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Abstract 

The consequences of a change in a random parameter are determined for a decision model with 
more than one source of randomness. The two cases of independent and stochastically dependent 
sources of risk are discussed. Four comparative static theorems are given. These state the effect 
of first degree stochastically dominant shifts or risk decreases for one random variable while the 
other random variable is held fixed. Deterministic transformations are used to represent random 
parameter changes. The results are presented in the context of the coinsurance demand model with 
a risky insurable asset and background risk. 
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1. Introduction 

Determining the consequences of a change in a random parameter is an important 
and frequently studied comparative statics problem. Rothschild and Stiglitz [1970, 
1971] analyzed the effect of an increase in risk and others have examined the 
impact of first or second degree stochastically dominant shifts. Refinements of 
this work have considered special types of risk increases or particular determin- 
istic transformations as the means of altering the rand~om parameter. These re- 
search efforts have been carried out in specific models, such as that of the com- 
petitive firm, and in general decision models. In a majority of the analysis, 
however, the decision model includes only one source of randomness. ~ Papers 
which do include multiple sources of risk often assume independent risks. 

An important direction in which this comparative static analysis can and should 
be extended is to examine decision models with multiple sources of randomness 
including cases where the risks are not independent of one another. This work 
takes modest steps in that direction. As a preliminary matter, two conceptual 
questions which arise in models with multiple random parameters are addressed. 

*The Geneva Risk Economics lecture given at the 18th Seminar of the European Group of Risk 
and Insurance Economists, September 23-25, 1991, Facultes Universitaires Catholiques de Mons, 
Mons, Belgium. 
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The first asks which changes in a random parameter are most usefully analyzed. 
This question arises because the various definitions of risk increases or stochas- 
tically dominant shifts formulated for single random parameter models do not 
necessarily have the same meaning in the multiple random parameter case. The 
second question deals with which assumption to make concerning the other ran- 
dom parameters, as the parameter of interest is shifted. This is an especially im- 
portant question when the random parameters are not stochastically independent. 

The analysis and examples used in this paper are formulated within a specific 
rather than a general decision model. The insurance demand model with two 
sources of randomness is used. This model has the advantage of being linear in 
the random parameters. This linearity makes the analysis less cumbersome, but 
also implies that the insurance model is similar in some respects to the portfolio 
model with two risky assets. This allows recent analysis by Hadar and Seo [1990] 
and Meyer and Ormiston [1991] to be exploited. The results that are obtained 
replicate and extendifindings in the insurance literature, but more importantly, 
illustrate the issues involved in comparative static analysis in decision models 
with multiple sources of risk. 

The paper is organized as follows. First, the insurance demand problem is pre- 
sented and two examples are given to illustrate the issues which can arise when 
more than one random parameter is included in a decision model. Next, in section 
3, the questions of which changes in the random parameter are to be analyzed, 
and what is to be assumed concerning the other random parameters, are ad- 
dressed. An appropriate ceteris paribus assumption is made and beneficial 
changes in random parameters are defined. Both the case of stochastic indepen- 
dence and dependence are handled. Deterministic transformations are an impor- 
tant facet of the modeling procedure. Finally, in section 4, these assumptions and 
definitions are applied, and their effects illustrated, in the insurance demand 
model. Several propositions concerning the demand for insurance are developed. 

