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Summary. Let F(x) be a nonarithmetic c.d.f, on (0, or) such that 1 - F ( x )  
=x-~L(x), where L(x) is slowly varying and 0 < ~<  1. Let a(x) be regularly 
varying with exponent fl > - 1. A strong renewal theorem (of Blackwell type) 

for generalized renewal functions of the form G(t)= ~ a(n)F"(t) is proved 
n = 0  

here, thus extending the recent work of Embrechts, Maejima and Omey 
[1] and that of Erickson [4]. 

1. Introduction 

Let {Xi;i>l} be a sequence of positive independent random variables with 
common nonarithmetic distribution function F(x) and write S o=0,  S.=X 1 
+ X 2 +  ... + X ,  for n >  1. 

Generalized renewal functions G(t) of the form 

G(t) = ~ a(n)P(S,<t)= ~, a(n)F"(t), (1) 
n = 0  n = 0  

where {a(n); n>0} is a sequence of nonnegative constants, have of late received 
an increasing amount  of attention. For  example, see papers [1] and [2] and 
references contained therein; papers [3, 5, 6, 8] consider special cases such as 
subordinated probability distributions and harmonic renewal measures. A good 
deal of this work is concerned with the asymptotic behavior of G(t) as t -~ oc 
(weak renewal theorems) under various assumptions on the moments of F(x) 
and the constants a(n). The purpose of this paper is to extend some of the 
recent work of Embrechts, Maejima and Omey [1] to the infinite mean case. 
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In particular, we extend their following Blackwell type theorem for generalized 
renewal functions which have a(n) regularly varying with exponent fl __> - 1 .  

Theorem A Embrechts, Maejima and Omey [1]. Let F(x) be nonarithmetic and 
have finite mean #. Let a(x)=xt~L(x), where L(x) is slowly varying. I f  f l > - 1 ,  
then, for every y > O, 

(G( t+y) -G( t ) ) . .~y#-~- la ( t )  as t--+oo. (2) 

When fl -- - 1, if L(x) is monotone and, for some K >_ O, 

( 1 - F ( x ) ) ~ K a ( x )  as x ~ o o  

or if x 1 + ~ (1 - F ( x ) ) =  o (1)for some 6 > 0 as x ~ 0% then (2) also holds. 
When the mean # is infinite, the asymptotic behavior of G(t) as t-~ oo in 

the special case a(n)= 1 has been well-studied. In this ease, G(t) becomes the 
renewal function U(t) and the following theorems are well-known (see Erickson 
[4]). Theorems B and B' are equivalent and yield the analogue of the weak 
renewal theorem, while Theorem C yields the analogue of the strong renewal 
theorem. 

Theorem B. Let L(x) be slowly varying. Then for 0 < ~ < 1, 

(1 - F ( x ) ) = x - ~ L ( x )  (3) 
if, and only if, 

U ( t ) ~ t ~ ( L ( t ) F ( 1 - ~ ) r ( l + ~ ) )  -1 as t ~ o o .  

Further, the truncated mean function 

re(t) ==- i (1-F(u))du , ,~L( t )  as t ~ o o  
0 

if and only if, 
U(t)"~t(L(t)) -1 as t ~ o o .  

An alternative form is due to Erickson [4]. 

Theorem B'. Let 0 <_ ~ <_ 1. The following are equivalent and each implies (4) below: 

(i) re(t) is regularly varying with exponent 1 -  
(ii) U (t) is regularly varying with exponent ~. 

V ( t ) ~ t ( m ( t ) F ( l + ~ ) F ( 2 - ~ ) )  -~ as t ~ o o .  (4) 

Theorem C. Let F(x) satisfy (3) with 1/2<ct_< 1. Then, for every y > 0 ,  

(U(t+y)-U(t)).-~yc~(m(t)) -1 as t-~oo. 

I f  O<o~<<_ 1/2, then 
lira m(t)(U (t + y ) -  U (t))= yc, ,  
t - ~  oc~ 

where the constant ca--(F(~) F ( 2 -  ct))-2. 

