 2 6 
(3.19) 

To get a simple argument for (3.18) we first show that 

log 2 2tm In (m In 2tm) <_ - -  
In 2 2tm 

In 2 2 
In (tm In 2tm) < 2 In 3 2tin (3.20) 

For tm _> 1 the latter inequality is equivalent to In In 2tm < (2 In 2 2 - 1) In 2tm + In 
2 which holds for tm = 1 and only improves for larger m. We now return to the proof 
of (3.18): Since (3.20) holds it suffices to show 

4(n + 1)2t 
m -> c~ In 3 tim, for c~ - and/3 = 2t. (3.21) 

e 2 

If  m > c¢ In 3/3m holds for some choice of m then it also does for all larger m. We set 
m to 8c~ In 3 8a/3 which is the first bound in the maximization clause of  q(1/e, log 1/6, n, 
t). Then m _> ce In 3/3m is equivalent to 8~/3 _> In 3 8~/3. Since n, t -> 1, c~/3 = 4(n + 
1)2t/e 2 • (2t) is always at least 32. Now observe that the last inequality holds for c¢/3 = 32 
because (In 256) 3 ~ 170.51 < 256, and thus for all larger ~13. We conclude that (3.21) 
and hence (3.18) holds. 

The proof of (3.19) is simpler. We need to show 

2(n + 1) 2 1 
m _> c~ log 2/3m, for c~ - In - and /3 = 2t. 

e ~ 6 

One can show that if m > 4c~ log 2 2c~/3 (which is the second bound in the maximization 
clause of q(1/4, log 1/6, n, t)) then m -> c~ log 2 13m. 

To complete the proof of Theorem 3.1 observe that q(4/e, log 1/6, n, t) of Lemma 3.1 " 
is at least 4(n + 1)/4 + 1 and fulfills the order bound promised in the statement of the 
theorem. []  

As an immediate corollary to the proof of Theorem 3.1, we have the following positive 
result for training PAs of  a fixed number of parameters. 

Corol lary 3.2. Any finite class o f  PA constraints is polynomially trainable. 
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Proof of Corollary 3.2 

Since the sample size m required in Theorem 3.1 is polynomial in 1/c, 1/6, n and t, this 
"immediately follows from the observation that I . 7 ~ 1 ( C ) m  ] < (m log 2tin) t is 
polynomial in m when t is bounded from above by a constant. [] 

4. The equivalence between the training and maximum likelihood model problems 

The sample complexity of Theorem 3.1 can be used to establish the equivalence between 
the efficient trainability of a class of cosntraints and the efficient approximability of the 
sample MLM problem for the same class. We first define what it means for a randomized 
algorithm to approximate the sample MLM problem within a given factor. 

Definition 4.1 (Approximate Sample MLM problem). A randomized algorit, hm A is said 
to approximate the sample MLM problem for a class of constraints G within factor K, 
possibly a function of various parameters of the problem, in random T(. . . ) time, if given 
a constraint C ~ Gand an input sample E = (Wl . . . . .  win) of Enfor some n > 0 and 
some finite alphabet F,, A terminates in T(. . . ) many steps and outputs a PA Q ~ Qv~,~(C), 
which with probability at least a half satisfies: 

1-Im=l OPT(wi)  <-- K 

IXm=l Q(wi)  

where OPT is a member of JL~(C) which maximizes the likelihood of E, i.e. 

(;I "t f i  OPT(wi) = max P(wi) " P ~ ~J~(C) 
i=1 i=1 j 

By convention, we let 0/0 = 1 

As before, OPT is guaranteed to exist because of the compactness of Y~.~(C) and the con- 
~tinuity of the likelihood function on a finite sample. 

Theorem 4.1. For an arbitrary class of PA constraints C, the following four statements 
"are equivalent. Below, we let t denote the size of the input constraint C ~ G to be trained, 
m the sample size, and n the length of each example. 

1. There exists a training algorithm for G with sample complexity polynomial in i/e, 1/6, 
t and n, running in time polynomial in the total sample length. 

2. There exists a training algorithm for G with sample complexity polynomial in l/e, log 
1/6, t and n, running in time polynomial in the total sample length. 

3. The sample MLM problem for G is approximable within a factor of 1 + e in random 
time polynomial in l/e, t, n and m. 
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4. The sample M L M  problem for  G is approximable within a factor o f  2 p(n't)m~ in random 
time polynomial in t, n and m, for  some polynomial p and o~ < 1. 

Proof of  Theorem 4.1 

(1 ~ 3) The idea of the proof is as follows. We use the hypothetical training algorithm 
A for a class of constraints G to construct a randomized approximation algorithm B for 
the sample MLM problem for the same class. 

In order to do this, we take advantage of the robustness of the training algorithm. In 
particular, the algorithm must meet its performance guarantee when it is fed examples 
generated by the empirical distribution observed in the input sample ~, for the sample MLM 
problem. We then appeal to the classical equivalence between minimizing the divergence 
with respect to the empirical distribution and maximizing the likelihood of a given sample 
(see Lemma 2.1). 

Let e > 0, a finite sample E = (wl, . •. ,  Wm) with [ wil = n for each w i, and a con- 
straint C ~ G be given. We use the hypothetical training algorithm A on the empirical 
distribution/3~ of Z, as defined in Definition 2.1. We can assume without loss of generali- 
ty that min {dKr(/)~, P) : P ~ Y-~J~(c)} is finite, since otherwise max {IIm=l P(wi) : P 
Y~.~Z¢(C)} = 0 and the MLM problem is trivial. B then computes a sample size m' for 
A large enough for accuracy e/m and confidence 1 - 1/4. For example, m' = [q(m/e, 
4, n, t)]  suffices where q ( . . . )  is an upper bound on the sample complexity of the 
hypothetical training algorithm A, which by assumption is polynomially bounded. Now, 
B gives A a sample ~ '  of size m' obtained by sampling from ~ according to/)z ,  the em- 
pirical distribution of E, or the uniform distribution over the m elements of the sequence 
E. Here note that while it is not always possible to simulate the empirical distribution of 
a finite sample with a fair coin, there exists an algorithm which generates a new sample 
of an arbitrary size acording to the empirical distribution of the original sample with high 
probability. We make this precise below. 

l~mma 4.1. There exists a randomized algorithm, U, which, given a finite sample E = 
{w 1 . . . . .  w m } of  size m, an integer m', and a confidence parameter v > O, always term- 
inates in time polynomial in m, m'  and 1/v and outputs a sample ~ '  o f  size m '  which with 
probability at least 1 - v is drawn according to the empirical distribution £)~ o f  ~. 

Proof of  Lemma 4.1. The algorithm U first calculates i = [log m ~ and iterates the follow- 
ing: U flips a fair coin i times to obtain a bit string x of length i. I fx  < m, then U appends., 
Wx+l to the end of the sequence ~,"~' and does nothing otherwise. It is clear that each ex- 
ample of ~ '  is drawn independently at random according to/3z. Notice that at each iter- 
nation the length of ~ '  increases by one with probability at least a half. It is easy to see, 
by applying ChernofFs bound (c.f. Valiant (1984)) that in p(m', I/v) many iterations, the 
length of E '  becomes m' with probability at least 1 - v, where p is some polynomial. 
If this fails to occur, i.e. the length o f ~ '  is shorter than m' aflerp (m', 1/v) many iterations, 
U pads ~ '  with arbitrary examples to make its length m'. 
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"End of  proof  of  L e m m a  4.1 

We run U on E, m' and 1/3 to obtain a sample E', and let Q be the output obtained by 
running A on E'. Thus, A is run on a sample of size m' generated with respect to/)~ with 
probability at least 2/3. Furthermore, when this is the case, by the performance guarantee 
on A, the divergence of Q with respect to/)~ is e/m close to the divergence of the best 
PA satisfying C, with probability at least 3/4. Hence, with probability at least 3/4 • 2/3 
= 1/2, the following holds: 

dicc(Dz, P)  - dr~(Dz, OPT) = ~ ]  bz(x)  log OPT(x------2) <_ e__ (4.1) 
X ~  n P(x)  m 

where OPT is a PA in Y~.~(C) satisfying: 

dr~(bz ,  OPT) = min {d~(/}z, P) : P ~ Y~.Y/(C)} 

Substituting bz(x)  = #(x, E)/m in (4.1) above, 

dr~(E)~, Q) - dr~(Dz, OPT) = 1 m___~_] log OPT(wi) < E 

m i=1 Q(wi) m 

We thus obtain ~m= 1 log oPr(wi)/Q(wi) ~ e. So for e E (0, 1], we have 

i OPT(wi) <- 2' <- 1 + e 

i=1 Q(wi) 

Since OPTis a probabilistic automaton in Y~7/(C) minimizing the divergence with respect 
to/3~ on E, by the 'classical equivalence' given in Lemma 2.1, it is also an optimal solu- 
tion in YgJ~(C) of the sample MLM problem on E. Thus we have obtained a 1 + e ap- 
proximation to the sample MLM problem with probability at least a half. The running 
time of B is clearly bounded by a polynomial in l/e, n, t, m, since m' is polynomial in 
these parameters, the time spent on generating the sample ~ ~ '  using the algorithm U is 

"polynomial in n, m and m', and the running time of A is polynomial in the total length 
of the sample E', i.e. polynomial in m' and n. 

. (3 -~ 2) 
We will use the hypothetical approximation algorithm for the MLM problem for a class 

of constraints G to construct B that trains G. Let D be the target distribution over ~n and 
let a constraint C ~ G be given as input. Assume without loss of generality that 
min {d~(D,  P) : P ~ Y9~7/(C)} is finite, since otherwise the training problem is trivial. 
The finiteness of min {dxL(D, P) : P ~ J).~(C)} guarantees that for each x ~ ~n assigned 
a positive probability by D, there is a path in C labeled with x. 

II m Hence it follows that for an arbitrary sample E generated by D, max { i= l  P(wi) : P 
Y ~ ( C ) }  is positive. First we show that any approximation algorithm (in the sense of 
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Theorem 4.1, part 3) can be modified so as to output a PA Q8 in the finite clasg 
,YYL~(C)m, defined for C as in the proof of Theorem 3.1, which with probability at least 
1 - 6/2 satisfies: 

1 1 -~ _ 3(n + I) 

OPT(.) -.) m -  1 
(4.2) 

where OPT ~ YL71(C) is an optimal solution for the sample MLM problem with input 
sample E satisfying the input constraint C. Second, we show that in fact such an algorithm 
leads to a training algorithm for PAs with a slightly larger sample complexity than the training 
algorithm exhibited in the proof of Theorem 3.1. 

It is easy to verify the first of these two claims. First note that any algorithm which ap- 
proximates the sample MLM problem for G within factor 1 + e with probability at least 
a half in time polynomial in l/e, n, t and m can be "boosted" to one which achieves the 
same approximation factor with probability at least 1 - 6/2 in time polynomial in log 2/6, 
I/e, t, n and m. This can be done by iteratively running the former algorithm Flog 2/6-] 
times and then selecting, from among its outputs, one that assigns the maximum likelihood 
on the input sample. (Note that using dynamic programming it is easy to compute for a 
given sample and PA the likelihood of that sample in time polynomial in the total length 
of the sample and t.) Now set e = n and run this boosted algorithm on the input sample 
S and obtain a PA P, which with probability at least 1 - 6/2 approximates the sample MLM 
problem for G within a factor of 1 + n: 

i OPT(wi) < 1 + n <_ e 1+~ 

i=1 P(wi) 

Hence we have: 

1 : p ( . )  - OPT(.) 

