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1. In t roduc t ion  

We investigate the complexity of learning in the most common formal models for on-line, 
or "incremental" learning (as opposed to batch-learning). One may also describe the models 

considered here as models for learning with queries. We focus on methods for proving 

lower bounds to the "learning complexity" of a concept class G. In other words, we are 
interested in proving lower bounds to the number of steps that are needed by any learning 

algorithm in order to learn an arbitrary target concept CI. from the concept class G. In 
particular, we clarify the relationship between the learning complexities in different learn- 
ing models and some relevant combinatorial parameters. 

In the models considered here, a learning process is viewed as a game between two agents: 
the learner (or learning algorithm) and the environment. At the beginning both agents agree 

on a domain X (typically a finite set) and a collection G of subsets of X. In Computational 
Learning Theory C is usually referred to as the concept class. This terminology is motivated 
by examples from logic, where G consists of all subsets of X that are definable by a logical 
formula of a specified type, e.g., monomials in Boolean logic. 

The learning process starts by the environment fixing a target concept C7- E C. The goal 
of the learner is to learn (i.e. to identify) the target concept in as few steps as possible. 
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The definition of each learning model specifies what is meant by a step. The models con- 
sidered in this paper are defined in Section 2. Here we only give an outline of the basic 
model, which is due to Barzdin and Freiwalds (1972), Angluin (1988) and Littlestone (1988). 
It may be viewed as a machine-independent version of the classical models for learning 
on perceptrons (Rosenblatt, 1962; Minskry & Papert, 1988; Nilsson, 1965) and neural net- 
works (Rumelhart & McClelland, 1986). In this model the learner probes the environment 
with queries of the form "H = CT?" for some hypothesis H E G (Angluin, 1988) refers 
to these queries as equivalence queries). If H = C T then the environment responds "yes." 
Otherwise the response is a counterexample x E H ACT. The algorithms are on-line, i.e. 
each hypothesis may depend on the previous counterexamples. 

The learning complexity (or mistake bound in Littlestone (1988)) of a learning algorithm 
is the maximal number of counterexamples it may receive before identifying the target con- 
cept C~, considering all possible responses to the hypotheses and all possible target con- 
cepts. The learning complexity of the concept class G is the learning complexity of the 
best learning algorithm for G. 

We would like to point out that this definition of the learning complexity of G is analogous 
to the common definition of the computational complexity of a computational problem. 
The latter is defined as the least computational complexity of any algorithm solving the 
problem (where the complexity of an algorithm is determined by a worst-case analysis). 

As noted above, this notion of a learning process contains the usual notions of a learning 
process for perceptrons and neural networks as a special case. In this case X is the set 
of all assignments to the input variables that may occur, and G is the class of all subsets 
of X that can be computed by the computational device considered, for some setting of 
its internal parameters (such as weights of edges, thresholds, etc.). In the simplest case 
of a single threshold gate, i.e. a feedforward neural net without hidden units, with d input 
bits and with one output bit, we have G = HALFSPACE~, where 

HALFSPACE2 a := {C C {0, 1}d[ there exist wl, . . . ,  Wd, t fi R such that for every 

(Xl . . . .  , Xd) ~ {0, 1} d it holds that 

d 

(xl, . . . ,  Xd) ~ C ~, ~ w;c i >- t}. 
i=1 

A hypothesis H from G is in this case the subset of {0, 1} d accepted by the considered 
threshold gate with its current values wl . . . . .  Wd, t of weights and threshold. The values 
remain unchanged until the threshold gate encounters an input x which it processes incor- 
rectly (i.e. x E H ,5 CT, where Cr is the set accepted by the target threshold gate). For 
any occurrence of such a counterexample x, the current weights and threshold are changed 
according to some learning algorithm. The performance of the algorithm is measured by 
the maximal number of counterexamples, also called mistakes (Littlesone, 1988), that may 
occur before it converges to CT. Obviously this coincides with the above definition of learn- 
ing complexity. We refer to Maass and Tur~in (1990c) for an account of the known learning 
algorithms for HALFSPACE2 d. 
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One purpose of formal models of learning is to provide a suitable framework for the 
design and analysis of learning algorithms. The techniques developed in order to design 
efficient learning algorithms for such formal models may provide a useful contribution of 
Computational Learning Theory to more application oriented areas such as Machine Learn- 
ing in Artificial Intelligence. 

The task of a concept learning algorithm is to provide a "smart" hypothesis on the basis 
of the information available. Different formal models of learning give different answers 
to the question: What distinguishes a "smart" hypothesis from a less intelligent one? 

In Valiant's intensively studied model (Valiant, 1984) for probably approximately cor- 
rect learning ("PAC" learning) remarkable results show that a "smart" hypothesis, i.e. 
a hypothesis used by an optimal learning algorithm in this model, is essentially any 
hypothesis H ~ C that is consistent with all preceding examples (such hypotheses are called 
consistent hypotheses), see Blumer, Ehrenfeucht, Haussler and Warmuth (1989). Thus the 
PAC learning model provides no suitable basis for distinctions among different consistent 
hypotheses from G (except for issues of computational complexity). This observation points 
to a structural difference between the PAC model and various "natural" learning processes 
where it is frequently expected that an "intelligent" learner presents more than just any 
consistent hypothesis. 

An attempt for defining a "smart" hypothesis is implicitly contained in the on-line learn- 
ing models considered here. An optimal learning algorithm in these models will issue 
hypotheses that are not only consistent, but which have the additional property that any 
counterexample to them eliminates a large number of possible candidates for the target 
concept (amortized over several learning steps). 

The essence of this additional property becomes clear if one examines on-line learning 
algorithms for learning a subinterval {1 . . . . .  i} of a fixed discrete domain {1, . . . ,  n}. 
An optimal on-line learning algorithm for this concept class HALF-INTERVALn (see Sec- 
tion 4) outputs hypotheses which are not only consistent, but whose boundary lies halfway 
between the largest known positive example and the smallest known negative example. In 
this way the learning algorithm can carry out a binary search for the "boundary" i of the 
target concept in at most log n steps. On the other hand a learning algorithm that always 
outputs the "simplest" consistent hypothesis, e.g. the minimal consistent hypothesis, needs 
up to n - 1 steps. Intuitively the first algorithm is "smarter" than the second one, and 
this can be expressed quantitatively in terms of their different learning complexities (log 
n for the first algorithm versus n - 1 for the second one). 

This example illustrates that the models which are considered in this paper provide a 
framework for making meaningful quantitative distinctions between different consistent 
learning algorithms which are equivalent from the point of view of PAC-learning. Of course 
one may turn this argument around noting that it is simpler to design an efficient learning 
algorithm in the PAC model. 

Because of structural differences between the PAC model and the models considered 
here, it is not possible to compare directly the efficiency of optimal learning algorithms 
in the two types of models. (In the PAC model the learner receives examples rather than 
counterexamples, and he is only required to output an e-approximation of CT with con- 
fidence _> 1 - 6). If one ignores these essential differences and nevertheless compares 
the number of examples required by an (e, 6) PAC-learning algorithm with the number 
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of counterexamples required for 100 % correct learning, then it turns out that for some in- 
teresting concept classes the two numbers are in the same range already for not too small 
values of e and 6. We refer to Angluin (1988) for further discussion of the relation between 
the two types of models. 

A possible advantage of fast learning algorithms in the on-line learning models considered 
here is the fact that they are also guaranteed to perform well in a situation where the en- 
vironment cannot be adequately modeled by a time-invariant probability distribution (as 
it is required for PAC learning). For example, this is the case if the environment consists 
of sensory inputs received by a moving robot; if an optical character recognition machine 
is trained on the handwritings of different persons successively; or if a speech recognition 
machine is trained by different speakers successively. 

Finally we would like to point out that the on-line learning models provide a useful "yard- 
stick" for evaluating the performance of various concrete learning algorithms for specific 
"learning machines" such as perceptrons or neural networks. In these models one usually 
considers only learning algorithms which generate the next hypothesis with severely limited 
resources and without a global control (such as the A-rule or backwards propagation). It 
is obviously of interest to find out how seriously various machine-dependent restrictions 
affect the efficiency of learning in comparison with the theoretically fastest possible on- 
line learning algorithm for the same concept class. We refer to Maass and Tur~in (1990a; 
1990c) for some comparisons of this type for the case of a perceptron. 

The remainder of this paper is organized as follows. The learning models considered 
are introduced in Section 2. Section 3 defines the combinatorial parameters needed later 
on. In Section 4 we discuss some basic methods for proving lower bounds to the complex- 
ity of learning with equivalence queries and arbitrary equivalence queries. Section 5 surveys 
relationships between learning with arbitrary equivalence queries, decision trees and the 
halving algorithm. In Section 6, which contains the main results of this paper, we discuss 
the relationship between learning with equivalence and membership queries, learning with 
arbitrary equivalence queries and the Vapnik-Chervonenkis dimension. Section 7 gives a 
further discussion of learning models allowing membership queries. In Section 8 we in- 
vestigate the power of learning with partial hypotheses. Throughout these sections we in- 
troduce and discuss a few concrete concept classes which turn out to be useful "benchmarks" 
for the evaluation of different learning models. The results for these concept classes are 
summarized in Table 1 of Section 9. In this section we also display in Figure 1 the known 
relationships between learning complexities and combinatorial parameters considered in 
the previous sections. Finally in Section 10 we mention some open problems. 

This paper contains detailed proofs for several results that were previously announced 
in Maass and Turdn (1989; 1990a). Proofs for the other results announced in these extended 
abstracts will appear in Maass and Turin (1990b; 1990c). For results concerning randomized 
learning algorithms in on-line learning models we refer to Maass (1991). 

2. Learning models 

A learning problem is specified by a domain X and a concept class C C 2 x. In this paper 
X is always a finite set, with the exception of the domain for learning DFA mentioned in 
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Section 10. Later we will usually consider sequences (Xn),~N of domains and associated 
sequences of concept classes with G n C 2 xn. The parameter n serves here as a measure 
for the size of the domain Xn (and implicitly also for the size of the concept class Gn). 

First we describe the model of learning with equivalence queries outlined in the introduc- 
tion. A learning process starts with the environment fixing a target concept Cr ~ G. 

The learner (or learning algorithm) proposes hypotheses H from G (or equivalence queries 
" H  = Cr?"; we use the two terms interchangeably). If H = CT, the environment responds 
"yes." Otherwise it responds with a counterexample x from the symmetric difference 
H A  CT := (CT\H) U (H\CT). Viewing Hand  Cras  functions from Xto {0, 1}, we also 
use the notation H(x) ~ Cz(x). If  x ~ CT\H then it is called a positive counterexample, 
if x E H \  C T then it is called a negative counterexample. 

Thus a learner (or learning algorithm) for G is any algorithm A which produces new 
hypotheses 

HA1 :=  A(H A, . . . ,  HA;x  1 . . . . .  Xi) 

in dependence on the previous hypotheses H~ and the counterexamples xj ~ Hj a. A Cr 
received. Since in this paper we only consider deterministic algorithms, we may suppress 
the hypotheses Hj ~ as arguments of A. 

The learning complexity LC(A) of such a learning algorithm A is 

LC(A) := max{i ~ N I there is some CT fi G and some choice of counterexamples 
x j ~ H  A A C r f o r j  = 1 . . . . .  i -  1 such thatH/A ~ Cr}. 

Note that in the definition of LC(A) the amount of computation performed by A to deter- 
mine the next hypothesis is not taken into account; attention is focused on the amount of 
interaction between the learner and the environment. 

The learning complexity LC(G) of the concept class G is 

LC(G) := min{LC(A)lA is a learning algorithm for G}. 

