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Summary. The basic problem considered in this paper is that of determining 
conditions for recurrence and transience for two dimensional irreducible 
Markov chains whose state space is Z2+=Z+ x Z+. Assuming bounded 
jumps and a homogeneity condition Malyshev [-7] obtained necessary and 
sufficient conditions for recurrence and transience of two dimensional ran- 
dom walks on the positive quadrant. Unfortunately, his hypothesis that the 
jumps of the Markov chain be bounded rules out for example, the Poisson 
arrival process. In this paper we generalise Malyshev's theorem by means 
of a method that makes novel use of the solution to Laplace's equation 
in the first quadrant satisfying an oblique derivative condition on the bound- 
aries. This method, which allows one to replace the very restrictive bounded- 
ness condition by a moment condition and a lower boundedness condition, 
is of independent interest. 

1. Introduction 

The basic problem considered in this paper is that of determining conditions 
for recurrence and transience for two dimensional irreducible Markov chains 
whose state space is Z 2 = Z+ x Z+, where Z+ denotes the nonnegative integers. 
We shall denote the Markov chain by x( t )=(x l ( t ) , xz ( t ) ) ,  where xi(t), i=1, 2 
are nonnegative integer valued random variables and denote the associated 
filtration by ~ ( t ) =  a {x(s): 0< s < t}. As is to be expected the criteria for recur- 
rence and transience depend on the interior and boundary behaviour of the 
drift vector of the Markov chain. Let us define the interior and boundaries 
of Z 2 as the sets Zo,  Z1, Z2,  where 

Zo={( i , j ) :  i>0 , j>0} ;  Z~={(i, 0): i>0}; Z2={(0,j): j>0}.  

Let Ai (x) = x (t + 1) - x (t), x (t) = x E Zi ,  and define the drift vectors 

d ~ ( x ) = E { x ( t + l ) - x ( t ) l l x ( t ) = x } = E { A i ( x ) } ,  x e Z i .  
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Here x=(x l ,  x2) with the norm [qxl[ = x[/~1+x22. Later we shall switch to polar 
coordinates with r--I[xll and O=arctan(x2/xl). The expectation operator E is 
applied to each component separately, so E(x(t))=(Ext(t) ,  Exz(t)), etc. To sim- 
plify the calculations we shall assume the homogeneity condition: 

d,=d,(x). (1) 

In other words the drift vectors are constant in the interior and on the bound- 
aries. We denote the x and y components of the drift vectors as follows: d i = 
(dix, dey). We assume that d 1 y > 0, d2y > 0 for otherwise the process after reaching 
the boundary Z1, say, will stay there. Assuming the boundedness condition: 

j] Ai (x)IJ is uniformly bounded in x and i = 0, 1, 2. (2) 

Malyshev proved the following theorem (see [7]): 

Theorem 1. Assume the conditions 1, 2 hold. 
A) I f  dox>O, doy>O, or do~>O, d0y>0, then x(t) is transient. 
B) I f  d0~<0, d0y<0, then x(t) is positive recurrent if and only if 

doxdly-doydl~<O,  doyd2x-doxdzy<O; (3) 

null recurrent if (3) is weakened to: 

doxdly-doydlx<=O, doydzx-doxd2~<=O (4) 

and transient in the remaining cases. 

C) I f  do~ > O, doy < 0, then x (t) is positive recurrent if and only if 

dox dl y -doy  dt~<0,  (5) 
null recurrent if 

doxdty-doydl~=O,  (6) 

and transient in the remaining cases. 
D) is symmetric to case C. 

Remark 1. Each of these conditions has a geometric interpretation. For  example, 
the condition (5) implies that doffdoy>dlx/dly, so d x points to the left of - d o  
out of the wedge determined by - do and the positive x-axis. 

