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Summary. Let L be a second-order partial differential operator in R e. Let 
R e be the finite union of disjoint polyhedra. Suppose that the diffusion matrix 
is everywhere non singular and constant on each polyhedron, and that the 
drift coefficient is bounded and measurable. We show that the martingale 
problem associated with L is well-posed. 

1. Introduction 

Let L be the operator defined on fGC2(~ 't) by 

d , , a2f(x) a 
Lf(x)= ~ a~Ax) o x ~ +  ~ b~(x)Of(x) 

i,j=l i=1 OXi ' 

where the a~j and bl are bounded and measurable and where the matrix a 
is uniformly positive definite. When the a~j are continuous, Stroock and Varad- 
han (see [6]) showed that there is one and only one continuous strong Markov 
process corresponding to L by showing that there is a unique solution to the 
martingale problem: 

(1.1) for each Xo there is exactly one probability measure P on C([0, oe), IR d) 
such that 

P (X o = xo) = 1 
and 

f(Xt)-f(Xo)- i Lf(Xs) ds is a P local martingale for all fEC2(IRa). 
0 

When a is discontinuous, existence is known to hold regardless of the dimen- 
sion d ([6], Exercise 12.4.3), while uniqueness holds when d is 1 and 2 ([6], 
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Exercises 7.3.3 and 7.3.4). For  d_->3 the argument of Stroock and Varadhan 
implies uniqueness when 

sup sup l a i j ( x )  - -  81j I < gel, 
x i , j<d  

where ea is a fixed number depending on the dimension. This last result can 
be extended slightly by using a localization argument, but the question of unique- 
ness for general discontinuous a remains open. 

In this paper, we prove uniqueness for an interesting special case. We consider 
the case where ~a  can be divided up into finitely many polyhedra and where 
a(x) is constant in the interior of each polyhedron. We make no restrictions 
on the eigenvalues of a(x), other than that they be positive, nor on the number 
of polyhedra. Our motivation comes from the so called "piece-wise linear" filter- 
ing problem, see [5]. 

Even in this special case, some interesting phenomena occur. For  example 
it is possible for such a process to hit points (see Sect. 3). Indeed that possibility 
causes the main difficulty in our proof  of uniqueness (see Sect. 5). 

The question of uniqueness in the neighborhood of a vertex point is related 
to a problem of Varadhan and Williams 1-7] concerning Brownian motion in 
a wedge. We could not use the technique of [7] since explicit formulae for 
the Green's function are not available. Instead we make use of the Krein-Rutman 
theorem for positive operators and an ergodic theory argument. We expect 
that our method could be modified to give a new proof of [7], and could 
perhaps lead to higher dimensional analogs. 

After our research was completed, we learned of the article [8] by Williams. 
She considers Brownian motion with polar drift; this problem, although quite 
different than ours, has many similarities to the situation of Sect. 5. Our tech- 
niques, however, are different. We use the Krein-Rutman theorem to give a 
ratio limit theorem for nonconservative Markov chains. As far as we know, 
this is new and is of independent interest. 

In Sect. 2 we give some preliminaries and state our main result, Theorem 
2.1. In Sect. 3 we present an example of a diffusion that hits 0 infinitely often, 
a.s. We classify the boundary points of the polyhedra as being nonvertex or 
vertex, and we show uniqueness for the martingale problem in neighborhoods 
of such points in Sects. 4 and 5, respectively. Finally, in Sect. 6 we complete 
the proof  of Theorem 2.1. 

Note that Theorem 5.5, which proves uniqueness whenever a(x)=a(x/Ixl) 
and there is uniqueness up to the first time that the process hits zero, covers 
other cases than the one considered in the other sections of the paper. 

We would like to thank Ph. Bourgerol for a very helpful discussion concerning the Kre in -Rutman  
theorem. We would also like to thank an anonymous  referee for suggesting several improvements  
to the exposition. 

2. Preliminaries 

Suppose a: ]R a -~ P-~a • a is measurable, uniformly bounded, and uniformly positive 
definite: there exists 20 > 0 such that 
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d d 

Z afj(x)yiYJ~2o ~ Y~ 
i , j = l  i = l  

for all y~ . . . .  , Yd. Suppose b: Nd ~ N J  is measurable, locally bounded, and grows 
at most like c Ix] at infinity. Let 

02 f ~ , " 
(2.1) L~.bf(x) =1 a f j (x)~tx~+ ~ b,(x) (x). 

i , j = l  i = 1  

Let g2=C([0, oo], IRa), and let Xt(co)=co(t). We say a probability measure P 
satisfies the martingale problem for L~, b starting at x 0 eIRa if 

(2.2) 

a n d  

(2.3) 

P (Xo = Xo) = 1 

f (Xt)-- f ( X o ) -  j La, b f (Xs) ds 
0 

is a P-local martingale for all f ~  C 2 (iRd). 