2. The insurance purchase decision model 

Assume an individual decision maker possesses two random assets !2 and [M - ~], 
where the support of 12 is [0,B] and the support of [M-~]  and ~ is [0,M]. The 
random variable 12 represents the value next period of all assets the decision 
maker possesses, excluding the asset of primary interest. This asset, whose value 
next period is [M-~] ,  has maximum value M which is subject to random loss 
of size g. The decision maker can choose to insure against the loss by acquir- 
ing 8 units of insurance which provides a payment [X-P], where 0 < P < M 
is the price paid for this insurance. 8 is the coinsurance rate. The decision 
maker is assumed to choose ~ to maximize the expected utility from Z = 
[M-~,] + 815~-P] + 12. RA(Z) and RR(Z) are used to denote the decision mak- 
er's measures of absolute and relative risk aversion, respectively. RA(z) > 0 is 
assumed. 
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The first order condition for an interior maximum for this problem requires that 
E{u'(Z)[~-P]} -- 0. If this equation has a solution, it yields a maximum when 
E{u"(Z)[~-P]2} < 0. This condition holds under strict risk aversion. As usual, 
comparative static analysis in this model proceeds by determining the impact 
of whatever change is of interest on the first order condition expression, 
E{u'(Z)[~-P]}. Signing the change in this expression is equivalent to determining 
the direction in which the decision maker would adjust 8, as long as an interior 
solution prevails initially. 

Because there are two random parameters in this decision model, results quite 
different from the one parameter version, where ~ is nonrandom, are possible. 
Two examples are used to illustrate these differences, and to indicate which types 
of changes in a random parameter can lead to unusual results. 

Consider the following initial situation. Let ~ take on values 20, 10 and 1Oand 
[M-X] take on values 20, 50, and 50 in states S~, $2 and $3, respectively. The 
probability of S~ is 1/2 and for Sz and $3 it is 1/4. Also, M = 50. Let the price of 
the insurance policy, P, equal 15, the actuarially fair value. For all risk averse 
decision makers, the optimal 8 is 2/3. This value yields a risk free wealth next 
period of 50. Even though this insurance is priced in an actuarially fair manner, 
the optimal 8 is less than one because the decision maker wishes to preserve some 
of the riskiness of [ M -  ~] in order to offset the riskiness of ~. [ M -  X] and ~ are 
negatively correlated in this case. 

For the first example, which displays the effect of altering a random parameter, 
change [ M -  ~] so that it takes on values 30, 30 and 50 in states $1, $2 and $3. This 
change is a mean preserving contraction of the initial distribution of [ M -  ~] or ~; 
that is, it is a Rothschild and Stiglitz decrease in risk according to their mean 
preserving spread definition. This change in the insurable asset, however, has 
eliminated the possibility of reducing the decision maker's risk to zero. For all 
decision makers, their next period wealth has a mean value of 50, but risk cannot 
be reduced to zero by an appropriate level of insurance. Thus, all risk averse 
decision makers are made worse off by this mean preserving contraction. The 
change is not beneficial to risk averse agents because it alters the diversification 
possibilities in this two asset portfolio. 

Consider now a second example where the random parameter [ M -  ~] is altered 
so that it takes on values 50, 20 and 20 in the states S~, $2 and $3, respectively. 
The distribution function for asset [ M -  ~], or the loss X itself, is unchanged from 
that initially given. The insurable asset, now and in the initial setting, are equal in 
distribution to one another. For this new [M-~]  it is still possible to eliminate 
risk completely. Choosing 8 = 4/3 does this, and this is the coinsurance rate all 
risk averse decision makers would select. The change in [M-~]  has caused the 
correlation between ~ and [M-~]  to become positive rather than negative. The 
decision maker now chooses to over insure [M - ~] in order to also provide pro- 
tection against losses in ~. The important feature of this example is that even 
though no change in the marginal distribution function for either random param- 
eter has occurred, the optimal 8 has changed. 
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Two main points can be extracted from these examples. The first is that changes 
in a random parameter which increase expected utility and are considered bene- 
ficial in a one random parameter setting need not increase expected utility if other 
random parameters are present. 2 Second, in discussing changes in random param- 
eters, it is necessary that one do more than restrict the distribution functions 
describing the random alternatives on an individual basis; the relationship be- 
tween the random parameters must also be restricted. Next, ways of dealing with 
these points are suggested. 

3. Beneficial changes and ceteris paribus 

Decision models with random parameters allow many comparative static ques- 
tions to be formulated. In deciding which of these to address, a researcher must 
determine which are of interest, and which can be answered in an interesting way. 
Questions must be both interesting and solvable. This section deals with posing 
interesting and solvable comparative static questions concerning the effects of 
shifting one random parameter in a multiple random parameter decision model. 

