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Summary. We consider diffusion random perturbations of a dynamical system 
S t in a domain G C R m which, in particular, may be invariant under the action of 
S t. Continuing the study of [K 1-K 4] we find the asymptotic behavior of the 
principal eigenvalue of the corresponding generator when the diffusion term 
tends to zero. 

1. Introduction 

In a connected bounded domain G CR m with a C2-class smooth boundary OG 
consider a nondegenerate elliptic differential operator 

(~2 

L = � 8 9  +,~m bi(x) 8xi (1.l) 

and a first order operator 
8 

(B(x), V) = i ~"<=m B'(x) c~xi' (1.2) 

both operators have C2-coefficients extended smoothly into the entire space R m so 
that they remain bounded functions with bounded first and second derivatives and 
(aiJ(x)) becomes uniformly positive definite in R". The operator L~ = e2L + (B, V) 
generates a Markov diffusion process X~(t, x) satisfying the stochastic integral 
equation, t t 

Xe( t  , x )  = x --[- [. (B(Xe(s  , x))  --]- 82b(Xe(s,  x))ds  --[- 8 ~ o (Xe(s  , x ) )dw(s)  
o o 

where b(x) = (bl(x), ..., bin(x)), a(x) (1.3) 

is a matrix satisfying a(x)a*(x) = (aiJ(x)) -~ a ( x )  and w(t) is the m-dimensional Wiener 
process starting at zero (see, for instance [-Fri 1]). 

* This work was supported by U.S.A.-Israel B.S.F. Grant 4b 84-00028 
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The process X~(t, x) is considered as a small random perturbation of the 
dynamical system S t determined by the ordinary differential equation 

d(Stx) 
dt - B(Stx), S~ = x. (1.4) 

Let z~(x, G) be the first exit time from G for the process X~(t, x), i.e., 

z~(x, G) = inf{t:X~(t, x) r G}. (1.5) 

Denote by 2~(G) the principal eigenvalue ofL ~ corresponding to zero Dirichlet data 
on 8G, i.e., the eigenvalue with the greatest real part. It turns out (see [K 1]) that 
2~(G) is real, negative and can be represented as follows 

2~(G) = lim 11nP{z~(x, G)> t} = lim 1-1n ~(t,  G), (1.6) 
t - ~  t t-~oo t 

where 
�9 ~(t, G)-- sup P{z~(x, G) > t} (1.7) 

x ~ G  

and, as usual, P{. } means the probability of the event in brackets. The main 
purpose of the present paper is the study of the limiting behavior of 25 when 5-.0. 

As one learns from [K4], 2 ~ - ~  as 8~0  unless there exists a closed 
St-invariant set which is contained in G -  GuSG. The asymptotic behavior of 2~(G) 
was investigated previously for several types of St-invariant sets in G such as 
hyperbolic points and circles (see [K 1]) and general hyperbolic sets (see [K 2]). 

In the present paper we shall prove first a general localization theorem which 
enables one to treat separately different St-invariant sets. Namely, one ought to 
study the limit (1.6) for z~(x, U) being the exit time from a small neighborhood U of 
an St-invariant set in place of the whole G, then to let e~ 0  and, finally, to take the 
maximum over all St-invariant sets. This will be the desired limit of 2~(G) as e~0. 
The above procedure enables us to enrich from time to time the collection of 
"permitted" St-invariant sets in G which we can take care about. The main addition 
to this collection provided by this paper is the case when the whole boundary 8G or 
its part are St-invariant which was not allowed in [K1] and [K2]. We shall 
consider both cases of attracting and repelling boundaries. Some other cases of 
St-invariant sets which one can treat by this approach will be discussed in the 
concluding Sect. 8. In Appendix, we consider the asymptotic behavior of the exit 
time and the exit distribution in an attracting boundary case giving, in particular, 
an example of divergence of the exit distribution when e~0.  

The authors are grateful to the anonymous referee for remarks improving the 
exposition. 

2. Assumptions and Main Result 

A sequence of points Xo, ..., x, s G will be called 6-pseudo-orbit if 

[Slxi-x~+ll<6 for i=O, 1,... ,n, (2.1) 
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where lal is the length of a vector a and (~ denotes the closure of Q. For a pair of 
points x, y e G we shall write x ~ y  if for any 6 > 0 there exist a non-negative t < 1 
and a 6-pseudo-orbit x0,..., x, e G such that Stx= Xo and x, =y .  Since we require 
for a 6-pseudo-orbit to stay in G the above relation " - r  may not be transitive. Its 
extension ">-" to a transitive relation is defined in the following way: z ) x  iff 
there exists a sequence of points Yo, ..., Yk ff  G such that Yo = x, Yk = Z, and Yt ~Yt + 1 
for all i=0,  1 . . . . .  k - l .  I fx>-y and y>-x then we shall write x ~ y .  It is easy to see 
that " ~ "  is an equivalence relation. As usual, any maximal set of equivalent points 
in G will be called an equivalence class. One concludes from the definition that 
any equivalence class is a close set. 

As usual, a closed set K is called St-invariant if StK = K for all t > 0. Suppose 
that there exist a finite collection of St-invariant disjoint equivalence classes 
K1,.. . ,  K~ C Gu~G satisfying the following Assumption A. 

(A1) y K i contains the limit set of the dynamical system S t in G i.e. for any 

x e G all limit points of Stx as t--> _+ ~ which belong to G belong also to y Kt; 

(A2) one can choose open disjoint sets UiCG, i=1  . . . .  ,v with smooth 
boundaries OUt such that U t ) K i n G ;  the relative interior of OUtnOG in 0G 
contains KtnaG;  the limit 

A ( K t ) -  lira lim 1_ In @~(t, Ut) (2.2) 
e~0 t-*co t 

exists (with 4~ defined by (1.7)), and for some positive 13o< 1 and each 6 > 0 there is 
e(6) > 0 so that if e < e(6) then one can find a positive t(e, 6) =< e- 2(1 -~o) satisfying 

cb~(t(e, 6), Ut) < exp(A(Kt) + 6)t(e, 8)). (2.3) 

Now we can formulate the "localization theorem". 

Theorem 2.1. Under Assumption A 

lira 2~(G)= max A(Kt) (2.4) 
e-->0 l_<t<v 

and the numbers A(Ki) defined by (2.2) are determined by compacts K t only, i.e. they 
do not depend on the choice of U i. 

Remark 2.1. One can check that the proof of the Theorem 2.1 does not actually 
require that the compacts Kt are equivalence classes. It suffices to assume the 
following two conditions: 

(i) x , y ~ K  t and y>-z>-x imply zeKi ;  
(ii) if we write K j ~ K ~  provided y ~ x  for some x ~ K  t and y~Kj ,  then in any 

chain Kt~>-Kt:>-...~Kt, each index may appear only once up to trivial 
repetitions. 

Remark 2.2. We define the order " ~ "  in the way different from EK 1] but both 
definitions are equivalent. In [K 1] we wrote Kj>-K t if one could find indices i 0 = i, 
il, ..., it- 1, it =J and points z1,..., Z l such that S%, approaches K k _  1 when t ~  - oe 
and it approaches K k when t ~  oe. Clearly this definition implies the definition 
given in Remark 2.1 above. The opposite is also true which follows from 
Corollary 3.1 below. 
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Theorem 2.1 enables one to reduce the problem to the study of principal 
eigenvalues for the operator L~ restricted to small neighborhoods of compacts K i. 
In order to do this by probabilistic means one needs to know escaping rates for the 
process X~(t) from small neighborhoods of Ki. This study was accomplished for 
Ki s G being a hyperbolic fixed point or a hyperbolic invariant circle in [K 1] and 
for a general hyperbolic invariant set in [-K 2]. In all these cases Assumption (A 2) is 
satisfied and the number A(Ki) can be obtained as 

A ( K , ) = l i m  l lnv~ 0-<,-<r (2.5) 

provided 6 > 0 is small enough. The conjecture is, that (2.5) remains true under very 
general circumstances provided KzC G. If K~ is an isolated fixed point (not 
necessarily hyperbolic) then the number A(K~) can be easily calculated by the 
formula (2.5) which gives 

A(Ki) = - Z max (Re % 0) (2.6) 
i 

where oh, i=  1, ..., m are all eigenvalues of the m a t r i x / / s u c h  that 

B ( x )  = l I ( x  - K i )  + O(Ix  - Kil 2) 

i.e. / / i s  the linear part of B(x) near the fixed point K~. When K~ is a general 
hyperbolic set (see [K 2]) then A(Ki) turns out to be the, so called topological 
pressure corresponding to the differential expanding rate along unstable 
directions. 

In all above cases K~ was supposed to be strictly inside of G. Next we are going 
to discuss the situation when K~ is an SMnvariant connected component F of the 
boundary OG of G. Thus F is a closed smooth surface of the codimension one. It is 
easy to see that one can pick up an open neighborhood U of F in R"  such that any 
point x ~ U has a unique representation 

where 7(x) e F, 

(2.7) 

le(x)l = Ix - 7(x)l = dist(x, F), (2.8) 

and n(x) = n(?(x)) is the interior unit normal to F in the sense that it points out into 
the interior of G i.e. Q(x) > 0 if x ~ U c~ G. Characterizing any point x s U by the pair 
(7(x), r we get a system of coordinates in U. In these coordinates the normal 
component q(x) of the vector field B(x) satisfies 

For each 7 e F define 

do( Stx) = q( SZx) -- q(?( Stx), o( Stx)) . (2.9) 
dt 

c~(7) = ~q(Y,~ ~ )  = o" (2.10) 
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Then for x s U one can write 

q(x) = c~(y(x))e(x) + ~p(x)e2(x), (2.11) 

where ~p is a bounded function in U. Regarding the asymptotic behavior of the 
dynamical system S t on F we shall need also the following Assumption B: 
uniformly in ~ e F the limit 

lim -1 i e(S"7)du = ~o (2.12) 
t ~oo  t 0 

exists and it is independent of ~. 

Remark 2.3. The above condition is satisfied if the dynamical system S t restricted to 
the St-invariant surface F is uniquely ergodic i.e. it has a unique invariant measure 
on F. This follows from the continuous time version of Theorem 6.19 in [W]. 

Now we are able to formulate our result concerning invariant boundaries. 

Theorem 2.2. Let F be an St-invariant connected component of the boundary •G and 
let U be an open neighborhood of F with a smooth boundary OU such that U~3U 
contains no closed St-invariant set except for F. Suppose that Assumption B holds 
and put Ua= Uc~G. 

(i) I f  % < 0 (the case of an attracting boundary) then the limit 

A(F)=l im lim 1-1n#~(t, U G) (2.13) 
~-+0 t-~oo t 

exists and A(F)-- %; 
(ii) I f  ~(~)- 0 on F (the case of a neutral boundary) then the limit (2.14) exists 

and A(F) = O; 
(iii) I f  % > 0 (the case of a repulsing boundary), and, in addition, the dynamical 

system S t restricted to F has an invariant measure on F possessing a smooth positive 
density with respect to the volume on F, then A(F)= --2%. 

Furthermore, in the above cases, for any 3, fl > O, 

~b~(t, U G) < exp((A(F) + 6)0 (2.14) 

provided ~ < ~(6) and t > in , and so, F and U ~ can play the role of a pair 

K i and U i in assumption A. 