The extension of Theorem B to generalized renewal functions in the infinite 
mean case was given in [71 and is stated as Theorem D below. 
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Theorem D Omey [7]. Let 0<=__<1 and p > 0 .  Let {c~(n); n=>0} be a sequence 
of nonnegative constants and let G(t) be of the form (1). Any two of  the following 
implies the third: 

(i) re(t) is regularly varying with exponent 1 - ~  

(ii) ~ a(k) is regularly varying with exponent p 
k = 0  

(iii) G (t) is regularly varying with exponent p ~. 

Furthermore, if (i) holds for 0 <- ~ <_ 1 and 

• a(k)~nPLl(n)  as n ~ o o ,  (5) 
k=O 

where L 1 (x) slowly varying and p > 0, then 

G(t)~(U(t))PLI(U(t))C(~,p)  as t--+o% 

where the constant C(a, p) = F(1 + p)(F(1 + ~))P (F(1 + ap))-  1 

In this paper we extend the strong renewal Theorem A to the infinite mean 
case. The proof of Theorem 2, which is our main result, makes use of Theorem 
D and a result proved in Theorem 1, which could be of independent interest. 
Our results follow. 

Theorem 1. Let F(x) satisfy (3) with 1/2 < a < 1. Let Q (t) be a nondecreasing regu- 
larly varying function with exponent fi > O. If, for every y > O, 

( Q ( t + y ) - Q ( t ) ) / Q ( t ) = O ( t  -1) as t - -*~,  (6) 

then, for every y > 0, 

( (U*Q) ( t+y ) - (U*Q) ( t ) )~yA(~ , f i ) (m( t ) ) - lQ( t )  as t ~ o o ,  (7) 

where the constant A (~, fl) = F(1 + f l ) (F(2-  ~) F(a + fl))- 1 and * denotes convolu- 
tion. 

Theorem 2. Let F(x) satisfy (3) with 1 / 2 < e <  1. Let G(t) be of the form (1). Let 
a(x) be regularly varying with exponent fl> - 1 such that na(n) is nondecreasing 
in n. If, for every y > O, 

lira sup t {1 1 - - F ( t + y ) / <  

then, for every y > 0, 

(G(t + y ) - G ( t ) ) ~  y D(cq fl)(m(t)) - l a(U (t)) as t--+ ~ ,  

where the constant D(e, fl) = ~(F(1 + a)) ~ F(2 + fl)(F(1 + a(fi + 1)))- 1. 

This obvious corollary compares Theorems C and 2. 
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Corollary 1. Under the assumptions o f  Theorem 2, for  every y > 0, 

6(t + y)-  G(t) 
U ( t + y ) -  U(t) 

. ,~C(~ , f i+ l )a (U( t ) )  as t ~ .  

The next section gives the proofs, while the last section has a few remarks. 

2. Proofs 

Proof  o f  Theorem 1. We first prove (7) for f l> 0. Fix y > 0  and choose 6 such 
that 1/2 < 6 < 1. Write 

t 

((U*Q)(t  + y ) - ( U * Q ) ( t ) ) =  ~ (U(t  + y - z ) -  U ( t - z ) )  Q(dz)  
O -  

t + y  

-- ~ U ( t + y - z )  Q ( d z ) - I ( t ) + J ( t ) ,  
t 

say. Define I1, I2,13 and 14 by 

I ( 0 - -  - + f + 
0 [~tl  [~tl  [tl 

---- I t (t) - - I  2 (t) + I a (t) + 14 (t), 

where [x] is the greatest integer function. We now prove a series of lemmas 
which approximate the integrals I ~ , I 2 , I 3 , I  4 and J. We return to the proof 
of Theorem 1 after Lemma 4. 

Lemma 1. I2(t), I4(t) and J(t)  are o(Q(t)/m(t)) as t--+ oo. 

Proo f  These estimates easily follow from (6), Theorem C and the monotonicity 
and regular variation of U(t), Q (t) and m(t). 