When b is identically 0, we will just refer to the martingale problem for La 
or even the martingale problem for a. Saying P is uniquely determined means 
that any two solutions to the martingale problem for La, b agree on F .  
=a(Xt,  te [0 ,  oo)). 

We suppose IR e can be divided up into finitely many polyhedra A1 . . . . .  A, 
such that a is constant in the interior of each Af. So lRd= U Ai and the 

l <=i<n 

Af have pairwise disjoint interiors. Since the d-dimensional Lebesgue measure 
of U OAi is 0 and a is assumed uniformly positive definite on IRa, we have 

l <_i<~n 

that the process Xt spends 0 time in the boundaries of the Ai [-9] and hence 
it follows that the value of a on the boundaries is immaterial (still assuming 
nondegeneracy). For  convenience, we take a ( x ) = l ,  the identity matrix, for 
x~ 0 OAi. 

l <_i<_n 

We need to distinguish two types of boundary points. Let us say that 

x e  (~ OAf is a nonvertex boundary point if there exists an integer k< d  and 
i = l  

a coordinate system for a neighborhood of x such that a(y) depends only on 
the first k coordinates of y for y in the neighborhood. Otherwise we call x 
a vertex boundary point. 

Our main result, proven in Sect. 6, is" 

Theorem 2.1. Suppose a is measurable, uniformly bounded, and uniformly positive 
definite, b measurable and locally bounded with at most linear growth in Ix] at 
infinity, XoeIR d. Suppose IRd can be divided up into finitely many polyhedra so 
that a is constant in the interior of each polyhedron. Then there exists a solution 
to the martingale problem for L~,b starting at Xo and that solution is unique. 
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We will use the notat ion 

z(r)=inf {t: IX, l=r), z(0)=inf {t: IX, l=O}. 

The transpose of a matrix A will be denoted A*, the inner product  in R a by 
( , ). As is customary, a positive definite matrix must be symmetric. The letter 
c will denote constants whose values are unimportant  and may change from 
place to place. 

3. An Example 

In this section we want to construct an example of a solution to a martingale 
problem that hits 0 infinitely often with probability 1. First recall that if ITV 
is a one dimensional Brownian motion and Zt is the solution to 

(3.1) dZt=dV~t+(2Zt)-l(v-1)dt, ZoO-O, 
for t<r (0) ,  Z t = 0  for t>z(0) ,  

so that Z is a Bessel process of order v, then Zt will hit 0 in finite time if 
v < 2. Perhaps the easiest way of seeing this is to realize by Ito's formula that 
Z~ -v is a martingale, degenerate only when Z~= 0. So it is a time change of 
a Brownian motion, and therefore. 

M 2 -V__X~-V 
P(Z t hits e before MlZo=xo)= MZ_~_e2_v,e<xo<M. 

Now let e --. 0, then M ~ ~ .  
We divide F , / in to  finitely many polyhedra A 1 . . . .  , A, such that each polyhed- 

ron is a cone with vertex 0: if x~A~, then rx~A i, for all r > 0 .  We choose 
the polyhedra in such a way that there exists a number e~[0, 1/2] (to be chosen 
later) and points xi~A i such that ]xi[= 1 and for all xcAi ,  Ix l -2 (x ,  Xi)2~ 1--e. 
This condition implies that the aperture of each cone is small. 

Define ~r on the interior of A~ to be the positive definite matrix whose largest 
eigenvalues is of size 1 with corresponding eigenvector x~ and the remaining 
d - 1  eigenvalues of size e. Define a(x) for x~ U ~Aj to be equal to the value 

J 

of a on Aj(x), where j(x) is the smallest index j such that xeOAj. Our definition 
of a implies that trace aa*= 1 + ( d - 1 ) e  2, while given 6, we can choose e suffi- 
ciently small so that 

(3.2) []x]-Zx*tTa*X--1[~C~ for x:~O. 