In one random parameter models, the effects of a change in that random param- 
eter are of interest if that change is known to increase expected utility for all 
agents in a well defined group. Presumably this is because those agents can and 
would take actions which result in that type of change. Rothschild and Stiglitz 
decreases in risk and the various stochastically dominant shifts are examples of 
changes which increase expected utility for specific groups of decision makers? 

For other changes in random parameters, such as simple or strong decreases in 
risk, or option like changes, researchers argue they are worthy of study by point- 
ing to situations where they do occur. The effects of these changes are interesting 
to analyze because they can and do occur in the real world. Each of these reasons 
is used here in determining which types of random parameter changes to analyze 
in multiple random parameter models. 

Recall the first example given earlier which shows that a distribution function 
change can cause all risk averse decision makers to be worse off even though for 
that single random parameter, it is mean preserving contraction, and in a single 
random parameter setting would be a Rothschild and Stiglitz decrease in risk. The 
point of the example is that in decision models with multiple random parameters, 
it is not immediately obvious which distribution function changes increase ex- 
pected utility. It is important, however, that this be determined. When a change 
in a random parameter alters expected utility in a known way, this fact can be, 
and usually is, exploited in determining its impact on the level of the choice vari- 
able selected by the decision maker. 

In summary, if a change in a random parameter increases expected utility, the 
change is of interest. In addition, this also gives information which can lead to a 
solution to the comparative statics question. For these two reasons, this analysis 
focuses on changes in random parameters which alter expected utility in a known 
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way. In some instances it is possible to demonstrate that a particular change in- 
creases or decreases expected utility for the decision maker or a group of decision 
makers. In other cases, that it does so is one of the assumptions characterizing 
the change. Changes which increase expected utility are referred to as beneficial 
changes in the random parameter. 

A second methodological issue which arises in decision models with two ran- 
dom parameters concerns which ceteris paribus assumption to make. It is partic- 
ularly important to decide what to assume concerning the other random parame- 
ters as the parameter of interest is shifted. Obviously, to focus on the impact of 
the change of interest, the other random parameters should be kept fixed. It is 
not clear, however, what this means, or if this is even possible when the random 
parameters are not independently distributed. Thus, the cases of independence 
and dependence are discussed separately. 

When the random parameters are independently distributed, the ceteris paribus 
assumption used here is that of Hadar and Seo, and requires that the distribution 
functions for the other random parameters be fixed and remain independent as 
changes are made in the random parameter of interest. In the insurance demand 
model, this assumption implies that the distribution of ~ is not changed as that for 
[ M -  X] is shifted and vice versa. Notice that the relationship and correlation be- 
tween these random parameters is not allowed to change under this assumption 
since independence is maintained. 

When the random parameters, such as ~? and [M-X],  are stochastically depen- 
dent, one cannot alter the distribution function for the one without changing the 
marginal and/or conditional distribution functions for the other. 4 Stochastic de- 
pendence, like deterministic dependence, requires that when one of the two vari- 
ables is changed, the other must change also. Unlike deterministic dependence, 
however, there are a large number of possible changes which can occur. Hence, 
a researcher still can impose any one of a variety of ceteris paribus assumptions 
concerning the other random parameters. 

The second example presented earlier gives a clue as to how to proceed. The 
example shows that it is not sufficient to only require that the marginal distribu- 
tion of the other random parameter be held fixed. The relationship and correlation 
properties must be held constant to the extent that this is possible. Deterministic 
transformations are a means of doing this. 

A deterministic transformation of a random parameter replaces every realiza- 
tion of that parameter by a new value determined according to a function defined 
over the support of the random parameter. This function is often required to be 
nondecreasing. When random parameter X is transformed by a nondecreasing t(x), 
the resulting random variable has marginal cumulative distribution function (CDF) 
F~(.) which is related to the original F°(-) by the equation F~(t(x)) = sup{F°(w): 
t(w) -< t(x)}. For the case of strictly increasing transformations this reduces to 
Fl(t(x)) = F°(x). 