1 ~-~ OPT(wi) n + 1 n + 1 
log < Z..a 

m i=1 P(wi) m m -  1 
(4.3) 

Now, using the trick of shifting, rounding-off and stochastic correction as done in the proof 
of Theorem 3.1, we obtain from P a member QB of .7Y°..Tl(C)m, such that 

Yx ~ ~n log - - 1  - log _ _ 1  _< 2(n + 1) (4.4) 
Qs(x)  P(x)  m -  1 

From (4.3) and (4.4), (4.2) follows. 
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Next we can show that the boosted approximation algorithm for the sample MLM prob- 
lem indeed trains G. This can be shown similarly to the way the algorithm exhibited in 
the proof of Theorem 3.1 was proved to successfully train G. Let us first recall the nota- 
tion of that proof: We denoted by Q the output of the training algorithm which, for the 
input sample ~, minimized Eb~ (log l/F(')) over F ~ ~ 7 ~ ( C ) , , .  The PA Opt was a 
member of Y :~  with the minimum divergence with respect to the target distribution. F* 
denoted a member of .TYL.~(C),n that is closest to Opt. In order to prove that ED(log 
I/Q(')) is close to ED(lOg 1~Opt(')) with high probability (inequality (3.12)), we showed 
in the proof of Theorem 3.1 that (inequality (3.4)): 

F(-)I  1 ( 1 ~ 2(n + 1) Eo log ~ - Eo log - -  < (4.5) 
Opt(') m -  1 

and whenever m _> q(4/e, 1/6, n, t) with probability at least 1 - 6 (inequality (3.10)), 

E° I I °g - -Q( . )  1 I - E °  I I ° g ~ o ~  < e -  --2 (4.6) 

Since (4.5) always holds, we only need to show an analogue of (4.6) for any algorithm 
satisfying (4.2). Recall that in the earlier proof, in order to show (3.10), we applied triangle 
inequality to the inequalities (3.7), (3.8), and (3.9). (3.7) and (3.8) followed from the 
uniform convergence for .7Yg.~(C)m, and (3.9) followed from the fact that the training 
algorithm minimized Eb~ (log l/Q(.)) within .7~.~(C)m. 

In this proof, the output Q8 of our training algorithm approximately minimizes Eb~ (log 
l/Q(')) within .TY~(C)m . More precisely, by the optimality of OPT, it follows from (4.2) 
that the following holds with probability at least 1 - 6/2: 

Eb~ " (lOg--Q~(.)l I _Ez~. "- ~ l O g ~ O  1 _< 3(n + 1 ) m  - 1 (4.7) 

As before, for m > q(4/e, log 2/6, n, t) both of the following hold with probability at 
least 1 - 6/2: 

1 ~ I 1 e ED log Q;(.) - Eb~ log 1 
QB(') 4 

Eb~ log ---7--- - Eo log 1 e 
4 

(4.8) 

(4.9) 

By summing up the inequalities (4.7), (4.8), and (4.9), we obtain that the following holds 
.with probability at least 1 - 6 whenever m _> q(4/e, log 2/6, n, t): 
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( - - ~ -  ( F ( . ) I  1 e 3(n + 1 ) -  - -  E o log 1 Eo log ---y-- < -- + (4.10) 
QB(') 2 m - 1 

Hence from (4.5) and (4.10), it follows that whenever m _> q(4/e, log 2/6, n, t), with 
probability at least 1 - 6, 

1 I,og 1 ~ <L+ 
Opt(') 2 

5(n + 1) 

m - 1  
(4.11) 

Hence, whenever m > max {q(e/4, log 2/6, n, t), 10(n + 1)/e + 1}, with probability at 
least 1 - 6, 

ED I l o g ~ l  ~ --ED I l o g  1 ~  1 
QB(') Opt(') 

_< e 

We have thus shown that the above algorithm trains C, which was an arbitrary constraint 
in G, with sample complexity polynomial in l/e, log 1/6, n, t and running time polynomial 
in the same parameters and m. It is easy to convert such an algorithm to one whose run- 
ning time is polynomial in the total sample length and which has sample complexity still 
polynomial in l/e, log 1/3, n, t. 
(2 ~ 1) 

This is obvious from the definitions. 
Thus far, we have shown that the first three statements of the thorem are equivalent. 

Now we proceed to show that 3 is equivalent to 4. 
(4 ~ 3) Suppose that algorithm A, running in random time polynomial in l/e, n, t, m, 
approximates the sample MLM problem for G within factor 2 p(n't)mc' for some polynomial 
p. Let a constraint C E G and a sample ~ = (Wl . . . .  , Wm) be given. Again, assume 
without loss of generality that Hm=l OPT~(wi) = max{Hm=l P(wi) : P E Qv.~(C)} is 
positive. We then repeat the sample r = [-(2/e(ln 2)p(n, t )m~) vl-~] times to obtain a 
new sample E'  = (Vl . . . . .  V~m) of length rm, and feed this into A to obtain a hypothesis 
Q. Then, by definition, Q must satisfy: 

II~= 10PT~,( t i )  <_ 2p(n,t)(m)~ 
Hrm i=1 Q(ti) 

where we used OPTs, to denote the PA in Ya=,~(C) that assigns the maximum probability 
on the sample E'. Since each example of S is repeated exactly r times in ~', 

IIr[n= 10PTz , (w i )  <_ (2P(n,t)(mr)~) l/r 
Hrm 

i=1 Q(wi) 

<-- 2P(n,t)m%C~ 1 (4.12) 
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By substituting r into the exponent in (4.12) we obtain: 

log I I%10PT~ ' (w i )  ~ p(n, t)rn ~ F( 2 (ln 2)p(n,  t)m~)l/1-~ ~-1 
II~l  Q(wi) 

<_ p(n, t)m ~ ( (2  (In 2)p(n,  t)m~)Vl-~) ~-1, since c~ - 1 < 0 

= p(n, t)m ~ (2 (In 2)p(n,  t)m~) -1 
C 

- l o g  e 

2 

Hence, we have: 

IIm=l OPT~'(Wi) <_ 2~/2 log e 

11m= 1 Q(wi) 

= e e/2 

___ 1 + ~, f o r e  E (0, 1]. 

We next show that OPT~ and OPTz, assign the same likelihood on ~: 

f i  m OPTs(we)  = max { I - [  P(w~) : P ~ ~.7/(C)} 
i=1 i=1 

(4.13) 

m r  

= (max {IX P(vi) : P ~ ~ t ( C ) } )  1/r 
i=1 

m r  

= ( H  OeT~'(vi))l/r 
i=1 

= f i  oe~,(wi)  
i=1 

By plugging (4.14) in (4.13), we finally obtain: 

(4.14) 
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Hm=l OPTz(wi) < 1 + c 

Hm=l Q(wi) 

(3 ~ 4) This is obvious from the definitions. E5 

From Theorem 4.1 and Corollary 3.2, the following positive result on the approxima- 
tion problem for the sample MLM problem follows at once. 

Corol lary  4.1. The sample MLM problem for any finite class of PA constraints is approx- 
imable within a factor of 1 + e for any c > O, in time polynomial in 1/e and the total 
length of the sample. 

Note that this does not give rise to a practical training algorithm, since the running time 
of the algorithm we exhibit is exponential in the number of probability parameters specified 
by the input constraint, which may grow quite large in practical applications. 

We mention a simple class of constraints which can be trained efficiently. A constraint 
C = (~, S, L G) is said to be deterministic, if  I contains exactly one start state i0 and 
if for a given state i and a given letter a, there is at most one transition from i labeled 
with a, in G. It is well known in the literature that the M L M  problem for the class of 
deterministic constraints is solvable in polynomial time. We repeat the proof of this fact 
briefly, as it makes use of  a lemma that will be used again in the hardness proof in Section 
5. Let a deterministic constraint C = (E, S, {io}, G) and a sample ~ = (w 1 . . . .  , Wm) 
be given. For each w k fi ~ there is at most one path in C labeled with wk starting at i0. 
Denote by O the set of all such paths. I f  there is a word in ~ for which there is no path 
in (9, then the maximum probability assignable on S is zero and the problem is trivial. 
Let #(j, z ] i) denote the total number of times the transition to state j outputting letter 
z was taken from state i in all paths of  O and #(i) denote the number of times a transition 
was taken from state i in all paths of O. Clearly ~j~S,z~Z #(J, z ] i) = #(i). Now note that 
for any probabilistic automaton P, we can calculate P (~)  = IIm=i P(wi) as follows. 

P(~) = 1-I Mp(i, j ,  z) #(j'zli) 
i,j~S, zE~ 

We wish to maximize the above expression, subject to the constraint: 

¥i  ~ S ~] Me(i, j, z) = 1 
j~S , z~  

We can show that this is maximized when we define P as follows, using the following well- 
known technical lemma, which we state without proof. (See for example Levinson, Rabiner 
and Sondhi (1983).) 



APPROXIMATING DISTRIBUTIONS BY PROBABILISTIC AUTOMATA 229 

¥i, j ~ S Yz E P~ Me(i,  j ,  z) - #(j' z I i) 
#(i) 

Lemma 4.2. A function o f  the form f ( X l ,  . . . ,  Xn) = X ~  1 " X~22 " . . .  " X an subject to the 
constraint Xl + x2 + . • • + xn = c attains its maximum when xi = (ai/~}*=l a i )  " C. 

From the above observation and Theorem 4.1, it follows that the class of deterministic 
constraints is polynomially trainable. The sample complexity obtained in this way can prob- 
ably be improved significantly for this restricted case. 

Corollary 4.2. The class o f  deterministic PA constraints is polynomially trainable. 

5. Computational complexity of training probabilistic automata 

The hardness of training the 2-state null PA constraints is shown via a strong non- 
approximability result for the single string MLM problem for the same class. We emphasize 
again that the training problem for the class of s-state null constraints is the natural prob- 
lem of finding a near optimal probabilistic automaton of a given number o f  states. It should 
be noted that showing that the class of null constraints is hard to train is much more signif- 
icant and also more difficult than constructing an artificial class of constraints that is hard 
to train. 

Theorem 5.1. For any c~ > 0, the single strine MLM problem for  the class o f  2-state null 
PA constraints is not approximable within 2 in time polynomial in the alphabet size 
a and I w [, where w is the input word, unless P = NP. 

As we noted in Section 1, Theorem 5.1 is a strong non-approximability result, since 
guaranteed approximation ratio of 2 bwl for the MLM problem for 2-state PAs is trivially 
achievable. 

Theorem 5.2. For arbitrary s ~ N, the single string MLM problem for  the s-state null 
• constraints is approximable within s Iwl in time polynomial in the alphabet size a and 

I w l, where w is the input word. 

• The proof of  Theorem 5.2 is simple but uses one of the technical lemmas to be stated 
and used in the proof of Theorem 5.1, so we defer the proof of Theorem 5.2 till after 
the proof of Theorem 5.1. 

