
Probab. Th. Rel. Fields 76, 499-507 (1987) Probability 
Theory 
�9 Springer-Verlag 1987 

Stopping a Two Parameter Weak Martingale 

Ely Merzbach 1,  and Moshe Zakai 2 .*  

1 Dept. of Mathematics, Bar-Ilan University, 52100 Ramat-Gan, Israel 
2 Dept. of Electrical Engineering, Technion, Israel Inst. of Technology, 32000 Haifa, Israel 

Summary. This paper deals with the following problem, given a two parameter 
stochastic process, under what conditions is it possible to stop the process at 
any stopping line? It is shown that the class of stoppable processes is strictly 
larger than the class of two parameter integrators. Sufficient conditions for a 
weak martingale to be stoppable are derived and the stopped r.v. is represented 
as a one parameter optional dual projection. 

I. Introduction 

Let X = {Xt, t e N + } be a stochastic process defined on some probability space and 
indexed by the real numbers and let T be a stopping time satisfying T <  oe a.s. or 
just any positive a.s. finite random variable. In this case the problem of determining 
"the value of X at time T" is trivial, namely it is X T  which is always a well defined 
random variable. Moreover if X is an integrator then X T = X o -[- f 1 (0, T] d X  where 
(0, T]  is the stochastic interval {(co, t) : 0 < t __< T(co)}. When processes are indexed by 
a set which is only partially-ordered, such as the plane with the partial-order 
induced by the Cartesian coordinates, two kinds of generalizations of the stopping 
time occur: the stopping point and the stopping line and these two concepts are 
necessary for the development of the theory (cf. e.g. [4, 8, 9]). This leads to the 
following problem. Let X = {X~, z M Ra+ } be a two-parameter stochastic process 
and L be a (random or even deterministic) decreasing line which splits the positive 
quadrants into two regions, is it possible to define X L as the process stopped to the 
line L? Unlike the one parameter case, it is not always possible to do that, but i fX  
is an integrator and X vanishes on the axes (Xo, t = Xs, o = 0) then a satisfactory 
definition is given by X L = [. I((o, O),LjdX where ((0, 0), L] is the stochastic region 
{(o~, z) : (0, 0) < z__< L(~o)} [9]. Till now, no solution to the problem of stopping a 
process which is not an integrator seems to have been known. In this paper we 
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consider this problem and derive sufficient conditions under which the value of a 
stopped weak martingale is well defined. This is of interest in the theory of two 
parameter processes in view of the importance of stopping, of weak martingales 
and the fact that not all weak martingales are integrators [2, 7]. 

In the next section we study the deterministic problem for real functions of two 
variables. We show that the class of functions that can be stopped at a decreasing 
line is strictly larger than the class of functions of two parameters which are of 
bounded variation. In Section 3 the stochastic problem is studied, it is shown that 
the class of processes which can be stopped at any stopping line is strictly larger 
than the class of stochastic integrators. The main result of this paper is that the 
class of all stoppable processes contains all the weak martingales which are one 
parameter semi-martingales in each direction and furthermore, the collection of 
random variables obtained by stopping when suitably parametrized are a one 
parameter semimartingale (Theorem 3.1 and Corollary 3.4). Similar results go over 
directly the case where the stopping lines are replaced by an optional increasing 
path (Proposition 3.5). In view of Theorem 3.1, Corollary 3.4 and Proposition 3.5 
the construction of line integrals with respect to martingales (Cairoli and Walsh, 
Sect. 4 of [3]) goes over directly to line integrals along nonrandom and random 
paths and the integration being with respect to weak martingales satisfying the 
conditions of Theorem 3.1. 

The usual notation is followed: The processes are indexed by points 
of N.2+, or by points of a rectangle [(0, 0), z,] = Rzo in the positive quadrant 
N~,  in which a partial order induced by the cartesian coordinates is defined: 
let z = (s, t) and z' = (s', t'), then z <= z' if s____ s' and t =< t' and z < z' if s < s' and t < t'; 
we denote z A Z' if S<S' and t>t ' .  A probability space (f2, __F, P) is given 
equipped with an increasing right continuous filtration {_Fz, z e p,2+} of sub-a- 
algebras of =F, denote z=(s,t):  1_  F 2 F~-_Fso o and =z ==Foot. The conditional inde- 
pendence property (F- -4  of [3]): for every z, F~ and =F 2 are conditionally 
independent given =Fz, will be assumed throughout the paper. 