In the preceding definition of a learning process we assumed that the hypotheses 
space ~ ,  i.e. the space from which the hypotheses H used in the equivalence queries 
" H  = Cr?"  are drawn, coincides with the concept class G of all possible target con- 
cepts. This of course need not be the case in general. For any class .7[ with G c_ ..7/- 
c_ 2 x one can define 

LC~(G) : = min {LC(A) I A is a learning algorithm for G using equivalence queries 
with hypotheses from .7/}. 

Of particular interest is the case .Y/=  2 x, where arbitrary subsets of X may be used 
as hypotheses. We set 

LC - ARB(G) :=  Lc2X(G). 
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This learning complexity measure is discussed in Sections 4 and 5. 
Littlestone (1988) has provided an alternative interpretation of this learning model which 

does not refer to queries. He assumes that the environment provides an arbitrary sequence 
xl, x2, . • • of elements of X as examples for the target concept Cr E G. For each example 
xi the learner has to predict whether xi E Cr. At each step one may view the set of all 
x E X for which the learner would currently predict that x E Cr as the current hypothesis 
H of the learner. After each prediction for an element x i the learner is told whether 
xi E Cr. If his prediction was incorrect (i.e. x i E .7/ACt) one says that the learner has made 
a mistake. After each mistake the learner may change his hypothesis .7-K. The goal of the 
learner is to make as few mistakes as possible. It is easy to see (Littleston, 1988) that the 
associated optimal mistake bound opt(C) for a concept class G agrees with LC - ARB(G) 
(respectively LC(G), if one demands that each hypothesis .7/'of the prediction algorithm 
belongs to G). This results from the worst case analysis in both models. 

A general issue in computational learning theory concerns the power of carrying out 
experiments. For which concept classes is it possible to learn substantially faster if the 
learner can also probe the environment with queries of the form "x E Cr?" for x E X, 
in addition to his other queries? We assume that the environment provides the correct answer 
to every such membership query. For a learning algorithm A that may use both equivalence 
queries and membership queries we write LC(A) for the maximal number of counterex- 
amples and membership queries needed until the target concept Cr is identified (for any 
choice of Cr E G and any choice of the counterexamples to the equivalence queries of 
A). We set 

LC - MEMB(G) := min{LC(A)] A is a learning algorithm for G that uses 
equivalence queries with hypotheses from G 
and membership queries}. 

We also consider the restricted model where the learner can ask membership queries 
only. The learning complexity of an algorithm A in this model is defined analogously to 
the previous definitions and 

MEMB(G) 

denotes the complexity of the concept class Gwhen only membership queries may be used. 
Concerning our notation we would like to point out that we always write LC(A) for the 

maximal number of learning steps needed by a learning algorithm A, no matter which type 
of queries are used by A. However when we talk about the learning complexity of a con- 
cept class G, we make explicit in the notation (LC(G), LC-ARB(G), LC-MEMB(G), 
etc.) which types of learning algorithms are considered. 

It has turned out that there are several important concept classes for which one can design 
efficient learning algorithms using equivalence and membership queries. For several of 
these classes it is also known that equivalence, resp. membership queries alone are not 
sufficient for efficient learning. The list of these concept classes includes DFA (Angluin, 
1987a; 1990), one-counter languages 03erman & Roos, 1987), simple deterministic languages 
(Ishizaka, 1990), this algorithm uses extended equivalence queries), k-term DNF (Angluin, 
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1987a; Pitt & Valiant, 1988), read-once formulas (Angluin, Hellerstein & Karpinski, 1989), 
conjunctions of Horn clauses (Angluin, Frazier & Pitt, 1990) and intersections of halfspaces 
(Baum, 1990; Bultman & Maass, 1990). We note that in the first three examples the models 
considered also take into account the lengths of the counterexamples received, resp. the 
amount of computation performed by the learning algorithm (see Section 10 for further 
details). 

The exact power of the LC-MEMB model remained somewhat elusive because previously 
there has been no method available to prove lower bounds. In Section 6 we show that LC- 
MEMB(G) = ~2(VC-dim(G)) for every concept class G, where C is the Vapnik- 
Chervonenkis dimension of C (see the definition in the next section). As an application 
of this lower bound we determine LC-MEMB(Gk,n) for the class of conjunctions of k 
literals from n variables. 

In Section 6 we also establish a somewhat unexpected relationship between LC-MEMB(G) 
and LC-ARB(G). It turns out that this relationship can also be used to prove lower bounds 
to LC-MEMB(G) for certain concept classes G, e.g. for G = HALFSPACE2 d. 

The lower bounds derived for LC-MEMB(G) remain in fact valid if the learner is allowed 
to use equivalence queries " H  = Cr?" with arbitrary subsets H ~ X as hypotheses, in 
addition to membership queries. We write 

LC-ARB-MEMB(G) 

for the learning complexity of C in this learning model. 
In Section 8 we discuss a new model for on-line learning, where the learner is more 

powerful than in any of the preceding models. In this case the learner probes the environ- 
ment with hypotheses H E {0, 1, .}x called partial hypotheses. Unlike in the models above 
(where H E {0, 1}x), here the learner may also assign the "don't care" symbol * to some 
elements x E X, meaning that currently he is not interested in their membership in CT. 
The environment is obliged to respond to such a query either with a counterexample, i.e. 
with an element x E X such that H(x) E {0, 1} and H(x) ~ CT(X), or with the reply "cor- 
rect" if there is no such counterexample. Note that a partial hypothesis assigning 1 to a 
single x E X and * to all other elements is equivalent to a membership query, thus the 
learner is indeed at least as powerful in this model than in all those introduced above. 
Analogously as before, if A is a learning algorithm using partial hypotheses then LC(A) 
denotes the worst case number of queries required before the target concept is identified and 

LC-PARTIAL(G) := min{LC(A)l A is a learning algorithm for C using partial 
hypotheses}. 

Learning with partial hypotheses can be of interest because it allows the learner to focus 
attention on a specific subset of the domain X. One may argue that this ability plays a signifi- 
cant role in human learning, where a typical "hypothesis" does not assign a truth value 
to every possible yes/no decision in the world. In Section 8 we will show that the ability 
to use partial hypotheses makes the learner substantially more powerful in our formal model 
of on-line learning. 
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3. C o m b i n a t o r i a l  p a r a m e t e r s  

In this paper we will also compare the different learning complexities of a concept class 
G with various combinatorial parameters of G, mainly for the purpose of finding lower 
bounds. 

If G is a concept class over the domain X and Y is a subset of X, then the concept class 
G f'l Y induced by G on Y is 

GI'I Y :=  {C r"l Yl c ~  G}. (1) 

Y is shattered by G if G n y = 2 r, where 2 r is defined as the class of all subsets of Y. 

The Vapnik-Chervonenkis dimension of G (denoted by VC-dim(G)) is 

VC-dim(O) := max{lYllY C X is shattered by G}. 

It has turned out that VC-dim(G) is the key parameter determining the number of samples 
needed for learning G in Valiant's model (Valiant, 1984) for PAC learning (Blumer, 
Ehrenfeucht, Haussler & Warmuth, 1989). The basic result concerning the Vapnik- 
Chervonenkis dimension is the following. 

L e m m a  3.1. (Sauer (1972), Perles and Shelah, see Shelah (1972), Vapnik and Chervonenkis 
(1971)). If G is a concept class over the domain X with VC-dim(G) = d then 

 Ixl 
Icl  • [ ]  

i=0 i 

We also consider another combinatorial parameter of a concept class G, the maximal 
size of a chain in G under inclusion: 

chain(C) := max{f fi N ] there are concepts C1 . . . . .  Ce ~ G with 
ClCC  . . .  -.-c 

This parameter is useful as Llog2(chain(G))J provides a lower bound to the learning 
complexity of G in all models introduced in Section 2 except the model allowing partial 
hypotheses. It provides optimal lower bounds up to a constant factor for several interesting 
concept classes with VC-dim(G) ~ log2(chain(G)), such as classes of geometrical ob- 
jects (boxes, balls, etc.) in a d-dimensional discrete space. (In the sequel log2 x will be 
written as log x). Furthermore, as it will be shown in Section 8, log3(chain(G)) is a lower 
bound to LC-PARTIAL(G) as well, thus it can be used as a lower bound for all models 
considered in this paper. 

In addition to VC-dim(G) and log(chain(G)), we also discuss the role of log(I G]) and 
log(] GI - D/log(IX] + 1). The latter is used to unify the slightly larger values log(] GI 
- 1)/loglX] in Proposition 3.2 and log] CI/log(lXI + 1) in Proposition 8.2. We note the 
following relationship between these parameters. 
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Proposition 3.2. If C is a concept class over the domain X with I cI  > 1, IXI > 1 then 

log I c l  ~ VC-dim(G) _> log(I G[ - 1) 
log Il l  

Proof. The first inequality follows from the definition of the Vapnik-Chervonenkis dimen- 
sion: if Y ___ X is shattered by G then I G I >_ 2 IYL. As noted in Blumer, Ehrenfeucht, 
Haussler and Warmuth (1989), Lemma 3.1 implies ]GI _< IXI vc-aira(G) + 1, which in turn 
implies the second inequality. [] 

4. Some elementary methods for proving lower bounds for learning with equivalence 
queries and learning with arbitrary equivalence queries 

In this section we describe some simple examples illustrating learning with equivalence 
queries and learning with arbitrary equivalence queries, and discuss adversary strategies 
for proving lower bounds to learning complexity in these models. 

First we introduce the following concept classes over the domain X, = {1 . . . . .  n}: 

SINGLETONn := 
HALF-INTERVALn := 

POWER-SET n := 

{{i} I i ~ {1, . . . , n } } ,  
{{1, 2 ,  . . . ,  i} l i e {1 . . . .  , n i l ,  
{ c I  c c {1, . . . ,  ~}}. 

These three concept classes are studied in the context of learning not so much for their 
intrinsic interest, but rather because they play an important role in the analysis of the learn- 
ing complexity of other, more important concept classes. Almost any known proof of a 
lower bound for LC(G) (or LC-ARB(G), etc.) for a concrete concept class G proceeds 
by showing that for a sufficiently large n one of these three classes Gn is embedded into 
C and that this implies that C is at least as difficult to learn as Q .  Hence these three 
classes may be viewed as prototypes for three main sources of "learning difficulty" for 
on-line learning. 

For each of these three classes one proves an optimal lower bound for L C ( Q )  and LC- 
ARB(Q) by a different, but very simple adversary strategy, outlined below for 
completeness. 

Proposition 4.1. (Angluin, 1988). 

a) LC(SINGLETONn) = n - 1, 
b) LC-ARB(SINGLETON,,) = 1. 

Proof. a) The upper bound follows from the general fact that LC(G) _ I C] -- 1 for every 
concept class G (use any learning algorithm that carries out an exhaustive search through 
G, i.e. which uses all C fi G as hypotheses in some order). 
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The lower bound is proved by the following adversary strategy: for each hypothesis 
H = {j} givej as a negative counterexample. After this adversary strategy has been played 
for n - 2 steps, there are still at least two different concepts in SINGLETON, that are 
consistent with all preceding counterexamples. Hence the learner needs at least one fur- 
ther counterexample before he can identify the target concept. 

(b) In order to prove the upper bound one uses H 1 := 0 as the first hypothesis. It is 
obvious that 1 is also a lower bound. [] 

We note that formally the environment is required to choose a target concept at the begin- 
ning of the learning process. However it is equivalent (and more useful for the design of 
adversary strategies) to assume that at any step of the learning process the environment 
has not determined yet which among those C E G that are consistent with all preceding 
counterexamples, is the one that will serve as its target concept. Hence the learning proc- 
ess is not completed as long as more than one concept C fi G is consistent with all preceding 
counterexamples. 