Remark 2.4. One of examples we have in mind which satisfies the assumptions of 
Theorem 2.2 is the case when the flow S ~ on F is diffeomorphically conjugate to an 
irrational rotation on an ( m -  1)-dimensional torus. According to [L] this will be 
the case if S t restricted to F is a dynamical system with a discrete (pure-point) 
spectrum and smooth eigenfunctions. 

Remark 2.5. We are not able to prove (ii) of the above Theorem 2.2 under the 
weaker condition eo = 0. Still, the assumption ~ = 0 on F can be relaxed to % = 0 
and e(7)__< 0 for all ~ e F, or if one has instead a fast convergence to zero of the 
average in (2.12) when t ~ o e .  
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Remark 2.6. It is not clear, if the additional condition imposed on S t in (iii) to have a 
smooth invariant measure on F is necessary. We shall need this condition due to 
our method of deriving (iii) from (i) by means of an adjoint operator. The use of 
direct probabilistic estimates may eliminate this condition. 

3. The "Localization" Theorem 

We shall outline, first, the strategy of the proof of Theorem 2.1. The probability in 
the fight hand side of (1.6) can be expressed through iterated integrals of the 
transition function of the diffusion X~ stopped on OG. It turns out that up to a 
negligible error the probability is concentrated on paths which are 3-pseudo-orbits 
provided e is small. Now if a 5-pseudo-orbit starts close to an equivalence class K 
and ends close to an equivalence class K' where 6 is small enough then K' ;~K  
(Lemma 3.1). This prevents 5-pseudo-orbits from cycling through neighbour- 
hoods of the K~, which are in finite number. So a 6-pseudo-orbit visits at most v of 
these neighbourhoods and remains for almost all time in some of them since the 
travel time between such neighbourhoods is bounded (Lemma 3.2). These lead to 
the estimation of the iterated integrals via probabilities of staying in small 
neighbourhoods of equivalence classes which leads to (2.4) in view of (1.6), (1.7), 
and (2.2). 

Next we pass on to details. 
Notice that z~(x, G) > z~(x, U3 for any x ~ G provided G 3 Ui. Hence, 

and so by (1.0, 

Thus by (2.2), 

P{v~(x, G) > t} >_>_ e{z~(x, Ui) > t} 

2~(G) > 2~(Ui)= lim 1-1n~(t, Ui). (3.1) 
t "~ o0 t 

lim inf2~(G) > max A(K 3 . (3.2) 
e~O l_<i_<v 

Therefore it remains only to estimate 2,(G) from above. Notice that by Markov 
property (see [Fri 1]) of the process X~(t, x) for any open domain D one has 

�9 .(t + s, D) = sup P{z~(x, D) > t + s} 
xf~ D 

= sup Ez~,(x, D) > ~E)~x,(t, ~), m > s <= ~b~(t, D)~(s, D), (3.3) 
x ~ D  

where E denotes the expectation and ZA is the indicator function of an event A i.e. 
ZA = 1 if A occurs and ZA = 0 for otherwise. 

Thus if D = G then by (1.6) and the standard subadditivity argument (see, for 
instance, [W, Theorem 4.9]) it follows that 

2~(G) = inf 1_ In q~.(t, G). (3.4) 
t>0  t 
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Let X~(t, x) be the process X,(t, x) stopped at the exit time z~(x, G) i.e. X~ is the 
process with absorption on OG. Denote by P~(t,x, V ) = P { X ] ( t , x ) e V }  the 
transition probability of X~. As usual, the transition density P~(t, x, y) of X~ is the 

Radon-Nikodim derivative p~(t, x, dy). Recall, that p~(t, x, y) turns out to be the 
dy 

fundamental solution of the equation 

0p~ L ~ Gt Y)~0~ 0t - ~P~' p~( 'x '  = 0 ,  (3.5) 

where the operator L~ is applied in the variable x. From Aronson's estimates [A] it 
follows that there exist constants C1, fl~ > 0 such that 

( iy-s x:_) 
P o , ( 1 , x , y ) < C : - " e x p  - i l l  e2 j for any e > 0 .  (3.6) 

By (3.6) and the Chapman-Kolmogorov equality there is C2 > 0 such that for every 
integer n > 0 and any e, 6 > 0, one has, 

P{T~(x, G) > n} = P?(n, x, G) 

[. f p~( ,x, zx)p?(1,z~,z2) .p~(1,z,_~z,)dz~ . . .dz ,  
G G 

where 

< I~a)(6, n, x) + Cze- mn e x p ( -  f l162~  -- 2) ,  (3.7) 

I~1)(6, n, x )=  ~ Q~Jl,I)"'s ~ p~(1, x, zl) 
QGfSIx) Q~(Slzn- i) 

p~~ z~, z2) . .. p~(l, z,_ 1, z,)dzl .. . dz, (3.8) 

and we put Q~(y)= {z ~ G w OG : lz -y]  < 6}. 
The integration in (3.8) is over 5-pseudo-orbits starting at x and staying in 

GwOG. This motivates our next step which is the study of possible behaviors of 
6-pseudo-orbits under Assumption (A 1). 

Let K~, i=  1,..., v be compacts introduced in Assumption A. We shall write 
Kj>-K~ if there exists a pair of points x ~ K~ and y e Kj such that y ~ x .  Since K~ and 
K i are equivalence classes than Kj>-K~ means that y>-x for any x 6 K~ and y ~ K i. 
Thus K~>-K i and K ~-K ~  implies K~ = K~, i.e. i=j.  The following result generalizes 
Lemma 4.2 from [K 1]. 

Lemma 3.1. For any sufficiently small 0 > 0 there exists a positive 6(0) < 0 such that, 
if  for some ii, i 2 < v one can f ind a 6(O)-pseudo-orbit Xo,..., x ,  ~ Gu~G satisfying 

dist(xo, Ki~)<6(O ), dist(xj, Kil)>O, and dist(x,,Ki2)<__6(O), (3.9) 

with 1 <j<=n, then i 1 #i2  and K i ~ K i :  

Proof. Suppose that for any 6 > 0  there exists a 6-pseudo-orbit x(o ~), x (~), such �9 " ~  n ( 6 )  

that 
dist(x(o~),Ki~)<6 and dist(x(,~),Ki2)<=6. (3.10) 
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Then one can pick up points y(O) e Kil and z(~)~ Ki2 satisfying 

[y(~)- X(o~)[ < 6 and (~) (~) < Iz =6 .  

Since K~I,K~2 are St-invariant it follows that y(~),x(~ ~), ,-(~) z (~) is a " " ,  ~ n ( 6 ) -  1, 

C36-pseudo-orbit where 
C3w- sup sup ][DStx[] + 2 ,  (3.11) 

It[=<l x 

DS t denotes the differential of S t at x i.e. its Jacobian matrix and ]]. [[ is the 
Euclidean norm of matrices. If we assume this to be true for any 6 > 0 small enough 
then by the definition Ki~>-K~. Hence if Ki2~K~ does not hold true then a 
6-pseudo-orbit x~ ), ,~(~) satisfying (3.10) may only exist for 6 bigger than some �9 " ", ~ ' n O )  

3"> 0. In other words, the existence of a &pseudo-orbit  satisfying (3.10) with 6 < 
implies already that K~>-K h. 

Now it remains to discuss the case il = i2. Fix 0 >0. It suffices to show that there 
exists ~>  0 such that any 6-pseudo-orbit X(o ~), x (~) satisfying (3.10) with 6 = 6 and �9 " ,  n(~) 

i l  = i2 has no points whose distance from K~ is more than 0. Suppose that, on the 
contrary, one can find a sequence 6 t~0  as l ~  oo and corresponding @pseudo- 
orbits X(o ~~ ..., ~,(~,)'~(~') E G satisfying (3. I0) with 6 = 6~, il = i2 and dist (x~]), Ki~) > 0 for 

e - (,~l) some indexj(6~). Since the sequ nce xj(~) stays in a compact set and K h is compact, 
as well, we can choose a subsequence, which we denote again by 6l, such that 
Xto~~ ~(~') ~ and (~z) ~ z  1~ 

Then it follows from the definition that y >-z >-x. But this is impossible since K h 
is the equivalence class, x, y ~ K h and dist(z, K~)>  0. This completes the proof of 
Lemma 3.1. []  

For  any set V we shall use the notations 

Q~(V)={zeR":dis t ( z ,V)<6}  and Qeo(V)=Q~(V)n(GwOG ). (3.12) 

Choose 0o such that 

Q~c3oo(Ki) C UiwOUi for all i= 1,..., v and put 6o =6(0o)C~ 1 (3.13) 

with 6(0) given by Lemma 3.1 and C3 defined by (3.11). Since the limit set of the 
dynamical system S t restricted to G is closed and, according to Assumption (A 1), it 
is disjoint with OG\~ K~, then there exists 61 > 0  small enough such that the set 

i 

l) 
l<_i<_v 

has no common points with this limit set. Thus the number 

t(x)=_inf{u>_O:S"x~Q,-~l ~> Q~o(Ki)} (3.14) 

is finite for any x s G~?G. Furthermore, it is easy to see that t(x) is upper semi- 
continuous, i.e. t(x)> lim sup t(x) and so 

y ~ x  

To-= sup t(x)<o~.  (3.15) 
x e G w O G  
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Clearly,  if Xo . . . . .  x ,  is a &pseudo-o rb i t  then 

m a x  IXk-- SkXoI < C"3-16. (3.16) 
O<_k<_n 

Notice  tha t  if Stx ~ Q~o(Ki) for some x, t, and  i then by the SMnvar iance  of K t it 
follows tha t  

Sttl+ 1 x ~ Q_~c~ao(Ki) , 

where I t ]  denotes  the integral  pa r t  of  t. This together  with (3.14)-(3.16) imply  

L e m m a  3.2 A n y  ~-pseudo-orbit Xo, ... ,  x ,  ~ Guc3G with n > T o + 1 and 

6<�89 (r~ has at least one point in U Qo(oo)(Ki) �9 
l<_i_<v 

F r o m  this we can derive the following result implying that  the order  relat ion 
a m o n g  the compac t s  Kt considered in this pape r  is, actually,  the same as in [ K  1]. 

Corol lary  3.1. Suppose that K j > - K  i then one can f i nd  indices r~ = i, r2, ..., r s = j  and 
points Y l , . . . ,  Ys- ~ such that for  all k = 1 . . . .  , s, 

dis t(S-tyk,  K J + d i s t ( S t y k ,  K . . . .  ) ~ 0  as t ~ o e .  (3.17) 

Proo f  F o r  any  indices l < j ~ , . . . , j t < v  we shall in t roduce  a set {Jz,. . . ,Jt} of 
3-pseudo-orb i t s  co =(xo,  . . . ,x , )  with 6 <6(0o) such tha t  co E {j~,...,jz} if for all 
i =  1, ..., n, 

and  there exist indices 

ko(co ) = 0 < i i (co) < k 1 (co) < . . -  --< il(co) < kt(co) <= it + 1(co) = n 

such tha t  for  q = 1 . . . .  , l 

iq(co) = inf{r > kq_ 1(co) : x~ e Q~oo)(Kj,)}, 

G kq(co) = inf{r > iq(co) : xr $ Qoo(Kj)} , 

and if kt(co ) is not  defined by the last  relat ion,  i.e. if x~ ~ Q~o(Ks) for  all r > iz(co ) then 
we put  kz(co)=n. F r o m  L e m m a  3.1 it follows tha t  if {j~ . . . . .  j~} is not  e m p t y  then 
KL,N-Kj, ~ . . . ~ K j ,  and all these compac t s  are different. F u r t h e r m o r e  by 
L e m m a  3.2 if 6 =< �89 - (To + a) then iq + 1(co) -- kq(x) <= T o. 