Let a = a a* and let P be a solution to the martingale problem for a starting 

from Xo:~O. If Wt=ia-l(X~)dXs so that dXt=a(Xt)dWt, then under P, Wt 
0 

is a Brownian motion in ~a. We will show P(z(O)< oo)= 1. Since xo+O is arbi- 
trary, an elementary renewal argument then implies that P(Xt hits 0 i.o.)= 1 
for Xo 4:0. 
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Let Rt=  [Xtl. By Ito's formula, for t<z(0)  we have 

(3.3) dRt = IX, [ - l X* a (Xt) d Wz + (2Rt)- 1 (trace a o* (Xt) 

-IX~l-2 x *  o o*(x3 x 3  dt. 
t 

Let A( t )=~IXs I -2X*aa*(X~)X~ds  and let St=RA-I(t). By (3.2), dAt/dte[1 
0 

--3, 1+61, and so clearly P [ z ( 0 ) < o e ] = l  if and only if P(St hits 0 in finite 
time) = 1. 

Now St is a semimartingale with (S, S)t = t. Hence the martingale part of 
S is a Brownian motion, say 17E. Moreover from (3.3) we see that 

dSt=dVI/~ + f f ~  t dt, 

where C~ < [ ( d -  1) e 2 -~ 3] (1 -- 6)- 1, a.s. 

Choose 3<  1, then e, both sufficiently small so that v=  1 + [(d-1)~2 "~6] (1 
- 3 )  -2 is strictly less than 2. Let Zt be the solution to (3.1) satisfying Zo=lXo[. 
By a comparison theorem for stochastic differential equations ([2], Theorem 
VI.I.1) together with a localization argument, S,<Zt ,  a.s. for t < p , = i n f { t :  Zt 
< 1/n or S~ < 1/n}. Since n is arbitrary and Z~ hits 0 with probability 1, S, must 
also hit 0 with probability 1. 

4. Nonvertex Boundary Points 

We begin with a proposition that may seen obvious. The difficulty is that if 
Yi is a weak solution to dYi=ai(Y/)dWi, i=  1, 2, where W1 and W2 are indepen- 
dent Brownian motions, then it is possible that the a-field generated by Y~ 
is strictly larger than the a-field generated by W~ and so the independence of 
W1 and WE does not immediately imply that of Y1 and Yz- 

Proposition 4.1. Suppose the solution to the martingale problem for the k x k matrix 
a starting from Yo is unique. Then the solution to the martingale problem for 

gtstartingfr~ isunique'wheregt=( a ~) 
matrix, and Zo is any point in R e- k. 0 , I is the ( d - k )  x ( d - k )  identity 

Proof Let Y be the first k coordinates of X. Let a be the positive definite 

square root of a and let # =  Let P be any solution to the martingale 
0 " t 

problem for 8 starting at Xo=(Yo, zo). Let Wt= j" #- l (Xs)dXs,  and write W 
o 

= W" ' where W' is the first k coordinates, W" the remaining d - k  coordinates. 

Note X = (Y,, W"). 
Then under P, W is a d-dimensional Brownian motion. Let P, be the unique 

solution to the martingale problem for a starting at Yo. 
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Now let Ft=a(Y~, se[0, t]), G=a(W~", se[0, oe)). Let Q~, be a regular condi- 
tional probability for P( IG); that is, for any Aea(Xs,  se[O, oo)), we have 
P(A ] G)=Q,o(A), a.s. (dP). 

Suppose AeF~, Bea(VV~", re[0,  s]), Cea(W~"-W~", r>=s). As is well-known 
(see, for example, [10, III.10]), Wt-W~ is independent of a(Y~, W/'; re[0, s]). 
Using this and the independence of W' and W", we have 

E(W~'-Ws'; A c~ B c~ C)= E(Wt'-  W~' ; C) P(A c~ B)=O. 

By linearity and a limit argument, we see that whenever BeG, AeFs, and H~ 
is G~-predictable and bounded, where Gt= a(Ft, G), then 

t 

~ - 0 .  

A routine argument using the continuity of the stochastic integral to handle 

the null sets shows that for almost all co(dP), ~ H~ dW~' is a Q~o-martingale. 
Now let f e  C 2 (IRk). By Ito's formula, o 

t t 

(4.1) f(Yz)-- f(Yo)-- ~ Laf(Ys)ds= ~ Vf(Y~)dY~ 
o o 

= i Vf(Y~) a(Y~) dW;. 
o 

The right side of (4.1) is a Q~, local martingale, a.s. (dP) by the above. Since 
C2(1R k) is separable, it follows that for almost all o3(dP), Q,o is a solution to 
the martingale problem for a, hence Q,o = P~, a.s. 