It is interesting to compare SINGLETONn with the concept class SINGLETON~ U {0}. 
For this concept class clearly LC(SINGLETON n U {0}) = 1 and hence LC sINGLz~Nnu {0} 
(SINGLETONn) = 1. Thus by allowing a single further subset of the domain (the empty 
set) as hypothesis, the learning complexity of SINGLETONn drops from n - 1 to 1. This 
curious "instability" of the learning complexity of SINGLETON~ distinguishes it from 
the other two concept classes HALF-INTERVAL n and POWER-SET~ for which we have 
L C ( Q )  = LC-ARB(G~) (see Proposition 4.2 and 4.3 below), and hence LC~ , (Q)  = 
L C ( Q )  for every hypothesis class ~ with G n C .Y/-n C 2 {1 ..... n} 

Although SINGLETONn becomes easy to learn if the empty set may be used as a 
hypothesis, there are several interesting concept classes G with 0 E G for which one can 
prove a lower bound for LC(G) by identifying an embedded version of SINGLETONn 
(without 0) in G, as noted by Angluin (1990). As examples we refer to Angluin's lower 
bounds for DFA, NFA and classes of Boolean formulas (Angluin, 1990); she calls this 
approach the method o f  a p p r o x i m a t e  f i n g e r p r i n t s ) ,  and the lower bounds for boxes in general 
position and for intersections of two halfspaces over the domain {1 . . . . .  n} 2 (Maass & 
Turin, 1990a; 1990b; 1990c). 

All known proofs of a lower bound for LC(G) which is larger than LC-ARB(G), for 
some concrete concept class G, proceed essentially by identifying an embedding of 
SINGLETON n in G. This is understandable in view of the previous remark that among 
the three concept classes considered, this is the only one which separates LC and LC-ARB. 

Proposition 4.2. LC(HALF-INTERVALn) = LC-ARB(HALF-INTERVALn) = Llog nJ 

Proof. The upper bound is proved by constructing a learning algorithm A using equivalence 
queries from HALF-INTERVAL,, such that LC(A) < Llog n] . Assume that after i learn- 
ing steps the largest number known to be in Cr is u, and the largest number not excluded 
yet from CT is v. Set/-/~/+1 := {1, . . . ,  L (u  + v ) / 2 J  }. Before the i + l'st hypothesis there 
are v - u + 1 candidates for the target concept. If a positive counterexample is obtained 
then the number of remaining candidates is at most v - [_(u + v ) / 2 J  < (v  - u + 1)/2. 
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I f  a negative counterexample is obtained then the number of  remaining candidates is at 
most k(u + v)/2J - u -< (v - u + 1)/2. Hence after klog nJ hypotheses there is at 
most one candidate left. 

LC-ARB(HALF-INTERVAL=) _~ klog nJ is proved by giving an adversary strategy. 
The adversary gives the counterexamples in such a way that after i counterexamples there 
is an interval of at least kn/2ij elements such that each element can occur as the right 
endpoint of the target concept (initially this interval is {1 . . . .  , n}). Let the interval after 
the i-th hypothesis be {u, . . . ,  v} and consider the i + l'st hypothesis/-/~/+1. Let the right 
endpoint of Hi+l be x, we may assume w.l.o.g, u __. x <_ v. If  x is given as a negative 
counterexample then the x - u elements in the interval {u,, . . . ,  x - 1} can still be the 
right endpoints of the target concept. I f  x + 1 is given as a positive counterexample then 
the v - x elements in the interval {x + 1, . . . ,  v} can still be the right endpoints of the 
target concept. As (v - x) + (x - u) = v - u, the adversary can select the counterexam- 
ple so that there remains an interval of at least F(v - u)/2~ candidates for being the right 
endpoints of the target concept. As 

Lv u + ] J 
2 

the claim is proved. This implies that after less than klog nJ hypotheses there are at least 
two candidates left for being the target concept and the learning process cannot be con- 
cluded yet. []  

We note that the same argument shows that LC(HALF-INTERVAL~ U {0}) = Llog(n 
+ 1)J . It can also be remarked here that log(chain(HALF-INTERVAL=)) = log n, while 
VC-dim(HALF-INTERVAL~) = 1 and log(IHALF-INTERVAL~I-1)/log(n + 1) < 1. Thus 
for this concept class the first combinatorial parameter is much larger than the other two. 

Proposition 4.3. (Folklore). LC(POWER-SET~) = LC-ARB(POWER-SET=) = n. 

Proof.  It is obvious that LC and LC-ARB coincide for this concept class. The upper bound 
follows from the trivial fact that LC(G-) ~ [XI for any concept class G over the domain 
X (use any consistent learning algorithm). For the lower bound consider the adversary which 
gives element i as a counterexample to the i-th hypothesis H/. Then after n - 1 learning 
steps there are still two candidates left for being the target concept and one more hypothesis 
is needed. []  

If  C1, G2 are concept classes over the same domain X with G 1 C C 2 then clearly LC- 
ARB(G~) _< LC-ARB(C2). However the examples of SINGLETON n and SINGLETONn 
U {0} show that it may be the case that LC(G1) -> LC(G2). Thus from set-theoretic rela- 
tionships between two concept classes one cannot infer a relationship between their learn- 
ing complexity in general. The following lemma exhibits conditions which imply mono- 
tonicity for both LC and LC-ARB. This lemma is useful in order to prove a lower bound 
for a concept class G 2 in which one can identify an embedded copy of another concept 
class G 1 which is known to have high learning complexity. 
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Lemma 4A. (Monotonicity Lemma.) 
a) Assume that X 1 _c X2, C1 C 2x,, G 2 c_ 2x: and C 1 ~ ~ 2 0  X 1 . Then LC-ARB(G1) _< 

LC-ARB(G2). 
b) If  in addition G 1 = G2 f) X1 then LC(C1) -< LC(~2). 

Proof.  We prove b) first. Let A2 be an optimal learning algorithm for G 2. Thus it holds 
that LC(A2) = LC(G2)and  by definition A 2 uses hypotheses from G 2. We construct a 
learning algorithm A1 for C1. The first hypothesis o fA  1 is Hi 4' :=  H A2 f3 X1; note that 
H A1 E G1 as we assumed G 1 = G 2 0  X 1. I fA 1 receives a counterexample Xl fi X1 such that 
xl ~ Hi 4' A C7~, then as CT = C (1 X 1 for some C E G2, xl may also be viewed as a 
counterexample to the hypothesis H As, having C as the target concept. Continuing similarly 
assume that we defined H a'  :=  Hj A2 f3 X1 for j  = 1 . . . .  , i - 1. Then the counterexamples 
xj  ~ X1, xj  ~ H f '  z~ CT ( j  = 1, . . . ,  i -- 1) may be viewed as counterexamples for the 
hypotheses of A2, having C as the target concept. Then set H/A' : = H/A2 f3 X1, where H {2 
= A2(xl ,  . . . ,  xi-1).  We claim that A1 is a learning algorithm for 6' 1 with LC(A1) _< 
LC(A2), implying L C ( C  0 < LC(G2). Assume that A1 receives counterexamples x l ,  . • . ,  

x e and e > LC(A2) for some target concept CT. Then as noted, these counterexamples will 
also occur in a learning process of A2 for some target concept C with CT = C fq X1, which 
is a contradiction. 

The proof of part a) is similar except that in this case the weaker assumption C 1 _~ G 2 
f) X1 suffices as we do not need H{ '  E G 1. []  

Using the Monotonicity Lemma one can draw the following conclusions from Proposi- 
tions 4.2 and 4.3. 

Proposition 4.K For every concept class G 

LC-ARB(G) ___ Llog(chain(G))d. 

Proof,  Let C1 C . . .  C Ce be a longest chain in G. Assume first that C 1 76 0. Fix some 
y~ E C1 and y i -~  C i \ ~ i - 1  for i = 2, . . . ,  e. Set X1 :=  {yi . . . .  , ye} and C 1 : =  {{YI, 
. . . ,  Yi} [ i = 1 . . . . .  e}. Then G 1 C G (3 X 1 and hence from Proposition 4.2 and the 
Monotonicity Lemma LC-ARB(G) _> LC-ARB(G1) _> Llog eJ = [ log(chain(G))J .  
I f  C1 = 0 then one can argue similarly by letting G 1 :=  {{Y2, • • . ,  Yi} [ i = 2 . . . . .  e} 

U {0} and referring to the remark following Proposition 4.2 on HALF-INTERVALe_I 
u {o}. [] 

For the concept class POWER-SETh it holds that LC-ARB(POWER-SETn) = n and 
log(chain(POWER-SETh)) = log(n + 1), thus the lower bound of Proposition 4.5 is far 
from being sharp. 

Proposition 4.6. (Littlestone, 1988). For every concept class G 

LC-ARB(G) _> VC-dim(G). 

Proof.  Let Y be a shattered subset of the domain of G with ]Y] = VC-dim(G). Set G 1 
:-- 2 r. Then from Proposition 4.3 and the Monotonicity Lemma 
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LC-ARB(G) _> LC-ARB(C1) = IYI = VC-dim(C). [] 

Here one can use HALF-INTERVALn as an example to show that the lower bound of 
Proposition 4.6 is not sharp in general. Indeed, we have seen that LC-ARB(HALF- 
INTERVALn) = [_log nJ and VC-dim(HALF-INTERVALn) = 1. 

We note that both propositions can be proved directly by applying the simple adversary 
arguments of Propositions 4.2 and 4.3. The presentation above is intended to emphasize 
the approach of proving a lower bound to learning complexity by finding an embedded 
"difficult" concept class. 

5. A r b i t r a r y  e q u i v a l e n c e  quer ies ,  adversary  trees  a n d  the  h a l v i n g  a l g o r i t h m  

In this section we review a method due to Littlestone (1988) for proving lower bounds to 
LC-ARB(C). This method proceeds in a different fashion than the previously discussed 
ones. The problem of proving a lower bound for LC-ARB(G) is reduced to the construc- 
tion of a decision tree for G in which every leaf has large depth. In the second part of 
this section we discuss the relationship between LC-ARB(C) and the speed of the halving 
algorithm for C. 

A rooted binary tree T is called a decision tree for a concept class C over a domain X if 

- -  each inner node is labelled by an element x of X (this label represents a query "x 

Cr?"), 
- -  the two edges leaving any inner node are labeled "yes" and "no" (these labels corre- 

spond to the possible answers to the membership query asked at the node), 
- -  each leaf is labeled by a concept C ~ C in such a way that each C e G occurs as the 

label of exactly one leaf, and the label C of any leaf is consistent with all labels along 
the path leading from the root to this leaf. 

Decision trees form a convenient representation of learning algorithms using member- 
ship queries. In fact, MEMB(G) could have been defined as the smallest possible depth 
of a decision tree for G. Here we consider another, related measure of complexity. 

For any concept class C over a domain X we set 

ADV(G) : = max {e fi N I there is a decision tree T for G such that every leaf of 
T has depth ~ e}. 

The abbreviation ADV is motivated by the fact that these trees, introduced by Littlestone 
(1988) using a somewhat different notation, can be used to construct an adversary for a 
learning algorithm. 

Let us introduce the following notation. If C is a concept class over a domain X and 
x is an element of X then the subclass of G containing x is 

~x:-- {c~ G Ix~C} (2) 
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and the subclass of C not containing x is 

c_x:={c~ Clx¢c} .  (3) 

Proposition 5.1. (Littlestone, 1988). For every concept class G 

LC-ARB(G) = ADV(G). 

ProoL In order to show that LC-ARB(G) _> ADV(G), it is sufficient to observe that 
every decision tree T for G can be used to force every learning algorithm using arbitrary 
hypotheses to ask at least d hypotheses before identifying the target concept, where d is 
the minimum of the depths of the leaves of T. 