Corollary 5.1. The class o f  2-state null PA constraints is not polynomially trainable, unless 
l iP = NP. 
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Proof of Corollary 5.1 given Theorem 5.1 

Suppose that a training algorithm A trains 2-state PA constraints in time polynomial in 
l/e, 1/6, n and a. Then, by Theorem 4.1, it follows that there exists an algorithm B which" 
approximates the MLM problem within factor 1 + e in random time polynomial in n, 
m, and a. We can then use B to solve 3-SAT in random polynomial time, using the reduc- 
tion of Theorem 5.1. Thus 3-SAT, which is NP-complete, would be shown to be in RE 
which would imply that RP = NP. [] 

The proof of Theorem 5.1 is lengthy, so we will begin by giving a very high level descrip- 
tion of the proof. We will then give a proof sketch, introducing some key definitions and 
then give the formal proof. We reduce 3-SAT, the satisfiability problem for 3-CNF form- 
ulas, to the approximation problem for the single string MLM problem for the 2-state null 
constraints with a guaranteed approximation ratio of 2 Iwj for any fixed c~ > 0. For an 
arbitrary c~ > 0, we exhibit a polynomial time reduction which maps any CNF formula 
F to a string w such that the maximum probability assignable by a 2-state stochastic matrix 
on the string w is at least C(F) if the formula is satisfiable, and less than 1/2 Iw11-~ C(F) 
otherwise, where C(F) is easily computable. Thus any approximation algorithm for the 
single string MLM for this class with guaranteed approximation ratio of 2 Iwl1-~ can be 
used to solve 3-SAT, and hence the problem is NP-hard. The rough idea of the reduction 
is as follows: Let us imagine that an agent (the hypothetical approximation algorithm) is 
attempting to find a stochastic matrix which assigns an approximately maximum probability 
to the string. The string w is conceptually divided into two parts: w = WaW b. We design 
the first half of the string in such a way that if the agent is to maximize the probability 
on it, it will have to 'lean towards' one of 2 n deterministic stochastic matrices of a par- 
ticular kind, which we call 'canonical stochastic matrices.' These correspond to the 2 n 
truth assignments for the n variables in F. More precisely, we define a notion of distance 
between stochastic matrices and show that if the matrix in question is A-far from the closest 
canonical stochastic matrix, then the probability assigned on the first half is less than the 

r Iwar optimal by roughly a facto of (1 - A) . Now the second half of the string tests 
whether any of these canonical matrices corresponds to a satisfying assignment for the 
formula E For any canonical stochastic matrix, or one that is A-close to one, the genera- 
tion probability assigned on the second half of the string will be high if the corresponding 
truth assignment satisfies F and otherwise will be less by roughly a multiplicative factor 
of A Iwbl. Thus the agent faces the following dilemma: (i) If  it tries to be near-optimal on " 
the first half and chooses a small value of A, that is, its stochastic matrix is in fact close 
to one of the canonical matrices, then it would have to in effect solve 3-SAT to determine 
an approximately maximum generation probability assignable on the second part. (ii) If  " 
it tries to avoid solving 3-SAT on the second part and chooses a large enough value of 
A, that is, its stochastic matrix is sufficiently far from any of the canonical matrices, then 
it loses so much probability on the first half that it cannot guarantee an approximately 
optimal generation probability. 
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Proof Sketch of Theorem 5.1 

We now give a fuller proof  sketch, defining key notions used in the proof in doing 
"so. For each c~ > 0, we exhibit a transformation ~0, mapping any 3-CNF-formula F to a 
string over an alphabet that depends on the number of variables, for which a gap of factor 
K = 2qw~(F)l 1-~ is forced in tile optimal solution depending on the satisfiability of the form- 
ula. Let n be the number of variables in F, and s the number of clauses in F. We let En 
denote the alphabet used for ~% (F), and Y-)T~ the set of all 2-state stochastic n~tatrices over 
r~ n. We begin by describing the alphabet En. The letters in ~ ,  can be classified into the 
following categories: global  control letters a and b, f ixed  funct ion letters f and e, and for 
each variable xi, literal letters xi xi, control letters ci, di, and a dummy letter vi. The literal 
letters directly correspond to the literals in the formula F, whereas the remaining letters 
play a support role. We refer to the two states as state 0 and state 1, and let S denote the 
state set {0, 1}. We now give the string ~b~(F), or w for short. 

W = WoW1W2W3W4W 5 (5.1) 

Wo = (ab ) k° 

w l  = (a fabyo)  k' 

w 2 = f i  v i (c idi)  k2 v i 

i=1 

W 3 = f i  ( c~c id i fd i )  k3 

i=1 

w 4 = f i  (axibxiciYidi2ibeaeab) k4 
i=1 

w5 = ~-I (ab(lj, llj,2lj,3)b ) ~s 
j = l  

In the above, we let lj,k denote the k-th literal in the j- th clause of F, and the k i are the 
integers defined as follows. 

k 5 = log K 

k 4 = s211(log K + I w5 l) 
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k3 = s211(log K + I WaW5 I) 

k2 = s211(log K + I w3w4w5 ]) 

kl = s211(log K + [ w2w3w4w5 1) 

ko = s211(log K + I wlw2w3w4w5 [) 

The ki were chosen as moderately growing functions of K, the intended gap, so that [ w l 
< p(n, s) log K for some polynomialp .  Ifc~ > 1 then reset it to 1. Now o:~ is obtained 
by setting log K = p(n, s) 1-°e" which makes [wl less than or equal top(n ,  s) 1/~ and hence 
log K _> [ w [1-~ as desired. We may assume without loss of  generality that log K as set 
above is an integer because if p(n, s) 1-~/~ was not an integer then by at most halving c¢ 
one could find a smaller c~' such that p(n, s) 1-~'m' is an integer. 

To explain the intent of  the transformation given above, we need to introduce some term- 
inology concerning stochastic matrices. A deterministic stochastic matrix is a stochastic 
matrix in which for each state i and each letter z, there is at most one transition with a 
positive probability out of i labeled with z. Thus any deterministic stochastic matrix M, 
induces for each letter z a (possibly partial) transition function from states to states. Since 
for this proof  the number of states is 2, these transition functions are Boolean. I f  the letter 
has transitions out of each of the two states, then the associated function must be one of 
the four possible total boolean functions over one variable. Borrowing Angluin's terminology 
(Angluin, 1989), these are: 0-reset (0), 1-reset (1), identity (id) and flip (flip), and are 
defined as follows: (i) 0(0) = 0(1) = 0, (ii) 1(0) = 1(1) =1 ,  (iii) id(0) = 0, id(1) = 1, 
and (iv) flip(0) = 1, f l ip(l)  = 0. (See Figure 2.) With a letter that has a transition out 

ID 

FLIP ~ 

1-RESET O ~  

0-RESET 

Figure 2. The four boolean functions on two variables. 
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Of only one of the two states we associate one of the four possible par t ia l  one-variable 
boolean functions: (v) 0 ~ 0, (vi) 0 ~ 1, (vii) 1 -+ 0, and (viii) 1 -~ 1. We refer to 
letters with a total (partial) transition function as total (respectively par t ia l )  letters. I f  in 
]a stochastic matrix M a letter z is associated with flip, for example, we write; z =M flip. 
I f  a pair of letters x and y are id and flip respectively, then we write (x, y) =~t (id, flip). 
(When M is clear from the context, we will drop M and write (x, y) = (id, flip).) 

As explained in the high level description at the beginning of this section, the idea of 
our proof is that w a = wowlw2w3w 4 forces any near-optimal stochastic matrix to be close 

to one of 2 n many determinist ic  stochastic matrices corresponding to truth assignments, 
and w b = w 5 distinguishes those corresponding to satisfying assignments from those cor- 
responding to non-satisfying assignments. Below we describe how this is intended to be 
achieved at a high level, leaving the exact nature of the notion of 'closeness' among stochastic 
matrices to be specified later. The intended function of the first part w0 of the string w a 

is to force the two 'control letters' a and b to go from 0 to 1, and 1 to 0, respectively or 
vice-versa. The intuitive reason why (ab) ko forces these settings is as follows: Any sto- 
chastic matrix which has two transitions for either a or b will lose probability, and hence 
there can be only one transition for each of a and b. Furthermore, to be able to generate 
(ab) ko, the single transition for a and the single transition for b must form a cycle. So, 
we must have (i) (a, b) = (0 --+ 0, 0 ~ 0), (ii) (a, b) = (1 ~ l ,  1 --+ 1), (iii) (a, b) = 
(1 -+ 0, 0 ~ 1), or (iv) (a, b) = (0 -+ 1, 1 -+ 0). But because the length of w 0 is almost 
the entire length of w, approximately optimal stochastic matrices must let these two transi- 
tions have very  large probabilities (close to one). This is impossible if both of these transi- 
tions are out of the same state, so the option (i) and (ii) are eliminated, leaving (iii) and (iv). 
We assume without loss of generality that we have (iv), that is, (a, b) = (0 -* 1, 1 -+ 0). 
It is easy to see that with these particular settings of a and b, Wl forces f to be a flip. 
WE performs the analogous function for each (ci, di) pair as w 0 did for (a, b),  but since 
w2 is not the overwhelming majority (and there are n such pairs), at this point all four 
(i-iv) options for a cycle are possible for each (ci, di) pair. w3 uses f,  which has been set 
to flip by Wl, to eliminate (i) and (ii), and forces each (ci, di) pair to be either (1 ~ 0, 
0 -+ 1) or (0 -+ 1, 1 ~ 0). The crucial observation is that for each i, the direction of 
(c i, di) in relationship to the direction of (a, b) is left unspecified. Utilizing this degree of 
freedom, w 4 sets the literal letters xi, xi in a particular way: For each i, (xi, xi)  is forced to 
be either (1, id) (see Figure 3) or (id, 1) (see Figure 4), corresponding respectively to the 

"assignment of ' true' and 'false' to the variable xi. In this way, stochastic matrices assigning 
a near optimal generation probability on WoW1W2W3W 4 are forced to be close to, one of these 
deterministic stochastic matrices, which we called earlier 'canonical stochastic matrices.' 

m 

e ,  x i a, di, x i x i '  xi 

Q ~ ~  b, ci, e " ~ 

Figure 3. The deterministic automaton corresponding to 'True.' 
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e, x i a, ci, x-i xi '  xi 

~ ) ~  b, di, e " ~ ~  
Figure 4. The deterministic automaton corresponding to 'False.' 

Observe that there are 2 n of these, corresponding to the 2 n truth assignments on n variables. 
Finally, w 5 is designed so that any canonical matrix 'satisfying' F will assign it a probabil- 
ity exceeding some bound, whereas any canonical matrix not satisfying F will assign it 
probability zero. Here we use a trick related to that used by Angluin in Angluin (1989). 
For a given clause Cj in F, (xb 9~4, X2) for example, W4j is ab (XlX4Xz)b. Since each W4d 

is preceded by an 'ab' and followed by a 'b,' (xl, 24, x2), is forced to map 0 to 1. Now 
the crucial observation is that if all three letters xt, £4, and xz are set id (or the correspond- 
ing truth assignment assigns all three literals 'false') then so is (xl, Y4, x2), and hence it 
must map 0 to 0. Since for any non-satisfying truth assignment there is a clause not satisfied 
by it, any canonical matrix corresponding to a non-satisfying assignment assigns the string 
w probability zero. Hence if F is unsatisfiable then any canonical matrix must assign zero 
probability on w = c% (F). 

Proof of Theorem 5.1 

Now we make our argument precise. We begin by defining the notion of canonical (deter- 
ministic) stochastic matrices. 

Definition 5.1 (Canonical Stochastic Matrices). Let Tn denote the set o f  truth assignments 
on n variables, each mapping {X i [ 1 <_ i <_ n}  to {True, False}. For each r ~ T n, we 
define the 'canonical stochastic matrix for  T,' written M~ as follows. 

1. M~ is deterministic. 
2. (a, b) =M~ (0 -* 1, 1 --* 0), f =My nip, 
3. For each variable X i, 

(ci, di) = M r  (1 ~ 0, 0 ~ 1) i f r (X i )  = 

=MT (0 ~ 1, 1 -~ O) i f  ~(Si) = 
vi =M~ flip i f  7"(Xi) = 

=MT id i f  r(Xi) 
(xi, £i) =My (1, id) i f  T(Xi) 

=Me (id, 1) i f 'r(Xi)  
4. Each non-zero transition probability in 

and e = M~ O. 

True. 
False. 
True. 

= False. 
= T r u e .  

= False. 
M~ is either equal to or twice the frequency in 

w o f  the letter z labeling the transition where this frequency is defined as the number 
o f  occurrences o f  z in w, written #(z, w),  divided by [w[. 
(i) For any partial letter z, M~(i, j ,  z)  = 2#(z,w)/]wl i f  and only i f  M~(i, j ,  z) ~ O. " 

60 For any total letter z, M~(i, j ,  z )  = #(z,w)/[w] i f  and only i f  MT(i, j ,  z) ~ O. 
(Notice that a and b, and all c i and di are partial letters and all other letters are total.) 
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We still need to show that M~ is stochastic. For convenience we will defer this proof till 
(the paragraph following (5.5)), after we have developed some more notation for stochastic 
matrices. Note that in the above definition we have arbitrarily chosen a to go from 0 to 

"1 and b to go from 1 to 0. Given a canonical stochastic matrix M r, we let M r denote its 
mirror image, obtained by reversing the states 0 and 1 in M~. M~(w) can be calculated 
easily because canonical stochastic matrices are deterministics: Mr(w) is zero, if r does 
not satisfy F, and otherwise is just the product of the probabilities assigned on all the trans- 
itions occurring in the unique path for w that is assigned a positive probability by M~. If  
we define C(w) as follows, regardless of whether F is satisfiable or not, 

C(w)= i-i Ie#(Z,W)~#(z'w~ 
Z partial I W [ 

z~o~ I #(z' w)-l J (5.2) 

then we have Mr(w ) = C(w) just in case r satisfies F, and Mr(w) = 0 otherwise. We 
are now ready to state the key lemma in the proof of Theorem 5.1. 