In proving Theorem 1, Malyshev used a Lyapounov function F(x) with the 
property that VF (x). d, be of constant sign for x E Za+, or a suitable subset thereof. 
For example, VF. cIa i < 0 would imply that the Markov process is recurrent (posi- 
tive or null), with the reverse inequality implying transience. Malyshev's con- 
struction of the function F is a geometrical one and therefore one cannot differen- 
tiate if since no explicit analytic form of it is given. Indeed, after carefully examin- 
ing his construction of the function F, I concluded that F~C 1 but F is not 
in C z. And this is why his proof only works for Markov chains with bounded 
jumps. It is worth pointing out that the class of Markov chains studied by 
Fayolle, et al., see [2], do not satisfy the homogeneity condition (1) while the 
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boundedness condition (2) rules out the Poisson arrival process, say, to a two 
queue system of the kind studied by Baccelli, see [1]. 

The main purpose of this paper is to give an alternative proof of Malyshev's 
theorem which utilises a Lyapounov function T(r, 0) which is smooth in the 
interior and satisfies an oblique derivative condition on the boundaries. (For 
the purposes of constructing a Lyapounov function it is much more convenient 
to switch to polar coordinates.) To this end we introduce the auxiliary function 
~b(r, 0)= r ~ cos(~ 0- -00 ,  where a and 01 depend in an explicit way on the angles 
that the vectors di make with t~i, the inward pointing normals to the coordinate 
axes Z~, i=  1, 2. 

The function T is defined as follows: 

T = ~  if e > 0 ,  and T = ~  - 1  if e < 0 .  

As a consequence of this construction we are able to drop the unnecessarily 
strong condition (2) and replace it with: (i) a moment condition (29) and (ii) 
a lower boundedness condition (28) which is potentially more useful. Under 
these weaker conditions, however, portions of Theorem (1) must be modified 
as follows: 

Theorem 2. Assume the Markov chain satisfies conditions (29) and (28). 

A) I f  dox>0, doy:>0 (or dox>0, doy>0 ), then x(t) is transient. Thus part 
A of Theorem (1) goes through without change. 

B) I f  do~ < 0, dot < 0, then part B of Theorem (1) is modified as follows: 
(i) I f  

doxd ly -doyd l~<O,  doydzx-do~d2r<O (7) 

then x(t) is recurrent, but not necessarily positive recurrent. If, in addition the 
parameter ~, see Definition (2), lies in the range l < a < 2  then x(t) is positive 
recurrent. 

(ii) I f  either 

do~d l r -doyd lx>O,  or doyd2~-do~dzr>O (8) 

hold then x(t) is transient. 
(iii) The only remaining exceptional cases are where do~dly-dord~<=O, 

doy d2~,-dox d2y=<0 and one of these holds with equality. 

C) I f  do~ > O, dot < O, then part C of  Theorem (1) is modified as follows: 
(i) If 

do~d ly -doyd lx<O,  (9) 

then x (t) is recurrent. I f  in addition 1 <= a < 2, then x (t) is positive recurrent. 
(ii) I f  

do~ dl y-- doy d l  x > O, (10) 

holds then x(t) is transient. 
(iii) The case where dox d l y - d o t  d ~ =  0 cannot be handled via our methods. 

D) is symmetric to case C. 
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We conclude this section by noting that the methods and some of the results 
of Malyshev were anticipated 10 years earlier by Kingman, see [5]. This paper 
also contains two figures which illustrate geometrically the conditions of Theo- 
rem 1. 

The referee has noted that the Lyapounov functions constructed in this 
paper could be used to prove conditions for transience/recurrence of reflected 
diffusions on the positive quadrant (assuming the existence of such processes). 
This would add to the currently known recurrence criteria for such diffusions, 
see [4]. 

2. Construction of the Lyapounov Function 

A complete proof of Theorem 2 would require the construction of seven Lya- 
pounov functions, one for each of the cases listed in parts A, B, C of Theorem 2. 
So, we shall only consider part C of the theorem in detail and content ourselves 
with giving a list in Sect. 4 of Lyapounov functions that the reader could use 
to prove parts A and B of Theorem (2). Thus, for the next two sections, we 
suppose that dox => 0 and d0y < O. 

In order to define the function q~(r, O) we have to define the constants ~, 
01, 01, 02, 0 which are related to the angles made by the vectors dl with 
respect to the inward pointing normals tl 1 = (0, 1), r~ 2 = (1, 0). 