The adversary starts at the root and moves down the tree, always giving the label x 
of the current node as a counterexample. Ifx was a positive (resp. negative) counterexam- 
ple, he moves along the edge labelled "yes"  (resp. "no") .  As all concepts occurring 
as labels of leaves below the current node are always consistent with the previous counterex- 
amples, the learning process has to continue until a leaf is reached. 

The proof of the other direction is based on the observation that for every element x 
of the domain X it holds that 

min(ADV(Gx), ADV(G_x)) < ADV(C). 

Indeed, if T x (resp. T_x) is a decision tree for Gx (resp. G-x), then the tree T formed 
by putting x into the root and adding T x (resp. T_x) as left (resp. right) subtree is a deci- 
sion tree for G, and the depth of each leaf in T is larger than the minimum of the depths 
of the leaves in T x and T_x. 

Now LC-ARB(G) _< ADV(G) is proved by constructing a learning algorithm, by in- 
duction on ADV(G). The case ADV(G) = 0 is trivial. The first hypothesis of the learn- 
ing algorithm in the case ADV(G) > 0 is 

/-/1 :=  {x ~ X I ADV(G~) _> ADV(G_x)}. 

I f &  is a negative counterexample to H1, then xl ~ HI\Cr ,  thus Cr E G-x,. From the 
above observation ADV(G_xl ) < ADV(G), thus by induction we can continue with a 
learning algorithm using at most ADV(G_xl) < ADV(G) - 1 hypotheses before identi- 
fying the target concept. Hence in this case the algorithm needs at most ADV(G) counter- 
examples altogether. If xl is a positive counterexample then the analogous argument works 
by considering Cx. [] 

Proposition 5.1 shows an interesting dual relationship between MEMB(G) and LC- 
ARB(G). MEMB(G) is the minimum of the maximal depth of the leaves of T, with the 
minimum taken over all decision trees T for G. LC-ARB(G) is the maximum of the minimal 
depth of the leaves of T, with the maximum taken over all decision trees T for G. 

Proposition 5.1 can be used to prove an optimal ~](d 2) lower bound for LC-ARB 
(HALFSPACE~), where HALFSPACE a is the class of concepts over {0, 1} d computable 
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by a Boolean threshold gate with d input bits, formally defined in Section 1 (see (Maass 
& Turin, 1989; 1990c)). We are not aware of any other methods that would give any lower 
bound for LC(HALFSPACE2 a) which is superlinear in d. 

When discussing learning algorithms using arbitrary equivalence queries, there is one 
algorithm which deserves particular attention: the halving algorithm, or majority vote 
strategy (see (Angluin, 1988; Littlestone, 1988)). 

The halving algorithm HALVINGa for a concept class G over a domain X works as 
follows. At any step i + 1 (i _> 0) let G i be the class of all concepts C E G which are 
consistent with the first i counterexamples. Then the next hypothesis consists of those 
elements which are contained in at least half of the concepts from Ci, i.e. using the nota- 
tion introduced preceding Proposition 5.1 

:=  {x x l I(q) l >-- I ( q ) - J } .  

It is obvious that for any counterexample Xi+ 1 to Hi+ 1 one gets I Gi+ll -< I q-I/2. This 
implies that 

LC(HALVING 0 _< [_log IC]J (4) 

and in particular 

LC-ARB(G) ~ /log I c l /  (5) 

for every concept class G. 
The example of SINGLETONn shows that these bounds can also be far from being sharp. 

as LC-ARB(SINGLETONn) = LC(HALVINGsINGLETOyn) = 1 and log I SINGLETONn[ 
= log n. 

For every concept class G that has been considered it turned out that in fact LC-ARB(G) 
= O(LC(HALVINGc)). On the other hand Littlestone (1988) presented a concept class 
G on 8 elements for which LC-ARB(G) < LC(HALVINGc). This gave rise to the ques- 
tion whether for every concept class G the halving algorithm is optimal at least up to a 
constant factor among all learning algorithms using arbitrary hypotheses for G. The following 
example shows that this is not the case. 

We consider the domain X, := {1 . . . .  , n, n + 1 . . . .  , n + Flog nq } and the concept 
class 

TAGGED-SINGLETONn := {0} U {{n + f} I e = 1, . . . ,  Flog nJ } U 
f -  

t { i ,  n + f} I i =  1 . . . .  ,n, ande ~ {1 , . . . ,  [ logn 7 U I} 

is the least f with the property that 

11) i _<  n + g logn7  + 
j = l  
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A concept of  the form {i, n + e} may be viewed as a singleton {i} together with a "tag" 
{n + e}. The other concepts in TAGGED-SINGLETONn have only been added in order 
to ensure that LC(TAGGED-SINGLETONn) < 2 (see part a) of the proof of Proposition 
5.2). These tags have been distributed in such a manner that the learner gains only con- 
stantly many bits of information about Cr when he learns that a certain tag n + e is not  

the tag of Cr. 

Proposition 5.2. 

a) LC-ARB(TAGGED-SINGLETONn) < LC(TAGGED-SINGLETONn) _.< 2 

b) LC(HALVINGTAGGED_SINGLEa-ONn) = [2(log n). 

Proof. a) For the upper bound we describe a learning algorithm A using equivalence queries. 
Let H A : = 0. I f  a counterexample x~ is received, this must be a positive one. If  xl -< n, 
no further hypotheses are needed as every such element belongs to a single concept. I f  
Xl > n, let H~ := {xl}. If  a counterexample x2 is received, this must also be a positive 
one and clearly Cr  = {Xl, x2}. 

b) In order to prove the lower bound for the halving algorithm, we exploit the fact that 
the majority of all concepts in the class contain the element n + 1, therefore this element 
is contained in the first hypothesis H1. In the adversary strategy that we construct, n + 
1 is given as a negative counterexample to/ /1 .  The majority of concepts C ~ TAGGED- 
SINGLETON,  with n + 1 ~ C contain the element n + 2, therefore this element is con- 
tained in the second hypothesis H 2 of the halving algorithm. The adversary gives n + 2 
as a negative counterexample to H2. 

Continuing in this way we can guarantee that for any k 6 {1 . . . . .  log n} with E~=I ( n /2j  
+ [-log n] + 1) < n it holds that n + k ~ H k, w h e r e H ~ i s  the k-th hypothesis of 
HALVINGrAGGED-SINGLETONn, and there are at least 2 different concepts which are con- 
sistent with the first k (negative) counterexamples n + 1, . . . ,  n + k. The preceding con- 
dition on k is satisfied if k = [(log n)/2] and n is sufficiently large. Hence for n large 
enough LC(HALVINGTAGGED.SINGLETONn ) ----- [(log n) /2]  . [] 

6. Lower bounds for learning with membership and equivalence queries 

In this section we prove two general bounds for learning with membership and equivalence 
queries. In order to motivate these results we start with lower bounds for the simpler models 
of learning with equivalence queries only, and learning with memberhsip queries only. 

Proposition 6.1. For every concept class U 

min(LC(G) ,  MEMB(G))  _> LC-ARB(C)  _> VC-dim(C).  

Proof.  We only have to show MEMB(C)  _> LC-AR13(G). As noted in the previous section, 
every learning algorithm A for G using membership queries may be viewed as a decision 
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tree T for C. The learning complexity of A is the depth of the tree T. As T has ] G] leaves, 
its depth is at least log ]G]. Therefore 

MEMB(G) > log I G I. (6) 

On the other hand the consideration of the halving algorithm (see (5)) implies log [ G[ _> 
LC-ARB(G). Putting these inequalities together we get MEMB(G) >_ LC-ARB(G). [] 

Thus one can raise the question whether LC-ARB(C) or at least VC-dim(C) provide 
a lower bound to learning complexity in the more powerful model allowing membership 
queries and equivalence queries. We observe first that the answer is negative. Consider 
the concept class 

MAJORITY,:= @ I n  + 1 ~ S ~* IS\ {n + 1}1 > @ 

over the domain {1, . . . ,  n + 1}. 

Proposition 6.2. LC-MEMB(MAJORITYn) _< n/2 + 1 and 

VC-dim(MAJORITYn) = n. 

Proof. The second claim is trivial, to prove the first claim we describe a learning algorithm. 
Start with the membership query "n + 1 E Cr?". If the answer is "no," we know that 
I CT] <-- n/2. Continue with the hypothesis 0. If a counterexample is received, this must 
be a positive one, providing an element Xl of the target concept. Let the second hypothesis 
be {Xl}. Again, if a counterexample is received, this must be a positive one, providing 
an element x2 of CT, etc. Proceeding in this manner CT is identified in at most n/2 + 1 
learning steps. If the answer to the first membership query is "yes" then we know that 
[CT\{n + 1}1 > n/2. Then continue with the hypothesis {1, . . . ,  n + 1}. Arguing as 
above, CT will be identified in at most n/2 + 1 learning steps (this time only negative 
counterexamples can be obtained). [] 

In view of the relation 

LC-MEMB(MAJORITYn) ~ I 1 + o(1)] VC-dim(MAJORITY~) 

one can ask if LC-MEMB(Cn) can be much smaller than VC-dim(Cn), i.e. if for every 
e > 0 one can find a family of concept classes Q such that LC-MEMB(G,) < (e + 
o(1))VC-dim(C~). We show that this is not the case, hence in an approximate sense the 
Vapnik-Chervonenkis dimension is a lower bound to the complexity of learning with mem- 
bership and equivalence queries. Before that we present an improvement of the construction 
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of the concept class MAJORITYn, showing that the constant 1/2 in Proposition 6.2 can 
sometimes be replaced by a smaller constant. The proof is a standard application of the 
probabilistic method in combinatorics (see(Erd6s & Spencer, 1974)). 

Proposition 6.3. There is a family (Gn)n~N of concept classes with VC-dim(G~) > n and 

LC-MEMB(Gn) -< (Co + o(1))VC-dim(Gn), 

where Co = 2 - log 3 = 0.41. 

Proof .  Let X be a finite domain and C, C '  C X. Then the distance of C and C '  is d(C, 
C ' )  :=  [CA C ' ] .  The ball of radius r around C i s  ~-'3(C, r) :=  {C ' [d (C ,  C') < r}. 

L e m m a  6.4. LC(ff3(C, r)) __. r. 

Proof .  Consider the following learning algorithm. The first hypothesis is H 1 := C. Ifxi 
is the counterexample to the i-th hypothesis Hi then Hi+ 1 := H i A {xi}. Clearly it holds 
that d(C, H/) = i - 1. Also, d(C, Hi) < d(C, CT) as C A Hi C C A Cr. However, d(C, 
Cr) -< r, thus after at most r counterexamples Cr  is identified. [] 

The construction of Proposition 6.2 is based on the fact that POWER-SET n is the union 
of two balls of  radius Ln/2_J with center 0, resp. {1 . . . .  , n}. Deciding membership of 
the additional element n + 1 in the target concept at the beginning of the learning algorithm 
is used as an indicator bit telling which ball to consider. This idea can be generalized as 
follows. 

Assume that POWER-SET n is the union of e balls if31, . . . ,  ~ e  of  radius k, where the 
values of k and g will be determined later on. Consider the domain Xn := {1, . . . ,  n, n 
+ 1 . . . .  , n + I-log e] } and the concept class 

Q :=  {CI  C = C 1 U C2, C1 C {1 . . . .  , n } ,  C2 C {n + 1, . . . , n  + F l o g f ] } ,  
C1 E J3i, where i - 1 is the number denoted by the characteristic vector of 

c2}. 

Then VC-d im(Q)  > n as {1 . . . . .  n} is shattered by Gn. On the other hand LC- 
MEMB(Gn) < flog e] + k. Indeed, after [-log e] queries '7 E CT?" f o r j  = n + 1, 
. . . .  n + flog g] we know the characteristic vector of CT O {n + 1 . . . . .  n + flog 
e] }. I f  the number denoted by this vector is i - l then 

{C (3 {1, . . . ,  n} [ C is a consistent hypothesis} = if3 i. 