Lemma 2. If fi > 0, 
lira 11 (t) m (t)/Q (t) = y ca fl ~ u p - 1 (1 - u) ~ - 1 d u. 
t---~ oo 0 

Proof  Choose e > 0. By Theorem C there exists a t o -= to (e) such that 

( y c ~ -  e) <=m(t)(U (t + y ) -  U (t)) <=(yc~ + e) 

for t > to, where Co = (F(a) F ( 2 -  ~))- 1. Write 

6t  

I i ( t ) =  ~ ( U ( t + y - - z ) - -  U( t - - z ) )  m ( t - - z ) / m ( t - - z )  Q(dz). 
0 

We have for t > t o ( 1 - 6 )  -1 

(y c~ -- e) 111 (t) <= 11 (t) m (t)/Q (t) < (y c a + e) I ,  t (t), (9) 
where 

fit 

111 (t) = ~ (m (t)/m (t -- y)) Q (d z)/Q (t) = ~ (m(t)/m(t (1 - u))) Q (t d u)/Q (t), 
O -  0 -  

since t > to (1 -- 6)- 1 and z < 6 t imply that t -  z > to. 
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Since m(t)/m(t(1-u)) converges uniformly to ( l - u )  ~-1 for u in [0,3] and 
the measures Q (t d u)/Q (t) converge weakly to flu p - l d  u as t ~ oe, 

6 

lira 111 (t) = fl .[ (1 -- u) ~- 1 u p- 1 du. 
t - - *  0 0  0 

Letting t ~ oe followed by e --* 0 + in (9) proves the lemma. 

Lemma 3. lira sup 13 (I) m(t)/Q (t)= o (1) as (3 ~ 1- 
t---> O9 

Proof By the monotonicity of U(t) and Q(t), 

[ t ] -  1 k+ 1 

13(0= ~ ~ ( U ( t + y - z ) - U ( t - z ) ) Q ( d z )  
k=[~t] k 

I t ] -  1 

< Z ( U ( t + y - k ) - U ( t - k - 1 ) ) ( Q ( k + l ) - Q ( k ) )  
k=[6t] 

I t ] -  1 

<Q(t) ~ (U(t + y - k ) -  U ( t - k -  1))(Q(k+ 1)-Q(k))/Q(k). 
k = [~t] 

For large t and for some constant C independent of 6. 

[t] - 1 

13(0= CQ(t) ~ ( U ( t + y - k ) -  U ( t - k -  l))/k 
k = [6t] 

[t]--I 

<=3cQ(t)t -1 
k = [6 t] 

by assumption (6). We allow C to be perhaps different values upon subsequent 
appearances for convenience. We approximate the summations by integrals using 
the monotonicity of U(t): 

[ t ] - i  t - [ 6 t l + y + l  t ( 1 - 6 ) + y + 2  

f U(u)du< f 
k=[6t] t + y - [ t ] +  1 y+ 1 

and 
[ t ] -  1 t - [ 6 t ] -  1 t ( 1 - 6 ) -  l 

Z U ( t - k - 1 ) >  ~ U(u)du>= f U(u)du. 
k = [~ t] 0 0 

Hence, for large t, 

( t ( 1 - ~ ) + y + 2  t ( 1 - ~ ) - I  ) 

I3(t)<=CQ(t)t -a ~ U(u)du-  f U(u)du 
y + l  0 

( t ( 1 - ~ ) + y + 2  y + l  \ ) 

<-CQ(t) t-~ I U(u)du-  ~ U(u)du 
t(1 -- 6) -- 1 0 

t(1 - -6 )+y+2  

<=CQ(t) t -1 ~ U(u)du<=CQ(t)t-lU(t(1-6)+y+2)(y+3). 
t ( 1  - -  r - -  1 
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By the regular variation of U(t) and Theorem B', 

Ia (t) <__ C (1 - 6) ~ Q (t)/m (t) 

for large t. This completes the proof. 
Returning now to the proof of Theorem 1, we proceed to establish (7) for 

fl > 0. Let B(a, b) be the Beta function. By the triangle inequality, 

I((U* Q)(t + y ) -  (U* Q)(t)) m(t)/Q ( t ) -  yc~fl B(fl, e)l 

< ]Ii (t) m (t)/Q ( t ) -  y c~ fl ~ u ~ - 1 (1 - u) ~- 1 d u[ 
0 

+ [la (t) m (t)/Q (t)] + 113 (t) m (t)/Q (t)] + 114 (t) m(t)/Q (t)] 

+ ]J(t)m(t)/Q(t)] +yc~fl]B(fl, ~ ) -  I ur  1 -u )~- idu]  �9 
o 

Letting t ~ ~ and applying the above lemmas yields 

lim sup ]((U* Q)(t + y ) -  (U* Q)(t)) m(t) /Q(t)-  yc~ fiB (fi, ~)] 
t--+ oO 

N C(1 - 6)~+yc~fllB(fl, ~ ) -  ~ u ~- l(1 - u )  ~- 1 dul. 
0 

Since c~flB(fl, a)=A(e,  fl) and the right side of the above goes to zero as 6-* 1-, 
we have proved (7) for fl > 0. 