L e m m a  5.1 Let c% be as defined in (5.1), and let M* (w) denote the maximum probability 
assignable on w by an3~ 2-state PA, i.e. M*(w) = maxMeCTcn M (w). Then for ,any CNF for- 
mula F and K = 2 rwl - , we have: 

1. If F is satisfiable, then M*(c%(F)) >_ C(o~(F)). 
2. If F is unsatisfiable, then M*(c%(F)) < C(o~(F))/K. 

Proof  of  Lemma 5.1 

The proof of part 1 is immediate: If  F is satisfiable then let r satisfy F and we have M~(w) 
= C(~%(F)). The other direction is more involved and requires more definitions. The 
key is to find a useful way of  quantifying the distance 6 between an arbitrary stochastic 
matrix M and canonical stochastic matrices such that the generation probability assigned 
on w by M can be shown to degrade rapidly as a function of  minr~rt(M, MO. We can 
then use it to carry out the dilemma argument described in the proof sketch. We need 
some preliminary definitions. 

Recall that for a given stochastic matrix M, M(i,j, z) denotes the transition probability 
from state i to j labeled with letter z. We introduce the following notation for sums of  
transition probabilities o f  various forms: 

M(*, *, z) = 1"I M(i, j, z) 
i,jES 

M(i, *, z) = I I  M(i, j, z) 
j~s  
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M(*, j, z) = Z M(i, j, z) 
iES 

We call M ( i , . ,  z) the out-share of z at i in M, M(*, j, z) the in-share ofz  a t j  in M, 
and M(., *, z) the share of z in M. We partition our alphabet ~n into letter groups, in 
which the pairs of partial letters (a, b)  and (ci, di) are grouped together and each total 
letter forms a group with itself as the only letter. 9 Let Fn denote the set of these letter 
groups, that is, F ,  = {{a, b}} LJ {{ci, di} : i = 1 . . . .  , n} U {{z} : z total}. We then 
define the share of a letter group H in a stochastic matrix M, written M(*,  *, H) ,  to be 
the total sum of the probabilities of all transitions in M labeled with a letter in H. That is, 

M(*, ., H) = Z M(i, j, z) 
i,jE S,zEH 

The out-share and in-share of a letter group are defined analogously to those of a letter 
and #(H, w) is defined as ~z~14 #(z, w). Recall that in a canonical stochastic matrix, there 
is one transition out of each state for each total letter whose probability is the frequency 
of that letter, and there is exactly one transition for each partial letter, whose probability 
is twice the frequency of  that letter. This implies that the share of each letter group in 
Me is set according to twice the total frequency of the letters from that letter group: 

YH E I~n M~-(*, ~:, H) = 2 #(H, w) (5.3) 
Iwl 

For example, for the letter group consisting of a single total letter f, we have the following 
from the definition of Me. 

MT(*, ., f )  = Mr(O, *, f )  + Mr(l, *, f )  = 2 #(f' w) (5.4) 
Iwl 

For a letter group consisting of two partial letters, for example (a, b) we can derive the - 
following also from the definition of  M~. 

M~(*, *, (a, b)) = M~(*, *, a)  + M~(*, *, b) = 2 2#(a, w) _ 2 #((a, b), w) (5.5) 
Iwl Iwl 

For each letter group the share is split evenly to the two states, and hence M~(O, *, H)  
= MT(1, . ,  H)  = #(H, w)/I wl. By summing over all letter groups it follows that MT(0, 
• , *) = M~(1, *, *) = 1 and thus M~ of Definition 5.1 is stochastic. The generation prob- 
ability C(w) can now be rewritten as follows, by plugging (5.3) into (5.2). 
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c(w)= II  iwi = II  2 ' 
HEI' n HEr  n 

(5.6) 

Note that we can straightforwardly generalize C(w) to an arbitrary substring u of w: 
We define C(u) by replacing each occurrence of #(H, w) by #(H, u): 

Mr(*, *, H) ~ #(H,u) 
c(u)= H i 

HEr n 

(5.7) 

It can be shown that C(u) is the probability that any satisfying canonical stochastic matrix 
assigns on u, but in this proof we only use the above definition for C(u). We also introduce 
a version of C(u) which is relativized to the letter group shares of an arbitrary stochastic 
matrix M. That is, for an arbitrary string u we define the quantity C[M](u) as follows: 

I M(,, ,, H) ~ #(H,u) 
C[MI(u) = I " I  2 (5.8) 

HEF n 

Again there is an interpretation of C[M](u) as the probability assigned on u, when r satisfies 
F, by a variant Mr [M] of the canonical stochastic matrix M, which is defined exactly 
analogously to M~ except the letter group shares of M~ [M] are the same as those of M. 
Note that C[Ml(uv) = C[MI(u)C[MI(v). 

We now formalize the notion of distance between an arbitrary stochastic matrix M and 
any canonical stochastic matrix M~. The H-leak of an arbitrary stochastic matrix M with 
respect to M, at state i, written Xin(M, M~), is the fraction of H 's  share out of i which 
is assigned by M to transitions assigned zero probability by M~: 

kin(M, M~) = ~ M(i, j, z) (5.9) 

zEH,jeS, Mr(i,j,z)= 0 M(i, *, H) 

Also, 

XH(M, M~) = m a x i ~  S kin(M, M~) (5.10) 

We then define the leak of M with respect to M~ as the maximum kin(M, M~) over all states 
"and letter groups. 

X(M, M~) = maxHer, ~ k H ( M ,  Mr) (5.11) 

The skew, written v(M), is twice the maximum deviation of the ratio M(0, *, H)/M(,, 
*, H) from a half, where the maximum is over all letter groups H. 



238 N, ABE AND M.K. WARMUTIq 

uH(M) = 2 [ M(0, *, H) 1 [ and 

M(*, , ,  H) 2 

u(M) = maxHer, pH(M) (5.12) 

Note that since 0 _< M(O, *, H) /M( , ,  , ,  H) _< 1, we have, for an arbitrary letter group H: 

0 _< uH(M) _< 1 (5.13) 

Recall that M~(0, , ,  H)/M,( , ,  *, H) = 1/2 and thus for motivational purposes the skew 
of M for a letter group H can be expressed as the ratio at which the ratio M(O, *, H) /M(, ,  
*, H) deviates from MT(0, , ,  H)/M~(,, , ,  H): 

..--77--M(0' *, H) M~(0, *, H) 

vH(M ) ----- M(*, *, H) M~(*, *, H) 

M~(O, *, H) 

Mr(*, *, H) 

We then define the distortion of M with respect to any deterministic stochastic matrix M~, 
written f(M, M~), as follows: 

5(M, M~) = max {),(M, MT), v(M) 2} (5.14) 

The distortion of M is then defined as the distortion of M with respect to the closest canonical 
stochastic matrix, including their 'mirror images.' 

6(M) = minueT, min {6(M, M~), 6(M, Mr)} 

For each of leak, skew and distortion, we define the restriction of it to an arbitrary subset 
of the letter groups by maximizing over • instead of Fn in the above definitions. We 

use readable names such as (a, b) and (a, b, c, d) to refer to subsets of Fn such as {{a, 
b}} and {{a, b}} tO {{ci, di}} : i = 1 . . . .  , n}, respectively. We then let symbols such. 
as k (a'b), u ~ ,  and 6 (a'b'c'a) denote the corresponding restrictions of k, u and f. Note that 
the only information in MT that was used to define X(M, MT) is the transition function 
associated with M~, and to define XH(M, M~), only the restriction of it to H. Thus, for. 
any transition function f :  S × Zn ~ S, restricted to a letter group H, we define XH(M, 
f )  to be maXies, H~Vn ~zgH, jESJ(i,z)¢j M(i, j, z)/M(i, *, H), and define fig(M, f )  "accordingly. 
For readability, we use notation such a s  ~k(a'b)(M, {a : 0 - +  1,  b : 1 ~ 0}) and 
6(a'b'ci'di)(M, {a : 0 ~ 1, b : 1 ~ O, c i : 0 --* 1, di : 0 ~ 0}). 

The notion of distortion just defined quantifies how bad an arbitrary stochastic matrix 
is in comparison to canonical stochastic matrices which are near optimal, from the point 
of view of maximizing the generation probability on the unique path on the substring 
WoWlW2W3W 4, which is assigned a positive generation probability by canonical stochastic 
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matrices. Any leak causes a loss of probability on this path as is obvious from its defini- 
tion. Any skew also causes a loss of probability on the path, essentially because the path 
in question for the string wowlw2w3w4 is almost perfectly symmetric in the following sense: 
For each letter group (except the dummy letters vi) there are exactly the same number of 
transitions out of state 0 as there are out of state 1. We demonstrate this via an example. 

Example 5.1. Let M be an arbitrary stochastic matrix, and M r a canonical stochastic 
matrix. Consider the string ab and the path for ab which is assigned a positive probability 
by Mr, namely, 0 ~ 1 ~ O. We will show that the probability assigned by M on this path, 
M(0, 1, a) • M(1, O, b) is at most (1 - 6(a'b)(M))(M(*, *,(a, b))/2) 2. Notice that (M(*, 
• , {a, b})/2) 2 is the maximum probability assignable on ab by any matrix Yl such that l~l(*, 
• , (a, b)) = M(*, *, (a, b)). To show the above inequality first observe that 

M(0, 1, a)" M(1, 0, b) _< (1 - X(oa'b)(M, Mr))M(O, *, (a, b))" (1 - )~a'b)(M, Mr))M(1, *, (a, b)) 

_-_ (1 - max{)x~a'b)(M, Mr) , ~,ta'b)(M, M0})M(0 , *, (a, b))M(1, *, (a, b)) 

By (5.10) the above maximization clause can be replaced by x(a'b)(M, Mr). Also assume 
without loss of generality that M(O, *, (a, b)) > M(1, *, (a, b)). From the definition of 
v (a'b) in (5.12), #follows that M(0, *, (a, b)) --- (1 + v(a'b))M( *, *, (a, b))/2 which implies 
that M(1, *, (a, b)) = (1 - v(a'b))M( *, *, (a, b))/2 and we continue as follows: 

M(O, 1, a) • M(1, O, b) -< (1 - ~k(a'b)(M, Mr))(1 q -  p(a 'b)( i ) ) (1  -- P(a'b)(M)) 

(M(*' *' (a'b)~ 

<- ( 1 -  x(a'b)(M' Mr) ) (1 -  v(a'b)(M)2) " ~M(*' *' 

<(1-max{X(a 'b ) (M'  MO' /"(a'b)(m)2})" I M(*' *'2 (a,b))~ 

=(1 -6 (a ,b ) (M,  Mr)). I_M(*' *' (a'b))_~ 2 2 by (5.14) 

The following technical lemmas are useful for proving Lemma 5.1, part 2. Their proofs 
- are deferred to Appendix A. 