Definition 1. 0 = a n g l e  between -fro and nl ,  01=ang le between aVi and ~ii, 
i=1,  2. 

7~ 7~ 
Note that for i - 1 ,  2, - ~ < 0 ~ < - ~ - ,  and we adopt the convention that 0~>0 

when the vector d~ is pointing towards the origin 0. Note that case C and 
condition (5) together imply that 0 < 0 < 01, consequently, there exists an angle 
01 with the property that 0 < 0 < 0 1 < 0 1 .  On the other boundary we simply 

choose 02 so that - - ~ < 0 2 < m i n  02, - 0  �9 If condition(6) holds then 0 

= 0 1 = 0 1  �9 

Definition 2. ~ = (01 + 02) 2/n, 31 = ( -  sin 01, cos 01), 32 = ( - -  sin 02, - cos 02). 

7C 
R e m a r k  2. Note that - ~ - <  01 + 02 < ~t implies that - 1  < c~ < 2 and that for e > 0 

. 4 . ,  

the function 0-~e0--0~ varies between -01  and 02 as 0 varies from 0 to - .  
2 

For e < 0  the function decreases from - 0 1  to Oz<O. The possibility of e---0 
can be avoided by suitably adjusting 02. So we can safely assume that c~+0 
holds. 

We now proceed to compute V4~ in polar coordinates: 

Fcb(r, O) = ~ r ~- 1 (cos (e 0 -- 00, -- sin (0~ 0 -- 01) ). (11) 
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In particular then 

and 

V ~ ( r ,  O) = ~ r  ~ -  1 ( c o s ( O , ) ,  s i n  (01) )  

[Tq~(r, 7c/2) = ~ r  ~ -  1 ( c o s  (02)  ' _ s in(O2))"  

Consequently, Vq~(r, 0 ) . g l = 0  and V~ r, .g~=0. From this one easily sees 

that for e > 0 ,  Vq~(r, 0)-if1 < 0  and that V~(r ,  2 ) . d z < 0 ,  with the inequalities 

reversed for e < 0. It is a routine calculation to verify that the angle a(O) between 

o~-l Wb(r, O) and do is given by a(O)=Ol - ~ O-[ (~ , -2 ) -O l ,  where the first term 

is the angle between 7 -  a V~b and ~, and the second term is the angle between 
and fro. Since a(O) is a linear function it assumes its minimum and maximum 

values at 0 or 2-. Now a(O)=zc/2+(Ol-tk)>rc/2, since we are assuming 01 > 0 ,  

and a(~/2) = re-  (tp + 02) > 7~/2, since we have chosen Oz < min(0z, re /2-  tp) < re/2 
- O .  Similarly, it can be shown that a(O)< 3 re/2, and therefore cos(a(0))< 0 for 
0 _< 0 _ re/2. Therefore, 

VCb(r,O).do<O, forall  OE O, and e>O. (12) 

forall  0 ~ [ 0 , 2 ]  and ~<0.  V4~ (r, 0)-a7> O, (13) 

On the other hand if condition (6) holds then Vq~(r, 0)- ~- = O, i = 0,1 consequently 
we can only assert 

Vq~(r, o).do <0,  a>O. (14) 

and 

W ( r ,  O).do->_O, ~<0.  (15) 

Definition 3. If condition (5) or (6) holds we set 

~=~b, for ~>0 ,  ~ = ~ - 1  for ~<0.  (16) 

It is clear that 7 j is a Lyapounov function in the sense that 7 t > 0, 

VTJ-~<0,  on Zi, i=0 ,  1, 2 assuming condition (5) (17) 

and that 

V~.  if,. ~ 0, on Z~ assuming condition (6) holds. (18) 
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We conclude this section by deriving some estimates on the function ~P 
from which we will be able to deduce an inequality of the following form when 
(5) holds. 

E { 7~(x (t + 1))- 7J(x (t))I x (t)= x} < - e, (19) 

provided Ilxll > K ,  for some K > 0  and e>0.  

Remark 3. If e = 0 then we can only conclude that the process is recurrent, where- 
as e > 0  implies that the process is positive recurrent. These facts will be estab- 
lished in the next section of this paper. 