The fl = 0 case requires only the reexamination of integral 11. 

Lemma 4. I f  fl = 0, lim 11 (t) m(t)/Q (t)= y c~. 
t -*oo 

Proof It suffices to show that 11 l ( t )~ 1 as t ~ oo because (9) is still valid. Since 
the measures Q(tdu)/Q(t) converge weakly to the measure which gives mass 
1 to the origin as t ~  oo and m(t) /m(t(1-u))= 1 when u=0,  the limit of Ii1(t) 
as t -* oo is indeed 1. 

We can now complete the proof of Theorem 1. The triangle inequality gives 

]((U* Q)(t + y ) -  (u* Q)(t)) m (t)/Q ( t ) -  y c~[ < Ill (t) m(t)/Q ( t ) -  y c~l + 112 (t) m(t)/Q (t)[ 

+ ]13(0 m(t)/Q(t)] + 114(0 m(t)/Q(t)] + [J(m(t)/Q(t)]. 

Since A(e, 0)= c~, replacing Lemma 2 with Lemma 4 and letting first t ~ oo and 
then 6 ~ 1 - establishes (7) for fl = 0 and we have proved Theorem 1. 

t t 

Proof of  Theorem 2. Let Gi(t) = ~ uG(du) and Q(t) = ~ uF(du) in what follows. 
0 0 

Fix y > 0. A simple calculation shows that 

t(G(t + y ) -  G(t)) < Gt (t + y ) -  G 1 (t) <= (t + y)(G (t + y ) -  G(t)). 

Rearranging yields 

(t + y ) -  ~ (G~ (t + y) - a 1 (t)) _<_ a (t + y ) -  a (t) < t -  1 ( a  ~ (t + y) - G 1 (t)). 

Therefore, 

( G ( t + y ) - G ( t ) ) ~ t - i ( G l ( t + y ) - G t ( t ) )  as t-~ oo. (10) 
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Let b(n ) - (n+  1) a(n+ 1)-na(n)  and 

R(t) = - ~ b(n)F"(t). 
n = O  

Since ~ b(k)=(n+ 1) a(n+ 1) is (fi+ 1)-varying, 
k = O  

R(t). .~U(t)a(U(t))C(~,f i+l) as t - -*~  (11) 

by Theorem D. 
We give a series of lemmas which enable us to determine the asymptotic 

behavior of Ga( t+y) -Gl ( t )  as t ~  ~ .  
t 

Lemma 5. The truncated mean function Q(t)= ~ uF(du) is a nondecreasing ( 1 -  e)- 
0 

varying function such that Q(t) ~ am(t) as t ~ oo. 

Proof This is a standard result from regular variation. 

Lemma 6. I f  for every y > 0, (8) holds, then, for every y > O, 

((2( t+y)-Q(t)) /Q(t)=O(t  -1) as t ~ o o  

Proof By the definition of Q (t), 

0 < t (Q (t + y) - Q (t))/Q (t) <= t (t + y) (F (t + y) - F (t))/(2 (t) 

~(( t+y) (1 -F( t ) ) /Q( t ) )  t(1 (1--F( t+y))~ 
1 

Since Q(t),~am(t) and t ( 1 - F ( t ) ) / m ( t ) ~ l - a )  as t ~ , ( t + y ) ( 1 - F ( t ) ) /  
(2(t),-~(1-~)/a as t ~  ~ .  Hence, by (8), 

lim sup t ((2 (t + y) - (2 (t))/(2 (t) < oo. 
$-~oO 

Lemma 7. G1 (t) = (R* U* (2)(t). 

Proof The proof involves manipulations of convolutions and is omitted. 

