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Summary. There is a natural  probabil i ty measure on the set X of all sum-free 
sets of natural  numbers. If we represent such a set by its characteristic func- 
tion s, then the zero-one random variables s(i) are far from independent, 
and we cannot  expect a law of large numbers  to hold for them. In this 
paper  I conjecture a decomposi t ion of X into countably many  more tractible 
pieces (up to a null set). I prove that each piece has positive measure, and 
show that, within each piece, a r andom set almost surely has a density 
which is a fixed rational number  depending only on the piece. For  example, 
the first such piece is made up of sets consisting entirely of odd numbers;  
it has probabil i ty 0.218 ..., and its members  almost  surely have density 1/4. 

1. Random Sum-free Sets 

A subset S of N is sum-free if, for all x, yeS, x+y(~S. An early occurrence 
of this concept is in the theorem of Schur [-6] asserting that  N cannot  be parti- 
tioned into finitely many  sum-free sets. The analogous result was proved for 
(arithmetic) progression-free sets by van der Waerden [8]. However,  unlike pro- 
gression-free sets (Szemeredi [7], Furstenberg [3]), sum-free sets can have posi- 
tive density; the set of all odd numbers  is sum-free and has density 1/2. (The 
upper and lower densities of a set S are the lim sup and lim inf of [S c~ {1, ..., n}l/n 
as n--+ oo ; if they are equal, the common  value is the density of S.) The question 
addressed here i s :  does a typical sum-free set have a density, and if so, what 
is it ? 

There is a natural  probabil i ty measure on the set X of sum-free sets, somewhat  
analogous to the product  measure on the power set of N. It  can be described 
precisely but informally as follows. Consider the natural  numbers  in turn, in 
their usual order. While considering n, if we have already included in S two 
numbers  x and y whose sum is n, then (of course) n(~S; if not, then toss a 
fair coin to decide whether or not to include n in S. 

For  subsequent use, I give a more formal definition. First, we represent 
subsets of N by their characteristic functions, which are infinite zero-one 
sequences; this identifies X with a subset of 2 ~. Now consider the following 
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machine M. The input and output  of M are elements of 2 ~, called is and os. 
Among the internal structure of M are variables ip and op, which are regarded 
as pointers to is and os respectively. The program run by M is as follows: 

Initialisation: ip ;= 1 ; op,= 1. 
Main loop (repeated infinitely): 

{if (there exist x, y with x + y =  op and os(x)= os(y)= 1) 
then os(op),=O 
else {os(op),=is(ip); ip,=ip + 1}; 

op'.=op + l }. 

It is readily checked that the function isw-~os computed by M is a bijection 
from 2 N to 2. Now the probability measure on ~ is defined to be the image, 
under this bijection, of the product  measure on 2 N. Note that the two descriptions 
agree; for if is records the results of the coin tosses, then os is the characteristic 
function of the sum-free set produced by the informal description. 

We can make some simple statements about upper density: 

Proposition 1.1. (i) Any sum-free set has upper density at most 1/2. 
(ii) With probability 1, a random sum-free set has upper density at most 1/3. 

Proof (i) Let S be sum-free and non-empty, and let m be the minimum of 
S. For  any n > m, the set 

(m+s)•{1, ...,n} 

is disjoint from S n  {1, ..., n}, and has cardinality at least [S n {1 . . . .  , n}[ -m.  
So 

[Sn {1 . . . .  , n}[ N(n+m)/2,  

from which the result follows. 
(ii) Use the notation of M. Suppose that, when ip =m, we have op= n, and 

r terms of is up to is(m) are equal to 1, of which the first is in position q. 
Then there are r terms of os up to os(n) equal to 1, and again the first is 
in position q. Let e > 0  be given. We may assume that m is sufficiently large 
that, with probability at least 1 -~ ,  q is not too large (say q<em),  and also 
(by the Law of Large Numbers) Jr~m-1/2[ <e. Let S be the sum-free set corre- 
sponding to os. As in (i), ( q + S ) n { 1 ,  . . . ,n} is disjoint from S n { 1 ,  . . . ,n}, and 
has cardinality at least r - q .  So n > m + r - q ,  and we have 

[Sc~ {1, ..., n } l / n < r / ( m + r - q )  

<_ (1/2 + e)/(3/2-- 2 e). 

The right-hand side tends to 1/3 as e--*0. 
The conjecture in the next section would have the consequence that 1/3 

could be improved to 1/4; the theorem in Sect. 3 shows that 1/4 would be 
best possible. 