Before stating the next theorem we shall have to introduce some notation 
so we can distinguish between Di 7 j = ~ ,  and ~ and %, the symbol D i denoting 
the partial derivative with respect x~ of the function 7~(r, 0), where r, 0 are the 
polar coordinates of the point x = (xl, x2). Similarly, Dij kg = kgx,~j each of which 
is computed via the chain rule. For example to compute D~ ~g we proceed 
as follows: D1 t/,= Izkg(r, 0).{, where i=(cos 0, - s i n  0), which equals ~ cos(0) 
- r - 1  7/~ sin(0), and the higher order derivatives are computed in a similar fash- 
ion. Thus 

Dl l  7 j =  ~r  cos2(0)+ 2r -2  ~o sin 0 cos 0 

-~  r - 2 11700 sin 2 0 -- 2 r -  1 ~0 cos 0 sin 0 + r -  1 ~ sin 2 0. (20) 

Using the explicit formula for 7 ~ given in (16) it is a routine calculation 
to check that D~j ~ =  O(r I~l-z) whereas I] V~(r, 0)]L = O(r I~1-1). Recalling the fact 
that the angle a(O) between VTJ(r, 0) and if0 lies in the range (n/2, 3n/2) when 
(5) holds it is easy to show that r -I'1+1 ]lV~g(r, 0)]l. Ildoll cos(a(O))<Ko<O, for 
0e [0, n/2]. More precisely we have the following theorem: 

Theorem 3. Suppose (5) holds. Then there are constants Ko and K~ such that 

lira sup r-I~1 + 1 17 tt~t(r ' 0 ) "  d 0 ~_~ K 0 <~ 0 ,  (21) 

lim sup r z-I~l [D~j ~l <K1 < oe (22) 
r ---~ o9 

lim sup ~(r, 0) = o% (23) 
r ~ o o  

uniformly in OE O, . On the boundaries we have: 

lim sup r-I~1 + 1 VgJ(r, 0)- dl < Ko < 0, 
r--r oo 

lim sup r-I~l + 1Vkg r, .dz=<Ko<0. 
r " * ~  

(24) 

(25) 
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Proof The first and last two assertions follow from Eq. (16), the explicit formula 

for V~, see (11), cos(a(0))<0 for 0~[0, ~-[, and the remark preceeding Theo- 

rem (3). The second assertion is established by verifying that each term in the 

expression for Dij 7 j is O ( r  1~1-2) uniformly in 0~10, ~-I" The assertion (23)follows 
from (16) and the fact that cos(c~ 0 - 0 1 ) >  0. k ~A 

By a Taylor's series expansion 

7J(x + h) - ~P(x) = V ~P(x) �9 h + R (x, h), (26) 

where h = (hl, h2) and the remainder term is given by 

R(x,h)=�89 ~ Dij~(~hj)hih j 
i , j = l , 2  

and qij is a point that lies on the line joining x to x + h. 
If the components hi, i =  1, 2 are bounded from below by a constant c, 

that is h~Hc={h~Z2: hl~c, h2>=c>-(x3}, then it follows from Theorem 3 
that 

IDij 7'(rtOl=O(llxN I~j-~) as [Ixll--*oe uniformly in hel le .  (27) 

Remark 4. For a model of a queueing network where each server serves one 
customer at a time, c = - 1. 

Now for ie{0, 1, 2} and x~Zi, we replace h by the random vector 

.4i(x)=x(t+l)-x(t), x(t)=x s o  

We make the following assumptions on A,(x): 

3 K > 0 ,  c > - o e  so tha t  Ai(x)EHc, Vllxll>K, (28) 

and there exists K 2 > 0 such that 

E{HA,(x)N 2} < g 2  < o% i=0,  1, 2. (29) 

We now substitute A~(x) for h in the Taylor expansion above and take 
expectations of both sides obtaining 

E{g'(x(t+ 1))-  7"(x(t))lx(t)=x} = Vg'(x).~(x)+e{R(x,A,(x))}. (30) 

Next observe that Ilx[t>K+cl/2 implies ]lx+Ai(x)[l>K. Consequently, 
sup{lOij ~(qij)]: i,j= 1, 2} =O(][xlll~l-2), where t/ij is a point on the line joining 
x to x+Ai(x). Therefore 

E {JR(x, Ai(x)l} = O(llxll I,I-2). 