A process X = { X ~ , z e R ~ , }  is called a martingale if z<=z' implies 
E[X~, [ _F~] =X~; a submartingale if the equality is replaced by = and X is adapted 
(with respect to the filtration F~). The increment of X on a rectangle (z, z'], where 
z = (s, t) and z' = (s', t') is X(z, z'] = X z , -  X~s.c)- X~s,, o + X~. An adapted process X 
is called a weak martingale if z<z'=>E[X(z, z'] I =Fz] =0,  an increasing process if 
X(z, z'] > 0 and a bounded variation process if it is the difference of two increasing 
processes. 

Denote by S the set of all decreasing lines, i.e. L e S if and only if 
(i) Vz, z' ~ L:*- either z A z' or z' A Z. 

(ii) VzeP- 2 and z~L ,  3 z ' E L : z < z '  or z '<z .  
For every L ~ S, R L will denote {z: Sz' e L, z = z }. We denote L </5 if R L c= R L, 

and 
L A E = s u p { E ' : E ' < L  and E'<=E}, 

L v E = i n f { E " E ' _ > L  and E'=>E}. 

For  each z ~ F-. 2, z = (s, t), z ~1) and z ~2) will denote the horizontal and vertical 
lines starting with z and continuing to infinity, i.e. z ~1~ = [(s, t), (s, m)), ~2~ = [(s, t), 
(~ ,  t)). Set 2=~x)u~2).  Also denote z m =  [(s, 0), (s, t)], z(2)= [(0, t), (s, t)] and set 
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Z = Z (1)k.)Z (2). Clearly 5 andz  belong to S and R~ = R~. Every decreasing line L can be 
approximated by a decreasing sequence of "stepped decreasing lines" {L,}. This 
sequence can be defined, for example, via the grid on 1R2+ induced by the dyadic 
numbers of order n. 

A stopping line is a function L: O~Sw{oe} such that Yz, 

{o) : R z =C RL(t0)} 6 =F~ 

namely 

z <  Fz. 

It is known that every stopping line can be approximated by a sequence of stepped 
stopping lines. A stopping point is a function z: f 2 ~ R  2 u{oo} such that ~ is a 
stopping line. A sequence of decreasing lines L,, n = 1, 2,. . .  is said to converge to L 
if d(L, L,)~O where d(L~, Lb) is defined by the Hausdorff topology: 

d(La, Lb) = sup {d(a, Lb), d(b, L~)} 

a e L,, b ~ L b and 

d(a, Lb) = inf d(a, b), b E L b 

and d(a, b) is the Euclidean distance. 
All the two parameter functions and processes to be considered here will be 

assumed to be right-continuous and vanish on the axes, (s, O) and (0, t). 

II. The Deterministic Case 

There are several extensions of the notion of bounded variation from the one 
variable case to the two variable case. The simplest are the following. (a) The Vitali 
definition: f (x ,  y )=  A(x, y)-B(x,  y) where A and B are increasing in the sense of 
measures namely A(z, z'] > O, B(z, z'] > 0 whenever z < z'. (b) The Arzela definition: 
f(x,  y) is a one parameter function of bounded variation on every increasing path 
(el. [5] for a detailed comparative study of the different notions of bounded 
variation in the plane). 

Turning to the stopping problem, let f :  jR2+ - d R  and L ~ S and assume that L is 
bounded (sup(s: (s, t) e L) < ~ and sup(t: (s, t) ~ L) < ~) .  Further assume that L is 
stepped of order n and zi, i = 0, 1 . . . . .  n denote the corners of L counted from the 
upper left to the lower right, namely, z i = (si, tl) , z o = (0, to), z, = (s,, 0) and for i odd 
s~+ 1 = s~, ti + 1 < t~ and for i even s~ + 1 > s~, t i + t = ti. Then f(L), the value of the f at 
the line L is clearly well defined to be 

f ( L ) =  y~ ( -  f(zi+l)+ f(zi))= Z f(zi+O--f(zi). (2.1) 
/odd /even 

Definitions. Let f :  R 2 , ~ R  be a right-continuous function and L ~ S. f is said to be 
stoppable at L if for any sequence of stepped decreasing lines {L,}, converging to 
L, the limit f(L,)  exists and does not depend on the chosen sequence. The limit is 
denoted f(L) and is called the value of f at the line L. f is said stoppable if it is 
stoppable at each L ~ S. Note that if f is a function of bounded variation in the 
Vitali sense then f is stoppable since f ( L ) =  ~ IRLd f where the integral is a two 



502 E. Merzbach and M. Zakai 

dimensional Stieltjes integral and functions of bounded variation in the Vitali 
sense are those which induce a bounded measure on the Borel sets of the plane. 