When X is transformed deterministically the marginal CDF for 51 is not changed. 
Because t(x) is nondecreasing, the correlation between X or [ M -  X] and ~? cannot 
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be completely reversed as was the case in the second example. Even stronger 
statements can be made. For instance, if :~ is transformed linearly, the correlation 
between X and ~? does not change at all as a result of the transformation. For 
nonlinear nondecreasing transformations the correlation can change, but the 
change is limited. Thus, deterministic transformations are a way to change one 
random parameter while keeping the marginal distribution of the other fixed, and 
also maintaining the relationship and correlation properties between the parame- 
ters to the extent that this is possible. 

Requiring that a change in a random parameter be able to be accomplished by 
means of a deterministic transformation does not severely restrict the types of 
changes which can be analyzed. A nondecreasing t(x) can be used to accom- 
plish any change in X as long as X is continuously distributed. A shift from any 
initial marginal CDF F°(.) to any final F~(.) is carried out by t(x) = inf{w: 
F~(w) >- F°(x)}. Thus, virtually all of the analysis carried out assuming indepen- 
dence and using CDF shifts can also be accomplished using deterministic trans- 
formations .5 

In summary, when [M-X] or ~2 are transformed deterministically, the marginal 
distribution of the other is kept unchanged and the relationship between the two 
random parameters is also maintained. This makes analysis of the effects of de- 
terministic transformations more likely to yield determinate results. Since deter- 
ministic transformations are also of interest because they represent methods of 
changing a random parameter which are available in the marketplace, this is the 
manner in which the ceteris paribus assumption in models with dependent random 
parameters is specified in the analysis. Specifically, when the random parameters 
[M - X] and ~? are not independently distributed, the impact of a change in one of 
them on the demand for insurance will be determined by calculating the effect of 
transforming it in a deterministic fashion. 

4. Analysis of the insurance demand model with two risky assets 

The series of questions which are addressed in the following theorems all concern 
the effect of a change in the loss distribution on the agent's demand for insurance. 
The demand for insurance is measured by the optimal coinsurance rate. In ad- 
dressing these questions, it is assumed that the price of insurance, P, and the 
maximum value of the asset, M, are fixed. Assuming P to be fixed is an important 
simplifying assumption. It can be justified in two ways. First, it is a reasonable 
assumption when the price of insurance is not tied to a specific decision maker's 
loss distribution, but is instead based on a population loss distribution which is 
not assumed to change. Alternatively, when the price for insurance is based only 
on the mean of ~ and a mean preserving change in ~ occurs, then P would not 
change when ~ is shifted. 

When ~ and ~ are independently distributed, the analysis follows a standard 
methodology replacing one cumulative distribution function (CDF) by another in 
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the expression to be signed and then determining the impact of this change. Let  
F°(x) and F~(x) denote the initial and final CDFs for X, respectively, and G(y) the 
CDF for 5< 

The impact of  the change from F°(x) to Fl(x) on expected utility in this insur- 
ance demand model is given by: f~f~u(z)d[Fl(x)-F°(x)]dG(y) .  Integrating by 
parts this becomes - ( 8 -  1)f0Bf~u'(z)[F~(x) -F°(x)]dxdG(y) .  If  the shift from F°(x) 
to FJ(x) does not change the mean of X, the expression can also be written as: 
(8  --  I ) 2 f B f M u " ( z ) f ~ [ F I ( s )  - -  F°(s)]dsdxdG(y). 