Consequently, 

E{Tt(x(t-t-1))- gS(x(t))lx(t)=xsZl}=VtP(x).aVi(x)-t-O(llxHl~l-Z). (31) 
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Case 1.1 __< c~ < 2, and condition (5) holds. 
In this case lim sup V~(x). d/<0  and therefore 

llxll-~oo 

E{~(x( t+l ) ) -~(x( t ) ) ix ( t )=x}<_-e  forsome 5>0 and VlIxlI~K. (32) 

Case 2. - 1 < a < 1, and condition (5) holds. 
In this case we can only conclude that 

E{~(x( t+l) ) -~(x( t ) ) ix ( t )=x}<O for Ilxll>K. (33) 

Case 3. dox dlr-dor  dlx>0 ,  i.e. neither condition 5 nor condition 6 holds. Geo- 
metrically this means 01 < 0 and therefore 3 an angle 01 > 0 such that ~k > 01 > ~1. 

On the other boundary we choose 02>max 02, >0,  so a > 0  in this 

case. It is now easy to check that with these choices for 01, 02 that the function 
T satisfies the condition VT(x). di > 0  on Zi, i=0 ,  1, 2. Hence F =  T-1  satisfies 

VF.di<O, on Z~, i=0 ,1 ,2 ,  (34) 

and by similar reasoning to that above there is a K > 0 such that 

E {F(x (t + 1))-- F(x (t)) I x (t) - x) ~ 0 (35) 

whenever ][x[I > K .  

3. Derivation of Ergodicity Conditions 

We remind the reader that we are only proving part C of Malyshev's Theorem 
and we shall begin with the proof of transience. So suppose neither (6) nor 
(5) holds. Let A =  {x: [[xll ____K} and A ' =  {x: IlxlI >K}.  Then we have the following 
result. 

Lemma 1. Suppose neither condition 5 nor condition 6 holds and let y(t)=F(x(t)) 
for all t >O. Then y(t) is a positive supermartingale on A', i.e., 

E{y(t+ 1)l~(t)} <y(t), whenever x(t)eA', t>O, (36) 

and consequently, for T= inf { t >=O: x(t)eA } {y(t /x T), ~-(t), t _0}  is a nonnegative 
supermartingale. 

Proof. Recall that F(x)= T(x) -1 satisfies (35). Since x(t) is a Markov process 
(35) implies (36) and the last result follows from Doob's optional stopping theo- 
rem. 

Choose Ilxol[ >>K so that F(xo)<K4=inf{F(x): xeA}  and set Xo=X(0). To 
prove that x(t) is transient it suffices to show that P~o{T< ~ } ~  1. Assume to 
the contrary that P ~ o { T < ~ } = I  and use the bounded convergence theorem 
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to conclude that E{y (T) }=  lira E{y( tA  T ) }<E{y (O)}<K 4 while on the other 
t --+ oO 

hand y ( r )  e A implies y (T) > K4, and therefore E {y (r)} > K4, a contradiction. 
Now suppose condition (5) holds. To prove recurrence we bring in the sto- 

chastic process y( t )=  7~(x(t))I~r>t~(x(t)) and note that y( t )=0 on the set {T__< t}, 
where (T and A) have the same definitions as in the transient case discussed 
above. We now show that y(t) is a nonnegative supermartingale. We first observe 
that I~T > t + 1~ ----< I~T > t~. Then 

E {y(t + 1) [ ~,~(t)} < E { 7J(x(t + 1)) I(r > t~[ Y(t)} 

= It r > t} (E { 7t(x (t + 1 )) [ ~(t)} -< I(r > t/gt( x (t)) = y (t), 

where we have used Eq. (33) in the second last step. So y(t) is a nonnegative 
supermartingale as claimed. Indeed, the same argument shows that for every 
s > 0 the process {y(s + t), Y ( s  + t), t > 0} is also a nonnegative supermartingale. 
Note also that 