Lemma 5.2. For an arbitrary stochastic matrix M E Y-~,, we have: 

C(w) >_ C[Ml(w) 

L e m m a  5.3. For arbitrary M ~ YT(~ and x E r,* we have: 

1. M(x) <__ 1Iz~. (max{M(O, *, z), M(1, *, z)}) #(z'z~. 
2. M(x) < IIz~E, ' (max{M(*, O, z), M(*, 1, z)}) #(z'x~. 
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1.emma 5.4. For an arbitrary stochastic matrix M E Y-)T~ and an arbitrary string x E r,*, 
we have: 

M(x) < 21xlC[M](x) 

Lemma 5.5. Let M E Y2Un be an arbitrary stochastic matrix. Let 6(M) = A and let 
M~ be a canonical stochastic matrix to which M is closest, namely 6(M, MO = A. I f  
M~(x) = 0 then we have for  an arbitrary string x: 

M(x) <_ Ixl "A(I +  )lxIc[m](x) 

Using the above technical lemmas, we are now ready to prove Lemma 5.1, part 2. The 
following lemma summarizes the key steps of this proof. Its proof also uses the above tech- 
nical lemmas and is relegated to Appendix B. 

Lemma 5.6. For an arbitrary stochastic matrix M E .72U, all o f  the following hold. 

1. I f  M(w) >_ 1/K C(w), then ~(a'b)(M) ~-- 2-1°/s. 

2. M(Wo) <- C [ M ] ( w o ) .  

3. I f  ~)(a'b)(M) <-- 2-10/S then M(Wl) < (1 - 6(a'b'f)(M)/2)klC[M](Wl). 
4. For each i <- n let A i = min{6(c"d')(M, {c i : 0 --* O, di : 0 ~ 0}), 3(c"4)(M, {ci : 0 

-~ 1, d i : 1 ~ 0}), (~(c"di)(M, {Ci : 1 ~ O, d i : 0 ~ 1}), ~i(ci'4)(M, {Ci : 1 ~ 1, di : 
1 ~ 1})}. and let A = maxi<<_A i. Then, i f M ( w )  >_ C(w)/K then A <_ 2-1°/s. 

5. I f  A <_ 2-10/s, where A is as defined above, and 6(f)(M) <- 2-1°/s, then U(w3) < 
(1 -- b(c'd~f)(M)/2)k3C[M](w3). 

6. I f  6(a'b'c'd'f)(M) <-- 2-10/S then M(w4) < (1 - 6(a'b'c'dd'x'¢'e)(M)/2)k'C[Ml(w4). 
Z If6(a'b'~'dd'x'~'e)(M) <-- 2-10/S and F is unsatisfiable, then M(ws) < (1/2)k'C[M](ws). 

Proof of Lemma 5.1, part 2, given Lemmas 5.2, 5.4 and 5.6. Assume that M*(w) >_ 
C(w)/K, and let a particular M witness this fact. We will show that this will imply that 
F is satisfiable. First, the following follows immediately from Lemma 5.6, part 1. 

(3(a,b)(M) ~ ~ (5.15). 
s210 • 

Next, suppose for contradiction that 6(f)(M) > 2-1°/s. Then, 6(a'bf)(m) = 6 ( f ) ( m ) ,  since. 
6(f)(M) > 6(a'b)(M). It follows from Lemma 5.6, part 3: 

M(wl) < i1  6~f~M). 1 k, _ - - - C [ M ] ( W l )  

Substituting kl = s2n(log K + [ w2w3w4w5 1) into the above gives us: 
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M ( w 0 <  i1 6(f~M)_ls2,(logl(+kw~w ..... 3 
_ - - • C [ M I ( w 0  

e-6(f)(M)/2"s211(logK+lw . . . . . . .  [). C [M] (Wl) 

.... 
< ~ .  • C [ M l ( w ~ )  (5.16) 

Lemma 5.4 provides us with an upper bound on how large M(w2w3w4w5) could possibly 
be in comparison to C[M](w2w3waws), that is, 

M(W1W2W3W4W5 ) ~ 2]wlw . . . . . . .  ]C[M](wIw2w3w4w5 ) 

We can use this bound and (5.16) to bound M(w) above by 1/K C(w) as follows: 

M(w) < M(wo)M(wl)M(wzw3w4ws) 

<-- C [ M ] ( w o ) M ( w 1 ) M ( w 2 w 3 w 4 w 5 )  , by Lemma 5.6, part 2 

aIlllw2w3w,w~' 
< C[M](w0) "~.  C[M](w1) "M(w2w3w4w5) , by (5.16) 

1 (  wwww 
= ~ "  C[M](w0) • C[M](w1) " ~ M(w2w3weW5) , by rearranging 

terms 

1 
< ~ .  C[M](w0) • C[M](wl) • C[M](w2w3w4ws), by Lemma 5.4 

1 < ~ .  C[M](w), by definition of C[M](w) 

1 
< g "  C(w), by Lemma 5.2 (5.17) 

This contradicts our assumption, and hence together with (5.15), we conclude: 

1 
¢3(a'b~f)(M) = max{6(a'b)(M), ¢3(f)(M)} _< s21~. (5.18) 

• Since by assumption, M(w) > C(w)/K, A as defined in the statement of Lemma 5.6, part 
4, does not exceed 2-1°/s. Suppose now for contradiction that b(C~(M) > 2-1°/s. Then, 
since 6(a'b)(M), h and 6(f)(M) are now known not to exceed 2-1°/s, it follows from Lemma 
5.6, parts 2 through 5, and a similar argument as before, that this would imply M(w) < 
1/K C(w). Thus, we conclude: 

1 
6(a'b'¢'a:)(M) -- s21~ (5.19) 



242 N. ABE AND M.K. WARMUTH 

Given the above, it follows from Lemma 5.6, parts 2 through 6, by an analogous argument 
as before, that the distortion of M with respect to all letters is small, that is, 

1 
6(M) _< - -  (5.20) 

s f  ° 

Finally, suppose that F is unsatisfiable. Then by Lemma 5.6, part 7, we must have 

M(ws) < I ~ l k S " C [ M ] ( w s )  

Now again using Lemma 5.6, parts 2 through 6, and the fact that k5 = log K, we can show 
that M(w) < 1/K C(w), contradicting our assumption. Hence we conclude that F must 
be satisfiable. 
End of proof of Lemma 5.1 and proof of Theorem 5.1 

Proof of Theorem 5.2. First note that 1-state PAs are deterministic. Thus, by Corollary 
4.2, it is clear that the MLM problem for the 1-state constraints is solvable in polynomial 
time. We then show that if we use the optimal 1-state PA for the MLM problem for s-state 
null constraints, then it achieves the guaranteed approximation factor of s Iwl . The optimal 
1-state PA sets the transition probability of each letter proportionally to the frequency of 
that letter in the input string w. More precisely, the optimal matrix, denoted M* is defined 
as follows: For each letter z E E, we set 

#(z, w) 
M*(0, 0, z) - 

Iwl 

where we let 0 be the unique state in the 1-state PA. Hence, the probability M* assigns 
on w is easily computed as follows: 

M*(w) = H (#(z, #(z,w) 
IwlJ 

Now, using Lemma 5.3, we can compute the following upper bound on M(w) for any 
s-state stochastic matrix M. 

M(w) < I I  (maxi~sM(i, *, z)) #(z'w) (5.21) 
zE~ 

Here we have the constraint that ~z~ maxi~sM(i, *, z) -< s. Hence, by Lemma 4.2, we 
have: 
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M(w) < 1-'1 fs#(Z' wy] #(z,w) 

L_ IwlJ 

slwl 1I F L-F J 
= slWlM*(w) 

End of proof of Theorem 5.2 

6. Application to training hidden Markov models 

Hidden Markov models are used extensively as probabilistic models for generation of speech 
signals for the purpose of  speech recognition. See Levinson, Rabiner and Sandhi (1983) 
for an excellent tutorial on this material. Hidden Markov models are defined similarly 
to probabilistic automata, except that the generation of letters is associated with the states 
rather than with the transitions. We briefly review the definition below. 

Definition 6.1 (Hidden Markov Models(HMM)). A hidden Markov model P is a quin- 
tuple (Sp, ~e, 7rp, Alp, LI, ) where Sp is a finite set of  states, Zp is a finite alphabet, re  
: Sp --* [0, 1] is the initial probability distribution over Sp, Me : Sp × Sp ~ [0, 1] is 
a stochastic matrix, and L e : Sp × ~e ~ [0, 1] specifies the letter generation distribu- 
tion at each state, i.e. 

~ ]  re(i) = 1 and  ¥ i  ~ Sp ~ ]  Me(i, j)  = 1 and  ¥ i  ~ S e ~_a Le(i,  a)  = 1 (6.1) 
iESp jESp aE~p 

For any string w = wl . • • Wn ~ ~ ,  the generation probability assigned on it by P = 
( Sp, ~p, 7rp, Alp, Lp ) is computed as follows. 

n-1 

P(Wl . . .  wn) = ~ zce(io)" H Lp(ij,  Wj+l)Mp(ij ,  i j+ l )  (6.2) 
( i 0 . . . . .  i n )Es~ +1 j=0  

As before, for any given example length n, P defines a probability distribution over Enp. 

Any hidden Markov model can be simulated by a probabilistic automaton of the same 
number of  states. For an arbitrary hidden Markov model P = (Sp, r.p, 7rp, Mp, Lp], 
define a probabilistic automaton Q = (SQ, ~Q, 7rQ, MQ ) by letting SQ = Se, ~Q = Ep, 
7rQ = 7rp, and 

¥i, j E S O Yz ~ ~a Ma(i, j ,  z) = Lp(i, z) " Mp(i, j)  (6.3) 

Then, P and Q define the same distribution over E~ for any n, as demonstrated below. 
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Q(wl • . . W n )  ~]  7rQ(io) • 
(i0 ..... in}~s~ + t  

7r e( io) • 
(i0 ..... in)~s~ ÷~ 

n-1 

II 
j=O 

mQ(ij, 6+1, Wj+l) by (2.2) 

n - 1  

H Lp(ij, Wj+l)Mp(ij, 6+1) by (6.3) 
j=0 

= P(wl . . .  wn) by (6.2) 

Note that the ratio Ma(i, j ,  z')/MQ(i, j ,  z ')  equals Lp(i, z)/Le(i, z ' )  and is independent 
of j .  In other words, the class of s state hidden Markov models is equivalent to the class 
of s state probabilistic automata satisfying the following condition: 

¥i, j ,  k ~ Sp Yz, z'  E ~e 
MQ(i, j ,  z) _ MQ(i, k, z) 

Ma(i, j ,  z ' )  Ma(i, k, z ' )  

We define the training problem for hidden Markov models exactly analogously to the 
training problem for probabilistic automata (c.f. Definition 2.4). The only difference is 
that the input constraint that an HMM training algorithm receives is an HMM constraint, 
in place of a PA constraint. Here, an HMM constraint is a five-tuple C = ( ~, S, I, G, 
L }, specifying respectively the finite alphabet, set of states, legal initial states, legal transi- 
tions and legal letter generations. Formally,, I ___ S, G c S x S and L ___ S x ~. As 
before, we measure the size of the input constraint by the total number of probability 
parameters in it, I I [ + ] G ] + ] L I, and denote this by t. We say that an HMM P satisfies 
C = {E ,S ,  L G , L )  if an only i fSp  = S a n d r .  e = E a n d  

Vi ~ I, 7re(i) = 0 
¥(i, j) ~ G, Mp(i, j) = 0 
¥(i, z) ~ L, Lp(i, z) = 0 (6.4) 

For an arbitrary HMM constraint C = (P., S , / ,  G, L}, let Y/-YTFY-~(C) denote the class 
of HMMs satisfying C. We can think of oZ/-~TYT((C) as the subset of [0, 1] I × [0, 1] a × 
[0, 1] L satisfying the stochastic condition (6.1). The training problem for a class G of HMM" 
constraints is defined analogously to the training problem for a class of PA constraints (see 
Definition 2.4). We can show the same sample complexity bound (up to a constant factor) 
for training a class of HMM constraints as we did for PAs in Theorem 3.1. We only sketch" 
how this is shown, since the proof is almost identical to the proof of Theorem 3.1. We 
define ~-'~,)Tt/r~7~-~f)m by bounding the initial, transition and letter generation probabilities 
from below by 1/tm, where t is the size of the input constraint. We define ..7.7/-Y-TgYT((C) m 
by quantizing all the probabilities in the same way as before. The rest of the proof is essen- 
tially the same. The analogues of inequalities (3.13) and ~(3.14) for .7-/Y-~((C, 
J-J.Y/-YTFY-Y'(C) m and .7.Y/-YTFY-3V(C) m can be shown the same way, noting the fact that the 
probability assigned on a string of length n by an HMM is a product of 2n + 1 probabilities, 
as opposed to n + 1 for PAs. 
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Corollary 6.1. An arbitrary class of HMM constraints G can be trained with sample com- 
plexity O((n/e)2t • log 3 nt/e • log 1/8 • log 2 log 1/6), where to is the size of the input 
constraint. 