Proposition 2.1. (a) The class of stoppable processes is strictly larger than the class 
of functions of bounded variation in the Vitali sense. (b) The class of functions which 
are of bounded variation in the Arzela sense is not included in the class of stoppable 
functions. 

Proof (a) The following example exhibits a continuous and stoppable function 
which is not of Vitali bounded variation. It is adapted from [5]. Let us divide the unit 
square into four quarter squares and let o-1 denote the upper-right quarter square. 
Next divide the lower-left quarter square into four quarter squares and let o-z 
denote the quarter square nearest to 0-1 etc. We obtain in this way an infinite 
sequence of squares converging towards the origin (0, 0). In each o-j, let f(x, y) be 
defined by the surface of a regular pyramid whose base is o-j and height l/j; let 
f(x, y) vanish over the rest of R(1 ' 1)- The function f(x,  y) is of unbounded variation 
in the Vitali sense [and also f (x,  x) is a one parameter function of unbounded 
variation] however any L e S intersects with only one of the squares o- i and 
consequently f(x,  y) is stoppable. Turning to (b), let f(x, y) = l~x + y >= l~(x, y). This is a 
right-continuous function increasing on every increasing path which is not 
stoppable. Similarly, let g(x, y) = f ( l  - x, y) where f(x,  y) is as defined in the proof 
of part (a) then g(x, y) is continuous but not stoppable. 

Remark. Note that in general, even if f is stoppable it need not be of bounded 
variation on decreasing paths (e.g., f(s, t)=g(s) where g(-) is not of bounded 
variation then f((z, z '])= 0 for every rectangle (z, z']). However, if f is stoppable 
and if for every decreasing path L the one parameter functions f(L/x (x, 0)) and 
f (L  ^ (0, y)) are of bounded variation in x and y respectively then f is of bounded 
variation on all decreasing paths. The proof is straightforward noting that if z i and 
z2 are two points such that zl ^ z2, then 

f (z  0 + f (L  A (z-~21)uz~21)))--f(L A (z-~ll)wz]l))) 

---= f(z2) + f (L/x (~-(?) u_z(12))) - f(L/x (z~(2) k.)_z(22))), 

which yields an upper bound for I f (z0-f(z2)[ .  

IIL The Random Case 

As in the one parameter case, the theory of integration in the random case is more 
interesting than in the deterministic case and the class of processes with respect to 
which an integral can be defined is larger than in the deterministic case. 

Definition. A process X = {X~, z ~IR 2 } is called a 1-martingale (2-martingale) if it 
is adapted and for each fixed t, {X<~,o, __F(s,t)s => O} is a martingale (for each fixed s, 
{Xt~,t), F=r ot >= O} is a martingale). The predictable a-field is the a-field generated by 
the sets F x (z, z'] where F E =F z in the product space 0 x R 2. 

A two parameter integrator (or semi-martingale) is a right-continuous adapted 
process X such that the stochastic integral ~ q)dX is well defined for all the bounded 
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predictable processes ~o = {(p~, z ~ IR 2 } as the limit in probability of the stochastic 
integral with respect to simple approximations to (0 (cf. [2, 7]). Let Za =(sa, t,), 
s, < o% ta < o0 be fixed; from now on we will consider integration over the finite 
rectangle R~o. The class of integrators over Rz~ contains the finite variation 
processes (in the sense of Vitali), the L p (p > 1) martingales and [9] processes of the 
form E[B t I__F~] where {Bt, 0__< t <__ t,} is a process of integrable variation and B~ is 
=Fsa, t adapted and satisfies a very stringent condition of absolute continuity with 
respect to a deterministic measure. However the class of integrators cannot be very 
large since it was shown by Bakry in [1] that in general, processes of the form 
E(Bt I __F~) need not be integrators. In this section we show that processes of the form 
E(Bt I __F~) are stoppable and more generally, every weak martingale satisfying some 
boundary conditions is stoppable. 

Let X be a two parameter process vanishing on the axes and 2 a stepped 
stopping line. Then X(2), the process X stopped at 2 as defined by (2.1) is well 
defined for every co eO.  Turning to general stopping lines, recall that every 
stopping line can be approximated from above by a decreasing sequence of dyadic 
stepped stopping lines, we will denote this sequence by {2,}~= t. 

Definition. Let X be a two parameter process, X is said to be stoppable if for any 
stopping line i,  the sequence {X(2,)}, converges in probability. The limit is 
denoted by X(2) and is called the value of the process stopped at 2. 