Therefore we may apply Lemma 6.4 to identify CT with at most k additional hypotheses. 
Hence it remains to choose appropriate values for k and I. 
Select a ball Q'3 of radius k randomly by choosing each center Z C {1, . . . ,  n} with 

the same probability 1/2 n. Then for a fixed C1 C {1 . . . . .  n} 

m 
Pr(C1 ¢ Y3) = 1 - - - ,  

2 n 
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where 

m=}-] 
j=O 

is the cardinality of any ball with radius k. If  this experiment is repeated g times independently 
to get the balls 3"31 . . . . .  U-'3e, then 

P r  1 ~  = _ m e 

j= l  

I f  this probability is less than 1/2 n then 

I fo P r  r some C1 C {1, . . . ,  n} it holds that Ca ~ ~ 
j=l 

< ~ _ ~ P r  1~ U < 1, 
C~ j=l 

therefore 

,rIO =   covers OW R-S , ; o. 
This implies that POWER-SETn is the union of e balls of radius k. 

Hence for a fixed k we need an e satisfying 

- < 2" ( 7 )  

Let k : =  c~n. From the Stirling approximation n! - (n / e ) "2 , f2~n  and the fact that 
1 - x < e - x o n e g e t s  

~ k )  - 1 2h(~). n 
4o~(1 -- o027rn 

where h(a) : =  -c¢ log c~ - (1 - c0 log(1 - c0, and 

me - - ~ k ) e  

- < e 2 n <  e 

Choosing / :-= n 2 • 2 (1-h(c0)n the inequality (7) will be satisfied. Hence for the concept class 
Gn defined using these values of k and / it holds that 

L C - M E M B ( Q )  < c~n + (1 - h(oO)n + o(n) .  
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This bound is minimal if c~ = 1/3 and in this case 

LC-MEMB(G'n) < (2 - log 3)n + o(n). [] 

Now we turn to proving the general bound for LC-MEMB(G)  in terms of the Vapnik- 
Chervonenkis dimension of G. 

Theo rem 6.5. For every concept class G 

1 
LC-MEMB(C)  _> : VC-dim(G). 

/ 

Proof.  Similarly to the previous lower bounds, the proof proceeds by constructing an adver- 
sary. Let us fix a shattered subset Y of the domain X of maximal size (thus ]Y] = VC- 
dim(C)).  Let C i denote the class of concepts which are still candidates for being the target 
concept after responses were given to the first i queries of the learner. The adversary con- 
centrates on the concept class G/ n Y induced by C / o n  Y and tries to keep it large, in 
order to "slow down" the learner. 

Thus for each query the adversary gives the response which keeps I C i+1 n YI as large 
as possible. In more detail this means the following (we use the notation (1), (2) and (3)). 

I. For a membership query "x ~ Cr?" reply "yes" iff 

I (q n I(q n 

Hence the adversary chooses the reply which keeps more subsets of Y as the possible 
"trace" of  the target concept on Y. We note that x is not necessarily an element of Y. 

II. For a hypothesis H ~ G choose an element y E Y as counterexample for which 

M s : =  I{C n Y I C E  Gland C(y) # H(y)}] 

is as large as possible. 

Thus again, the adversary chooses a counterexample from Y which keeps as many subsets 
of Y as possible, as candidates for being the "trace" of the target concept on Y. 

It is obvious that in case I. I G'i+l n Y] >__ 1/21Gi n Y]. However an estimate of the 
type ]G i+ 1 n YI = fl(] C/ n Y]) is false for case 11 in general. For example, if Ci N Y 
consists of all singletons and 0, and the hypothesis is 0, then for every counterexample 
from Yit  holds that 1 = 1 ~ ' ÷ 1 0  Y[ = [C~ n Y[/(]Y[ + 1). 

Nevertheless, in the next lemma we show that as long as I C i n YI is "relatively large," 
it is possible to find a counterexample in such a way that [Q+I n I~ = ~2([ C i n 1,1) holds. 

In what follows we use some basic notions and results of information theory (see (Csisz~r 
& K6rner, 1981) for background and (Kleitman, Shearer & Sturtevant, 1981) for a similar 
combinatorial application). 
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The binary entropy function h " (0, 1) --* R is h(z) :=  - z  log z - (1 - z) log(1 - 
z). It holds that h(1/2) = 1, h is strictly monotone increasing on (0, 1/2] and it is symmetric 
around 1/2. (This function was already used in the proof of  Proposition 6.3.) 

L e m m a  6.6. Let c~ ~ (0, 1] be arbitrary and consider the unique/3 E (0, 1/2] with h(/3) 
= c~. Let Y ~ 0 and C C 2 r with I CI -> 2 ~lrl. Then for some y E Yit  holds that 

/ 3 <  I~yl < 1 - / 3 .  
161 

Proof.  If  ( is a discrete random variable which takes on different values with probabilities 
Pl, . . . ,  Pn then the entropy of ( is defined as 

H(~) := ~ - P i  log Pi. 
i=1 

We use the fact that if ( = (~1 ,  . . - ,  ~k) is a discrete random vector variable then 

k 

H(~) _< ~ H(Ss). 
i=1 

(8) 

Let 22 be a random variable taking values in ~ with uniform distribution. (Thus 22 is 
a randomly selected set from ~.)  Then H(.7~) = log 1~1 _> c~. [Y]. For every y 6 Ylet 
.77y be the induced random variable with 

jyy = t r l  i f y f i  2-? 

,9 if y ~ Y~. 

Then as one can identify 5r~ with the vector (.7~y)yEr, (8) implies 

~IY] ~ H(22) <_ ~ H(YYy). 
yEY 

Therefore for some Y0 ~ Y it holds that H(J~yo) > ~. But Pr(JCy ° = 1) = I~y]/I ~l and 
H(~yo) = h(Pr(Y~y ° = 1)). Hence the properties of h mentioned above imply that/3 < 
Pr(,Y~y ° -- 1) _< 1 - /3. []  

Now in order to finish the proof of Theorem 6.5 let c~ "= 1/3. For/3 E (0, 1/2] with 
h(/3) = 1/3 it holds that/3 >_ 0.0615. Lemma 6.6 guarantees that as long as I G i 71 YI > 
2/Yq/3, after the response of the adversary it holds that l C/+ 1 ('1 r[ _> /31 C, M YI. Hence 
if for some i it holds that 
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/~i ~_~ 2-21rl/3 (9) 

then after i responses of the adversary 

]G i f3 Y] > 2 Irl . /3 i ~ 2 IrP/3 > 1 

and the learning process cannot be concluded yet. The proof is completed by noting that 
in (9) i can be chosen to be IYI/7. [] 

Theorem 6.5 in combination with Theorem 2.1 of Blumer, Ehrenfeucht, Haussler and 
Warmuth (1989) implies that for any finite G 

O Imax 111°g2-6' LC-MEMB(G) l°g 13~ l e  

samples are sufficient for PAC-learning. This appears to be the first result which indicates 
that learning with membership and equivalence queries cannot be substantially faster than 
PAC-learning (if one ignores possible differences in computat ional  complexi ty) .  

Now we present an example where the lower bound provided by Theorem 6.5 is optimal 
up to a constant factor. Consider the concept class Gk,, over the domain Xn = {0, 1}" 
defined by 

Gk,~ := {C ] C is definable by a conjunction of at most k literals from 
{Xl, "" " '  Xn, Xl . . . . .  3fn}}" 

This concept class is of interest not only in the case k = n but also in the case k ,~ 
n, as many practically occurring concepts are defined as a conjunction of very few literals 
from a very large reservoir of potentially relevant attributes (see (Littlestone, 1988)). It 

> (- h e n c e  " with" " can be shown that LC(Gkn ) _ L k j '  l e a r n m g  e q u t v a l e n c e  
queries from Gk, ~ is not feasible' if the number of potentially relevant attributes is large. 
Thus it is of interest to examine whether Gk,~ can be learned substantially faster if the 
learner can make equivalence queries from Gk, ~ and membership queries. 

Corollary 6.7. LC-MEMB(Q,n) = O(k(1 + log (n/k))).  

Proof. We describe a learning algorithm proving the upper bound. Let the first hypothesis 
be H1 := 0 (defined by Xl A £1). If a counterexample gl is received then this must be a 
positive one. The subsequent queries of the algorithm will all be membership queries. Divide 
the variables into k groups of approximately equal size and let gt 0 (i = 1 . . . .  , k) be the 
vector obtained from gl by switching the components in the i-th group. Ask the k member- 
ship queries "gt 0 ~ CT?". The "no" answers identify those groups which contain a relevant 
literal, i.e. a literal occurring in the definition of the target concept. If a group contains 
j relevant literals then these can be found with O ( j  log (n/k)) membership queries using 
depth-first search in the search tree describing binary search within that group. After these 
queries it will also be known that the group contains no further relevant literals. Hence 
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processing all groups containing relevant literals one after the other, all relevant literals 
can be identified with O(k log (n/k)) additional queries. 

The lower bound follows from the result of Littlestone that VC-dim(Gn,k) = [2(k(1 + 
log (n/k))) (Littlestone, 1988) and Theorem 6.5. 

One may ask whether Theorem 6.5 can be strengthened to LC-MEMB(G)  = ~2(LC- 
ARB(G)) for every concept class G. This question remains open. We can prove a slightly 
weaker lower bound which nevertheless leads to lower bounds for some concrete concept 
classes which are not implied by Theorem 6.5. 

Theorem 6.8. For every concept class G with [CI > 1 

LC-ARB(G') LC-ARB(G') 
LC-MEMB(G)  >_ _> 

log(1 + LC-ARB(G)) log(1 + log I C I )  

Proof.  Consider a decision tree T for G such that every leaf of T has depth at least d : = 
LC-ARB(G).  Such a tree exists by Proposition 5.1. We use T to construct an adversary 
somewhat similar to the adversary of Theorem 6.5. 

We focus attention on the 2 a nodes of T at level d. After a certain number of queries 
a node v at level d is called alive if the subtree rooted at v contains at least one concept 
C ~ G which is consistent with all the previous responses. 

The adversary tries to maintain the following assertion as long as 2d/2i(d + ly > 1: 
after i membership queries and j equivalence queries there are still at least 2a/2i(d + 1) i 
alive nodes at level d. 

The assertion implies the theorem: if i + j < d/log(d + 1) then there are at least two 
concepts which are still candidates for being the target concept. We will now prove the 
assertion by induction on i + j .  As the assertion clearly holds if i = j = 0, we only have 
to consider the induction step. The strategy of the adversary is to keep as many alive nodes 
at level d as possible. In somewhat more detail this means the following. 

Assume that i membership queries and j equivalence queries have been asked already 
and the number of alive nodes is s > 1. 

I. For a membership query "x ~ Cr?" reply "yes" iff this keeps at least s/2 nodes alive. 
II. For a hypothesis H ~ G give a counterexample which keeps as many alive nodes as 

possible. 

The response given in case I clearly maintains the truth of the assertion. 
In case II one can argue as follows. There is a unique leaf of T labelled H. This leaf 

determines a unique path leading from the root of  T to some node vH on level d. Assume 
for contradiction that for every node v on this path the immediate subtree of v which does 
not contain vH contains fewer that s/(d + 1) alive nodes. The assumption s > 1 implies 
that in fact s > d + 1, as otherwise vH would be the only alive node. Therefore 

d s s 
s < 1 + d . - -  < - - +  d "  - s ,  

d + l  d + l  d + l  
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a contradiction. Thus for some node ~7 on the path it must be the case that the immediate 
subtree of ~7 not containing vH contains at least s/(d + 1) alive nodes. Giving the label 
of this node as a counterexample will keep at least s/(d + 1) alive nodes. Hence the choice 
of the adversary in case II also maintains the truth of the assertion. [] 

As an application of Theorem 6.8 we consider the concept class HALFSPACE~ of d- 
dimensional halfspaces over the discrete d-dimensional domain Xn a := {1 . . . .  , n} a defined 
as 

HALFSPACE~ := {C [ C = X~ f) H for some halfspace H C Re}. 