T o  prove  Coro l l a ry  3.1 it suffices to consider  the case when for any  6 > 0 there 
exists a 3 -pseudo-orb i t  co(~ = (X~o ~), x (~) ~ such tha t  X(o~)~Ki x 0) and ,(0)~Kj. Tak ing  �9 " ~  n ( 6 ) !  

into account  the above  a rguments  it is easy to see tha t  one can choose a sequence 
3 r ~ 0  as r ~ o c  and  indices j l = i ,  J2 . . . . .  Jz=J such tha t  for r big enough  

c~ ~ {]1, �9 �9 .,Jr} and  there exist limits Zq = ,~lim~ ~k~oc~)'~) for all q = 1, .. ., l - -  1. Since 

the limit set of  the dynamica l  system S ~ in each Q~oo(Kj,) must  be conta ined  in Kj, ,  
then either dist(S-tzq, K j , ) ~ 0  as t ~  Go or there exists a posi t ive t o < oe such tha t  
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S-t"zq = z  -1 Similarly, either dist(S*z , K  +~)~0 as t-~oe or one can find a 
" - q J4 

positive tq < O0 such t h a t  Stqzq = Zq+ 1" Since X(o ~') s K i and x~! )  e Kj  for the whole 
sequence 6 , ~ 0  then it follows that  

dist(S-tzl ,Kj~)+dist(S~z~_t,  Kj , )~O as t ~ o e .  

N o w  put  y ~ = z  1, K ,~=Kj , ,  and then define successively yk+~=Zq, K~+~=Kj~ 
provided  

dist(S'yk, K j , )~O as t ~ o o .  

It is easy to see that  the points {Yk} and the compacts  {Kr~} satisfy (3.17). [ ]  

Next,  we come back to the p roo f  of Theorem 2.1. Pu t  bE =�89 (r~ 1~ and 
consider the integral I~1)(b2, n, x) defined by (3.8). It follows from Lemmas  3.1 and 
3.2 that  any b2-pseudo-orbi t  co = (Xo, ..., x,) belongs to a set {jr . . . . .  Jl} with some 
l <  v and the corresponding indices 

kq_ 1(co) < is(CO ) < kq(co) < n, q = 1,..., I 

satisfy 

~. (ks(co)- is(co)) > n -  To(v + 1). 
l<s<l 

Since the integrat ion in I~1)(62, n, x) is over  be-pseudo-orbi ts  then we can write 

I~l)(b2,rt, x)~ ~, E ~, I~2) ( j l , . . . , j , ; i  1 . . . .  , i t ; ] r  , (3.18) 
l < l < v  Ja . . . . .  Jz i l  <=kl < . . . < i t < k 1  

where 

I~2)(Jl,..-,Jz; it . . . .  , il; k l , . . . ,  kl) 

- P{Xy(r ,  x) ~ Qoo(Kj,) for all r = iq, ..., k q -  1 and all q = 1, ..., I}, 

the second sum in (3.18) is taken over j l ,  ...,j~ such that  {Jl, ...,Jr} ~= q5 and the third 
sum is taken over  i 1 __< k t =<... < i t N k I satisfying 

F, ( k q - i s ) > n - T o ( v +  l). (3.19) 
l Z q ~ l  

It is clear that  the total  number  of elements in the sum in (3.18) does not  exceed 
vVn 2v. Hence  this sum can be est imated by vVn2V-times the maximal  element in the 
sum, i.e. 

1~1)(b2, n, x) < vVn 2v max /~2)(jl,.. ",Jl; il . . . . .  il; k l  . . . .  , kl) ,  
l < v ; j l  . . . . .  Jl; i l  <<_kl <= . . .  <=il <=kt 

(3.20) 

where the max imum is taken over  the same set of  indices as in the sum (3.18). By the 
M a r k o v  p roper ty  of  the process X~ it follows easily that  

l~2)(Jl,...,Jt;il . . . .  ,it;k1 . . . . .  kt) < [I sup I~3)(jq, kq-iq,  y), (3.21) 
1 <=q<l y e Q o o ( K J q )  
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where 

i~3)(j, r, y) =- P{X~(s,  y) e Qoo(Kj) for all s = 1,..., r -  1} 

= ~ ... ~ p~(1,y, za)p~(1,za,zz)...p~(1,z~_,,z~)dzt.., dz~ (3.22) 
QOo(Kj) Qoo(Kj) 

and H denotes the product. By the strong Markov property (see [Fri 1]) of the 
process X~ it follows that for any v, w ~ Uj one has 

p~(1, v, w) = pV~(1, v, w) + EZ~,(~, vj)< aP~( 1 - z~(v, U j), X~(r~(v, U j), v), w) (3.23) 

where Uj is the domain introduced in Assumption (A2) and pVj is the transition 
density of the process X v~ stopped at the exit time L(x, U j). If v e Qoo(Kj) then by 
(3.13), 

inf dist (S~v, ~ U 9 > C 30o (3.24) 
O<_t<_ l 

and so by the estimates of Sect. 2 from [VF] it follows that 

EZ~dv, u j)<I = P{L( v, U j) < I} =< C 4 exp(- 63 e - 2) (3.25) 

for some Ca, 63 > 0 independent ofe > 0 andj = I,..., v. This together with (3.6) and 
(3.23) give 

p,~ ( 1, v, w) < pV J(1, v, w) + C t C 4e-m e x p ( -  63e- 2) (3.26) 

provided v, w ~ Q~o(Kj). 
Substituting this estimate into (3.22) we obtain 

[~3)(j, r, y )  <-- C 1C4rg  - m e x p ( -  632 - 2) 

+ I ... z 0 . . .  
Qoo(Kj) Qoo(Kj) 

< Ca C4re-m e x p ( -  63e- e) + p{~,(y, U j) > r} 

C 1 C 4 F ~ -  m exp(-- 63e- e) + ~(r ,  U j), 

(3.27) 

whereas ysQGoo(Kj). By (3.3) we have also for any t>0 ,  

�9 v j) =< u j)) (3.28) 

where, again, [ .]  denotes the integral part. Finally, collecting (3.7), (3.20), (3.21), 
(3.27)-(3.28) and taking into account (3.19) we derive 

n - To(v 4- 1) �9 ~(n, G) <_<_ vVn 2~ ( max ~( t ,  U j) t - ~ 

+ vVn2~((C 1C4n~-" exp( - 63e- 2) _~_ ])v --  1) 

+ C2e-mn e x p ( -  fl16~e- e). (3.29) 



450 A. Eizenberg and Y. Kifer 

Now if (2.3) is true for some t = t(e, ~) < e- m - po) then taking n = n(e) = [e-  2 + ao] we 
obtain for e small enough that 

�9 ~(n(e), G)<2vV(n(e))2~exp((~+ ~<-J<=vmax A(Kj))(n(~)- To(v+ 1)-vt(~,6))). 

(3.30) 

By (3.4) and the choice of n(E) and t(e, 6) this implies 

2~(G)< max A(Kj)+c~+Cs(e2-P~176 (3.31) 
l < j < v  \ e l  

for some c 5 > 0 independent of e provided e > 0 is small enough. Letting e~O we 
have 

lira sup 2,(G) < max A(Kj) + 
e~O l < j < v  

and since ~5 > 0 is arbitrary it follows 

lim sup 2~(G)__< max A(K~) 
e ~O l < j < v  

which together with (3.2) proves Theorem 2.1. []  

4. Auxiliary Gaussian Processes 

Similarly to I-K 3] our proofs will rely heavily upon comparison of the initial 
diffusion process X~ with its Gaussian approximation which we shall study in this 
section. Let K(t, s, x) be the solution of the matrix integral equation 

t 

K(t, s, x) = I + ~ H(S"x)K(u, s, x)du, (4.1) 
s 

where H(y)= (hij(y))= \ ~yj / and I is the identity matrix. 

Define 
t 

Y(t, x) = i K(t, s, x)a(SSx)dw(s) (4.2) 
0 

and Z~(t, x) =Stx + e Y(t, x) which is an approximation of X~ of order ~2. It is easy to 
see that both Y(t, x) and Z~(t, x) are Gaussian processes, and Z~(t, x) satisfies the 
following stochastic integral equation 

t t 

Z,(t, x) = x + f (B(S"x) + H(SUx) (Z~(u, x)-- S"x))du + ~ [. a(S"x)dw(u). (4.3) 
0 0 

t 

Differentiating the equation Stx= x + ~ B(SUx)du in space variables one concludes 
o 

that the solution of (4.1) can be expresses by means of the Jacobian matrices, i.e. the 
differentials DS~ of S r at y, as 

K(t, u, x) = DSts z.". (4.4) 
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From (4.2) it is clear that Y(t, x) has the Gaussian distribution with zero mean and 
the covariance matrix 

which we express by 

t 

V(t, x) = ~ K(t, u, x)a(S"x)K*(t, u, x)du, (4.5) 
0 

Y(t, x) ..~ N(0, V(t, x)). (4.6) 

Here a =(a  ij) = aa* is the matrix of coefficients in (1.1). By (4.4) it follows also 

K(t, s, x)K(s, u, x) = K(t, u, x) which implies K(t, s, x)K(s, t, x) = I (4.7) 

and 

dK(t, s, x) 
ds 

- K(t, s, x)H(S~x). (4.8) 

We shall need the following estimates for probabilities connected with Y(t, x). 