Remarks. (a) We have clearly X(2,)=~I(Rz,)dX. Therefore, since R~ is a 
predictable set, every integrator is stoppable but the converse does not hold. (b) 
The term "stoppable process" could perhaps be replaced by "quasi integrator". 

Theorem 3.1. Let M = {M~, z ~ R~a} be a square integrable weak martingale and 
further assume that the one parameter boundary processes {M(~,t), _F(s~, 0t_>_ 0} and 
{M(~,~o),F(~,t,)s>O} are each the sum of a one parameter martingale and a one 
parameter process of integrable variation, then M is stoppable. 

Remark. The example of Bakry [1] satisfies the conditions of the theorem and is 
therefore stoppable but as shown in [1] it is not an integrator. 

Proof Note first that under the conditional independence assumption (F(4)) a 
weak martingale satisfying the conditions of the theorem can be decomposed as 
the sum of a 1-martingale and a 2-martingale both satisfying the condition of the 
theorem. Furthermore a l-martingale satisfying the conditions of the theorem can 
be decomposed into the sum of a square integrable martingale and a 1-martingale 
of the form 

Ms, ' = E(B t I __F~,t) (3.1) 

where B t is a right continuous one parameter process of integrable variation 
adapted to F~,,t (cf. [7, 9]). Since square integrable martingales are integrators and 
therefore stoppable, we may assume, without loss of generality that M is a 1- 
martingale satisfying (3.1). In order to prove the theorem we need the following: 

Proposition 3.2. Let {G=~, O<t<t~} be a decreasing sequence of one parameter 
filtrations and G=t= N G~t. Let A = {At} be a process of integrable variation and 

n 
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denote by "A={"At}(~176 its dual optional projection relative to the 
filtration { G= ~, 0 < t < t,} ({ =Gt, 0 < t ~ ta}). Then for every bounded, measurable, right 
continuous, not-necessarily-adapted process { Xt, 0 < t ~ ta}, as n--~ oo 

moreover, as n ~ ,  a.s. 

and 

(3.2) 

"A t_ --. ~ At_ . (3.3b) 

Proof of Proposition. Let =B denote the Borel a-field on [0, t,] and let #, #,,/too 
denote the stochastic measures on the product space ([0, ta] X f2, =B x =F) induced by 
the processes A, "A, ~~ respectively. For a bounded and measurable process X we 
denote by X " =  {X~} (X ~ = {X;~ the optional projection of X with respect to the 
filtration {=G~}({=Gt}). Then, (cf. e.g. [6]): 

# A x )  = = #(x") + # ( x ~ 1 7 6  x")  

= # , ( X ) + p ( X  ~176 - X " ) .  (3.4) 

Consider #(X ~176 - X " ) ,  note that a.s. 

X~ ~ =E(Xt  I G=t) and X~ = E(X t ] Qt). 

Therefore, for each t, ~X n~ | is a reverse martingale sequence and by the reverse t t J n = l  

martingale convergence theorem X~ - XT-*0 a.s. as n ~ oo. If the process X is right 
continuous then its optional projections are right continuous and the convergence 
holds for all t in [0, t,] a.s. Hence, by the dominated convergence theorem 
#(X ~ -X")--*0. Consequently, by (3.4) 

#.(x)--,#oo(x) 
for all bounded right continuous processes X. This proves (3.2). In order to prove 
(3.3a) let 0(0 < 0 < t,) be fixed and set 

C a = {co : ~Aa > lim supnAa} 

then by (3.2), setting X, = 1% (i. e., Xt is a random constant), the probability of Cto is 
zero. Similarly for > replaced by < and lim sup replaced by lira inf proves (3.3a). 
Similarly for some fixed 0 let 

Xt(w ) = I ca(W). 1 [o, ~)(t) 

then (3.3b) follows from (3.2) which completes the proof of the proposition. 
Returning to the proof of the theorem, let 2 be a stopping line and let {2,}, be 

the decreasing sequence of dyadic stepped stopping lines converging to 2. We 
assume that R~ C Rz, C Rz .  We reparametrize now the vertical direction by setting 
u = t ,-- t ,  (cf. the figure below). Let z(n, u) be the maximum of all points at the 

"At,--* BAt~ (3.3a) 
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0" 

U . . . .  

U 

t~ 
i 

to 

Zo ~ zzlZl z -  z(n,u) 
l_ t:to-u ~ 

(s=O,t=O) 
Fig. 1 

(So,t o ) 

SO 

intersection of 2. with the horizontal line t = t a -  u namely 

z(r/,u)= sup {(s,t)~J.n,t=ta--U } if {(S , t )~n, t=ta--U}* ~ 
s 

=(0, t.) otherwise. 