(A halfspace in R d is a set {(x 1 . . . .  , xe) I E/e=1 w~xi -> t} for some wl, . . . ,  w d, t ~ R.) 

These concept classes generalize HALFSPACE2 e defined in the Section 1. 

Corol lary  6.9. LC-MEMB(HALFSPACE~ a) = [2(d21og n/(log d + log log n)). 

Proof.  This follows from the fact that LC-ARB(HALFSPACE~ a) = O(d 2 log n) (Maass 
& Turin, 1989) and Theorem 6.8. [] 

This lower bound is quite sharp as the best known upper bound is 

LC-MEMB(HALFSPACE~ a) < LC(HALFSPACE~) = O(d2(log d + log n)), 

(see(Maass and Tur~in, 1990c)). 
Concerning the sharpness of the lower bounds of Theorems 6.5 and 6.8 in general we 

note that for the concept class SINGLETON n it holds that LC-ARB(SINGLETONn) = 
VC-dim(SINGLETONn) = 1. On the other hand LC-MEMB(SINGLETONn) = n - 1 
as shown by the adversary giving only "no" replies and negative counterexamples. Thus 
the lower bounds can be very far from being sharp. 

We close this section by observing that the lower bounds of Theorems 6.5 and 6.8 re- 
main valid in the stronger model allowing membership and arbitrary equivalence queries. 

Proposition 6.10. For every concept class G with I GI > 1 

a) LC-ARB-MEMB(G)  _> VC-dim(G)/7, 
LC-ARB(G) 

b) LC-ARB-MEMB(G)  ___ 
log(1 + LC-ARB(C))  

LC-ARB(G) 

log(1 + log I c I )  

Proof.  The proof of Theorem 6.5 implies a) without any change. As to b), the only modifica- 
tion needed in the proof of Theorem 6.8 is in the discussion of case II of the adversary 
strategy. Here H does not necessarily occur as a label of a leaf of T, but nevertheless it 
defines a unique path from the root to a node vn on level d. Therefore the same argument 
applies to this case as well. []  
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7. Additional remarks on learning with membership queries and equivalence queries 

We continue the investigation of learning models allowing membership queries and 
equivalence queries by establishing some further relationships involving these models and 
the combinatorial parameters. 

First we compare the models allowing equivalence queries only, resp. membership queries 
only. The learning power of these models is incomparable in the sense that there are con- 
cept classes for which learning is much more efficient in the first, resp. the second model. 
It also follows that the model allowing both membership and equivalence queries is strictly 
more powerful than any of these models. 

We define the concept class ADDRESSING~ over the domain Xn = {1 . . . . .  n, n + 
1, . . . ,  n + t l o g n / }  as 

ADDRESSING n := {C I c : c 1 u c2, c 1 = {i}, 1 _< i < n, C 2 C {n + 1 . . . . .  n + Llog nJ } 
and i - 1 is the number denoted in binary notation by the Llog nJ bits of the 
characteristic vector of C2}. 

Concept classes related to ADDRESSINGn are used as test cases for neural nets 
(Rumelhart & McClelland, 1986). 

Proposition 7.1. 

a) LC-MEMB(SINGLETON n U {0}) = LC(SINGLETON n U {0}) = 1 
and MEMB(SINGLETONn U {0}) = n, 

b) LC-MEMB(ADDRESSINGn) -< MEMB(ADDRESSINGn) -< Llog n~ and 
LC(ADDRESSINGn) ~ n - 1. 

Proof. a) See (Angluin, 1988). The first equality was noted in Section 4. The second equality 
follows from considering the adversary who responds "no" to the first n - 1 membership 
queries. After these responses there are still two consistent concepts remaining, therefore 
one more query is required. 

b) Let the learning algorithm ask the Wlog nJ membership queries "i E CT?" for i = 
n + 1 . . . . .  n + Wlog nJ . The responses to these queries identify the target concept, 
thus MEMB(ADDRESSINGn) < Llog n]  . The lower bound is proved using the adver- 
sary who gives H O {1 . . . .  , n} as a negative counterexample to every hypothesis H. After 
n - 2 counterexamples the target concept is not identified yet, hence the learning process 
cannot be concluded. []  

We note that using the concept classes considered above it is possible to construct con- 
cept classes G n for which L C - M E M B ( Q )  ,~ min (LC(Q) ,  M E M B ( Q ) ) .  

It can also be noted here that clearly VC-dim(ADDRESSINGn) = /log n J ,  
l o g ( I A D D R E S S I N G n [ -  1)/log(lx~l + 1) < 1 and log(chain(ADDRESSING~)) = 0. 
Thus for this concept class the Vapnik-Chervonenkis dimension is much larger than the 
other two combinatorial parameters. 
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Concerning lower bounds to MEMB(G) it is already noted in the proof of Proposition 
6.1 that for every concept class G it holds that MEMB(G) > logl GI. The example of 
SINGLETON n (with or without {fl}) shows that there are concept classes for which this 
lower bound is far from being sharp. 

Lower bounds to LC-MEMB(G) were discussed in detail in the previous section. Here 
we observe that LC-MEMB(G), and in fact LC(G) are incomparable to both log and 
LC(HALVING(G)) in general. The proofs repeat previous arguments and are therefore 
omitted. 

Proposition 7.2. 

a) LC-MEMB(SINGLETONn) = LC(SINGLETONn) = n - 1 and log ]SINGLETONnl 
= log n, 

b) LC-MEMB(SINGLETON n U {fl}) = LC(SINGLETON~ U {0}) = 1 and log 
ISINGLETON. U {O}l = log(n + 1). [] 

Proposition 7.3. 

a) LC-MEMB(SINGLETONn) = LC(SINGLETONn) = n - 1 
and LC(HALVINGsINaLEa-ONn) = 1, 

b) LC-MEMB(TAGGED-SINGLETON~) < LC(TAGGED-SINGLETON~) 
LC(HALVINGTAcCED_SIN~I.Ea-ONn) = f~(1og n). 

_< 2 and 
[] 

Finally concerning the model allowing membership queries and arbitrary equivalence 
queries, it is clear that this model is at least as powerful as learning with membership 
queries and equivalence queries, and the example of SINGLETONn again shows that for 
some concept classes it is much more powerful. It is also obvious that this is at least as 
powerful as learning with arbitrary equivalence queries. Propositions 6.2 and 6.3 show that 
learning with membership and arbitrary equivalence queries can give a speedup by a con- 
stantfactor as compared to learning with arbitrary equivalence queries, and Proposition 
6.10 b) shows that it cannot give a much larger speedup. The question whether it can give 
more than a constant speedup remains open. The example of HALF-INTERVAL, shows 
that learning complexity in this model can be much larger than the Vapnik-Chervonenkis 
dimension. The relationship in the other direction is described by Proposition 6.10 a). 

8. Learning with partial equivalence queries 

In order to illustrate the power of learning with partial equivalence queries we consider 
the concept class ADDRESSINGn introduced in the previous section. 

Proposition 8.1. 

a) LC-PARTIAL(ADDRESSINGn) = 1; 
b) LC-ARB-MEMB(ADDRESSINGn) = Llog n ] .  
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Proof.  a) Let the first partial hypothesis of the learner assign 0 to 1 . . . . .  n and * to n 
+ 1 . . . .  , n + ]log nJ . As this partial hypothesis cannot be correct, the response must 
be a positive counterexample i < n and this already identifies the target concept. Thus 
LC-PARTIAL(ADDRESSING~) < 1 (the > part is trivial). 

b) As f_log nJ membership queries are sufficient to learn the target concept we only 
have to prove the lower bound. Consider the following adversary strategy for the first f_log 
nJ - 1 queries: 

- -  for an equivalence query give an arbitrary counterexample from 
{n + 1 . . . . .  n + ] l o g n J  }, 

- -  for a membership query give the answer "no." 

Assume that after k < ]log n]  - 1 queries e < k elements have been specified from 
{n + 1, . . . ,  n + Llog nJ } and k - f elements have been specified from {1 . . . .  , n}. 
We claim that the target concept is not identified yet. 

There are at least 2 Llog ~/-e _ (k - g) consistent concepts left, as each unspecified ele- 
ment in {n + 1, . . . ,  n + ]log n]  } can be specified in two ways to get a concept, and 
at most k - e of these are eliminated by the elements specified in {1 . . . . .  n}. But as 
2 m > m, 

2 ]log nJ-g _ _  (k - e) > 2 Llog nJ- f  _ _  ( (  ] log nJ - 1) - e) > 2, 

proving the claim. []  

The simple learning algorithm of a) above is based on the fact that each i fi {1 . . . . .  
n} is contained in at most one concept. Let us give an informal argument motivating the 
use of partial hypotheses in general. There may be situations when there are many elements 
x ~ X which are unbalanced, i.e. for which the number of remaining consistent concepts 
containing x is either much smaller or much larger than the number of remaining consis- 
tent concepts not containing x. If  the learner presents a partial hypothesis which only specifies 
the "probable" behavior of the unbalanced elements and assigns * to the other elements, 
then it can be expected that each possible response will significantly reduce the number 
of remaining consistent concepts. The reason is that a counterexample will show the oc- 
currence of an unlikely event, and a "correct" reply will settle the behavior of many elements 
at the same time. 

With the possible exception of VC-dim(G), log(I GI - 1)/log(Ixl + 1) and log(chain(G)), 
LC-PARTIAL(G) can never be larger than any of the quantities considered in this paper, 
and in the case of ADDRESSINGn it is much smaller than all of them. As VC-dim(AD- 
DRESSINGn) = ]log n_] , VC-dim(G) is not a lower bound to LC-PARTIAL(G) in 
general. On the other hand Proposition 8.3 below shows that the two remaining parameters 
provide lower bounds for LC-PARTIAL(G),  with the slight modification that instead of 
log(chain(G)) we have to use log3(chain(G)). 

We note that.LC-PARTIAL(POWER-SET,) = n. This follows from the following adver- 
sary strategy: if H i s  a hypothesis, and there is an i such that H(i) E {0, 1} and i was not 
given as a counterexample before, then give any such i as a counterexample; if there is 
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no such i then reply "correct." As ADDRESSINGn f? {n + l . . . .  , n + Llog n]  } = 
POWER-SET Llog nj,  this shows that the analogue of the Monotonicity Lemma (Lemma 
4.4) is false for learning with partial hypotheses. 

Proposition 8.2. For every concept class G over a domain X 

log(] GI) 
a) LC-PARTIAL(G) _> 

log(lxl + 1) 
b) LC-PARTIAL(C)  _> log 3 (chain(C)). 

Proof. a) In Sections 5 and 7 we made use of the fact that learning algorithms with member- 
ship queries can be viewed as decision trees. A learning algorithm A with partial hypotheses 
can be represented as a decision tree of a somewhat different kind. One difference is that 
an inner node now corresponds to a partial hypothesis. Therefore it has several (at most 
IxI + 1) outgoing edges, one for each possible reply to the hypothesis. Another difference 
is that a concept may occur as a label of more than one leaf, as different counterexamples 
may lead to the same target concept. On the other hand every concept occurs as a label 
of a leaf at least once. The learning complexity LC(A) of A is equal to the depth d of the 
tree. From these observations we get ( IxI  + 1) d -> I Cj ,  implying the claimed bound. 

b) The proof essentially requires showing that LC-PARTIAL(HALF-INTERVALn) > 
log 3 n. However as the Monotonicity Lemma does not hold in this case, one has to argue 
directly. Again we construct an adversary. Let C1 C C3 ~-C . . .  C Ce be a longest chain 
in G, i.e. e = chain(G). 