To determine whether  a change in X would cause the decision maker to increase 
or decrease 8, one must determine its effect on E{u'(Z)[X - P]}. If E{u'(Z)[X- P]} 
becomes positive (negative), then the optimal 8 is larger (smaller) than its initial 
value assuming an initial interior solution. One begins with the first order condi- 
tion: fgf0M{u'(z)[x-P]}dF°(x)dG(y)= 0. This is subtracted from the similar 
expression with FZ(x) replacing F°(x). This yields: Qf~{u ' ( z ) [x -P]}d[F  l 
( x ) -  F°(x)]dG(y) as the expression to be signed. 

If one can show that {u'(z)[x -P ]}  is increasing (decreasing) or concave (convex) 
in x for all y, then well known results for the one random parameter  case can be 
used to sign the inner integral and the expression. This proof  method is used  in 
theorems 1 and 3. 

The first theorem which is presented examines the effect of unambigiously re- 
ducing the loss distribution by means of  a first degree stochastically dominant 
shift assuming independence between the random parameters.  That is, the CDF 
for ~ is changed from F°(x) to Fl(x) satisfying [Fl(x) - F°(x)] ->0. Under  indepen- 
dence, the effect of such a shift on expected utility is easily determined. If  8 < 1, 
decreases in the loss distribution increase expected utility, but i f8  > l the reverse 
is true. It is well known that under independence all risk averse decision makers 
choose 8 < 1 whenever  P is greater than the mean of  X. This is assumed here. 
Thus, these FSD shifts are beneficial for this group, although this fact is not used 
in the proof  of the theorem. 

Theorem 1 : I f 2  and y ate independent and 2 undergoes a first degree stochasti- 
cally dominant decrease and remains independent of  y, then decision makers with 
R A ( Z  ) > 0 and Re(z) <- 1 will decrease 8. 

Proof." It is sufficient to show that {u'(z)[x - P]} is increasing in x for all values for 
y. The derivative of  this expression with respect to x is equal to: 

{u'(z) + u " ( z ) [ x - P ] ( 8 -  1)} = 
{u'(z) + u"(z)(Sx - x - 8P + P)} = 
{u'(z) + u"(z)(z - M - y + P)} = 
u'(Z)[1--RA(z)(z -- M - y + P)] = 
u'(z)[1 - RR(Z) + RA(z)(M + y - P)] > 0 

under the hypotheses of the theorem. 
QED 
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This result says that, under independence,  adverse selection will occur. That  
is, if losses for one decision maker are lower than those of another in the sense of 
FSD, then for a fixed price of insurance and all else equal, the decision maker 
with smaller losses will also purchase less insurance. If a fixed price of  insurance 
is offered to a pool of  otherwise identical agents, those with higher loss distribu- 
tions would select more insurance. 

Theorem 2 considers the same question but removes the assumption of inde- 
pendence.  Examples can easily be constructed to show that if ~ is made smaller 
in a first degree sense, and the correlation between ~ and 9 is also increased, then 
the decision maker could choose more insurance because doing so would now 
provide insurance against the risk in ~ as well. In theorem 2, the first degree 
change in ~ is represented as resulting from a deterministic transformation. Thus,  
large changes in correlation are ruled out. This is sufficient to allow Theorem 1 
to be extended to the case of stochastic dependence.  The stringent independence 
restriction is replaced by a less restrictive one involving deterministic transfor- 
mations. 

When ~ and ~ are not independently distributed, let H(x,y) be the joint CDF 
for ~ and ~, and d2H(x,y) denote [02H(x,y)/0x0y]dx-dy. To determine the effect on 

of transforming random parameter  ~ using t(x) one must sign the first order 
condition expression with x replaced by t(x). That is, one must show that 
f~f0Mu'(z)[x-P]dZH(x,y) is positive or negative when x is replaced by t(x). 
One can do this directly, or alternatively, another way in which this can be 
accomplished is as follows. Define k(x) = t ( x ) - x  and Z(0) by Z(0) = M - 
(~+0.k(~)) + ~ [ ~ + 0 . k ( ~ ) - P ]  + 9. Determining the sign of the derivative of  
f0Bf0Mu'(z(0))[x+0-k(x)-P]d2H(x,y) for all 0 in [0,1] gives the desired sign. This 
procedure has been used for many years beginning at least with Sandmo [1970, 
1971], and is followed here in the next theorem. 