Since the law of W" is uniquely characterized as that of a ( d -  k) dimensional 
Brownian motion, and the conditional law of Y under P, given a(W"), is P,, 
then the joint law of (Y, W") under P is characterized uniquely. [] 

Since Q~, is deterministic, the above proof shows that Y and W" are in 
fact independent. 

We now want to give a decomposition of positive definite matrices. 

Lemma 4.2. Suppose a is a d x d positive definite matrix, k < d. Then there exists 

a d x d matrix a of the form a = where A and C are positive definite, 
B 

A is k x k, C is (d -k )  x (d-k),  and aa* =a. 

Proof. Write a = where D is k x k. Let A be the positive definite square 
F G ' 

root of D and let B=FA-1 .  The matrix G--BB* is symmetric. Provided we 
show G - B B *  is positive definite, letting C be the positive definite square root 
of G--BB* will complete the proof. 
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/Y~ 
Let Z be ( d - k ) x  1, let Y = - A  -1 B ' Z ,  and let X = / Z  ). Since a is positive 

\ / 

definite, there exists a constant 2 o such that X* aX  > 2 o X* X. But X X *  = YY* 
+ ZZ* > Z* Z. And direct calculation using the definitions of A, B, and Y shows 
that 

X* a X = Z * ( G - - B B * ) Z .  [] 

We now come to the main result of this section. 

Theorem 4.3. Let k < d  and suppose a(x) depends only on xl ,  ..., Xk, the first 

to the martingale problem starting from Yo for D is unique. Then the solution 
to the martingale problem for a starting from (Yo, zo) is unique for all zoelR d-k. 

Proof. Choose ~r as in Lemma 4.2. Since a is nondegenerate, a is invertible. 
Let P be a solution to the martingale problem for a starting from (Yo, zo). 

Let W~= ~ o--l(Xs)dXs. Write W= X = where W' and Y are k x 1. 
0 W i t  ~ ' 

/ A  ( 1 \  

Then under P, W is a d-dimensional Brownian motion. If a = [ o  •}, let~? 
_ Y 

=(A Oi), where A is k x k. Let X = ( w , , ) .  
\1) 

By the definition of W, we see that X solves the equation 

d 2 = ~ d W .  

martingale problem for 8 = [  A2 / 
is uniquely determined. 0 
But 

Since a(x) depends only on x 1 . . . .  , x k, the first k coordinates of x, the same 
is true of a(x) and A(x). It is then easy to see that the law of X solves the 

0\ _ / \ Y  
1/~|" By Proposition 4.1, the law of X = I w , ,  | \  / 

and so 

X t =  + 
No o 

Z t = Z o +  ~ B(Y~)dWs'+ C(Ys)dW ~' 
0 0 

=Zo + i B(Y~)A- 1 (Ys) dYs+ i C(Y~) d W~". 
0 0 

Therefore Z~a((Y~, W~"), se[0, oe)), and hence we have uniqueness for the law 

o f X = ( ~ / a s  well. [] 
\ z ]  
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5. Vertex Boundary Points 

In this section we consider uniqueness of the martingale problem in the neighbor- 
hood of a vertex point. By a change of coordinates, we may assume the vertex 
point is 0. We assume the matrix of diffusion coefficients a satisfies: 

(5.1) a(x)=a(x/lxl),  x * O .  

Let {W, x e l R  a} denote a family of solutions to the martingale problem for 
the matrix a that form a strong Markov family of solutions. 

Recall 

r (0 )= in f  {t; IX, I =0}. 

Let Px denote the law of the process Xt  under W killed when first reaching 
0. That  is, 

P~(Xt, eA1, ..., X~ +A.)=P:'(  ~ {Xt~eAi, ti<~(O)}). 
l <<_i<_n 

We assume throughout  this section that: 

(5.2) /~x is uniquely determined by the matrix a for x ee 0. 

By (5.2) we mean that any two solutions to the martingale problem starting 
at x agree on F~(o ). 

We start with the following elementary estimate. 

Lemma 5.1. There exists a constant c such that for all r > 0 and for all xo with 

]xol<r,  
E~o(z(r)) < cr 2. 

Proof. Apply Ito's lemma to the function Ixl 2 to get 

t 

(o (o i ~ a,,(X3ds" IX,12-1Xol 2=2 S y x~ dXs + 
0 i 0 i 

Taking W ~ expectations at the time t ^ v(r) and using the fact that a is strictly 
elliptic, we have 

r 2 > E ~~ [Xt ̂  :(r) l 2 => cE ~~ (t/x ~ (r)). 