P {lim sup Jlx(t)][ = oo} = 1, (37) 
~ --4 oO 

since we are assuming that the Markov chain is irreducible. We now claim 

for any s > O: P {y (s + t) = O, for some t > O} = 1. (38) 

For  the proof  of this, note that by the (super)martingale y(t) we have that 
lira y ( t ) =0  for otherwise lira supy( t )=  0% where we use Eq. (37) to deduce that 

t --* oo t ~ o O  

lira sup 7~(x(t))= oo on the set {T=  oo). Consequently the finite set A is visited 
t ~ 0 0  

infinitely often with probability one. This argument is due to Lamperti,  see 
[6]. It follows from this that the process is recurrent, for if it were transient, 
with probability one, the finite set would be visited only a finite (but random) 
number of times. We have thus shown that when the inequality in condition 
(5) is reversed then x(t) is transient and when it holds it is recurrent. When 
can we assert that x(t) is positive recurrent? At this point we make note of 
the fact that the methods of this paper using a second order Taylor  expansion 
of the Lyapounov function do not allow us to conclude recurrence under condi- 
tion (6). This is one of several borderline cases which cannot be settled by 
our methods at this time. We are able, however, to show that x(t) is positive 
recurrent when condition (5) holds and 1 < c~ <2.  More precisely we state the 
following result. 

Theorem 4. Suppose the Markov chain satisfies condition (5) and 1 <= c~ < 2. Then 
the Markov chain is positive recurrent. 

The proof  is a consequence of the fact that Eq. (32) holds and the following 
well known criterion of Foster, see [3], which we restate in a more general 
form. 
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Theorem 5. Let P~j denote the transition matrix of an irreducible Markov chain 
(with a countable state space), A a set of states whose complement A' is a finite 
set, and let f (j) denote a nonnegative function with the property: 

~Pis f  < f ( i ) - e ,  VieA forsome e>0. (39) 
J 

Then the Markov chain is positive recurrent. 

4. Lyapounov Functions for Parts A and B of Theorem 2 

Throughout this section the parameter ~ and the vectors gi, i=  1, 2 are defined 
just as they were in Definition (2). The functions ~, ~, F, defined in Sect. 2, 
remain unchanged. 

Definition 4. Lyapounov function for part A of Theorem 2: 0i equals the angle 
that aT i makes with ai, i=  1, 2. ~k equals the angle that do makes with ~i 1 and 

note that: (i) 0 <0  and (ii) - ( 0  +~ /equa l s  the angle do makes with ri2. Choose 
\ 

0i, i=1,  2 such that ~ /2>01>sup(0 ,  01); and n/2>O2>sup - 0+  , 0  > 

- ~ / 2 .  We can assume that c~ > 0 because we can always choose 0~> 0. In this 

a ( 0 ) = ( 0 , - o : 0 ) - { 2 + 0 - 0  ). The Lyapounov function in this case is F, case 

as defined in the preceeding section. 

Definition 5. Lyapounov function for part B(i) of Theorem 2: In this case 0 
is the angle between -fro and r11. The condition (7) implies 0 < 0, 01 > 0, 02 > 

- O+ .ChooseOi, i=l ,  2asfollows:~k<01<~/1,-  O+ <02<02 .  

The Lyapounov function in this case is 71 as defined at 16. 

Definition 6. Lyapounov function for part B(ii) of Theorem 2: In this case 01 < 0 

and 0 2 < -  + . Choose 01 so that - g / 2 < l ~ x < 0 1 < 0 < 0 ,  and on 

( r c  - 01) The Lyapounov function the other boundary choose 02 > max 0 2 , ~ - 0 ,  �9 
is F. 

5. Concluding Remarks 

We have thus shown that Theorem (1), with modifications, remains valid when 
the boundedness condition (2) is replaced by the conditions (28), (29). The homo- 
geneity condition (1) can also be weakened provided one uses Eq. (30) as well 
as suitable supplementary hypotheses in order to obtain any one of the Eqs. 
(32), (33), (35). 
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The function ~(r, 0) appears in the paper of Varadhan and Williams, who 
used it to solve a submartingale problem, see [8]. 
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