Theorem 2: I f  Yc is transformed by t(x) satisfying t(x) - x  = k(x) <- O, then decision 
makers with RA(Z ) > 0 and RR(Z) <- 1 will decrease ~. 

Proof." The derivative of  f~J'0Mu'(z(0))[x + 0 .k (x ) -  Pld2H(x,y) with respect to 0 is: 
/0BJ'0M{u'(z(0)) + u"(z(0))[x+0"k(x)-P](8-1)}k(x)d2H(x,y) .  Using the same sub- 

B M stitutions as in the proof  of theorem 1, this can be rewritten as: fofo 
{U' (Z(0) ) [1  --  RR(Z(0) )  + RA(Z(0))(M + y - P)]}'k(x)d2H(x,y). This is negative 
for all 0 in [0,1] and hence the first order condition expression must be negative 
at 0 = 1, i.e. when x is replaced by t(x). 

QED 

Meyer  [1989] shows that t(x) leads to a first degree stochastically dominant 
decrease in X if and only if k(x) -< 0 for all x. Thus, this theorem indicates that 
when X and ~ are stochastically dependent,  the effect of  a FSD decrease, accom- 
plished by means of a deterministic transformation so the relationship between 
and 9 is held fixed, is still to reduce g. Adverse selection still occurs as was the 
case under independence.  
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First degree stochastically decreasing transformations of the loss pmameter  X 
do increase expected utility for all decisions makers who prefer more to less, as 
long as g < 1. To see this note that dEU/d0 = f~fMoU'(z(O))(g-1)k(x)d2H(x,y). 
This is positive for all 0 if k(x) -< 0, u'(z) -> 0 and g < 1. Thus, EU evaluated at 
0 = 1 is larger than EU evaluated at 0 = 0. 

The next two theorems examine the effect of  a change in the riskiness of  the 
loss distribution. With independence,  this is characterized by a change in the CDF 
for X satisfying f~[F~(s)- F°(s)]ds -< 0. With independence,  these, decreases in the 
riskiness of the loss distribution do increase expected utility for all risk averse 
decision makers. As the example presented earlier shows, without independence 
this is not necessarily the case. No restriction on g is required in this statement. 

T h e o r e m  3: Suppose 2 and y are independent and 2 undergoes a Rothschild and 
Stiglitz decrease in risk that maintains independence between 2 and y. Then de- 
cision makers who are increasingly relative and decreasing absolute risk averse 
with Re <- 1 will decrease ~. 

Plvof." It is sufficient to show that {u'(z)[x - P]} is convex in x for all values for y. 
The first derivative of  this expression with respect to x as derived in the proof  
of theorem 1 is: u'(z)[1 - RR(z) + RA(z ) (M+ y -P ) ] .  Hence the second deriv- 
ative with respect to x is: ( 8 - 1 ) { u ' ( z ) [ - R ~ ' ( z ) +  R A ' ( z ) ( M + y - P ) ]  + u"(z) 
[1 - RR(z) + RA(Z)(M+y-P)]}. This expression is positive under the hypoth- 
eses of the theorem as long as g < 1, which is the case. 

QED 

This theorem indicates that with independent sources of risk, a risk averse de- 
cision maker will choose to insure less risky assets at lower coinsurance levels. 
For this case the assumption that P is fixed is based on the notion that insurance 
pricing depends only on the mean of  the loss distribution. Thus, the interpretation 
here can be for a reduction in risk for a particular agent rather than a comparison 
across agents within a fixed pool. 