Remark 1.2. If it were true that o p < c . i p  for some constant c (for all inputs 
is), it would follow that a random sum-free set almost surely has positive lower 
density (at least 1/2c). It is trivial that op < ip(ip + 1)/2; but examples derived 
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from [-5] show that we can have op>c. ip 3/2 for some constant c. However, 
it follows from subsequent results that a linear inequality holds for a subset 
of positive measure. 

We conclude this section with a striking result from [1]. Let Odd be the 
event S _ ~ 2 N +  1, that is, os(n)=O for all even numbers n. 

Proposition 1.3. 0.21759 ... __< p(Odd) < 0.21862 .. . .  

This result motivates the next section. 

2. Modular Sum-free Sets 

Let m be a positive integer, and let Im denote the additive group of integers 
modulo m. Sum-free subsets of I,, are defined as before; in addition, a subset 
T of I,, is called complete if, for every ZeIm\T, there exist x, y e T  such that 
x + y = z .  If T is a sum-free subset of Ira, then S(m, T) denotes the (sum-free) 
subset of N consisting of the union of the congruence classes in T, and E(m, T) 
the event that a random sum-free set is contained in S(m, T). (We call S(m, T) 
a modular sum-free set.) In the notat ion of the preceding section 

Odd = E(2, {1}). 

Note that the representation is not unique; for any k >  1, 

S(m, r)=S(km,  T+ {0, m, ..., ( k -  1) m}, 

with a similar equation for events E(m, T). However, each such set or event 
has a unique "primitive" representation which cannot be written in the form 
on the right-hand side for any k > 1. 

Proposition 2.1. (i) Let T be a sum-free set in I m which is not complete. Then 
p (e  (m, 7")) = O. 

(ii) Let T i be complete sum-free sets in Ira(O, for i= 1, 2, such that S(m(1), T1) 
+S(m(2), T2). Then 

p(E(m(1), T1)/x E(m(2), Tz) ) = 0. 

Proof (i) Suppose that z e l m \ T  and z is not expressible as x + y  with x, yeT.  
Then, in the production of any output in E(m, T), all input terms corresponding 
to output terms o p = k m + z  (keN)  must be zero; so 

p ( s ~  {1 . . . . .  kin} =_S(m, T))=<2 -k. 

(ii) Clearly E(m(1),T1)AE(m(2),T2)=E(m(3),T3) for some sum-free set 
T3 GIm(3) which is not complete. 

The main result of this section is a converse to Proposition 2.1(i). 

Theorem 2.2. I f  T is a complete sum-free set in lm, then p(E(m, T))>0;  in fact, 
p(E(m, T)) >= (c/2)"-Irl, where c = p(E(2, { 1})) -- 0.218. 



526 P.J. Cameron 

Proof Our main tool is the following special case of the F K G  inequality [2]. 
Let f and g be monotone  increasing real functions on the power set of the 
finite set S. Then 

i ~ f(X)g(X)>= ~, f (X)  • g(X). 
X ~ S  X ~ S  X ~ S  X ~ S  

It follows immediately that, if f l  . . . . .  fr are monotone increasing functions on 
k-tuples of subsets of S, where IS[ = n, then 

r 

2 I-[ fi(X1 , -", Xk) >2-k{r-~,"" ( I  Z f/(X1,-'., Xk). 
XI, . . . , X k ~ S  i~ 1 i= 1 X1, . . . , X k ~ S  

We also require the following result. 

Lemma 2.3. Let S --- {0 . . . .  , n -  1}, and let 

F(n )=2  -2" ~ 2 I{x+x)~'sl 
Xc_S 

and 

F ' (n )=2  -3" ~ 2 I{x+Y)~sl 
X , Y ~ S  

Then both F(n) and F'(n) are decreasing functions, and their limits c and c' are 
both strictly positive. Moreover, c < c'. 

Proof The result for F(n) is proved in [1], where it is established that 
c=p(E(2, {1}) - this will follow from our subsequent discussion. I give the argu- 
ment for F'(n), which is similar but in some ways easier. 

Let S~o(n), Sij(n) (i, j = 0, 1) be the sets of pairs (X, Y) of subsets of S satisfying 
the following conditions: 

Soo: n e X  + u 

Then let 

S~j: n r  + Y, OeX i f f i = l ,  0 e Y  i f f J = l .  

f~=  ~ 2 L(x+~)~sl, 
(X, !e)eS~(n) 

where a is one of 0% 00, 01, 10, 11. We have 

2 3n F'(n)=f~ -}-ill '~flo +for +foo. 