Lemma4.1. There exists M I > 0  such that for q>r, t>=l, x e R  ~, and w ~ R "  
satisfying Iwl = 1, one has 

P{r < < Y(t, x), w> < q} __> (2n)- 1/2(q _ r) I V1/2(t, x)w[- 1 e x p ( -  M 1 max(lrl 2, Iq12)) 
(4.9) 

and IP{ < Y(t, x), w> < r} - �89 <= Mllrl , (4.10) 

where ( . , . )  denotes the inner product in R m and V 1/2 is the square root of V. 
Furthermore, 

P{<Y(s, S t -Sx) ,w)>r}<P{<Y( t , x ) ,w)>r}  for any t>s>_O. (4.11) 

Proof Denote by V1/Z(t, x) the unique smooth positive definite self-adjoint square 
root of V(t, x) (see [Fre, Sect. 3.2]). Using the change of variables z = V -  ,/2y we 
derive from (4.6), 

P{r I < (Y(t, x), w) <r2} 

I 
= (2rc)n/2(det V(t, x)) x/2 {x:rl < <r.w>~ <r2} e xp ( - � 89  V-  l(t, x)y, y>)dy 

1 - -  ~ e - Izl2clz 

(2~) "/2 { . . . .  < <~, v,/~(~, ~)~> < ~} 
--S2 

=(2re) - ' /2 ~ e 2 ds, (4.12) 
{s:r l  <s lVl /2( t , x )w]  <r2} 

where the last equality is obtained by the direct integration taking an orthonormal 
basis in R" whose first vector coincides with V1/Z(t, x)w]VUZ(t, X)W]-1. Since the 
matrix a(z)=(aU(z)) is uniformly positive definite then for some f l>0  one derives 
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from (3.11), (4.4), (4.5), and (4.7) that for any t >  1 the following holds 

t 

IV~/2(t,x)wl2>=fl S IK*(t,u,x)wl zdu 
t - 1  

1 

=~![K*(u,O, St-"x)wl2du>=fl( sup I[K(O,u,z)l[) -~ ~ C ;  ~ 
\z, lul>_ 1 

(4.13) 

which together with (4.12) imply (4.9) and (4.10). To prove (4.11) notice that by (4.4), 

s 

II V1/2(s, St-Sx)wll 2 = ~ (K(s, u, St-~x)a(S t-~ +"x)K*(s, u, St-~x)w, w)du 
0 

t 

= ~ (K(t-- u, O, S"x)a(SUx)K*(t- u, O, S"x)w, w)du 
t - - S  

f 

< ~ ( K ( t -  u, O, S"x)a(S"x)K*(t- u, O, S"x)w, w)du 
0 

= I V1/2(t, x)wl 2 , (4.14) 

which together with (4.12) gives (4.11). [] 

We shall need also the following result. 

Lemma 4.2. For any integer k > 0 there exist M2(k), M3(k ) > 0 such that whenever 
t, e, 6 > 0 one has 

P ~ sup [S"x - X,(u, x)[ exp(M4kt) (4.15) io<_,<_, > 6} < Mz(k)~6) , 

and 

PO sup [X~(s,x)--Z~(s,x)[> 6} <<-M3(k)~) exp(Mskt ) 

for some M4, Ms > 0 independent of t, e, 6, and k. 

(4.16) 

Proof Taking into account that the coefficients in (1.3) are bounded together with 
their derivatives we derive from (1.3) and (1.4) that 

t 

sup IS"x- X~(u, x)l < C6 J" sup IS"x- X~(u, x)lds + C6c,2t 
O<_u<_t 0 0 < - u < ~ s  

s 

+ ~ o_<s_<tsup ! ~(X~(u, x))dw(u) (4.17) 

for some C 6 > 0 independent of 5, x, and t. 
Thus, by Gronwall's inequality (see, for instance, [H, Chap. 3, Sect. 1]) one has 

sup IS"x--X~(u,x)l<=eC6t(C6e2t+~sup ia(X~(u,x))dw(u)t). (4.18) 
O<_u<_t O<_sNt  
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Now taking the 2k-th power of both sides, using the inequality 

(a + c) 2k < 22k([a] 2k + [C[ 2k) 

and applying the expectation we get 

E sup IS"x-X~(u,x)[ ak 
O<_u<_t 

<e2% 2k(c'+ln2) C6et)2k + E sup a(X,(u,x))dw(u (4.19) 
O<s<t 

Employing the standard martingal estimates of moments of stochastic integrals 
(see [Fri 1, Chap. 4, Sect. 6]) one obtains 

E sup [S"x-- X~(u, X)[2k < M2(k)e2%M4kt (4.20) 
O<_u<_t 

which together with Chebyshev's inequality prove (4.15). 
Next we can write 

B(X~(u, x)) = B(S"x) + H(S"x) (X~(u, x ) -  S"x) + ~(u, x, X~(u, x))IX~(u, x ) -  S"xl 2 , 
(4.21) 

where p is a bounded vector function. Thus (1.3) and (4.3) yield 
t 

sup [X~(s, x) - Z~(s, x)[ < C 7 f sup [X~(u, x)--  Z~(u, x)lds 
O<-s<--t 00<--u<--s 

-'}- C7t sup ]Xe(u, x ) -  SUx] 2 
O<_u<_t 

+C6g2t-]-~ sup i(a(X~(u,x))-a(S"x))dw(u) (4.22) 
O<_s<t o 

for some C7 > 0 independent of e, x, and t. 
Employing again Gronwall's inequality we obtain 

sup IX~(s, x ) -  Z~(s, x)[ < e c7~ (C7t  sup IX~(u, x ) -  S"x] 2 + C682t 
O<_s<_ t - -  \ O<--u<--t 

t) + e sup ~ (cr(X~(u, x ) ) -  ~(S"x))dw(u . (4.23) 
O<_s<_t 

In the same way as in the proof of (4.19), we take the 2k-th power of both sides in 
(4.23), then employ the standard moment estimates of the stochastic integral 
above, and, finally, use (4.20) to derive that 

E sup ]X~(s, x) - Z~(s, X)l 2k ~ M3(k)e4ke~tskt (4.24) 
O<_s<_t 

for some M3(k), M s > 0 independent of e, x, t. This together with Chebyshev's 
inequality give (4.16). [] 

The formula (4.9) shows that the estimates for probabilities connected with 
Y(t, x) rely upon behavior of[V1/2(t, x)w[. The following result provides necessary 
estimates near the attracting boundary. 
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Lemma 4.3. Let F be a closed C2-class smooth St-invariant (m-1)-dimensional 
surface satisfying Assumption B with ~o < O. Then there exists an open set U D F such 
that 

dist(Stx, F) < C8 e~~ dist(x, F) (4.25) 

for any x e U and 
sup lV1/:(t, z)n(Stz)l <= C 9 (4.26) 
z 6 F  

for any t > 0 with C8, C9 > 0 independent of t. 

Proof By (2.9) and (2.11), 

In -- e(y(SUx))du + ~ ~(SUx)Q(SUx)du. (4.27) 
0 0 

Since the convergence in (2.12) is uniform then there exists to > 0  such that 

to 

,(SUT(x))du < ]aoto < 0 (4.28) 
o 

for all x from a small neighbourhood of F. Furthermore, 

[~(SUx)] = dist (S"x, F) < ISUy(x)- S"x] < C~3 + l jQ(x)l (4.29) 

where C3 is defined by (3.11). Since the function ~ is smooth then for some Cio > 0, 

I~(~(S"x))-~(s"~(x)) l  _-__ C lo l~ (S"x ) - s "~ (x ) l  

<<_ C,o(Iv(S~x)-S"xl + IS"x- s"v(x)l < C,oCY ~lo(x)l �9 (4.30) 

Thus, if ~(x) is small enough then 

,o ,o I~olto 
f Ic~(~(S"x))- ~(S"~(x))ldu + S I~;(SUx)o(SUx)l du < ~ - - ,  
0 0 

which together with (4.27) and (4.28) give 

I~(S~~ __< [e(x)le ~=~176 . (4.31) 

This means that one can choose an open neighborhood U of F such that (4.31) 
holds true for any x e  U. By (4.29) and (4.31), 

le(S~x)l < Ctaoe~O(t-to) (4.32) 

proving (4.25). Hence we can pick up T~ = T~(U) such that 

dist (S T'X, F) = ]o(S T'X)[ < 1 dist (x, F) = �89 (4.33) 

for all x ~ U. 
Next, by (4.5) for any x e F and t > 0, 

t 

[V1/2(t, x)n(Stx)] 2 ~ Cll ~ ]K*(t, u, x)n(Stx)[2du (4.34) 
0 
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for some Cla >0  independent of t. To estimate the integral above remark that 
K(t, u, x) as the differential given by (4.4) maps tangent vectors of the St-invariant 
surface F at the point S"x to tangent vectors at Stx. Thus, if (,v, n(S"x)) =0  then 

(K*(t, u, x)n(Stx), v) = (K(t, u, x)v, n(Stx)) = 0 

and so 
K *(t, u, x)n(Stx) = qo(t, u, x)n(S"x) (4.35) 

for some scalar function (0(t, u, x). Furthermore, for x e 1" and any number ~ with 
[~1 small enough it follows from (4.4) that 

IS'-"(s"x + ~in(S"x))- S t x -  ~K(t, u, x)n(SUx)[ < C a 2(t, X)(  2 , (4.36) 

where  Caz(t , x) > 0 is independent of (. 
Next, it is easy to see [cf. (5.9) below] that 

I( s'-u(s"x + ~n(S"x))- S~x, n(S'x) )l <= ~o(s ~-"(s"x + ~n(S"x)) + Ca 3(t, x)~ 2 

N Cse ~o(t-")](] + C a 3(t, X)~ 2 , (4.37) 

where Ca 3(t, x)> 0 is independent of ~ and the last inequality follows from (4.25). 
Since F is St-invariant then by (4.4) we see that K*(t, u, x)n(S~x) is normal to F at 

S"x, and so by (4.35)-(4.37), 

I K*(t, u, x)n(Stx)]--[(K(t, u, x)n(S"x), n(S~x))[ 

< Cse ~~ + Ca4(t, x)[~[, (4.38) 

where C~4(t, x) = Caz(t, x) + Ca3(t, x). 
Letting ~ 0  in (4.38) and using (4.34) we obtain (4.26) with 

C9:(2C8ClllO;o1-1) 1/2, since ao<0.  [] 

5. Attracting Boundary: An Upper Bound 

First, we shall outline briefly the strategy of proofs of the upper and the lower 
bounds in this and the next sections. After some time u(e) the process X~ will be very 
close to the attracting boundary F. Breaking the time into intervals of length T(e) 

of order In ,0 < fi < 1 we can approximate X~(t, z) on each such interval by the 

Gaussian process Z~ from the previous section. The probability of exit during the 
time T(e) for the process Z~ starting very close to F can be estimated via a kind of 
reflection principle (see (5.11) and [-Va, Sect. 7]) for the process ~Y(t, z)=Z~(t,z) 
-S tz .  The difference Stz between Z~ and e Y gives rise to the probability for 
eY(T(~), z) to stay in a narrow strip of width dist (sT(e)Z, 1") with z already very close 
to 1". Such probability has the order of this width which is about 

/r(~) \ 
exp ~ ! a(7(S"z))du ) .  This together with (2.12)lead to the assertions (i) and (ii) of 

\ / 

Theorem 2.2. 
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Next we pass to details. In this section we shall estimate the limit (2.13) from 
above. The same arguments as in Sect. 3 show that the limit (2.13) does not 
depend on a neighborhood U of an attracting boundary F provided/2 contains no 
closed invariant set  except for F. Thus, we can consider U3F described in 
Lemma 4.3. In this and in the next section we shall study only the local behavior of 
the process X~(t, x) in the neighborhood U and so we shall simplify the notations 
writing 

X~(t,x)-X~ (t,x)=X~(mm(t,z~(x)),x), (5.1) "c,(x)--'c~(x, U nG) , - v~ �9 

and 

U G q~(t, x, y) = p~ (t, x, y), 

where, recall, pV~ is the transition density of the process X vG and Ua= Uc~G. 
Denote 