Corollary 6.2. Any finite class of HMM constraints is polynomially trainable. 

7. Concluding remarks 

We were able to show that training an arbitrary class of PAs and HMMs can be done with 
polynomial sample complexity when computational efficiency is ignored. The sample com- 
plexity bounds given in Theorem 3.1 for training a class of PAs and in Corollary 6.1 for 
training a class of HMMs may perhaps be improved significantly. Lower bounds for these 
training problems should be investigated. 

Our method for obtaining sample complexity bounds can be summarized as follows: 

(i) We bound the parameter values away from zero to avoid the unboundedness of the 
Kullback-Leibler divergence. 

(ii) We quantize the bounded parameter space to obtain a hypothesis class of a moderate 
cardinality. 

(iii) We show that the resulting quantized hypothesis class 'finely covers' the whole hypoth- 
esis class with respect to log loss. 

(iv) Finally we apply Hoeffding's inequality on a class of bounded random variables defined 
in terms of the quantized hypothesis class to obtain an upper bound on the sample 
complexity for uniform convergence. 

It would be interesting to use this method to establish sample complexity bounds for various 
other parameterized distribution learning problems with respect to the Kullback-Leibler 
divergence and for such problems with respect to the other measures of distance between 
distributions mentioned in the introduction. ~° All our sample complexity bounds with respect 
to the Kullback-Leibler divergence rely on Hoeffding's inequality and thus grow with 1/e 2. 
Is the l& 2 growth in the sample complexity really necessary? 

We showed in Section 6 that s-state HMMs can easily be simulated by s-state PAs. How 
c a n  HMMs be used to simulate PAs? 

There are many open problems related to the hardness results of Section 5. First, we 
would like to know whether the following decision problem is in NP. 

Input: two numbers s and a encoded in unary, a string w E ~* where I E [= a, a probabil- 
ity q ~ [0, 1] encoded in binary. 

Question: Does there exist an s-state P A P  with alphabet size a such that P(w) > q? 

It would also be interesting to determine the precise computational complexity of various 
formulations of the approximate MLM problem as a kind of decision problem. 
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Second, Osamu Watanabe has brought to our attention that the reduction we exhibit in 
the proof of Theorem 5.1 can probably be modified so as to strengthen our result and show 
that the approximate single string MLM problem, perhaps with a more strict requirement 
of approximation, is in fact A~-complete. 

Third, we would like to know whether the single string MLM problem for the null 2-state 
HMM constraints (with variable alphabet size) is approximable in polynomial time or can 
we obtain a similar hardness result for this problem as the one proven in Theorem 5.1 for 
the single string MLM problem for 2-state PAs with variable alphabet size? 

Fourth, can the latter hardness result on the single string MLM problem be strengthened 
from a factor of 2 rwl~-~ from the optimum (for any c~ > 0) to a factor of 2 (1-~)'lwl from 
the optimum (for any o~ > 0)? 

Fifth, recall that we have shown in Theorem 4.l that for an arbitrary class of constraints 
the approximability of the sample MLM problem for it within a factor 2 m~-" (for any 
> 0) where m is the sample size, would imply polynomial trainability of the same class. 
Could this be strengthened so that polynomial approximability within a factor 2 (1-c~)'m (for 
some c~ > 0) would already imply polynomial trainability of the class in question? Could 
we perhaps show that polynomial approximability of the single string MLM problem within 
a factor of 2 Iw]~-~ or 2 (1-~'lwl (for some oe > 0) would imply polynomial trainability? 

Finally, we emphasize that even though the hardness results may be disappointing they 
can serve as guidance in the search for constructive results. Perhaps the most significant 
open problem inspired by the results of the present paper is to determine practically rele- 
vant classes of PAs and HMMs that are provably polynomially trainable. For example, the 
class of HMM constraints used in speech recognition (Levinson, Rabiner & Sondhi, 1983) 
consist of chains of states in which only transitions that go forward in the chain or stay 
stationary in the chain are legal. What is the lowest sample complexity required for train- 
ing this important class of HMM constraints? Is this class polynomially trainable or is train- 
ing this class hard modulo some weak assumption such as RP ~ NP? 
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Notes 

1. HMMs are similar to probabilistic automata, except that outputs in an HMM are associated with the states 
rather than the transitions, and thus the transitions are unlabeled state to state pairs. 

2. The existence of an algorithm for training hidden Markov models which always outputs a near local optimum 
on a given sample is well-known ('Baum-Welch' algorithm (Baum, 1972)) and is used extensively in practice. 
Note that in applications to speech recognition, the alphabet size is determined by how precitse the acoustic 
signals are quantized. The alphabet size is often in the hundreds. 

3. Contrary to what may seem to be the case from the equivalence result described in the previous paragraph 
(of approximability within a factor of 1 + e and that within 2p(n,t) ma for the sample MLM problem), we 
cannot use this equivalence to obtain the non-approximability result whtin a factor of 21w11-= from that within 
1 + e, since the non-approximability result is for the single string MLM problem. 

4. The probabilistic automaton is often formulated as a probabilistic acceptor in the literature. Here we view 
PAs as generators. Thus the stochastic condition in this definition states that, for each state, the total prob- 
ability of transitions out of that state sums to one, rather then the total probability for each state-letter pair 
as is the case for PAs as acceptors. Tzeng considers the incomparable problem of learning PAs as acceptors 
from queries (Tzeng, 1989). 

5. In Physics, it is customary to use the natural logarithm for the definition of entropy. We use the binary logarithm 
for the entropy and the Kullback-Leibler divergence as is done in information and coding theory. 

6. Note that the ideal code may have codeword lengths that are not integers. 
7. We have also implicitly extended the notion of divergence for the generalized notion of probability distribu- 

tions in which the total sum of probabilities over the domain may be less than one. 
8. Note that these bounds can be made slightly larger, which would result in a slight improvement on the sam- 

ple complexity. In particular, the bound on the transition probabilities can be 1/t*m where t* denotes the 
maximum number of transitions in G out of any state. The bound on the initial probabilities can be l/Ill m. 

9. Thus, a letter group consists of either one or two letters. 
10. This has recently been done in Abe, Takeuchi and Warmuth (1991) for various classes of probabilistic con- 

cepts with respect to both the Kullback-Leibler divergence and the quadratic distance. 
11. Each path for the string u can be formalized as a length 6 sequence from S × S x Zn, where each ith member 

bas the ith symbol in u as its third component (its label) and consecutive transitions end and start in the 
same state. Here we simplify our notation by viewing a path simply as a sequence of states, leaving the label- 
ings by u implicit. 
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A. Proofs of  technical lemmas 

In this appendix we prove the technical l emmas  5.2 through 5.5. 

Proof of  Lemma 5.2. Recall that C [ M ] ( w )  = II~rN(M(*, *, H ) / 2 )  #(14'w) with the constraint 

that ~H~rnM(* * H ) / 2  = 1. By L e m m a  4.2,  the function of the form f ( x l  . . . . .  xn) = 

x~' • x~ ~ • . . .  • x~ n subject to the constraint  Xl + x2 + • • • + xn = c attains its m ax im um  

when xi = (ai/r,~=l ai) " c. Thus the m a x i m u m  of  C [ M ] ( w )  is obtained when  M ( *  * H ) / 2  

of each letter group H is set to the frequency of H in w. Thus C [ M ] ( w )  <_ II/t~rn(#(H, w)/  

]wl) #(n'w) and  the product  equals C ( w )  by equali ty (5.6). 

End of proof of  Lemma 5.2. 

Proof of Lemma 5.3. Let  M ~ _/~ be an arbitrary stochastic matrix and x = XlX 2 . . . 

xt E r.~, be an arbitrary string, and let l denote Ixl, the length o fx .  For any k, 1 _< k _< l, 

let Pk,j  denote the c o n d i t i o n a l  probabil i ty  that the machine  M is in state j ,  g i ven  that it" 

has jus t  generated x l x 2  • • • xk-1.  Note that Pk,o + Pk,1 ---- 1 for any k. We can write M ( x l  

. . .  xk) as follows: 

M ( x l  . . .  xk) <-- M(x~ . . Xk_l )  " Pk,o " M(0,  *, Xk) + M ( X l  . . .  Xk-1) " Pk,1 ° M(1, *, xk) 

= M ( X l  . . .  Xk-1)(Pk,  o " M ( O ,  *, xk) + Pk,1 " M(1,  *, xk)) 

<_ M ( x  I . . .  X k _ l ) m a x { M ( O  , *, xk) , M(1, *, xk)}, since Pk,o + Pk,1 = 1. 

Hence it follows that: 
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Ixl 
M(x) <_ I I  max{M(0, *, xi), M(1, *, xi) } (A. I )  

i=1 

Part 2 of the lemma follows from a similar argument. First ,  analogously to Pk,j, let qk,j 
denote the conditional probabili ty that the machine M was in state j at t ime step k, given 
that it generated Xk+lX2 • • • xt after step k. Note that qk,0 + qk,1 = 1 for any k. We can 
write M(xk . . .  Xl) as follows: 

M(x k . . .  xl) <. M(*, O, xk) • qk,O " M(Xk+l . . .  xt) + M(*., 1, Xk) " qk,1 " M(Xk+l . . .  xt) 

= (q~,o " M(*, 0, x~) + qk, l " M(*, 1, xk))M(xk+ 1 . . .  xl) 

_< max{M(*, 0, xk), M(*, 1, xk)}M(Xk+l . . .  xl), since qk,o + qk, l = 1. 

Hence it follows that: 

Ixl 
M(x) <_ I - I  max{M(*, 0, xi), M(*, 1, xi) } (A.2) 

i=1 

End of proof of Lemma 5.3. 

Proof of Lemma 5.4. This lemma follows straightforwardly from Lemma 5.3. By the defini- 
tion of C[M](x), 

C[M](x) = I I I  M(*'  *' H)~ #(H'x) 
HEFn 2 

But by Lemma 5.3, part 1, we have: 

M(x) <_ 1--[ (M(*, *, H)) #(a'x) 
H(:F n 

SO it follows: 

m(x) <_ 2 Ixl. C[Ml(x) 

End of proof of Lemma 5.4. 

Proof of Lemma 5.5. Since Mr(x ) = 0, m every path for x there must he at least one tran- 
sition assigned zero probabil i ty by M r. Now since 6(M, Mr) = A, we have: 

M(i, j ,  z) 
X(M, Mr) = maxHErn,iES Z < 6(M, Mr) = A M(i, H) zEH, j~S,Mr(i,j,z ) =0 
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Hence, in every path for x, there must be at least one transiton, say the k-th one, with 
probability not exceeding A • maxiesM(i ' *, H(xk)), where we wrote H(xk) for the letter 
group to which Xk belongs. But since u(M, M 0 = maxHern,ies 2 IM(i, * H)/M(* * H) 
- 1/2 I _< x/5(M, M,) = x/A, 

A • maxies{M(i, *, H(Xk))} < m(1 + x/~) M(*, *, H(xk)) 
-- 2 

Let O = S t+l be the set of all paths of length l = [xl. Partition O into O1, 0 2 ,  • - . ,  O l  

according to the first occurrence k of a transition probability not exceeding A(1 + x/~) 
M(* * H(xk))/2. Notice that O = tA ~=~ Ok and Ok are mutually disjoint. Therefore if we 
define M(x, Ok) = ~(i . . . . . .  il)EOk IIJ= 1 M(ij_l, ij, xj), then we have M(x) = ~=1 M(x, Ok). 
Applying a similar argument as in the proof of Lemma 5.3, part 1, on each Ok, we obtain: 

M(x, Ok)_< ~ - I I  max{M(0, *, xj), M(I, *, xj)}-~ • A(1 + x/A)M(*, *, H(xk) ) 

L j#k 9 2 

-< ~j~ek(1 +x/-A) M ( * ' * ' H ( x i ) ) I ' A ( 1  +x/-A) M ( * ' * ' H ( x k ) ) 2  2 

_< A(1 + x/A) t .  C[M](x) 

Hence we have: 

M(x) < IA(1 + x/A) l .  C[M](x) (A.3) 

End of  proof  of  L e m m a  5.5. 