Assume that after a certain number of replies of the adversary there is an interval {u, 
u + 1, . . . ,  v} such that all concepts Cj with u _< j _< v are still consistent. It is suffi- 
cient to show that after the next reply there still remains an interval of [(v - u + 1)/3] 
consistent concepts. 

Divide the interval {u . . . . .  v} into three successive subintervals I1, 12 and 13 such that 
II11 -- U ( v  - u + 1)/3] and 1131 = [_(v - u + 1)/3/.  In the adversary strategy we dis- 
tinguish 3 cases. 

1. I f  H(x) = 1 for some x ft Cu+ l(v-u+l)/3~ -1 then give x as a negative counterexample. 
2. I f  1. does not hold but H(x) = 0 for some x fi Cj with j ~ 11 U 12 then give x as a 

positive counterexample. 
3. I f  neither l nor 2 do hold then reply "correct." 

In case 1 all concepts Cj with j fi I 1 remain consistent and Illl = V v  - u + 1)/3]. 

In case 2 all concepts Cj with j E 13 and the concept Cv- L(v-u+l)/3J (the largest con- 
cept with subscript from /2) remain consistent, and the number of these concepts is 
L ( v -  u + 1)/3] + 1 _> F(v - u + 1)/3]. 

In case 3 all concepts Cj wi th j  ~ 12 and the concept Cu+ F(~-,+1)/31 -1 (the largest concept 
with subscript from 11) remain consistent, hence the number of  these concepts is at least 
l_(v - u + 1)/3] + 1 _> [-(v - u + 1)/3]. []  
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Finally we consider the sharpness of the lower bounds of Proposition 8.2. An example 
where a) is not sharp is provided by HALF-INTERVAL~, where log(I c l ) / l o g ( I x l  + 1) 
< 1. This example also shows that LC-PARTIAL(G) can be much larger than VC-dim(U). 
To get an example where b) is not sharp we define 

HALFSIZE~ := C {1 . . . . .  I lSl  - -  • 

Clearly log3(chain(HALFSIZE~)) = 0. On the other hand we observe that LC- 
PARTIAL(HALFSIZEn) is large. 

Proposition 8.3. LC-PARTIAL(HALFSIZE~) = Ln/21 . 

Proof. One can use the following adversary strategy to prove the lower bound: give any 
counterexample if this is possible, otherwise reply "correct." After the responses are given 
to k < L n / 2 J  hypotheses, the target concept is not identified yet. The upper bound is 
achieved by the learning algorithm which always asks a consistent hypothesis with as many 
O's as possible. [] 

One can also note here that 

log(IHALFSIZE, I - 1) _ n - o (n )  

log(lxnl + 1) log(n + 1) 
>> log3(chain(HALFSlZEn)) = 0. 

9. Summary of the bounds and relationships 

In this section we collect the bounds and relationships presented in the previous sections. 
Table 1 contains the bounds for the different learning complexities and combinatorial 

parameters for the concrete classes used as examples in the paper. In addition, it contains 
bounds for the concept classes BOX~, BALL~, HALFSPACEn a, LINEAR ORDER n and 
PERFECT MATCHINGn. 

The domain for BOX a and BALL~ is the discrete d-dimensional space X~ := {1 . . . .  , 
n} d. 

BOX~:= {{il, il + 1, . . . , j , }  x . . .  X {id, id + 1 . . . . .  Jd} [ 1 <-- ik, j k  <-- n for  
k =  1, . . . ,  d}, 

BALL{ :=  {C C X~n I C = X~ fq B f o r  some bal lB C R d} 

are the classes of d-dimensional boxes, resp. balls over X~. The class HALFSPACEn a of 
d-dimensional halfspaces over X~ is defined in Section 6, preceding Corollary 6.9. 

The domain for LINEAR ORDERn and PERFECT MATCHING n is Xn := {(i, j) I 1 
< i _< j < n}, and 
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LINEAR ORDER~ := {C C Xn [ there exists a linear order ~ on {1 . . . . .  n} such 
that for every (i, j), 1 < i < j _.: n, it holds 
t ha t ( i , j )  E C ~ i q j}, 

PERFECT MATCHING, := {C C X, I c is a pairing of {1 . . . . .  n{ i.e. each i 
= 1 . . . . .  n occurs in exactly one element 
of C}. 

Thus LINEAR ORDER n contains an encoding of each linear ordering of {1 . . . .  , n}. Each 
such linear ordering P is encoded by the set of pairs which are ordered in the same way 
by P and the natural ordering. PERFECT MATCHING~ consists of pairings, or in graph- 
theoretical terms, perfect matchings of the domain. When we refer to PERFECT MATCH- 
INGn, it is always assumed that n is even. 

These concept classes appear to be of interest in themselves, and furthermore they pro- 
vide examples of concept classes for which efficient learning algorithms or lower bounds 
can be given using results from Combinatorial Optimization or Combinatorics. 

All bounds in Table 1 are 0-bounds, i.e. they represent matching lower and upper bounds 
up to constant factors. With the exception of the five classes mentioned above, all bounds 
are shown in the previous sections or can be proved by similar arguments. The results for  
balls, boxes and halfspaces are presented in Maass and Turfin (1989; 1990a; 1990b; 1990c) 
and Bultman and Maass (1990). The bounds for LINEAR ORDER, and PERFECT 
MATCHINGn are given below. 

We note that for LINEAR ORDER~ and PERFECT MATCHINQ it holds that 

[LINEAR ORDER~I = n!, 

IPERFECTMATCHING[ = 0 I ~ 2 e e ~ n / ~  . 

Proposition 9.1. 

a) LC(LINEAR ORDERn) = O(n log n), 
b) MEMB(LINEAR ORDERn) = O(n log n), 
c) LC-ARB-MEMB(LINEAR ORDERn) = fl(n log n), 
d) LC-PARTIAL(LINEAR ORDERn) = 0(n), 
e) VC-dim(LINEAR ORDER,) = 0(n). 

Proof. If  P is a partial order on {1 . . . . .  n} then a linear extension of P can be viewed 
as an order-preserving bijection a between P and the natural ordering on {1, . . . ,  n}. 
Let the average height h(x) of an element x be the average of a(x) taken over all linear 
extensions of  P. Let Pr(x < y) be the fraction of linear extensions of P for which x is 
smaller than y. 
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We use the following results of Kahn and Saks (1984). 

L e m m a  9.2. (Kahn & Saks, 1984). I f  h(x) - h(y) < 1 then Pr(y < x) < 8/11. [] 

L e m m a  9.3. (Kahn & Saks, 1984). For every P there are elements x and y such that 3/11 
< Pr(x < y) < 8/11. [] 

a) We describe a learning algorithm. Each counterexample determines the relation of two 
elements in the target linear ordering. Thus after a certain number of hypotheses the infor- 
mation obtained is a partial order on {1, . . . ,  n}. In order to determine the i-th hypothesis 
H/consider  the partial order Pi-1 determined by the first i - 1 counterexamples and com- 
pute hi- l (x)  for every x. Let H i be a linear extension obtained by ordering the elements 
in the order of increasing hi value (ties are broken arbitrarily). This will be a linear ex- 
tension o fP i_  1 as i f x  is smaller than y in Pi-1 then hi_l(X ) < hi_l(y ). From Lemma 9.2 
we get that h(x) < h(y) implies Pr(y < x) < 8/11. Therefore if (x, y) is a counterexample 
to H i, where e.g. x precedes y in Hi, then hi_l(X) <_ hi_l(y),  therefore the number of linear 
orders remaining as possible target concepts is reduced by a factor < 8/11. Hence the learn- 
ing algorithm will identify the target linear order after O(n log n) hypotheses. 

b) This is just a reformulation of the standard sorting problem. 
c) The lower bound is implied by the following adversary strategy. For a membership 

query that response is given which keeps more consistent concepts. For an equivalence 
query we again consider the partial order formed by the previous responses. The counterex- 
ample is the pair provided by Lemma 9.3 in this partial order. The response to a member-  
ship query clearly keeps at least half  of the consistent concepts. Lemma 9.3 implies that 
a counterexample given to a hypothesis reduces the number of consistent concepts by a 
constant factor. The adversary can play this strategy for [2(n log n) steps, before the number 
of consistent concepts is reduced to 1. 

d) The learning algorithm to be described will update the following kind of information 
during the learning process: there are disjoint lists L1 = (al . . . .  , aj) and/12 = (bl, . • . ,  
bk) of elements from {1 . . . . .  n} such that as ~- . , . ~ aj are the j largest elements 
and it holds that b 1 -~ . . .  ~ bk in the target linear ordering. 

The first hypothesis is H 1 := Xn, i.e., the encoded version of the natural linear order- 
ing on {1 . . . .  , n}. I f  a counterexample (c, d) is received then d q c in the target linear 
ordering and we set L1 := 0, / -e  :=  (d, c). 

In general there are two cases. 
If/-2 ¢ 0 then the next partial hypothesis is the encoded version of the relations {b k 

~- u : u ¢ L1 U L2}. I f  a counterexample bk -~ u is obtained then/-,2 can be augmented 
by adding bk+ 1 := t~ (L 1 is unchanged). I f  the reply "correct" is obtained then bk is the 
largest element not in L1, therefore L1 can be augmented by adding aj+l :=  bk; at the same 
time bk is removed from L2. 

If/-,2 = 0 then the next partial hypothesis is the encoded version of the relations {v ~- 
u : u ¢L t  U {v} }, where v is an arbitrary fixed element such that v ~ L 1 . I f  a counterex- 
ample v -~ t~ is obtained then we set L2 := (v, ~). I f  the "correct" reply is obtained then 
L 1 can be augmented by adding aj+l :=  v. 

After each learning step IZ~l + IL~ tJ /I21 increases. As this can happen at most 2n 
times, the target linear order is identified in at most 2n steps. 
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The lower bound can be proved by the following adversary strategy. Consider the un- 
directed graph formed by the pairs given as counterexamples to previous partial hypotheses. 
If the next partial hypothesis assigns 0 or 1 to some pair connecting two connected com- 
ponents of this graph then give this pair as a counterexample, otherwise give the reply 
"correct." Clearly at least n - 1 counterexamples are needed before the target linear con- 
cept can be identified. 

e) We claim VC-dim(LINEAR ORDERn) = n - 1. This follows from the observation 
that a set of pairs is shattered iff the corresponding undirected graph is a forest. [] 

Related results on learning linear orders by randomized, polynomial time computable 
prediction algorithms are obtained by Goldman, Rivest and Schapire (1989'). 

Proposition 9.2. 

a) LC-MEMB(PERFECT MATCHINGn) = f ] (n2) ,  

b) LC-ARB(PERFECT MATCHINGn) = O(n), 
c) log IPERFECT MATCHINGn[ = ~2(n). 

log IX, I 

Proof. a) The adversary for this problem gives negative answers and counterexamples as 
long as possible. In particular, it responds "no" to a membership query whenever after 
this response there still remains a consistent concept. Assume that the learner asks an 
equivalence query H. H cannot be the only consistent concept (otherwise the learner does 
not need the hypothesis). Let C be another consistent concept. As all concepts have the 
same size, H \ C  ~ 0, therefore the adversary can give a negative counterexample from 
H and C still remains consistent. 