64(e) = e ( ln  ! )  4 , 65(0 = e ( ln  ! )  2 , 

F(0 = {x : 0 < ~(x) < 64(e)}, k(0 = In 

[ (  ! ) P l  [ 1 ~ ( l n - I  + In xsup~ ~(x))] + 1 T(0 = In T1, l(0 = ] ln2 \ e 

u(0 = Tll(0, where T1 was introduced in (4.33), [ . ]  means the integral part and 
0 < fl < 1 is an arbitrary fixed number. Then we can write, 

sup P { z~(x) > u(e) + k(O T(e) } 
xeUc~G 

= ~w~sup J ;  q,(u(O, x, z)P{X~(k(OT(O, z)e UG}dz 

__< sup P{z~(z)>k(OT(O } 
z e r(O 

+ sup P{2~(u(O,x) e u%r(0}. 
x ~ U c ~ G  

(5.3) 

By the Markov property, similarly to (3.3), one can see that 

z e F(O 

+ k(O sup P{)~(T(O, z) ~ UG\F(O}. 
z ~ r ( o  

(5.4) 

If the process J?~(t, z) starts in F(O and it turns out to be in UG\F(O at the time 
t = T(e), then Jf~ must pass from F(e) into Ua\F(O during one of the time intervals 

E( 7] (iT~,(i+l)TO, i=0,1 ... . .  ln~ . 
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Thus, by the Markov property and the definition of 7"1 in (4.33) one has, 

sup P{3~,(T(e), z) ~ UG\F(e)} 
z e .r(s) 

< ( ln 1-~ ~ sup P{X,(TI ,  z )eU~\F(e)}  
\ e /  z e r ( o  

< ( ln  1-~ ~ sup J" q~(T,z ,y)dy 
\ ~/I z~F(g,) {Y:lSTlz--yl>�89 

(5.5) 

provided e > 0 is small enough, where the last inequality above follows from (3.6). 
Next, by the Chapman-Kolmogorov equality 

sup P{X~(u(e), x) ~ UG\F(e)} 
x~Uc~G 

= sup J . . .  j~ f q~(Tl, x, z O ' "  q,(Tt, z,(~)_ 1, zt(a)dzx.., dzt(~) 
x e Ur~ G UG\F(e) 

N/(e) y~wGSUp {~.l~_S~rl>~t,) q,(Tx, = 

+ sup i~4)(y), 
yoUnG 

(5.6) 

where 

i~4)(y) = I ... ~ q~(T1, Y, z l ) . . .  q~(T1, zt~)- 1, zt(~))dzt ... dzlt~) 
s 

and the integration in I~4)(y) is over the set ~ of sequences Zo = x, z , . . . ,  zt(,) such 
that Iz i + 1 - Srlzil < 65(e) for all i = 0, ..., l(e) - 1 and zt~,)e U~\F(e). From the defini- 
tions of T1, F(e), and 6z(e) in (4.33) and (5.2) it follows easily that ~ is empty 
and so I~4)(y)=0. Estimating also the integral of q,(Tl ,y,z)  over the set 
{ z : [ z -Sr~y l  >65@)} using (3.6), we obtain from (5.6) that for e >0  small enough, 

sup P{X~(u(e) ,x )~U~ - In . (5.7) 
xGUc~G 

Next, it remains to estimate sup P{z~(z)> T(e)} from above. 
z e r(~) 

To do this notice that by the strong Markov property for any z E F(e) one has 

P{X.(T@), z) e Q,~/,(Ua)} _>_ P{z~(z) > T(e)} 

+ P{z~(z) __ T(e)} inf Y{X~(t, ~) a Q~,/~( a~)}, (5.8) 
~ Y , O < t < T ( e )  

where Q~(V) was defined by (3.12), and, recall, X~(t, x) without "wave" is the process 
in the whole R". Since F is of C2-class then there exists C15 > 0  such that for any 
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x, y 6 U, 

I~(x)-- (x--y(y), n(y))[ = I(x -7(x), n(x)) - (x -~(y) ,  n(y))l 

= I(?(Y)- ?(x), n(y)) + (7 (x ) -  x, n(y)-- n(x))l 

< �89 5 lx -- Yi (Ix -- y[ + 10(x)]) 

< Ca six -Yl ( Ix-y[  + [Q(Y)I) 

since 

(5.9) 

I~(y)l + Ix - y l  ~ Ix -7(y)l ~ [~(x)l, 

where, recall, n(z) is the interior unit normal to F at 7(z). Since 0 < fl < 1 in (5.2) then 
from (5.9), and Lemmas 4.1 and 4.2 it follows that for any ( e  F and 0_< t_< T(e) one 
has, 

P{X~(t, ~) ~ Qe7/4(UG)} ~ P{o(Z~(t, ~)) > --�89 7/4} - P {  IX~(t, ~)--Z~(t, ~)1 _-> �89 7/4} 

>= P{~ y(t, ~), n(St~)) >= 0} 

- P {IZ~(t, ~) -  StY[ >= 88/9 } 

-P{lX~(t,  ~)-Z~(t, ~)l >�89 >�89 -Sk 

for any k >  1 and 8__<~(k). Now (5.8) and (5.10) imply for z oF(e), 

P{z~(z) > T(8)} < 2(P{X~(T(e), Z) ~ Q~/~(UG)} - �89 + 82 (5.11) 

provided e > 0 is small enough. Remark that this inequality has some similarity 
with the well known reflection principle for the Brownian motion (see, for instance, 
[Va, Sect. 7]). Since for each t > 0, 

( z~(t, ~ ) -  ~,(st~), n(S'~)) = ~( Y(t, z), n(S'z)) + e(S'z) (5.12) 

then applying (5.9), and using Lemmas 4.1 and 4.2 one obtains for any z e F(e) and 
> 0 small enough, 

P{X~(T(8), z) ~ Q~/,(UG)} =< P{e(Z~(T (e), z) => - 284} 

+ P{tX~(T(8), z) - Z~(T(8), z)] >= 8 v/4} 

< P{8(Y(T(8), z), n(Sr(~)z)) + ~(sTr > - 387/4} 
+ P{IZ~(T(~), z) - S ~ z [  >= 8 s/9} 

+ P{IX~(T(8), z) - Z~(T(8), z)[ > 87/4} 

____�89 e ~lo(Sr%)l + 81/2 . (5.13) 

From (4.27) and (4.32) it follows that there is C~6>0 such that for any x s  (7, 

C~o(x)<~(Stx)exp(- ic~( ,(S~x))du ) < C~6Q(x), (5.14) 
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and so, by (5.11)-(5.13) for any zeF(s),  

1 4 T(O u 

P{ze(z)>T(O}<=NCl6(ln~) e x p ( ! o ~ ( 7 ( S x ) ) d u ) + 3 s  1/2 (5.15) 

provided s > 0 is small enough. 
By (4.30), (4.32), Assumption B and the definitions (5.2) with 0 < fl < 1 one can 

see that for 6 > 0 there exists e(6)> 0 such that for any x ~ F(0 and e < e(6), 

1 T(e) 
(% - 6) < ~ ( ~  ! a(?(SUx))du < (% + 6). (5.16) 

Finally, by (1.7), (3.3), (5.2)-(5.5), (5.7), (5.15), and (5.16), taking into account that 
�9 ~(t, U a) decreases in t, we obtain 

1_ In ~( t ,  U ~) < % + 6 + In 
t = 

/ 1'~ 1 +p 
provided e>  0 is small enough and t > k ln~)  . Thus 

sup 2~( U G) = lim sup lim 1S fb~(t, U G) < % + 6. (5.18) lim 
t 

Since 6 > 0 is arbitrary then 

A(F) - lim sup 2~(U ~) =< %.  (5.19) 
e ~ O  

6. Lower Bound for Attracting and Neutral Boundaries 

In this section we shall complete the proof of Assertions (i) and (ii) of Theorem 2.2. 
Both assertions require only lower bounds for the limit (2.13) since the upper 
bound is already established for the case of attracting boundary in the previous 
section, and in the case of neutral boundary we only need zero upper bound which 
is always true. 

We shall start with the case of attracting boundary. Denote 

O(0 = {x ~ UG: e < ~(x) < e7/8}. 

Then for any x ~ g2(e), t > 0 and an integer k > 0, 

P{z~(x) > tk) >= ~ ... ~ q,(t, x, zO.. .  q~(t, z k_ lZk)dZ,.., dz k 
O(s) ~(e) 

>= ( inf n{z~(x)>t and X,(t,x)~2(e)}~ k. (6.t) 

For x E O(e) and t > 0 define 

~( t ,  x) = {y ~ U ~ : ( y -  ?(S'x), n(S~x)) > 2e and [ y -  Stxl < �89 
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If t >  T~ then by (4.33) and (5.9) 

~(t, x) c o(~) (6.2) 

provided e is small enough. Similarly to (5.8), by the strong Markov property one 
has 

P{X~(t, x) E ff2~(t, x)} =< P{~(x) > t and X~(t, x) ~ f2(e)} 

+ P{~(x) =< t and X~(r,(x), x) ~ F} 

+ sup P{X~(s, y) e ~(t ,  x)}. (6.3) 
yeF,  O<s<t 

From (4.15) and (4.25) it follows the existence Cw(t )>  0 such that for any x e f2(e), 
and an integer l>  0, 

P{z~(x) =< t and X~(z~(x), x) • F} < Cw(t)e I (6.4) 

provided e > 0  is small enough. Furthermore, by (5.12) and Lemma 4.2 for any 
x ~ f2(e) and t > 7"1 one has 

P{X,(t, x) ~ (2~(t, x)} > P{ ( Z~(t, x ) -  7(Six), n(Stx)> > 2e + ~3/2} 

- P{Ig~(t, x ) -  x , ( t ,  x)l _-> e3/2} 
- P{IX~(t, x ) -  S'xl >=�89 7/8 } 

>p{(y(t,x)n(S,x))>=2 e(S'x) }_~l/z 

- -  C 18(t) el/2 , (6.5) 

where Cls(t)> 0 is independent of x and e, provided e is small enough. 
Now suppose that y e F, 0 < s < t, and [Ssy-S~x[ > 2~ 7/8 then by (4.15), 

P{X~(s, y) e O,(t, x)} < P{lSSy- X~(s, Y)i >= e7/8} < C19(t) ek (6.6) 

for some C t 9(t) > 0 independent of e, provided e is small enough. Next, consider the 
case when 

y~F,  O<s<t,  and ]S~y-S'xl<2~ v/8 (6.7) 

which implies lY - S ~-sxl < 2C~ + le7/8. Then for some C2o(t ) > 0 independent of x 
and s, 

El r(s, y ) -  r(s, s'-sx)l 2 < C2o(t)d/4 (6.8) 

which follows from (4.2), the smooth dependence of o-(x) and K(s, u, x) on x and 
from the properties of stochastic integrals. Now by (5.9), (6.7), (6.8) and Lemma 4.2 
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it follows 

P{X~(s, y) ~ f2~(t, x)} =< P{ (X~(s, y ) -  y(Stx), n(Stx)) >= 2e} 

<-_ P{ (SKy -- 7(Stx) + e Y(s, S t- Sx), n(Stx)) > 2e --/3 3/2 } 

+ P{1X~(s, y)-- Z~(s, Y)I >�89 e3/2} 

+ P{I Y(s, y ) -  Y(s, St-'x)] _->�89 

< P{( Y(s, S t-sx), n(Stx)) > 2 - 2e 1/2} 

+ C21(t)e ~/2 , (6.9) 

where C21(0 > 0 is independent of x, y, s, and e. Now by (4.11), (6.3)-(6.6), and (6.9) 
for any x e f2(~), 

P{z,(x) > t and X,(t, x) ~ f2(~)} 

<P{2-2e l / 2>(Y( t , x ) , n (S t x ) )>2  e(stx) } 
- -  - -  .~_~1/2 _C22(t)81/2, (6.10) 

e 

where C22(t ) > 0  is independent of x and e. 
By (5.14) for any xeO(e), 

o(Stx) > C[6 ~ exp ,(?(S"x))du . (6.11) 
e 

Assumption (B2) implies that for any 6 > 0 there exists t(6) > 0 such that whenever 
t > t(6) and x e U, one has 

t 
~(S"7(x)du >-_ ( ~ o -  6)t. 

o 

Thus by (4.30) for any x~f2(e) and t>t(6), 

t 
j e(y(S"x))du > J o~(S"y(x))du- C23(t)0(x) > (c% - 8 ) t -  Ce3(t)e 7/8 , (6.12) 
0 0 

where C23(t)>0 is independent of x and e. Since [v1/Z(x, t)n(Stx)l is continuous 
function of x then by (4.26), 

sup IV1/2(x,t)n(Stx)[~2C 9 (6.13) 
x ~ ( t ,  x) 

provided ~ < e(t). Finally, from (4.9), (6.1), and (6.10)-(6.13), we get 

l lnP{z~(x) > tk} > ~o -  - (2C9 + C24) t - C25(t) ~/2, (6.14) 6 1 

where 

C24. = 2M 1 + ln(C 8 + 1) + ln(C16 + 1), 
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C25(t ) > 0 is independent of e and x, and we suppose that 

exp((% - 6)t + C23(t)e 7/8) >= 3/31/2 . 