Letting t ~ oo completes the proof. []  

Recall the following support theorem ([6], Exercise 6.7.5): 

Theorem 5.2. Given any solution to the martingale problem W,  ~>0, t>0 ,  and 
a continuous function T: [0, t]--* N d with T(O)= x, then: 

V~(sup[Xs-- T(s)[<~)>O. [] 
SEt 

Let S =  {x: [xl = 1}. We define the following transition probability for a Mar- 
kov chain on S: 
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(5.3) Q(x, dy) = P~(X~(2)/2edy; ~(2) < r(0)) 

= P~(X~(2)/26dy), x, y6S.  

We have the following scaling property: 

Proposition 5.3. I f  

I xl = r, P~ (X~(2r)/2 r ~ dy; �9 (2 r) < r (0)) = Q (x/Ix i, dy). 

Proof Let Yt = r -  i xt and let Z t = Xtl,2. Using the homogeneity of a it is elemen- 
tary to check that i f f e C  2, then: 

0 i , j  O X  i G X j  

is a martingale under pr for every y e l l  e and the same is true when Yt is replaced 
by Z~. Then the law of Yt under /~x satisfies the martingale problem up to 
time z(0) for the matrix r -2a  starting at x/r and the law of Zt under P~I~ 
satisfies the martingale problem up to time z(0) for the matrix r -Za  starting 
at x/r. By [6, Theorem 6.5.4] and (5.2), we conclude that the law of YT under 
P~ and the law of Z, under /~/ r  are the same if x oe 0. Since hitting distributions 
are invariant under time changes, for [xl = r, 

Q(x/Ixl, dy) = P~t'(x~(2)/2edy ) 

= p~l, (Z~(z)/2 ~ dy) 

= P~(Y~(zJ2edy) 

=P~(X~z,)/2redy). [] 

With this Proposition and the strong Markov property, we have immediately 
that if Ix] =r ,  

(5.4) Q"(x/Ixl, dy) = Px(X~r>)/r 2"edy; z(r2") <z(0)). 

We are now ready to apply the Krein-Rutman theorem. 

Theorem 5.4. Suppose F and G are bounded continuous functions on S; G>=O 
but not identically O. Suppose v, is a sequence of probability measures on S, 
i.e., v,(S)= 1. Then 

Q" F(x) 
fQ"G(x) v,(dx) "C(F'  G)' as n- -oo  

where c(F, G) is a constant depending only on Q, F and G and not the sequence 
V n . 

Proof First we show that Q is a compact operator, i.e. Q {f: f continuous on 
S, Ilfl] <1} is a relatively compact set. Suppose ]if I] <1.  Fix xoeS, let B be 
the ball of radius 1/2 about Xo, and let a = i n f { t ;  Xt6OB }. For ye lR  a, define 
H(y)=ffJf(X~(2)/2 ). If xeB,  then by the continuity of the paths of Xt, PX(a 
< z(0) A ~(2))= 1, and so by the strong Markov property, Qf(x )= ~x H(X,).  Since 
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clearly IIH]I ___< 1, by the Krylov-Safonov theorem ([-4], Theorem 2 and proof), 
there exist K and c~ independent of H and Xo such that if [X-Xo]< 1/4, 

IE~H(X~)--E~~ 

It follows that Qf(x) is uniformly continuous on S with a modulus of continuity 
independent of f. It is clear that [IQf II < 1, and relative compactness follows 
by the Ascoli-Arzela theorem. 

Secondly, we show Q is strongly positive, i.e. if f is continuous, f > 0 but 
not identically 0, then Qf(x)>O for all x. Given such an f there exists a 
yoeS, ac>O and an e~(0, 1/2) such that f (y )>c whenever ly-yol<e.  Fix x, 
and define ~: [0, 3] ~ N d by 

~"" f~0(s) 0 < s < l  
ts)=~.sy o l<s___3. 

where ~o: [0, 1] ~ S  is continuous, (p(0)=x and ~0(1)=yo. 
Applying Theorem 5.2 with this e and 0 and t = 3, we get 

Qf (x) > Ex(f(X~(2)/2; I (1/2) X~(2) - Yo [ < e) 

> cPX(sup IXs-  0(s)l < e ) > 0 .  
S < t  

We now apply the Krein-Rutman theorem ([-3], Theorems 6.1, 6.3, and the 
proof of Theorem 6.3). So there exists an eigenvalue pE(0, oo), an eigenfunction 
~0 that is strictly positive and continuous, a functional ~, and an operator Q1 
such that: 

a) if f > 0  but f i s  not identically 0, then ~ ( f ) > 0 ;  
b) lim sup [[Q] [[i/,<p; 

n ---~ o o  

c) Q can be decomposed as: 

Qf(x) = p ~ ( f )  ~o(x)+ Q1 f (x)  for all continuous f and all xeS; 

and moreover 
d) Q"f (x) = p" q~(f) q)(x) + Q]f  (x). 