B. Proof  of  Lemma 5.6 

In this appendix we prove Lemma 5.6, the key lemma used in the proof of Lemma 5.1, 
part 2. The proof uses the technical lemmas 5.2 through 5.5. 

Proof  of  Lemma 5.6, part  1. Assume that M(w) > 1/K C(w). For an arbitrary letter z, 
let i z be the state i E S with the maximum out-share for z. (Let i z = 0, if M(0, *, z) = 
M(1, *, z).) Similary letjz be the state with the maximum in-share for z. Then by Lemma 
5.3, part 1, we have: 

M(wo) = M((ab) ko) 

<--_ M(~, *, a) ~ • M(ia, *, b) k° 
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< QM(qa,* ,a)  + M(ib, *,b)~2k° 
- 2 , because xy <_ I X ~  2 Vx, yE  R 

(B.1) 

Let Ao~t denote the fraction of the total (z, b)-share not given to the states with maximum 
out-shares for a and b, that is, Aout = (Eieia M(i, * a) + Zieib M(i, * b))/M(* * (a, b)). 
Alternatively, we can write Ao~t as 1 - (M(ia, * a) + M(ib, * b))/M(* *, (a, b)). Noting 
that M(ia, * a) + M(ib, * b) = (1 - Aout)M(*, * (a, b)), we obtain from (B.1): 

M(w°) < ( 1 - -  A°ut)2~°Q M(*' *'2 (a, b)) ; 2k° 

= (1 - Aout)2k°f[M](wo), by definition of  C[M] and noting Wo = (ab) ~° 

Similarly, if we define Ain to be EJ¢Ja M(* j, a) + ~JeJb M(* j, b)/M(* *, (a, b)) = 1 - 
(M(* Ja, a) + M(* Jb, b))/M(* * (a, b)), we obtain the following from Lemma 5.3, part 2. 

M(wo) <- (1 - Ai.)2k°C[M](wo) (B.2) 

So if we now let A = max{Aout, Ain}, then we have: 

M(wo) <- (1 - A)2k°C[M](wo) (B.3) 

Suppose for contradiction that A > 2-11/s. Then by the choice of k 0 = s211 (log K + 
] WlW2W3W4W5 [), we must have 

I1  ~') 2ko 
1 j C[M](wo) (B.4) M(wo) < s211 

< e-(2 ll/s)s2"(logg÷lwlwzw .. . . .  3C[M](wo) 

1 I i 1 [  . . . .  w3w,wsI < ~5" C[Ml(wo) (B.5) 

Thus we can show via an argument of the style that was used in the proof of Lemma 5.1, 
part 2, given lemmas 5.2, 5.4 and 5.6: 

M(w) <_ M(wo)M(w 1 w 2 w 3 w 4 Ws) 

< ~ C[Ml(wo) • 2 b . . . . . . . . . .  IC[M](w1w2w3w4w5), by Lemma 5.4 

1 
< ~ C[M](wo)C[M](w~w2w3w4ws) 
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1 C[M](w) 
K 

1 C(w), by Lemma 5.2 -<~ 

This contradicts our assumption, so we must conclude that A < 2-U/s. Intuitively, we 
have shown that both the out-share and in-share of  each of a and b must be highly concen- 
trated on one of the two states, and hence that for each of a and b, there is exactly one 
transition in M which has almost all of the letter's share. Let era = (ia, j~) and erb = (ib, Jb) 
these two dominating transitions for a and b, respectively. Formally we can derive the follow- 

ing, recalling that Aout = (~ieia M(i, * a) + ~ieib M(i, * b))/M(* * (a, b)), and Ain = 
~jej: (M(* j ,  a) + ~JeJb M(*, j ,  b))/M(*, * (a, b)) 

Z M(i, j, a) < - 2  M(i, *, a) + Z M(*, j, a) 
(i,j) ;~ (i a,ja) i ~ i a J ~Ja 

< AoutM(*, *, (a, b)) + AinM(*, *, (a, b)) 

< 2AM(*, *, (a, b)) 

1 
< ~ M(*, *, (a, b)) (B.6) 

Similarly, for the letter b, we can show: 

1 
Z M(i, j ,  b) < s-~f 6 M(*, *, (a, b)) (B.7) 

(i,j) ~ (ib,Jb) 

Next we will show that oa and erb must form a cycle, that is, Ja = ib and Jb = ia. For sup- 
pose otherwise, then each of the 2 5 possible paths for the substring abab contains at least 
one transition other than er a and erb which by (B.6) and (B.7) has probability at most 2-1°/s 
M(* * (a, b)). Thus, each of the 2 5 paths has probability at most 2-1°/s M(*, * (a, b)) • 
max{M(* * a), m(*  * b)} 3 and 

M(abab) <- 25 .  1 s~T6 M(*, *, (a, b)) • max{M(*,  *, a), M(*, *, b)} 3 

1 
-< s-~ M(*, *, (a, b)) 4 

1 ~M(*, *, (a, b))~ 4 1 
<- 2 2 = ~ C[M](abab) (B.8) 
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Recalling that Wo = (ab) k°, the above implies that M(wo) <- (1/2)~°/2C[M](wo). As before, 
by the choice of ko, this implies that M(w) <_ 1/K C(w). We have thus shown that aa and 
% must for a cycle. More precisely, we must have one of the following four possibilities. 

1. (Oa, % )  = (0 --" 1, 1 ~ 0) .  
2. ( %  oh) = (0 --' O, 0 --" 0) .  
3. (aa, %) = (1 ~ 1, 1 ~ 1). 
4.  (oa, oh) = (1 ---, 0 ,  0 - 1). 

Next, we will show that in fact only options 1 and 4 are possible, given the assumption that 
M(w) > 1/K C(w): if we had either option 2 or 3, then we would have M(w) < 1/K C(w). 
Assume without loss of generality that we have option 2, that is, (%, %) = (0 ~ 0, 
0 ~ 0). Then, note that ia = 0 and ib = 0. Hence we conclude: 

M(ia, *, a) + M(ib, *, b) = M(O, *, a) + M(O, *, b) < 1 (B.9) 

Now let #((a, b), w) be the number of all letters other than a and b in w and let h denote 
the inverse of  the frequency of these letter in w, that is, h = Iw[/#((a, b), w). Note that 
h > Lwl/Iwlw2w3w4wsI > s211 holds by the way w is defined. Also note that M~(* * 
(a, b))/2 = #((a, b), w)/Iwl = 1 - 1/h. Using (B.9), we can derive: 

M(ia'*'a)M(ib'*'b) < IM(ia'*'a) + M ( i b ' * ' b ) 1 2 -  2 , s incexy _< ~(x + Y ) ;  e 2  

2 

_< , by  (B .9 )  

because M~(*, *, (a ,  b))  = 1 - _1 
2 h 

1 I1 1 12 IM~(*'*'(a'b))12 
= 4  + h ~  " 2 

1 IM~(*,*,(a,b));2 
- 2 "  2 noting that h > s211. (B.10) 

Note that the above quantifies how much M loses on the letters a and b in w, as compared 
to a canonical matrix Mr: M loses by at least a factor of 1/2 per each pair of  a and b, if 
we have option 2. Next, we will bound how much M could possibly gain on the remaining 
letters as compared to a canonical matrix, by the fact that option 2 gives a and b less share. 
This will again be quantified in terms of h. From Lemma 5.3, part 1, we know that the 
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total generation probability assigned on these letters is at most IIz~zn\{a.b} M(*  * Z) #(z'w: 
and this quantity is maximized when M(* * z) are set proportionally to their frequencies 
in w within their total share r~z~Zn\{a,b } M(*  * z) = 2 - Zz~{,,.b} M(* * Z) -< 2. Hence, 

But, by the definition of M~, we have that: 

from (B.11) and (B.12), it follows that: 

Here, the second to last inequality follows from the observation that by (5.4) for any partial 
letter z in letter group H, M~(* *, H) = 4(#(z, w)/[w]) and by (5.5) for any total letter 
z, M~(* * {z}) = 2(#(z, w)/lwl) .  Now recalling that C(w) = HI4~v,(MT(* * H)/2)  #~H'w~, 
we can use (B.10) and (B.13) to bound M(w) from above by 1/K C(w), again contradicting 
our assumption. 

(B.11) 

(B. 12) 

(B.13) 
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= C(w), since #((a, b), w) = (h - 1)#((a, b), w) 

= IQll(h-3-1°gh)/2~#((a'b)'W)c(w) 

<_ C(w), 

(-1-~ h-3-1°gh/2 1 h - 3 -  21ogh  
since ( ~ _ j  < ~ because clearly 2 > 1 given h > s211 

1 < ~ C(w), since #((a, b), w) > log K (B. 14) 

Thus, we have verified that o a and ab are either 0 ~ 1 and 1 --, 0, or 1 - ,  0 and 0 - ,  1. 
By (B.6) and (B.7), and the definition of ~(a'b)(M, {a " 0 ~ 1, b : 1 --* 0}) and k (a'b) 
(M, {a : 1 ~ 0, b : 0 -~ 1}), we conclude that one of the following must hold: 

1 
~k(a'b)(M, {a ' 0 ~ 1, b : 1 --* 0}) _< s~-g ,  or 

1 
x(a'b)(M, {a : 1 ~ 0, b : 0 ~ 1}) __<_ s21--- 6 

Assume without loss of generality that the first of these two holds. Note that most of a's 
share is out of 0 and most of b's share is out of 1. Then, again by Lemma 5.3, part 1, 
we must have: 

M(Wo) <- (M(O, *, a)M(1, *, b)) k° 

< ( 1 - ~ ' ( a ' b ) ( M ) 2 ) k ° I M ( * '  *' (a 'b))  ~ 2k° - 2 , as shown in Example 5.1 

By an argument which is by now familiar, this implies that p(a'b)(M)2 <_ 2-10/s. Hence, 
.together with the earlier assumption that x(a'b)(M, {a : 0 ~ 1, b : 1 -~0}) -~" 2-1°/s, this 
implies that 

6(,,,b)(M) (a b) = min~rnmax{X ' (M, Mr), p(a'b)(M)2} 

<- max{X(a'b)(M, {a : 0 ~ 1, b : 1 ~ 0}), v(a'b)(M) 2} 

1 
- s21O • 
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Proof  of  L e m m a  5.6, pa r t  2. This part follows directly from Lemma 5.3. 

P roof  of  L e m m a  5.6, pa r t  3. This part follows at once if we establish the following claim 
since (2-1°/s) _< 2 -1° as long as the formula F is not empty (s > 1). 

Claim B.1. Let u = afabfb. Then, i f  t~(a'b)(M) <_. (1/2) l° then M(u) <_ (1 - ~(a'b'f)(M)/2~ 
C[M](u). 