Letting k ~  oo one obtains by (6.14), 

'~(U~)  ~ ~0 --  ~ --  (2C9 + C24)t - 1 __ C25(t)/31/2. (6.15) 

Now passing in (6.15) to the limit when, first,/3--*0, then t ~ 0% and, finally 6--. 0 we 
derive 

lira inf 2~( U a) > ao (6.16) 
~'-~0 

which together with (5.19) proves the assertion (i) of Theorem 2.2. 
Next, we shall pass to the neutral boundary case. Denote 

= {x  e F t'/37/8 < e(x) < 3/3v8}. 

Then, similarll( to (6.3)(6.5) using the strong Markov property one obtains for any 
t > 0 and x e 0(/3), 

P{~,(x) > t and X~(t, x) e O(/3)} 

>= P{X~(t, x) e (~(/3)} - sup P{X,(s, y) e f](e)} 
yeF, O<s<t 

- P{'c~(x) =< t and X~(z~(x), x) ~ F}. (6.17) 

Since in our case g(~)= 0 on F then by (4.27), 

Io(Stx)- O(x)l ~ C26(t)Q2(x) (6.18) 

for some C26(t ) :> 0 independent of x. This together with (4.15) imply that the last 
terms in (6.17) are of order C27(t)/3 for some C27(0 > 0 independent of x and/3. Thus 
by (4.16) we can write 

P{z~(x) > t and X~(t, x) ~ 0(/3)} = P{X,(t, x) 6 f2(/3)} - C27(t)/3 

>R~(t, x)--2C27(0/3, (6.19) 

provided/3~0 is small enough, where 

R~(t, x) =- p{/37/8 +/33/2 < Q(Ze(t, x))  < 3/37/8 --/33/2}. 

Now we obtain from (5.9), (5.12), (6.18) and Lemma 4.2 that 

R~(t, x) >= p{/37/8 + 2/33/2 < (Z,(t, x)-- 7(S*x), n(Stx)) < 3/37/8 - 2g 3/2} 

- P{IZ~(t, x ) -  Stx[ >/37/8} 

> P + 3e 1/2 < (Y(t ,  x), n(Stx)) < 381/2 

-- C28(t)/3 , (6.20) 
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for some C28(t)>0 independent of x and e. Thus, for any x~2(e) satisfying 
~(x) ~ 2e 7/8 it follows by (4.9) and (4.10) that 

Re(t, x) >= P{ -/31/8 "1- 3~ 1/2 ( (Y(t, x), n(Stx)> < - e 1/s - 3e 1/2} 

= �89 - C29(t)e 1/2 _ re(t, x), (6.21) 

where C29(t ) > 0 is independent of x and e, and 

re(t, x)=--P{ (Y(t, x), n(Stx)) > - e -  1/8 + 3el/2) (6.22) 

Similarly, for any x ~ f] satisfying O(x)< 2e 7/8 one has 

R,(t, x) >= {3e t/2 < ( Y(t, x), n(Stx) ) < e- i/8 _ 3e 1/2} 

= �89 C29(t)e tie -r~(t, x), (6.23) 

where we took into account that Y(t, x) and - Y(t, x) have the same distribution. It 
is easy to see from (4.12) and (6.22) that 

supre(t,x)~O as e ~ 0 .  (6.24) 

The final steps of the proof are the same as in the case of an attracting boundary. 
We use (6.1) with f2(e) in place of 12(e) together with (6.19)-(6.23) to obtain 

~lnP{ze(x)>tk}  > 1 ~ 1/2 ~-ln(~-2Czv(t)e- C29(t)e -re(t, x)). (6.25) 

Letting, first, k ~  0% then ~ 0 ,  and, finally, t~oo  we conclude from (6.24) that 

lira inf2~(U ~ > 0. (6.26) 
~--~0 

Since, always, 2,(UG)<0 then we obtain A(F)=0 proving Assertion(ii) of 
Theorem 2.2. [] 

7. Repulsing Boundary 

We shall obtain the result for the repulsing boundary case as, essentially, a non- 
probabilistic consequence of the first part of Theorem 2.2 concerning an attracting 
boundary. Consider again a neighborhood U of F with a smooth boundary ~ U, 
such that the representation (2.7) is valid for any x e U. We shall write the operator 
L, restricted to U using the coordinates (7, Q) and preserving the same notations for 
its coefficients 

L~ = e2(�89 0)V, V) + (b(7, 0), V))+ (B(~/, 0), V), (7.1) 

where, recall, a = ( a  u) is a matrix and b=(bi), B=(B i) are vector functions. 
Introduce the smooth measure d# = @ dQ where d7 is the volume element of F. 
Considering the action of Le on the space of twice differentiable functions with zero 
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data on 0U ~ we can write its formal adjoint operator L* (see [Fri 1, v. 1, p. 142]) in 
UG= Uc~G with respect to the inner product generated by the measure # in the 
following form 

L* = ea(�89 0)V, V> + <g(7, Q), V>)-- <B(7, Q), V> 

+ e2c(?, Q) + < V, B(7, ~)) = L~ + e2c(7, ~)-- < V, B(7, ~)), (7.2) 

where g=�89 V>-<b ,  V>, c=�89 Va>-Vb and the operator 

L e =  g2(�89 V> + <~, V>) -<B,  V) (7.3) 

meets the conditions of the first part of Theorem 2.2 since F becomes an attracting 
boundary for the dynamical system ~* -= S- t  satisfying 

d(Stx) _ B(~tx)" (7.4) 
dt 

Thus we can apply to the operator L~, and to the corresponding diffusion process 
~7~ generated by L~, the results proved in Sects. 5 and 6. 

Let, as in the previous �9 - _ v~ two sections, X ~ -  X, be the process X, stopped at the 
U ~ moment "c,(x)=%(x,U G) of exit from UG=Gc~U and let q~(t,x,y)=p, (t,x,y) 

be its transition density with respect to the measure #. Then, (see [Fri l ,  v. 1, 
0u 

p. 149]) as a function of x, q,(t, x, y) satisfies the equation ~-  = L~u, and as a 
Ov 

function of y it satisfies the equation ~- = L*v. On the space JYo(U G) of bounded 

functions f in U G with zero data on dU G consider the following operators 

P*J(x) = ~ q,(t, x, y)f(y)d#(y) and (U,)*f(y) = ~ f(x)q~(t, x, y)d#(x). 
Ut~ U G 

(7.5) 

In the same way as in Lemma 3.1 of [K 1] it is easy to see that the supermum norms 
of these operators can be expressed by the following formulas 

/I pt II = x~supvr J~ q~(t, x, y)d#(y) 

and 

I](U~)* I[ = sup j~ q~(t, x, y)d#(x). 
y ~ U  G 

Thus, by (3.6) and the Chapman-Kolmogorov formula, 

IIP's 111 -- sup  ~ ~o q.(1, x, z)q~(t, z, y)d#(z)d#(y) 
x~U G 

�9 < sup q~(1, x, z) !~ J~ q~(t, v, w)d#(v)d#(w) 
x , z ~ U  G U 

<= C18-m#(u  G) H (P',)* II. 

(7.6) 

(7.7) 
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Similarly, 

t+l JI(P~ ) 11 = sup JG JG q~(t'x'zlq~(l'z'y)d#(x)d#(z) 
y e U  G 

<~ CiF'-m#(UG) [IU~ll �9 ( 7 . 8 )  

The relations (7.7) and (7.8) yield that if 2,(U G) is the principal eigenvalue of the 
operator L~ in U G, and so exp(t2,(UG)) is the principal eigenvalue (the spectral 
radius) of U,, then L* and (pt), have the same principal eigenvalues 2~(U ~ and 
exp (t2~(U~)), respectively. Thus, we can derive estimates for 2~(U G) by studying the 
operator (pt),. Notice also that 

IIet~ll = ~=(t, UG), (7.9) 

where 45 was defined in (1.7). 
From (7.2) and the Feynman-Kac formula (see [Fre, Sect. 2.1]) it follows that 

(Pt~)*f(z)= Ef(X~(t,z))exp( i (e2c(',(s,z))--<V,B(X~(s,z))>)ds). (7.10) 

According to (2.9)(2.11) we can write 

< V, B(?, ~o)> = ~(7) + ~(?, 6)Q + div Br(?), (7.11) 

where ~(?:,Q) is a bounded function, Br(?)= B(?, O) and divBr(7)=<V, Br(~)> 
denotes the divergence. Since we suppose that the dynamical system S t preserves a 
measure having a smooth positive density r(7) with respect to the volume on F, 
then by the Liouville theorem (see [CFS, p. 48]) 

0 = div(r(7)Br(?)) = r(7) div Br(7) + <Br(7), vF(7)>, 

and so d i v B r ( 7 ) = -  <Br(7), V lnr(7)>. 
Thus by (1.4), 

i div Br(SUT)du = - i d (lnr(SUT)du= lnr(7)- lnr(SZ7) . (7.12) 

This is the only place where we use the assumption about smooth invariant 
measure, which we need to assure boundedness of the integral in the left hand 
side of (7.12). 

Notice that by (7.5) and (7.6) it follows 

]I(Pt~) * l[ = sup (Pt~)*Zv~(x) (7.13) 
x~U G 

where Zvr denotes the function identically equal one in U a and equal zero outside 
of U ~. 