It follows that: 

IIp-"Q"F-~(F)~o]]~O as n ~ o o ,  

or integrating with respect to v,, 

(5.5) Ip-" ~ Q" F(x) v.(clx)- q,(F) I ~o(x) v.(dx)l --, 0 

with a similar limit holding with F replaced by G. Now 

inf �9 (G) ~ ~o (x) v, (dx) > ~b (G) inf ~0 (x) inf v, (S) > 0 
n x ~ S  n 

since q~ is strictly positive and v.(S)= 1 for all n. 
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We can then take a ratio to get 

~Q"F(x)v,(dx) Cb(F)~(o(x)v.(dx) ~(F) 
lifn~o ~ Q" O(x) v,(dx) = li~rn~o q~(G) ~ ~0(x) v,(dx) - q~(G) 

a constant independent of v,. [] 

We are now ready to prove the main result of this section. 

Theorem 5.5. Under assumptions (5.1) and (5.2), for each x there is at most one 
solution W to the martingale problem starting at x. 

Proof. We first reduce this problem to a simpler statement. Since for all r and 
x, W ( z ( r ) < o o ) = l  by Lemma 5.1, it suffices to show uniqueness of W up to 
time z(M) for each M. Let M > 2  be fixed. Since we are considering only strong 
Markov families of solutions, it suffices to show uniqueness of the operators 
R~,, )o>0, defined by: 

~(M) 

R~h(x)=E ~ ~ e-~'th(Xt)dt 
0 

for h bounded and measurable (cf. [6], Corollary 6.2.4). Consider the operator 
R(=Ro)  given by: 

"t(M) 

Rh( x ) =E  ~ ~ h(Xt)dt.  
0 

Since sup 
IxI < M 

IRh(x)]<= sup EX[z(M)] sup ]h(x)l 
Ix[ < M Ixl <- M 

< c M  2 sup Ih(x)l, 
lxi <= M 

we have that R is a bounded operator on the set of bounded functions whose 
support lies in the ball of radius M. By [1], Theorem V.5.10, to show uniqueness 
for the operators Ra, it suffices to show uniqueness for R. 

If x ~ 0, by the strong Markov property we have 

-c(M) 

(5.6) Rh(x )= E  x ~ h(X~)dt 
0 

~(M) A ~(0) ( ~(M} ))  

=E x ~ h (X t )d t+E ~ E ~ ~ h(Xt)dt ;z (O)<z(M 
0 0 

Let 

~(M) r(M) 
=E x ~ h(XOdt+-PX(z(O)<~(M))E ~ ~ h(Xt)dt.  

0 0 

~(M) 

I (h)=E ~ ~ h(Xt) dt=Rh(O). 
0 
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By (5.6) the value of Rh(x) for x=t=0 is completely determined by px and 
I. So if we show uniqueness for the functional I, we will have uniqueness for 
the operator R and hence for the family {W}. 

Since a is strictly elliptic, then we know {t: x~=0} has Lebesgue measure 
0, a.s. pO [9]. Hence by dominated convergence, to show uniqueness for I, 
it suffices to show uniqueness for I(h) for functions h that are 0 in a neighborhood 
of 0. Let, then, h be a bounded function such that for some 6e(0, 1), h(x)=0 
if Ixl<2& We will show l(h) depends only on h and {Px, x#0},  which with 
assumption (5.2) will complete the proof. 

If x#0 ,  let ~: [0, t] ~ I 1  a be defined by O(s)=(1 +s)x.  Applying Theorem 
5.2 with e=[x[/2, t=  l+2M/lx] ,  and the above #/, we conclude that W(z(M)  
<~(0))>0. 