The random point z(n, u) is a stopping point. 
Denote by 2.,,, the stopping line which is the minimum of 2. and the vertical line 

passing through z(n,u) (2., .=2. A(~t)(n,u)wzm(n,u))) and by =G." the a-field 
induced by 2.,u namely, the a-field generated by the random variables 
{M~. 1R(~.,.)(z), z e R~o}. Note that for each n, {G."} is a one parameter filtration 
which satisfies the "usual conditions" and for each u, { __G~}. is a decreasing sequence 

of a-fields. Set =G.= ~ _G~. Let A.=-Mz+M(~o, ( t_ . )_) ,  hence A is right 
. = 1  

continuous. Let "A = {"A.} (~A = {~Au}) denote the dual optional projection of A 
a n  _ _ relative to the filtration { =., 0 < u < t.} ({_G., 0 <- u < ta}). In order to complete the 

proof of theorem we need the following 

B n n Lemma 3.3. M(2. , . ) -  A.--E(  A . ) -  A . -EA~ .  

Proof of  Lemma. Note that __G~ is "piecewise constant" assuming that 2. is a dyadic 
stopping line with steps of length t~. 2-" in the t direction then __G~ remains constant 
for 

kt,~2-"<=u<(k + l).ta. 2-" 

and for ul < u2 in this interval 

"A.2-"A.1 = E(A.2-A. I  I G=~,~) 

= E(A.2 - A.1 [ F-_~(n,.)). 

This and Theorem 76, Ch. VI of [6] yield the proof of the lemma. The proof of the 
theorem follows now from the lemma and from (3.3a). 
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From the proof of the theorem it follows directly that: 

Corollary 3.4. Let Ms, t = E(B~ [ F=(s, ta)) where B is adapted and of integrable variation 
and 2 a stopping line, then 

M(,~) = ~Ato-EA,o  

where A u = + B(t~ - B t  a and ~ A is the dual optional projection as defined above. 
Furthermore, for every u = t , -  t 

M(2,) = ~  

where 2~ = lira 2,,.u. Therefore for 2 parametrized by u, M(2u) is a semimartingale in 

the u parameter. 

The definition of a process stopped at a stopping line was given by an 
approximation from above and is associated with the fact that the process is right- 
continuous. An approximation from below can also be obtained as follows. Let 2 
be a predictable stopping line (its graph [2] = {(co, z): z ~ 2(0~)} belongs to the o--field 
of the predictable sets). It is known (see for example [4]) that such a stopping line 
can be approximated from below by an increasing sequence of stepped stopping 
lines {#,},. Let X be a process, then the sequence {X(#,)}, is well defined. Using the 
same arguments as before, but taking the predictable projection instead of the 
optional one, we obtain that the sequence {X(#,)}, converges uniquely under the 
same assumptions on the process X. The limit is denoted X_()o). This makes it 
possible to study regular or left quasi-continuous processes X which satisfy 
E[-X(2)] =E[X_(2)] for every predictable stopping line. 

A companion to the notion of stopping lines is the concept of optional 
increasing paths introduced by J. B. Walsh (see [8]) which is defined to be an 
increasing and continuous family of stopping points F = {Zt, t > 0}. An optional 
increasing path splits the positive quadrant into two regions: the right-below side 
denoted by f and the left-above side denoted iv. Here too, we can define the 
expressions X(F) and X(IV) by approximating F with stepped optional increasing 
paths. Such an approximation can be done, for example in if, in the following way. 
Divide the quadrant by the dyadic points of order n. Take the interval from the 
origin at the point (2-", 0) and then go up at the first point of intersection with F 
(this point is not necessarily a dyadic point). Then go right until the first point 
which is dyadic in the first coordinate, and so on. In this manner, we obtain a 
sequence {/~}, of stepped optional increasing paths i n ;  converging to F and which 
is increasing with respect to a lexicographical order. In a symmetric way, we obtain 
a sequence {F,}, in iV. By the same construction as in the proof of Theorem 3.1 it 
follows that: 

Proposition 3.5. I f  X satisfies (3.1) then the sequences {X(/~)} and {X(IV,)} converge 
in probability to the random variables denoted X(ff) and X(F) respectively. 
Furthermore, X(ff), (X(ff)) is the dual optional (predictable) projection of the 
process {B t, 0 < t <--_ t.}. 
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