Lemma 8. For every y > O, 

(Gl( t+y)-Gl( t ) ) , ,~ayR(t )  as t ~ .  

Proof Choose 6 such that 1/2 < 6 < 1. Write 

G 1 (t -J- y) - -  G 1 ( t )  = i (( V * (2) (t + y -- Z) -- (U * (2)) (t -- z) R (d z) 
O -  

t + y  

+ S ( g * ( 2 ) ( t + y - z ) R ( d z )  
t 

= + U*Q) ( t+y - - z ) - (U*(2 ) ( t - z ) )R (dz )  
\ 0  - 6 t  I 

t -by  

+ ~ (U*(2 ) ( t+y - z )R(dz )  
t 

=-- J1 (t) + J2 (t) + K(t) 
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by Lemma 7. We proceed to examine the integrals J~, Jz, and K. First, it follows 
from Lemmas 5 and 6 and Theorem 1 that 

((U*Q)(t+y)-(U*Q)(t)) . .~ay as t ~  oe. (12) 

Choose 5>0. Hence, for large t , (c~y-e)R(6t)<Jl( t)<=(ay+~)R(6t  ). Since 
R(6t)..~6~(P+I)R(t) as t-* oo by (11) and e is arbitrary, 

lim J1 (t)/R(t)= ay6 ~(~+ 1). 
t---~ O0 

Secondly, since (U* Q)(t) is bounded on bounded intervals and (12) holds, there 
exists a constant C such that J2(t)< C ( R ( t ) - R ( 6  t)). Therefore, 

lim sup J2 (t)/R (t) < C (1 - 6 ~ (p + 1)). 
t ---~ oO 

Finally, for K we have 
K (t) <__ (U* Q)(y) (R (t + y) - R (t)) 

by the monotonicity of (U*Q)(t). Therefore, by the regular variation of R(t), 
K(t)=o(R(t)) as t-* oo. 

By the triangle inequality, 

I(G1 (t + y)-- G, (t))/R (t)-- ~y[ < I J1 (t)/R(t) - ~y 6 ~(p + 1) I + [J2 (t)/n (t)l + [K(t)/R(t)l 
+~yll-b~(P+i) I. 

Combining the above estimates gives 

lirn sup [(G 1 (t + y) - G, (t))/R (t) - = Y l < (C + c~ y) (1 - 6 ~ (a + ')). 
t ~ o O  

The lemma follows by letting 6 ~ 1 -. 
The proof of Theorem 2 can now be completed. From Lemma 8 and (10) 

and (11), 

(G(t + y)-G(t)),,,c~ yt  -1 U (t) a(U (t)) C(~, f i+ 1). 

Since D(~, fl)=~(F(1 +c 0 F(2-~))  -~ C(~, f l+ 1), an application of Theorem C 
completes the proof. 

3. Remarks 

The following obvious corollary handles the 0 < ~ <  1/2 cases and shows that 
if a strong renewal theorem holds for the renewal function, then a strong renewal 
theorem holds for the generalized renewal function. 

Corollary 2. Theorems I and 2 remain true for 0(~ < 1/2 /f it is known that for 
every y > 0 

lim m (t) (U (t + y ) -  U (t)) = y c~. 
t ~ o O  
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Assumption (8) of Theorem 2 was made in order to apply Theorem 3 with 

Q(t)= S uF(du) and is not as restrictive as it might appear. If F(x) has a regularly 
0 

varying density, then (8) holds. Many different slowly varying functions in (3) 
satisfy (8). For example, if L(x) is ultimately constant or of the form 

L(t) = (1Ogk (t)) p, 

where p is real and 1Ogk(t) is the k-th iterated logarithm, then (8) is satisfied. 
The assumption does require more than just the first order asymptotic behavior 
of the tail of the distribution F(x), however. While Lemma 6 can actually be 
strenghtened to an "if and only if" result, the verification of (8) should be more 
immediate than the verification of (6) when given the distribution F(x). 

The assumption that ha(n) be nondecreasing can be made without loss of 
generality in the finite mean case (see Embrechts, Maejima and Omey [1]), 
but must be made explicitly in the infinite mean case, as we have done in 
Theorem 2. The reason for this is that x(1-F(x)) need not converge to zero 
as x --* oe in the infinite mean case. 
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