Now each pair (X, Y) has four extensions to a pair of subsets of {0, . . . ,n} 
- we can choose whether or not to adjoin n to each set - and for each such 
pair, the contribution to the sum is either equal to or twice that of (X, Y). 
Considering cases, we find that 

2a("+ l) F'(n+ l)=8foo + 7fll  +6flo+6fo1+4foo 

= 8 . 2 3 " F ' ( n ) - - ( f l l  + 2flo + 2fol + 4foo), 



On the Structure of a Random Sum-free Set 527 

Thus  

F'(n+ 1) = F ' (n ) - ( f~ l  +2f lo  +2fol  + 4foo)/2 3("+ 1) 

This shows tha t  F'(n) is m o n o t o n e  decreasing.  I ts  limit c' is b o u n d e d  above  
by F'(n) for any  n. C o m p u t a t i o n  shows tha t  

F'(14) = 1296 700 207 278/242 - 0.29484. 

N o w  each set Sij(n ) has cardinal i ty  3 "-1,  since for i =  1 . . . . .  n - 1 ,  one of 
the four  possibilities for m e m b e r s h i p  of i in X and n -  i in Y is excluded. More -  
over, if (X, Y)eSlo(n) or (X, Y)eSol(n ) then 0q~X + Y, while if (X, Y)eSoo(n) then 
0, l q ~ X +  I<. So for n > 2 ,  

fl1 + 2Lo + 2fol +4foo_= 4 .3  "-1.  2", 
and so 

F'(n + l) => F'(n)-- 3"-  1/22n + 1. 
Thus  

c'> F'(n)-- ~ 3 ~- 1/22'+ 1 

i = n  

= F'(n) -- 3 n- 1/22n- 1 

for n > 2 .  
One  sees easily tha t  F ' ( 2 ) =  15/32 > 3/8, establ ishing the posi t ivi ty  of  c. F r o m  

the c o m p u t e d  value of F'(14), we have  

0.28295 ... _< c' < 0.29484 . . . .  

Proof of Theorem 2.2. Let ]T[=k and T = { t  1 . . . .  ,tk} with O<ti<m for all i. 
We  have  

p (E(m, T ) ) =  lira P,, 
n ~ o o  

where 
P, = p (S c~ { 1 . . . . .  m n} (rood m) c T) 

= 2 - " "  y~ 2J~s+~>~l . . . . . . .  )l. (.) 
S ~ { 1  . . . . .  rim} 
S ( rood  m) c T 

Let Xi={j[O<=j<n--1, m j+ t i eS}  for i = 1  . . . . .  k. Then  there is a bijection be- 
tween the sets S in (.) and  the k-tuples (X1, ..., Xk) of  subsets of  {0, . . . ,  n - -  1}. 

F o r  each h e { l ,  . . . , m } \ T ,  choose  i(h), j(h) such tha t  ti(h)+tj(h)=h or h+m. 
N o w  the n u m b e r  of  m e m b e r s  of  (S+S)c~{1 ,  . . . ,nm} which are congruen t  to 
h rood m is at least (Xi(h) + Xj(h) ) c~ {0, . . . ,  n - -  1} if ti(h) + tj(h) = m, or at least this 
n u m b e r  minus  one if t,h ) + tj(h) = h + m. So 

/ ' . > 2 - " " .  2 -~"-~) y, 1-] 21~,~,+x,,~,>~o ...... -1)1. 
X 1 , . . . , X k ~ { O , , n - 1 }  hq~T 

The s u m m a n d s  are obvious ly  m o n o t o n e  increasing;  so the F K G  inequal i ty  gives 

p>2- . '~ .2 - (m-k ) .2 -k (m-k -1 ) . I~  ~ 21(X.~+ Xj(~9~{O ...... -1}1. 
h(~T X1 . . . . .  X k ~ { O  . . . . .  n -  1} 
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Now, by the lemma, the value of the sum is at least 2(k+l)nc if i(h)=-j(h), and 
at least 2 (k+ 1)n C' otherwise. Since c < c' we have 

Pn ~ 2--mn " 2--(m--k) " 2 - k ( m - k -  1)n . 2(k+ 1)(m-k)n . c m - k  

= ( c / 2 ) m - k ,  

since - m -  k ( m -  k -  1) + (k + 1) ( m -  k) = 0. 

Conjecture 2.4. With probability 1, a random sum-free set is contained in some 
complete modular sum-free set. Equivalently (by Proposition 2.1), if 
S(m(1), T1), S(m(2), T2), ... is a list of all complete modular sum-free sets, then 
y" p(E(m(i), Ti) ) = 1. 