In the remaining part of this section we shall use the notations (5.2) with T~ 
chosen to satisfy (4.33) for the dynamical system ~t = S -t in place ofS t. By (7.10) and 
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the Markov property of the process J?~ similarly to (5.3)-(5.7) we can write for any 
x ~ U ~ that 

(p~(~.) + k(,OT(.~))*ZV,~(X ) 

E (exp/'~(~) \ \  

< e c3~ ( sup (PT('))*Zv~(z))k(~) 
\z~r(~) 

+exp(2C3o(U(e)+k(e)r(e))-(ln!) 3) (7.14) 

provided e > 0 is small enough, where C30 > 0 is independent of e and x. Applying 
(4.15), (4.30), and (5.16) to the dynamical system ~t and to the process )~  one 
obtains from (7.10)-(7.12) that for any z eF(e), 

(P[(~))* ZvG(z) <-_ C31 e-(no- ~)T(e)p{,~e(z ) > T(e)} + ,~ (7.15) 

provided e < e(6) is small enough, where C 31 > 0 is independent of z and e, and f~(z) 
--- inf ( t :-~(t ,  z)~ U ~ is the exit time for ~ playing here the same role as z~(z) 
played for X~ in Sects. 5 and 6. Applying (5.15) and (5.16) to the flow gt and the 
process g~ we derive from (7.13)-(7.15) that 

(u(e) + k(e) T(e))- 1 In II (p2(,o + k(~)T00), It < -- 2(% -- 6) + In (7.1 6) 

provided ,g < g((~) is small enough. 
Since 

II(p~+s) * II < I1 (P~)* I1 H(P~)* I1 

for any r,s>O then by (7.7)-(7.9) and (7.16), taking into account that q),(t, U ~ 
decreases in t, we obtain 

l_ln~(t  , g o ) < _ 2 ( % _ 8 ) +  In (7.17) 
t = 

for all t >  In , provided e<~(~) is small enough, proving (2.15). Thus 

2,(U~ lim l - ln~(t ,  U~ - 2 ( % - ~ ) +  In (7.18) 
t - * o O  t - -  

Letting, first, e--*0, and then ~ 0  one derives 

lira sup 2~(U G) <= - 2%. (7.19) 
8 ~ 0  

To obtain a lower bound consider again the region ~(e) introduced at the 
beginning of Sect. 6. Then by (4.15) applied to ~t and J(~, by (7.10)-(7.12), and by the 
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Markov property of the process )?, for any t > 0, x e O(e) and an integer k > 0 one 
has 

(P~k)*Zvo(x)  => (~nf)P{~,(z) > t and Jf,(t, z) e f2(e)} 

x exp - e(7(S"u) )du  - C32(t)~ 1/2 , (7.20) 

where C32(t)> 0 is independent of x and e, provided e > 0 is small enough. 
Finally, the same arguments as in (6.10)-(6.15) together with (1.6), (7.7)-(7.9), 

and (7.13) imply 

lim inf 2~(U ~) > - 2% (7.21) 
e--+0 

which in combination with (7.19) proves Assertion (iii) of Theorem 2.2. [] 

R e m a r k  7.1. The adjoint operator method works in some other cases, as well. 
Suppose that F is an St-invariant (m-1)-dimensional attracting surface in the 
sense of Assertion (i) of Theorem 2.2 and U is an open neighborhood of F 
containing no other SMnvariant sets except for F and having a smooth boundary 
OU. The difference is that now we consider F as an interior and not as a boundary 
invariant set. Then estimates of [Ve] and [Fri 2] imply that lim 2,(U)= 0. Thus if 

g--*0 

we have, instead, F C U being a repulsing St-invariant surface satisfying the 
conditions of Assertion (iii) in Theorem 2.2, then passing to the adjoint operator in 
the same way as above we shall obtain that lim 2~(U) = - c%, where % > 0 is given 

e ~ 0  

by (2.12). A similar result holds true if F is not necessarily of the co-dimension one. 
Moreover one can extend the result to the case when Y is a normally hyperbolic 
manifold, i.e. when F has a hyperbolic structure in transversal to F directions (see 
[HPS]). But this generalization requires much more sophisticated dynamical 
systems machinery from [HPS] and [-K 2] than anything we have employed in this 
paper. 

8. Concluding Remarks 

If a connected component F of the boundary of aG of G is not St-invariant, but F 
has St-invariant subsets, then, in general, the situation becomes more complicated. 
Still, combining results of [-K 1] with Theorem 2.2 of the present paper we are able 
to treat some of these cases. Assume, for example, that (9 ~ F is a fixed point of the 
dynamical system S t isolated from the rest of the limit set. Then we can write 

B ( x )  = 1 I ( x  - -  (9) + 0(Ix-- C I2), (8.1) 

where H is a matrix. Suppose t h a t / / h a s  an eigendirection ~ which is transversal to 
F at (9. Then any vector x can be uniquely represented as x = x~ + X r  where xr ~ 
and X r  belongs to the tangent hyperplane ToE to F at (9. Let U be a small 



neighborhood of (9 with a smooth boundary and U G = U n G .  It is not difficult to 
understand that the study of the exit time from U ~ for the process X~ needed to 
determine A((9) by (2.2), can be carried out, actually, independently for projections 
of X~ into ~ and ToF. The projection into ~ can be treated by means of the one- 
dimensional version of Theorem 2.2 and the projection into ToF is being studied 
using results of [-K 1]. Thus, ifyx is an eigenvalue corresponding to ~ and Yz,..., 7,. 
are other eigenvalues of H then 

A((9) = - (IReTd + =fx max(O, Re'k) ) �9 (8.2) 

Fig. 1 

One can obtain corresponding results also for other types of St-invariant subsets 
on F combining the results of [K2] with the one-dimensional version of 
Theorem 2.2. If the matrix/7 does not have an eigendirection transversal to F at (9 
then the corresponding asymptotics can not be derived readily from the results of 
this paper. Still, one can solve the problem using the Gaussian approximation 

e m x + e e-"Ua((9)dw(s)  of the process X~ near (9. 

As we have already pointed it out, our assumptions at the beginning of Sect. 2 
imply the "nocycle" property of compacts K i from [K 1], since if an ordered 
sequence of compacts contains one of them twice, then all of them must belong to 
the same equivalence class. The following example shows that without the 
"nocycle" property one can not expect nice and easily formulated results as in 
Theorem 2.1. On the other hand this is the first example when the principal 

eigenvalue 2~(G) tends to zero as ( l n l ) -  1. In all previously known cases this 

convergence to zero was either polinomial in e as in [DEF] or exponentially fast in 

/ 
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/ 
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_ - a) in 1 and The orbits of the S t in 
\ 

g a s  Iv ] [Ve]. dynamical system o u r  example 
/ 

are indicated on Fig. 1 by thin lines. 
Here G is a ring-type region between two connected components F1 and Fz of the 
boundary #G which are drawn as boldface circles. 

All orbits of S t entering G through F2 approach eventually the loop f 
consisting of the points (91; (92 of the saddle type and the orbits 11, la, 

11 = {z:Stz~(92 and S-~z-~(9~ as t ~ o o } ,  

12={z:Stz-+(91 and S-tZ--~(92 a s  t--,oo}. 

This loop forms the limit set of the dynamical system S t in G. Near the fixed points 
(91 and (92 we have the representation (8.1) with some matrices I/1 and /-/2, 
respectively. Let 7(11), 7(21) and y(2), 7(22) be the eigenvalues o f H  1 and II2, correspond- 
ingly, such that ReT~ax)<0<ReT(21) and ReT(,2)<0<Rey(22). Our picture corre- 
sponds to an attracting loop ~o which will be satisfied if 

[ReT(~l)[ > Re7(21) and [ReT(~2)[ > Re~(2 2) . (8.3) 

Proposition 8.1. In the above example 

for some C33>0 independent of  ~, provided 0 < ~ <  1. 

Proof We shall only sketch the proof leaving details to the reader. Introduce the 
subdomains Di C G, i = 1,..., 5 bounded by stable and unstable curves li, i = 1,..., 6 
and the boundaries F1, F2 as it is pointed out on the above picture. We shall start 
with the upper bound for 2~(G). Employing the method of Sect. 5 one can show that 
there exist constants b6, C34 > 0 such that 

sup P{X~(C34[lne[, x) e D 1 } < 1 - 66 . (8.5) 
xeD1 

On the other hand, combining estimates of Lemmas 4.1 and 4.2 with arguments of 
[ K 3 ]  we conclude that for some (~7, C35 >0, 

sup P ( z , ( x ) > C 3 5 1 n l l  < 1 - 6 7 .  (8.6) 
xeG\Dt ( e )  

To justify (8.6), remark that, if x ~ 14w(12kQa((gz) ) where b > 0  is arbitrary and Q~ 
denotes a b-neighborhood, then according to [K 3] the process X~(t, x) exits near 
13 for the time of order (Rev(z*))-l[lne[ with probability close to �89 If 
x ~ D3w(D2\Qa((92)) then one can see from the proof in [K 3] that this probability 
may only increase, and so it is essentially bounded from below by �89 If 
x ~ DznQo((g2) one can show that with probability, at least, �88 the process X~(t, x) 
gets outside of Qa((92) in D 2. Using the strong Markov property and the above 
arguments we conclude that in this case X~(t, x) exits near I3 for the time of order 
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((Re ~2 ')) - ' + (Re ~2)) - ,) - ~ In 1_ with probability, at least, }. Similar arguments hold 
e 

true concerning the fixed point (92 and the domains Da and Ds. Now (3.3), (8.5) 
and (8.6) together with the Markov property imply 

ln(1 - -  5667) 
2 3 _-< (8.7) 

To obtain a lower bound for 2~ we shall use the Gaussian approximation Z~ in 
the same way as in the proof of Theorem 2.2. By Lemma 4.2 one can find 6s > 0  
small enough such that for 7"(e)= 6811nel one has 

P{IZ~(T(e), x ) -  X~(~F(e), x)l > e 3/2 } 

+ P ~  sup IS,x_X,(u,x)I>e3/4~ <~2. (8.8) 
[.o < u < ~'(a) J 

Define/5 = {x e D 1 : dist(x, F2) > 69} for some 69 > 0 small enough. Then there is 
6 , o > 0  such that 

inf dist(Stx, SG)> 6,o>O. (8.9) 
x e  ~) , t  > O 

By the Markov property, similarly to (6.1) it follows that 

> ( nf (8,o) 

where X~ was defined in (5.1). Next, (8.8) and (8.9) imply for any xe /5  that 

P{X?(7"(e), x) e/5} ___ P{X~(7"(e), x) e D} -- P{z~(x) <= T(e)} 

>= P{X~(7"(e), x) e/5} - e 2 (8.11) 

provided e > 0 is small enough. 
The estimate of the right hand in (8.11) depends on a location of x. For x e/5 

satisfying dist(Sr(~ l, wl2)> e a/4 we have by (8.8), 

> 1 (8.12) 

If x ~/5 satisfies dist (Sft")x, l, ~3/2) ~ e 314, but 

dist (Sf(~)x, (9, w (92) > e 2/3 

then using the coordinate system (y, Q), where 

~(x) = dist (x, 11 w 12) = Ix - 7(x)l, 

one obtains in the same way as in Sect. 6 that 

P{ X~(7"@), x) a/5} >�89 e (8.13) 
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provided e > 0 is small enough. Similarly, if ISf(~)x- (9~1 < e 2/a for some i = 1, 2 then 
estimating the projections of X~(rF(e), x), Z~(~F(e)x), and S~'(~)x on both eigendirec- 
tions of the matrix H~, we derive 

P{X~(7"(e), x) e 5} > 61, (8.14) 

for some 6 ,1>  0 independent of x and ~, provided e >0  is small enough. Finally, 
(1.6) and (8.10)-(8.14) imply 

ln(�89 1) 
0 __> L ( c )  _-> - -  (8.15)  

line[ 

which together with (8.7) prove (8.4). [] 

To support our claim that in a general cyclic situation the asymptotic behavior 
of 2~(G) hardly can be described in simple terms, notice that if in (8.3) we have the 
inequalities in opposite directions then the loop ~ = l~ w 12 becomes repulsing, and 
a combination of methods from [-K 1] and from the present paper yields that 2~(G) 
does not converge to zero as e--*0 but to some negative number. 