If e < 6, then by the strong Markov property, 

and so 

(5.7) 

~(M) ] 
I (h )=E ~ EXr ~ h(Xt)dt  

0 

T(M) A ~(0) t] 
= E  ~ E xr162 ~ h(Xt)d 

0 

+ E  ~ E x'~o' E ~ ~ h(Xt)dt; z(O)<z(M) 
0 

z(M) 1 
= E o ~x.r ~ h (Xt) dt] + I(h) E ~ [pxr (z (0) < z (M))] 

0 

tiM) 1 
E~ Ex. , h(X,)dtJ 

0 

I (h) = EO [px.(., (z (0) > v (M))]" 

Let us consider the numerator of (5.7). For x+0 ,  let f (x)=/~ x 
~(M) 

I h(Xt)dt,  
0 

~ r x e B .  

and define F: S ~ I R  by F(y)=f(6y) .  Let XoElR d with ]Xo]=6, let B be the ball 
of radius 6/2 about Xo, and let o-=inf{t; XtE~?B}. Since o-<z(0), a.s., by the 
strong Markov property and the fact that h is 0 inside of B, 

~(M) 
f(x) =/~x S h(Xt)dt  

0 
~(M) 

=EXE x= ~ h(Xt)dt  
0 

= E~f  (X~) 

=e~f (X~)  
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Using the Krylov-Safonov theorem as in the proof of Theorem 5.4, f is 
continuous in a neighborhood of Xo. It follows that F is continuous on S. 

Using the strong Markov property and (5.4), if ]xl = 2-"6, 

�9 (m) ~(M) 

f (x)  =/~x S h(Xs) ds=~:'~x''"' ~ h(X~)ds 
0 0 

= E~f  (X~ (~)) = E~ F (X,(~)/6) 

= ~ F (z) P~ (Xr E dz;  r (5) < v (0)) 

=Q"F(x/Ixl). 

Let v, be the pO distribution of 5 -12"X~(2-~ Since ~(2-"~)< o% a.s., v,(S) 
= 1. In what follows, v, will be the only place that the particular solution po 
of the martingale problem starting from 0 plays a role. Taking e=62-" ,  the 
numerator of (5.7) is then 

E~ f (X~,)) = E ~ Q" F (X~(~)/e) 

= I Q" F(z) v,(dz). 

We treat the denominator of (5.7) similarly. 
Let g (x) = P~ (z (0) > z (M)) and let G: S ~ IR be defined by G (y) = g (by). Letting 

B and a be defined as above, g(x)=E~g(X~) for x eB. Again using Krylov- 
Safonov, we conclude that G is continuous on S. Moreover, we have already 
shown that g(x)>0 if x:~0, hence G>0.  

If Ixl = 62-", by the strong Markov property, 

g (x) = Px (z (0) > ~ (M)) = / ~  px~(~, (z (0) > z (M)) 

=/~g(X~)), 
and as above, we see that g(x)=Q"G(x/Ixl). The denominator of (5.7) then 
becomes (with ~ = 2-"  6): 

E o px~,~, (~ (0) > z (M)) = E ~ g (X~(o) 

= ~ Q" o(~) v.(dz). 

Now substitute in (5.7), let n ~ 0% and apply Theorem 5.4 to obtain: 

~Q"F(y)v,(dy) O(F)=c(F, G). 
I (h) = J im ~ Q, G(y) v, (dy) - @(G~ 

Finally, observe that f and g, hence F and G, depend on {Px, x + O} and 
that the kernel Q also depends only on {P~, x#:O} and not pO. Hence I(h) 
is uniquely determined by {P~, x =~ 0}, and the proof is complete. [] 

Remark 1. Define the operator U on S by 

U (x, dy) = Px(2X~(1/2)~dy). 
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Since for [xl = 1, it is possible that Px(~(1/2)< oo)< 1, U need not be conservative. 
By scaling and the strong Markov  property,  we have 

U"(x, dy) = PX(2" Xv( 2- . )edy;  z (2-") < oo). 

By using virtually the same argument  as for Q, we get that if F and G are 
continuous positive functions on S, then: 

U" F (x) F (F) 
(5.8) u"a(x) "r(6) 

for some positive linear functional F on the set of continuous functions on 
S. By the Riesz representation theorem, there exists a finite measure # such 
that F(F)= S F(y)#(dy) for all continuous F. 

Let F be continuous on S, let f (y)=F(y/[yl)  for y + 0 ,  let G =  1, and let 
fi(dy) =#(dy)/#(S). Applying (5.8), we get: 

U"F(x) SF(y)#(dy) -~F(y) f i (dy)  
E ~ [f(X~z-~)) I z(2-") < oo] = U" 6(x) " #(S) 

as n ~ oo. This makes precise the intuitively reasonable statement that the distri- 
bution of 2" X~(2 ,) given z(2-") < oo converges weakly to an invariant probabili-  
ty/~, independent of the starting point. 

Remark 2. Now define the operator  V on S by: 

V(x, dy) = Px(X~2)/2edy ). 