Remark 2.5. It is unlikely that the above methods will prove the conjecture. 
For example, p(E(5, {2, 3}))>(c/2) 3. Examining the proof more closely, we see 
that in fact p(E(5, {2, 3}))> c 2 c'/2-0.007. However, computation suggests that 
the true value is about 0.022. 

Remark 2.6. It is easily shown that primitive complete sum-free sets mod m 
exist for all m except 1, 3, 4, 6, 7, 9, 10 and 15. All such sets have been determined 
for m N 36 by N. Calkin (personal communication), and many large examples 
have been constructed, using a randomised algorithm, by D.J.A. Welsh (personal 
communication). 

3. A Law of Large Numbers 

The main result of this section is the following. 

Theorem 3.1. Let T be a complete sum-free set in Ira. Then, conditioned on E(m, T), 
a random sum-free set almost surely has density IT[/2m. 

In other words, the subset of E(m, T) consisting of sets for which the density 
either fails to exist or takes a value different from [Tl/2m is null. In particular, 
a positive proportion of sum-free sets have density equal to 1/4. 

Proof We require some terminology. Let k be the function enumerating S(m, T) 
in order; let X,  be the random variable os(k(n)) on the space E(m, T) with 
the conditional probability induced from Z (that is, for any event E, the probabil- 
ity of E is 

p'(E) =p(E/x g(m, T))/p(E(m, T)).) 

Let S, = ~ X i. Clearly it suffices to show that 
i = l  

S,/n --+ 1/2 

almost surely. Of course, this would be true if the X,  were independent with 
probability 1/2; this is not the case, but our proof is based on the fact that 
it is "almost true". 

Before beginning, however, we give one example to show that the statement 
is not absolutely true. Consider the case when m=2,  T = { I ! ,  _E(m, T)--Odd. 
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Of course, p(os(1)=l)=l/2; but it is an exercise to show that 
p(os(1)= l [ O d d ) =  1/8. (Informally, a head on the first toss increases the likeli- 
hood of Odd by a factor of 7/4, while a tail decreases it by a factor of 1/4.) 
Furthermore,  

p(os(1) = os(3) . . . . .  os(2n-  1) = 01 Odd) = (1/8)n; 

but p(os(3)=O[Odd)~ 1/8, so X1 and X2 are not independent in Odd. 
The facts we require are: 

Lemma 3.2. (i) p(Sc~ {1 . . . . .  n} ~_S(m, T))<p(E(m, T))+c~ for some c 1 < i. 
(ii) ]if(X, = 1)-- 1/2[ =0(c~) for some c2 < 1. 

(iii) For any (~ .... , e,)E{0, 1}", p'(X 1 =81, ..., X,=e,)<c3.  2-" for some c3. 

Proof (i) Set E=E(m, T), and E(n) denote the event Sc~ {1, ..., n} c_E(m, T). Then 
A E ( n ) = E  and E(n)~_E(n+ 1); so we have 

oo 

p (E (n)) -- p (E) = ~, p (E (i)\E (i + 1)) 
i = n  

= ~ p (E (i)/x (i + I (~ S (m, T))/x os (i + 1) = 1). 
i = n  

Thus we must estimate the ith summand on the right. Clearly it is 0 if 
i+ 1 eS(m, T), so suppose not. Then, by the completeness of T (Proposition 2.1), 
there exist x, y~ T such that x+y=-=-i+ 1 (mod m). (We assume that x and y are 
integers between 0 and m - 1 . )  If i+  1 = x + y + k m ,  and os(i+ 1)= 1, then at most 
one of each pair os(x+jm), os(y+(k- j )m)  is equal to 1 for j = 0  . . . .  ,k. Let 
IS(m, T)c~ {1, ..., i}[=r. Then each initial sequence of length n in E(m, T) has 
probability at most 2 -r (since all terms with indices in S(m, T), and perhaps 
others, are determined by coin tosses); and, of the 2 r such sequences, at most 
(3/4) ~k.2 r satisfy the above requirement. So the ith term on the right of the 

summation has probability at m o s t  (]/3/2) k, and k>_[(i+l)/m]-l .  Thus the 

series is dominated by a geometric progression with common ratio (]~/2)1/m < 1, 
and the conclusion follows. 

(ii) Clearly, if E(k(n) - l )  holds, then k(n) is not the sum of two smaller 
numbers x and y with os(x)= os(y)= 1; so 

p(E(k(n)-- 1))/x (os(k(n)= 1))= �89 p(E(k(n)-- 1)). 