Proof  of  Claim B.1. What we wish to show is roughly as follows: Given that a and b gc 
essentially as intended, that is a mostly goes from 0 to l, and b mostly goes from 1 to 0, 
thenfmus t  also go essentially as intended, that i s fmus t  go mostly from 0 to l, and 1 to 0. 
(In the mirror image of a canonical matrix, the roles of a and b are flipped, but here we 
assume without loss of generality that a goes from 0 to l, and not the other way round.) 
We call these four transitions intended transitions, and all others unintended transitions. 
Note that [ u [ = 6, and so the length of each path (state sequence) for u is ] u [ + 1 = 7. 
Let i2 denote the set of all paths 1~ possibly generating u, or f~ = S 7. We then let i21 denote 
the set of those paths in f~ containing only intended transitions (for u), except possibly 
at the two ends. For example, 1 ~ 1 ~ 0 ~ 1 ~ 0 ~ 1 ~ 1 is in 121 because the only 
unintended transitions in it are the first 1 ~ 1, labeled with a, and the last 1 --, 1, labeled 
with b. On the other hand, 0 ~ 1 ~ 1 ~ 1 ~ 0 ~ 1 ~ 0 is not in f~l because the sec- 
ond transition, 1 ~ 1 labeled w i t h f  and the third, 1 ~ 1 labeled with a are unintended. 
Let f~l denote 12\fl 1. Let M(x, ~), in general, denote the probability that the string x is 
generated by one of the paths in fL That is, letting x = Xl . . .  xl and ~ = (io . . . . .  il), 
M(x, I2) is defined as follows. 

I 

M(x, f]) = ~ H M(ij_l, i], xj) 
(io,...,il)E~ j=l 

Then by the definition of M(u) (Definition 2.5), ~1 and ~ it follows that 

M(u) <_ M(u, ~1) + M(u, f~l) (B.15) 

Given t h a t  ~(a'b)(M) <_ (1/21°), we will bound M(u) from above as in the statement of  thee 
claim, by bounding from above the two terms M(u, ~1) and M(u, f]l ) in (B.15) separately. 
For computing M(u, f]l), recall from Example 5.1 that: 

M(O, 1, a)M(1 O, b) < (1 - 6(a'b)(M)) r-M(*'  *, (a, b))-~2 
' ~ I._ 2 J 

Similarly we can also show 
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Using these, we can bound M(u, 91) as follows: 

M(u, 91) ~_~ M(*, 1, a)M(1, 0, f)M(O, 1, a)M(1, 0, b)M(O, 1, f )M(1 ,  *, b) 

<_ M(*, *, a)M(*, *, b) • M(0, 1, a )M( l ,  0, b) • M(0, 1, f )M(1 ,  0, f )  

2 • (1 - 6(a'b)(M)) M(*, *, (a, b)) 2 
- 2 

• ( 1 - ~ ( f ) ( M ) ) I M ( * ' - 2 * ' f ) ~ 2  

_< (1 - ~i(f)(M))(1 - ?9(a'b)(M))C[M](u) 

__- (1 - 5(a'b'f)(M))C[M](u) (B.  16)  

The last inequality followed because gl(a'b'f)(M) = max{6(___f)(M), 6(~'b)(M)}. 
Now we bound from above the rest of M(u), i.e., M(u, 91). First note that by definition 

every path, say ~o, in 91 contains at least one unintended transition which is at neither end 
of u. The crucial observation is that because such an unintended transition has a transition 
before and after it, there must be at least two consecutive unintended transitions in o~. Now 
since u = afabfo, this implies that there must be at least one unintended (a, b)-transition, 
and another unintended transition in ~0. Now note that there are at most five possible places 
for two consecutive unintended transitions in a path in 91. I f  one fixes one of these five 
places as the place for the first occurrence of two consecutive unintended transitions, then 
the total probability of generating u via these paths is less than C[M](u) by an approximate 
factor of k(a'b)(M, M 0 times ~k(a'b'f)(M, Mr), accounting for the presence of unintended 
transitions at two specific positions, disregarding any favorable skews that might be present. 
For example, if we let 91,1 denote the set of  paths in which the first two consecutive tran- 
sitions (for a and f )  are unintended, then we can bound M(u, 91,1) from above as follows. 
First, from a generalization of Lemma 5.3 to any subset of paths, we have: 

M(u, 91,1) ~--. max{M(0, 0, a), M(1, *, a)} • maxissM(i, i, f )  • maxi~sM(i, *, a). 

maxi~sM(i, *, b) • maxi~sM(i , *, f )  • maxiesM(i , *, b) (B.17) 

" Now by the definitions of leak and skew, if we let M r be an arbitrary canonical matrix, 
we have: 

max{M(0, 0, a), M(1, *, a)} _ max{X~a'b)(M, Mr) • M(O, *, (a, b)), 

k]a'b)(M, Mr) • M(1, *, (a, b))} by (5.9) 

<- k(a'b)(M, MO • rnaxiesM(i, *, (a, b)) by (5.10) 
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M(* (a, b)) < x(a'b)(M, Mr) " (1 + v(a'b)(M)) • 
- -  2 

by (5.12) 

Similarly, 

maxiEs{M(i , i, f ) }  < x(f)(M, Mr) " (1 + v(f)(M)) • M(*, *, f )  
- 2 

For an arbitrary letter z in an arbitrary letter group H, 

maxi~sM(i, *, z) <- (1 + vH(M)) • M(*, *, H) 2 by (5.12) 

Plugging these into (B.17), we obtain: 

M(*, "7 (a, b)) M(u, QI,1) < ~k(a'b)( M, MOO + v(a'b)(M)) 
- -  2 

),(f)(M, Mr)(1 + v(f)(M)) M(*, *, f )  
2 

p(a,b)(M)) 3 ~_(-M(*' *'2 (a, b))-] 3_3 • (1 + v(f)(M)) M(*,2*, f )  ( 1 +  

= x(a'b)(M, Mr) " x(f)(M, Mr) " (1 + g(a'b)(M)) 4 • (1 + v(f)(M)) 2. 

I M(*, *,2(a, b ) )14 .  ~M(* , .2* , f ) l  2 

<_ ~k(a'b)(M, Mr)" )~(a'b'f)(M, Mr)" (1 + v(a'b)(M)) 4" (1 + v(f)(M)) 2" C[Ml(u) 

Since we can derive the same inequality for each of the five possible places for the first " 
two consecutive postions of unintended transitions, we obtain the following. 

M(u, f~--11) <- 5x(a'b)( M, Mr))t(a'b/)( M, MOO + v(a'b)(M))4( 1 + v(f)(M))2C[M](u) " 

Now since we have 6(a'b)(M, Mr) = max{~k(a'b)(M, Mr), (v(a'b)(M)) 2} <-- (1/2) a°, and 1 + 
v(U)(M) _< 2 by (5.13), we obtain: 

M(u, ~1) ~-~ 5 ° x(a'a'f)(M, MO + 22C[M](u) 
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1 < _ ~k(a,bf)(M, Mr)C[M](u  ) 
2 

(B.18) 

Putt ing (B.14), (B.16) and (B.18) together,  we obtain:  

M(u)  < M(u,  f~l) + M(u,  i l l )  

<_- - ~(a'b'f)(M) + ~ ~k(a'b'f)(M, M r C[M](u) 

t~(a'b'f)(M) 1 
2 C[M](u) 

Proof of  L e m m a  5.6, p a r t  4. This  par t  follows f rom an analogous  a rgument  to the p roof  of  
L e m m a  5.6, par t  1, except  the par t  that  e l iminates  two of the four poss ib le  'cycles, '  s ince 
that  par t  makes  use of  the fact  that the f requency of a and b in w is very c lose  to one. Firs t ,  
if  we define A i for each i <- n, ana logous ly  to A in the ear l ier  proof ,  then we can show 
that maxi<_nA i <_ 2-1°/s. We can also show that  (v~Ci'di)(M))2 <_ 2-1°/s by the same argu- 

ment .  So, it follows that  i f  we let  A = maxi<nmin{t3~c~'di~(M, {ci : 0 ~ 0, d i : 0 ~ 0}),  
~(ci'di)(M, {Ci : 0 ~ 1, di : 1 ~ 0}),  t~(ci'di)(M, {ci : 1 --+ 0, di : 0 ~ 1}), ?9(ci'di)(M, {Ci : 
1 ~ 1, di : 1 ~ 1})}}, then we have that  if  M(w)  >_ C(w) /K  then A < 2-1°/s. 

Proof  of L e m m a  5.6, p a r t  5. There  are two cases.  Firs t ,  suppose  that  for some i, (ci, di) 
pa i r  is not ei ther  (0 -o 1, 1 -o 0) or (1 ~ 0, 0 ~ 1). M o r e  precisely,  suppose  that one 
of  the fol lowing holds:  

1 
Ai = 8(ci'di)(M, {c i : 1 ~ 1, di: 1 ~ 1}) < s21-- ~ (B.19) 

1 
A i = t3(ci'di)(M, { C i :  0 ~ 0, d i : 0 -o 0}) < s21-- ~ (B.20) 

In this case,  each of the 2 7 paths for the string w3, i = cifcidi fd i must  contain at least  two 
unintended t ransi t ions,  that  is, two t ransi t ions o ther  than f : 0 ~ 1, f :  1 ~ 0, ci : 1 ~ 1, 
d i : 1 ~ 1 when  (B.19) holds,  and two transi t ions other than f : 0 ~ 1, f : 1 -o 0, ci : 
0 ~ O, di : 0 ~ 0, when (B.20) holds.  Since  all  of  Ai, ~k(f)(M, Mr) <__ t~(f)(M, Mr) , and 
u(c'd'f)(M) < max{Ai ,  6( f ) (M,  M~)} are at mos t  2-1°/s, we can bound  M(w3,i) f rom above 
as follows. 

M(w3,i) <- 27(max{Ai, ~,(f)(M, Mr)}) e 

• (1 + g(C'd'f)(M))6 ( -M(* ,  *, (ci, di) ) 
2 

1 
< _ C[M](w3,i) 

2 
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It follows that in fact in this case M(w3) < (1/2)k3C[M](w3), since each w3, i occurs k3 times 
in w 3. Next, we assume that each (ci, di) pair is set as intended, namely (0 --* 1, 1 ---, 0) 
or (1 ~ 0, 0 ~ 1). Given this, we can prove the analogue of Claim B.1 in the proof oI 
Lemma 5.6, part 3, where the string afabfb is replaced by cifcidifdi. The desired conclu- 
sion follows at once. 

Proof of L e m m a  5,6, p a r t  6. The proof  of part 6 is similar to the proof of  part 3. Using 
the same technique of dividing the set of paths for each substring of the form u i = 
axibxicixidixibeaeab we can obtain the following claim, exactly analogous to the claim 
in the earlier proof. 

Claim B.2. Letu  i = axibx icixidixibeaeab. Then, i f  ~(a'b'ci'di)(M) ~ (1/2) 1° then M(ui) < 
(I - 6(a'b'ci'di'xi'xi'e)(M)/2)C[M](ui). 

I f  we divide the path set of ui into f]l and ill, defined as before, then if we let M~ be an 
arbitrary canonical matrix, we can show the following 

M(ui) <-- M(ui, ~1) + M(ui, f]l) 

I <_ -- ~3(a'b'ci'di'xi'xi'e)(M) + -~ ~k(a'b'ci'di'xi'~i'e)(M, M, C[M](u) 

=~1-?)(a 'b 'ci 'di '2-- '~ii 'e)(M))lC[M](u ) 

Proof of L e m m a  5.6, p a r t  7. As we observed in the proof sketch of Theorem 5.1, if F 
is unsatisfiable, then for any canonical stochastic matrix M~, we must have M~(ws) = O. 
But we have shown that iS(M) _< 2-1°/s. In other words, for some particular truth assign- 
ment r, t3(M, M~) < 2-1°/s. Therfore we can apply Lemma 5.5 to each substring u = II}=l 
ab(lj,llj,21j,3)b and obtain the following. 

M(u) <_ 6s--}T 6 + C[M](u) 

Clearly M(u) <_ (1/2)C[M](u) holds, and thus we obtain M(ws) -< (1/2)k~C[M](ws). 
End of proof of L e m m a  5.6. 