Remark 8.1. All results of this paper can be readily modified for the case of a 
smooth manifold in place of R m. 

Appendix: Exit Time and the Exit Distribution 
for an Attracting Boundary Case 

The methods of this paper enable us to study also the asymptotic behaviour of the 
expectation of the exit time from a neighbourhood of an attracting boundary F, as 
well as the corresponding exit distribution Via the well known connection these 
provide the corresponding asymptotics for solutions of the Poisson type and the 
Dirichlet problems (see [Fri 1]). 

Let G, U, F, ~o, and z~(x)=v~(x, U~G)  be the same as in Theorem 2.2(i). If 
x E U n G  = U ~ and t(x)= in f{ t :S tx  r U G} < oo then, clearly, Ez~(x)~t(x) as e--*0. 
Otherwise we have the following: 

Theorem A.1. I f  S~x ~ U ~ for all t > 0 then 

lim (line[- iEL(x) )= I~ol- 1. (A.1) 
e--~O 

Proof  By an easy refinement of the estimates (4.27)-(4.32) we derive that 

o(x)e(~O - o)t < Q(Stx) < Q(x)e(,O + o)t (A.2) 

for each x ~ V-- U ~ provided t > t(6) > 1. Then for any c5 > 0 small enough, each 
positive e < e(6) and every sequence of points x~ e V, i = 0, ..., n satisfying 

tSt(~)xi- xi+ 11 < ~(lne) 2 for all i = I, ..., n, (A.3) 
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the relation (A.2) implies 

e,tta) (~o- ~)Q(Xo) - C36e(ln~) z < O(x,) < e "~(~) (~o + a)Q(Xo) + C36~(lne) 2 (A.4) 

where C36 > 0 is independent of e, 6 and the sequence Xo,..., x,. Thus integrating 
over sequences Xo, ..., x, satisfying (A.3), and similarly to (5.6)-(5.7) employing the 
Chapman-Kolmogorov equality together with (3.6), one obtains for any g > 0 small 
enough that 

P { X~(n( 6, g)t( 6), x) r r(~)} < exp(-Ilnel3),  (A.5) 

where X, and F(e) are the same as in (5.1) and (5.2), and n(6,e) 
= [(t(6)[ao + a])- 1]lne[]. 

Using (5.15) and (5.16) with T(e)= ]lns[ 1/2 we obtain by (A.5) and the Markov 
property that 

P{z~(x) > n(6, e)t(6) + Iln~l 1/2} < P{_~(n(6, e)t(6), x) (~ F(e)} 

+ sup P{~(z)> [lne] 1/2} <exp( - ] lne l  1/3) (A.6) 
z~V(E) 

provided e > 0 is small enough. 
For  an x satisfying the condition of Theorem A.1 define inductively the 

following sequence of sets Go(e, x) = {x}, Gi+ l(e, x) - -  {y ~ U~:[St(a)z-y] < e(ln5) 2 
for some z ~ Gi(5, x)}. Clearly, if y ~ G,(e, x) then there exists a sequence Xo = x, 
Xl . . . .  , x , = y  satisfying (A.3). Since we assume that Stx~ U G for all t > 0  and so 
dist(Stx, F ) ~ 0  as t ~  then 

inf (Stx, Rmk(UGw F)) =- fl(x) > 0. (A.7) 
t>O 

Put fi(b,e)=[(1--b)(t(6)]ao-5])-l]lne]J. Then by (A.2) and (A.4) for any 
n = 1, ..., ~(6, e), 

inf dist (S'y, F) > �89 e 1 - ~ (A.8) 
O<-t<-t(O),y~Gn(e,x) 

for small enough 5>0.  It follows from (4.15), (A.7), and (A.8) that 

inf P { ~ ( y ,  t(a)) ~ G,(e, 6)} > 1 - C37(6)e 2 
1 <_n<gt(a,~),y~Gn- l(e,x) 

for some C37(6)>0 and small enough 5>0.  
Next, by (A.9) and the Chapman-Kolmogorov equality we derive 

(A.9) 

P{%(x)>~(g,b)t(6)} >= ~ ... ~ q~(t((~),X, Zl) 
Gt(x,~) G~(~, ~)(~,a) 

x q,(t(6), zl, z2) ... q~(t(6), zn(.,a)_ 1, zn(~,a))dzl.." dz~(~,a) 

> ( inf P{X~(y, t(5)) ~ G,(e, \~ =<.~(~,a),~.-,(~,.) a)}/~(~' 
) 6) 

> (1 - C3 7(a)g:) "(~'a) >= 1 - 5 (A.IO) 
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for 0<e<e(6) ,  where q~ was defined in (5.1). Thus by (5.17), (A.6), and (A.10), 

Ez,(x)/llne[- 1/Ic%1 = 1/llnel i P{z&)>u}du-  l/Ic~ol 

I~ol- qlnel 
= l/llnel 5 [P{z~(x) > u} - l ldu 

o 

+l/ l ln~L ~ e { ~ x x ) > u } d .  
I~1 - 1 [lne[ 

n(e, 6)t(6) 

< l/lln~l S IP{v~(x)>u}- lldu 
0 

+ 2(t(fi)/llnel)In(e, 6 ) -  ~(e, 6)1 + Ilne}- 1/2 
Ilne[3/2 

+ ,(~, o)t(o)~ P{z~(x)>u}dU+lln~/2P{'c'(x)>u}du 

< ~t(6)I~ol- 1 _~_ 2(1~o + 61-1 _ ( 1  - 6 ) I %  - 6 l -  1) 

+llnel-1/2 +llnel3/Zexp(-llnell/3)+ ~ el/2~'~ (A.11) 
Ilnel3/2 

provided e > 0  is small enough. Letting, first, e ~ 0  and then 6 ~ 0  we obtain 
/A.1). []  

The asymptotic behaviour of the exist distribution does not seem to obey a 
general and simply formulated law. We shall exhibit here an example where this 
distribution diverge when e ~0 .  Notice that another example of a divergence, when 
the dynamical system S t has a repulsive type fixed point in G, was presented in [E]. 

Let G={x: l /4<lxb<l}CR 2, r={x: lx]=l} ,  and L~=I/2E2A+(B(x),V) 
where 

B(x) = 2x(1 --Ixl)/Ixl + U~/zX, 
U~ox = (x 1 cos ~o + x2 sin ~o, - xl sin r + x2 cos ~o) 

Then, clearly, 

Stx = (1 - e-  zt(1 - [xl))Utx/lxl 

and 

and 2 > 0 .  
(A.12) 

(A.13) 

sup[Vl/2(t, x)n(Stx)] < C3s, (A.14) 

where V is defined by (4.5) and C38>0 is independent of t > 0  and 2 > 2 o > 0 .  
Furthermore, we can write 

o(Stx) = e -  ~t(a - Ixl) (A. 15) 

and 

7(S*x) = U,x/Ixl . (A.16) 
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Denote for any k > 1, 

g k = ( 2 M ) - l e  -2~k'~ and gk=ek e -~z ,  (A.17) 

where M > 0 will be chosen big enough. Let ~ = (1, 0) ~ R E, 

/"1-- U Ue~ and F2=U~F 1. (A.18) 
lel=<~/4 

Proposition A.1. Suppose that 2, M > 0 big enough and x o = 4/2 then for each 6 > 0 
there is k(6)> 0 such that 

P{X~k(z,~(Xo), Xo) e r 1} > 1 -- c5 

and 

provided k > k(6). 

Proof. Clearly, 

P{Xg~(z~(Xo), Xo) ~ F2} _-> 1 -- 

(A.19) 

(A.20) 

Q(S2~kxo) = Mgk, Q(S ~(2k+ 1)Xo) = Me k (A.21) 

and 

7(S2'~kXo) = 4, 7(S ~(zk + 1)Xo) = -- 4. (A.22) 

If 2 is big enough then the estimates of Lemma 4.2 give 

P ~ sup IS"x -  X~k(u, x)[ (A.23) [O_-<u=<~z(2k+ 1) ~f l}  ~g5/~6 

and 
P {o =<,_<~(2k+SUp 1)IX~k(u'x)--Z~(u'xl[>e~'/2} <ek (A.24) 

for each fl > 0, x ~ G, and k > No. 
Denote G(e)= {x:0(x)~2e3/2}. By the strong Markov property 

P{X~k(Z~zk, Xo) ~ G(ek)} > P{z,k(Xo) < 2nk} inf P{X,~(s, y) ~ G(ek)} 
y~F,O<_s<_2xk 

(A.25) 

Using (A.23) and (A.24) in the same way as in (5.10) one derives from (A.14) that 

inf P{X~(s, y) ~ G(~k)} > 1/4 (A.26) 
yeF, O <=s<-- 2~k 

for all k big enough. Furthermore,  by (4.12) similarly to (5.13) we have 

P{X~k(2nk , Xo) ~ G(~k) } ~ P{lX~k(2rck, Xo) -  Z,~(2nk, Xo)] > ek 3/2} 

+ P{IX~(2~k, Xo) -  s2~kXo[ > e~/s} 

+ P{ (Z~k(2~zk, Xo)-])(s2~kXo), n(S2nkXo)) < '~k} 

< 2e k + P{(Y(27~k, Xo) , n(SZ'~kXo)) < 1 -- M} < 2ek + 32 (A.27) 
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provided M > C385-1, 5 > 0 small enough and k > T:'(5). Now (A.25)-(A.27) imply 
that 

P{z~(Xo) <= 27zk} =< 6/4 for k = k(5). (A.28) 

By (A.15) and (A.17) 

~(S 2,~k + ~/SXo) = e -'~'~/SMek. (A.29) 

Similarly to (5.11)-(5.15) one can obtain from (A.29) that 

P{L(Xo) >__ 2rck + z~/8} < 6/4 + e[ t lp(S2r~k + ~/Sx0) [ 

< e-;"~/SM + 6/4 < 5/2 (A.30) 

provided 2 >_ 2(5) > 0. Finally, by (A.23), (A.28), and (A.30), 

P { X~(z~k(Xo), Xo) • F~ } <= P { z~(Xo) (s [2uk, 2uk + u/83} 

X + P  sup ] ~k(Z~k(Xo), XO)-- S Xo] 
2r&<_u<_ 2r~k + ~z/8 

> inf dist(S"x o, OG\F~)~ < 6 (A.31) 
2~k <_u <_ 2r~k + rc/8 J 

proving (A.19). The proof  of (A.20) is going through exactly in the same way, as 
above. []  
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