Also, p(E) < p (E(k(n)- 1)) =< p(E) + c] t")- 1, so 

p(E /x (os(k(n)= 1))>=p(E)--�89 1)), 
and so 

[p(E/x (os(k(n))= 1))-�89 < }c] (")-1 

Thus i f(X, = 1)=p(E/x (os(k(n) = 1))/p(E) satisfies 

I p'(X. = 1 ) -  �89 = o (c~"~). 

Since k(n) is bounded below by a linear function of n, we have the result. 
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(iii) The probability we must estimate is 

p(E ^ (os(k(1))= 51) A. . .  ^ (os(k(n))= ~.)/p(E). 

The numerator  is no greater than 

p((osk(1)) = 51) A ... /x (os(k(n))= e,) /x (os(r)= 0 for all other r < k(n)), 

which does not exceed 2-",  since this event requires favourable results of coin 
tosses at least for positions k(1), . . . ,k(n) in the output  sequence. The result 
follows, with c 3 = 1/p(E). 

Remark 3.3. The proof  of Proposition 1.3 is obtained by combining the bound 
for p ( E ( n ) ) - p ( E )  in Lemma 3.2(ii) with a computed value of p(E(n)), in the 
case where E = Odd. The bounds quoted involve computation for n = 66 together 
with some refinements to the estimates. 

The completion of the proof  of Theorem 3.1 is more or less standard, follow- 
ing the proof  of the usual Strong Law of Large Numbers (see [4] Theorem 

1 7.4.3). Let U , = I S , - � 8 9  We see that U , + I = U . +  �89 if either U ,=0  or X,+I  2 

has the same sign as U,, while U, + 1 = U, - �89 otherwise. Now 

SO 

(~n)  . 2 - "  p ( U , = 0 ) <  �89 c2 (by 3.2(iii)) 

=O(n-~); 

E(U.+ ,)= E(U.) + 0(c9 + O(n- ~) 

by 3.2 (ii), and the term O(c]) can be neglected. Summing, we obtain 

Thus 
~ ( u . )  = O(n~).  

p ( l g . / n - � 8 9  > e) = p ( U .  > ~ n) 

= 0 (n -  Vs) .  

Since ~ n -3/2 converges, the subsequence (S,3/n 3) converges almost surely to 
�89 (See [4], Theorem 7.2.4 (c).) Now, if p3 < n < (p + 1) 3, we have Sp3 < S, < S(v+ 1)3, 
s o  

Sp~/(p + 1) 3 < S, /n <= S(p + a )3/P3 ; 

and since (p+ 1)3/p 3 and p3/(p+ 1)3 tend to 1 as p ~ o e ,  S , / n ~ � 8 9  almost surely. 

Remark 3.4. It is possible to extract from this proof  a sufficient condition for 
a sequence of zero-one variables to satisfy the Strong Law of Large Numbers:  
we require that p ( X , = l )  tends, not too slowly, to �89 and that for any 
(el . . . . .  5n)~{0, 1}", the probability that X i = 5  i for i=1  . . . . .  n is not too much 
greater than 2-". Further  generalisations are also possible. 
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4. Conclusion 

T h e o r e m s  2.2 and  3.1 show tha t  there  is a c o u n t a b l e  " s p e c t r u m "  of  densi t ies  
of sum-free  sets which  occur  wi th  pos i t ive  p robab i l i t i e s ;  moreover ,  if Con jec tu re  
2.4 is true, then a lmos t  all sum-free sets have  a dens i ty  in this spec t rum.  The  
spec t rum consis ts  of  all  numbe r s  [Tl/2m, where  T is a comple t e  sum-free  set 
rood m. Let  Y be the set of  such numbers .  

Ca lk in ' s  (unpubl i shed)  ca t a logue  of m o d u l a r  comple t e  sum-free sets suggests  
a p laus ib le  con jec ture  a b o u t  ~ N o t e  that ,  for every k, the  set 
k +  1, k + 2  . . . . .  2 k + l  is comple t e  sum-free  in 13k+2, c on t r i bu t i ng  the value  
(k+1)/2(3k+2) to 5~. Note ,  also, tha t  if T is comple t e  sum-free in Ira, then  
so is dT, where  (d, m ) =  1 ; call  such sets equivalent. 

Conjecture 4.1. A pr imi t ive  comple t e  sum-free  set T m o d  m with  [T]/m> 1/3 
is equ iva len t  to { k +  1, k + 2  . . . . .  2 k +  1}, wi th  m = 3 k + 2 ,  for some k. 

This  w o u l d  imp ly  tha t  the larges t  l imit  po in t  of  5 p is 1/6. Va r ious  o the r  
l imit  po in t s  are  known,  inc lud ing  0 ( H a n s o n  and  Seyffarth [-5]). 
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