Here we are not killing the process at 0, so now V is conservative. 
Exactly as in the above remark,  there exists a probabil i ty measure v such 

that for x + 0, E ~ [-f (X~(2,)) I r (2") < oo~ ~ yf(y) v (dy). If I xl = 1, P~ (~ (2") < oo) = 1, 
and so we in fact have 

E ~ ( f  (X~(2.))) ~ ~ f (Y) v (dy) 
and by scaling, 

(5.9) ErX/Ixl2"f(X~r))---r~f(y)v(dy) as n ~  co. 

By the Krylov-Safonov theorem, EYf(X~,)) is continuous as a function of y 
in a neighborhood of 0, and so taking a limit as n --* oo in (5.9) gives 

E ~  (X~(r)) = ~ f (y) v (dy). 

We have thus proved that starting from 0 the hitting distributions {X~(r), r > 0} 
form a stat ionary process with invariant measure v. 

6. Uniqueness 

We now have all the ingredients necessary to prove Theorem 2.1. 

Proof of  Theorem 2.1. By [6], Theorems 6.4.3 and 10.2.2, it suffices to consider 
the case where b (x) = 0. Existence of a solution to the martingale problem follows 
from [6], Exercise 12.4.3. 
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To prove uniqueness, we use induction. The case d-- 1 follows by [-6], Exercise 
7.3.3. So suppose now that the theorem is true for dimensions 1, 2 . . . . .  d - 1 .  
We must prove uniqueness when the dimension is d. 

By [-6], Theorem 6.6.1 and Sect. 7.2, it suffices to show that for every Xo, 
there exists 8 : IRd~IR  d• such that 8(x)=a(x) for x in some neighborhood 
of Xo and there is uniqueness for the martingale problem for 8 starting at x o. 
So suppose first that Xo is in the interior of one of the polyhedra A~. Then 
a is constant in a neighborhood of Xo. If 8(x) is defined to be a(xo), if P is 
a solution to the martingale problem for 8 starting at Xo, and if ~ is the positive 
definite square root  of 8, then under P, if-  1 Xt is d-dimensional Brownian motion. 
Since ~7 is constant, this uniquely characterizes the law of X. 

Suppose now that Xo is a boundary point. Note  that there exists e > 0  such 
that 

a(x)=a Xo-~ [X_Xo[ ] if ]X-Xo[<~.  

Define 

(6.1) ~ 0 ~ J  for all xe lR d. 

First suppose that Xo is a nonvertex boundary point. Then we can choose 
a coordinate system so that 8(x) is a function only of the first k coordinates 

(~ F* 
of x for some k<d, and if we write 8 =  then D can be considered 
as a map f romlR kinto IRk • F G ' 

Since IR d can be divided up into finitely many polyhedra so that 8 is constant 
in the interior of each one, geometrical considerations show that this induces 
a subdivision of R k into finitely many polyhedra with D constant in the interior 
of each one. By the induction hypothesis, we have uniqueness for the martingale 
problem for D starting from any point. Hence by Theorem 4.3 we have unique- 
ness for the martingale problem for 8 starting at xo. 

Finally, suppose x o is a vertex boundary point. Note  that we can divide 
IR d into the union of finitely many polyhedra H I . . . .  , A, such that each Ai is 
a cone with vertex xo, 8 is constant in the interior of each Ai, and every point 
of IR d -  {Xo} is either in the interior of Ai or a nonvertex boundary point (relative 
to 8). By the preceding paragraphs, for each x=#Xo, we have uniqueness of 
the martingale problem for 8 starting at x up to the time of first exit from 
some neighborhood of x. 

By a change of coordinate systems, we may assume Xo = 0. By the method 
of [6], Sect. 7.2, we have uniqueness for the martingale problem for ci starting 
at xMRd--{0} up to time z(1/n), and since n is arbitrary, uniqueness up to 
time z(0). 

To show uniqueness for ~ starting at an arbitrary point, it suffices by Exercise 
12.4.3 and the proof of Theorem 12.2.4 of [-6] to consider only strong Markov 
families of solutions {px} (in Exercise 12.4.3 replace the use of 7.3.2 by [9]). 
We are thus led to the following situation: to show uniqueness of the martingale 
problem for 4, we need to show uniqueness for px, where {px} is a family 
of solutions that form a strong Markov process; each PX is uniquely determined 
up to time "c(0); and by (6.1), ~(x)=~(x/lxl) for x + 0 .  Applying Theorem 5.5 
with 8 in place of a then completes the proof. []  
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