We claim that no learning algorithm can identify the target concept in less than n(n - 
2)/4 steps. If C is the only consistent concept then it must be the case that C is the only 
perfect matching in the complement of the graph G formed by the pairs obtained from 
"no" answers to membership queries and as negative counterexamples to equivalence queries. 
To see this, note that any other perfect matching in this graph would also be consistent 
as the "yes" answers of the adversary were forced in the sense that every consistent con- 
cept must contain them. Now we can use the following result of Hetyei (1964). 

Lemma 9.3. (Hetyei, 1964), see (Lov~[sz, 1979). If a graph on n vertices contains a unique 
perfect matching then it has at most n2/4 edges. [] 

This implies that G must contain at least 

I:l 4 
pairs, and thus the claim follows. 
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b) Here one can use the trivial learning algorithm which starts with H 1 := O and ap- 
proximates the target concept from "below." 

c) The bound follows from the estimates presented preceding Proposition 9.1. [] 

An argument similar to the one given in a) is used in Faigle and Turin (1988) for a model 
equivalent to learning with membership queries. 

Now we turn to discussing Figure 1, which gives a summary of the known relationships 
between the learning models and combinatorial parameters discussed in this paper. 

The nodes in Figure 1 are labeled either by a learning complexity measure correspond- 
ing to one of the models discussed (these are surrounded by a box) or by a combinatorial 
parameter (these are surrounded by a double box). 

If nodes A and B are connected by a solid line and A is above B then this indicates that 
A(G) >_ B(G) for every concept class G, and for some family G n of concept classes A(Gn) 
is exponentially larger than B(Gn) (0(log n) versus O(1), or 0(n) versus O(log n)). Below 
we use the notation A > B for this kind of relationship. Note that > is a transitive rela- 
tion. The number next to the line specifies Q .  (The numbering of the families of con- 
cept classes is given below Figure 1). 

A broken line without an arrow connecting A and B means that A and B are incomparable 
in the strong sense that there are families of concepts classes G n for which A ( Q )  is ex- 
ponentially larger than B(Gn) and vice versa. This kind of relationship is denoted by AIIB. 
The two numbers written next to the line specify families proving this relationship. 

A broken line with an arrow from B to A indicates one of the special relationships VC- 
dim(G) vs. LC-MEMB(G), LC-ARB(G) vs. LC-MEMB(G) and VC-dim(G) vs. LC-ARB- 
MEMB(G) discussed in Section 6. In this case there are families of concept classes G n 
for which A(Gn) is exponentially larger than B(Q) ,  and there are concept classes G, for 
which A(Gn) is smaller than B(Gn), but the latter gap cannot be exponential. This kind 
of relationship is denoted by A -> B. We note that the ratio of LC-MEMB(G) and VC- 
dim(G), resp. LC-ARB-MEMB(G) and VC-dim(G) cannot be arbitrarily small. It is not 
known if this also holds for LC-MEMB(G) and LC-ARB(G). The two numbers written 
next to the line again specify families proving this relationship. 

Finally a double broken line with an arrow denotes the relationship between LC-ARB- 
MEMB(G) and LC-ARB(G). Here it always holds that LC-ARB-MEMB(G) _< LC- 
ARB(G) and there are families Gn for which strict inequality holds. The gap cannot be 
exponential but it is not known if the ratio can be arbitrarily small. This kind of relation- 
ship is denoted by - .  The number written next to the line specifies the class for which 
strict inequality holds. 

Clearly these 4 types of relationships exclude each other. The transitivity of > implies 
that the question whether A > B is settled for every pair A and B. 

As further explanation for Figure 1 we list the nodes and for each node we give pointers 
to previous sections of the paper, where the relations involving the node were proved. We 
proceed downwards from the top and at each node we consider only relationships with 
nodes placed lower in Figure 1. We do not list those relations which follow from others 
using the transitivity of > .  
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1. SINGLETON. 
2. SINGLETON~ U {0} 
3. HALF-INTERVAL~ 
4. ADDRESSING. 
5. MAJORITY. 
6. HALF-SIZE~ 
7. TAGGED-SINGLETON~ 

defined in Section 4) 

de ned nSecti°ni/ 
defined in Section 
defined in Section 
defined in Section 
defined in Section 

• F i g u r e  1. Summary of known relationships between the complexity of on-line learning on various models and 
combinatorial parameters. 
See Section 9 for explanations to this diagram. 

1. LC(G) : I[MEMB(G) (Proposition 7.1), Illog I cl (Proposition 7.2), IILC(HALVINGe) 
(Proposition 7.3), > LC-MEMB(G) (Proposition 7.1), > LC-ARB(G) (Propositon 4.1). 

2. MEMB(G) : > log ]G[ ((6) in the proof of Proposition 6.1 and the remark following 
Proposition 7.1), > LC-MEMB(C) (Proposition 7.1). 

3. log I c l  : > LC(HALVINGc) ((4) and the subsequent remark in Section 5), I[ LC- 
MEMB(G) (Proposition 7.2). 

4. LC(HALVINGo) : > LC-ARB(G') (Proposition 5.2), 11LC-MEMB(G) (Proposition 
7.3). 
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5. LC-MEMB(G) : -> VC-dim(C) (Proposition 6.2, Theorem 6.5 and the remark following 
Corollary 6.9), _> LC-ARB(G) (Theorem 6.8 and the remark following Corollary 6.9), 
> LC-ARB-MEMB(G) (the remark following Proposition 7.3). 

6. LC-ARB(G) : - LC-ARB-MEMB(G) (Proposition 6.10 and the remark following Prop- 
osition 7.3), > VC-dim(G) (Proposition 4.6 and the subsequent remark). 

7. LC-ARB-MEMB(G) : ~> VC-dim(G) (Proposition 6.10 and the remark following Pro- 
position 7.3), > LC-PARTIAL(G) (Proposition 8.1). 

8. LC-PARTIAL(G) : IIVC-dim(G) (the remarks following Propositions 8.1 and 8.2), > 
l o g ( l G I -  D/log(IX] + 1) (Proposition 8.2 and the subsequent remark), > 
log3(chain(G)) (Propositions 8.2 and 8.3). 

9. VC-dim(G) : Hlog3(chain(G)) (the remarks following Propositions 4.2 and 7.1), > 
log(] G] - D/log(IX] + 1) (Propositions 3.2 and the remark following Proposition 7.1). 

10. log3(chain(G)): Illog(I cI  - 1)/log(IxI + 1) (the remarks following Propositions 4.2 
and 8.3). 

Finally, it is interesting to note that the exponential separations between the different 
learning complexities and combinatorial parameters are--with a few exceptions--in fact 
separations of the form f2(log n) versus O(1), showing that the "larger" quantity cannot 
be bounded from above by any function of the "smaller" one. The exceptions are sum- 
marized in the following proposition. 

Proposition 9.4. For every concept class G 

a )  MEMB(G) _< I~1 - 1,  
b) LC(G) _< ]G] - 1 _< 2 MEMB(c) - 1, 
c) LC(G) _< 2 LcMEMB(c'). 

Proof. a) This follows by induction on I GI, the case I GI = 1 is trivial. If ] GI > 1, choose 
any element x ~ X such that Gx ~ 0, and G_ x # 0,  and ask the membership query "x 
E Cr?" If the response is "yes" (resp. "no") then one can continue by applying the in- 
duction hypothesis to G x (resp. G_x). 

b) The first inequality was noted in the proof of Proposition 4.1. The second inequality 
is (6) in the proof of Proposition 6.1. 

c) We argue by induction on LC-MEMB(G), the case LC-MEMB(G) = 0 is trivial." 
For the induction step consider an optimal algorithm A 1 for G which uses membership 
and equivalence queries (i.e. LC(A 0 = LC-MEMB(G)). We describe a learning algorithm. 
A for G, which "simulates" A1 and uses only equivalence queries. 

If the first step of A 1 is a hypothesis H then A also asks H as its first hypothesis. If A 
receives a positive (resp. negative) counterexample x then the consideration of A1 shows 
that LC-MEMB(Cx) < LC-MEMB(G)(resp. LC-MEMB(C_x) < LC-MEMB(G)), 
therefore we can apply the induction hypothesis to G x (resp. G-x). For the learning com- 
plexity of A we get LC(A) < 1 + 2 Lc-MEMB(c3-1 < 2 Lc-MEMB(°). 

If the first step of Am is a membership query "x ~ Cr?" then for the concept classes 
G x and G_ x we again get LC-MEMB(Gx) < LC-MEMB(C) and LC-MEMB(G_x) < 
LC-MEMB(G). By the induction hypothesis there are algorithms A2 for Gx, and A3 for 
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G_ x using equivalence queries such that LC(A2) _< 2 Lc-MzMB(~-I and LC(A3) _< 
2 Lc-MEMB(c)-1 . Let A be obtained by "merging" A 2 and A 3. Thus A asks the hypotheses 
of A2 and A 3 alternately. Hypotheses in odd resp. even rounds are determined using A2, 
resp. A 3. The target concept will be identified in LC(A2) + LC(A3) _< 2 • 2 t'c-MEMBw)-I 
= 2 Lc-MEMB(~ steps, hence A satisfies the requirements. [] 

10. Some open problems 

The two open questions about the learning models discussed in this paper are whether 
membership queries can substantially speed up learning when arbitrary equivalence queries 
are allowed, and whether learning with membership queries and equivalence queries from 
the concept class can be much more efficient than learning with arbitrary equivalence 
queries. With the notation used here, is there a family of concept classes G n for which 
LC-ARB-MEMB(Gn) = o(LC-ARB(Q)), resp. LC-MEMB(Gn) = o(LC-ARB(Gn))? 

One could also investigate the relationship between the other learning models considered 
by Angluin (1988), such as learning with subset, superset, disjointness and exhaustiveness 
queries, and the models discussed in this paper. 

Another interesting topic is the power of parallelism for on-line learning models. Here 
it is assumed that the learner can ask k queries simultaneously. For example, the learning 
of singletons can be sped up by a factor of k, but the learning of half-intervals can only 
be sped up by a factor of log k. Parallel learning in Valiant's model was studied by Vitter 
and Lin (1988). 

A general issue not considered in this paper is the role of the hypothesis space. Assum- 
ing that learning with equivalence queries from the concept class is difficult, when is it 
possible to find a simple and not too large hypothesis space which allows efficient learning? 

Finally we mention three questions about the complexity of learning concrete concept 
classes. 

Angluin (1987b) showed that k-term DNF formulas of n variables can be learned with 
polynomially many equivalence and membership queries for every fixed k. We are not aware 
of results showing that equivalence queries alone are not sufficient. The negative results 
of Angluin (1990) use DNF formulas with a growing number of terms, and the negative 
results of Pitt and Valiant (1988) are concerned with the computational complexity of find- 
ing a consistent hypothesis and therefore do not apply in our model. 

Let DFAn be the concept class of all regular languages over the domain {0, 1}* which 
are accepted by some DFA having at most n states. Angluin (1981; 1990) showed that 
MEMB(DFA~) and LC(DFA~) are superpolynomial. She also gave an efficient learning 
algorithm using membership and equivalence queries (Angluin, 1987a). Her algorithm is 
polynomial in n and m, where m is the length of the longest counterexample received by 
the learner. The question whether LC-MEMB(DFA~) is polynomial appears to be open. 
Note that only the number of queries is taken into account here, and the time needed to 
read a very long counterexample is not considered. An ~2(n log n) lower bound to LC- 
MEMB(DFA,) follows from a result of Gaizer (1990) showing that VC-dim(DFA~) = O(n 
log n) and Theorem 6.5. 
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Corollary 6.9 gives an almost quadratic lower bound to the complexity of learning d- 
dimensional halfspaces using membership queries and arbitrary hypotheses. It would be 
interesting to consider the complexity of this problem in the more powerful model of learn- 
ing with partial hypotheses, and close the gap between the quadratic upper bound provided 
by the halving algorithm, and the linear lower bound implied by Proposition 8.2. 
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