As yet no general theorem concerning arbitrary Rothschild and Stiglitz de- 
creases in risk has been demonstrated for the dependent  case. Even the use of 
deterministic transformations does not seem to make such a result possible. In 
part at least, this is because these changes can reduce rather than increase ex- 
pected utility even when accomplished by means of  a deterministic transforma- 
tion. Theorem 4 illustrates an attempt to make a general statement concerning the 
effect of particular risk changes on insurance demand when the risks are not in- 
dependent,  but it is not a very general result. 

Assume that the decision maker 's  loss distribution is changed so that the rela- 
tive ordering of  losses is maintained, but small losses become larger and large 
losses become smaller, where small and large are defined relative to the price of  
the insurance policy. That  is, a deterministic transformation t(x) which is increas- 
ing, with t(x) -> x for x -< P and t(x) -< x for x ~> P is used to alter the riskiness 
of  X. Because t(P) = P and t(x) is nondecreasing the changes in the losses are not 



16 J A C K  M E Y E R  

sufficiently large to alter their size relative to P. Small losses get larger, but not 
larger than P and large losses get smaller, but remain larger than P. 

The above restriction on the change in risk is not enough. Moreover, even if 
one requires that such a transformation also maintain the mean of :1, it is not 
sufficient for a comparative static result. In fact,i this is not even enough to imply 
that the decision maker's expected utility is increased. Instead of adding a mean 
preserving assumption, an assumption which explicitly requires that expected 
utility be preserved or increased is made. The following theorem shows that /f 
expected utility is increased by the special change in :1 defined above, then such 
a transformation also leads to a reduction in the demand for insurance. 

Theorem 4: Let  t(x) be increasing with t(x) >- x for  x <- P and t(x) <- x for  x ~ P. 
I f  expected  utility does not decrease when 2 is transformed by t(x), then the trans- 
format ion causes the risk averse decision maker  to reduce 8 when 8 < 1. 

Proof: Recall from the proof of theorem 2 that the derivative to be signed 
is: f0Bf~{u'(z(0)) + u"(z(0))[x + 0.k(x) - P](8- 1)}k(x)dZH(x,y). This equals: 

B M t f0J'0 u (z (0))k(x)d2H(x,y) + J'0Bf0~u"(z(0))[x + 0-k(x)- P](B- 1)k(x)dZH(x,y). The 
second portion of this expression is negative for all 0 in [0,1], since k(x) and 
[x+0.k(x)-P]  are opposite in sign for all 0 in [0,1] and both u" and (8-1)  are 
negative. The first portion of the expression is opposite in sign to dEU/d0 at 
0 = 0. Because EU is concave in 0 and t(x) does not decrease EU by assumption, 
it must be that dEU/d0 > 0 at 0 = 0. Hence, the first portion is negative also, 
and one can conclude that the optimal 8 is decreased. 

QED 

The conclusion reached in theorem 4 is consistent with the general finding for 
independent risks presented earlier as theorem 3. A particular reduction in risk 
which increases expected utility leads to a lower level of insurance purchase even 
with dependent risks. Notice that in theorem 4 only risk aversion is assumed 
although very strong conditions are placed on the change in :i which occurs. Cer- 
tain strong and simple risk changes can be represented by transformations satis- 
fying the conditions in theorem 4. 

5. Conclusions 

Those familiar with the Hadar and Seo portfolio paper will recognize the results 
and the method of proof in theorems 1 and 3. They are very similar to Hadar and 
Seo's theorems and proofs concerning the effect of a first degree improvement or 
mean preserving contraction in :1 on the optimal amount of :1 to hold in a portfolio. 
Hadar and Seo are concerned with the selection of an optimal oL to maximize Eu(2) 
where 2 = e~:1 + (1 -  o0~, for independently distributed assets. They show that 
FSD improvements or Rothschild and Stiglitz decreases in risk cause the decision 
maker to include more of the asset in the optimal portfolio. 
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Theorems 1 and 3 can be interpreted in a portfolio choice context since choos- 
ing ~ is equivalent to choosing how much of the insurance "asset" to include in 
the optimal portfolio. The insurance asset, however, is not independent of [M - X], 
but is in fact perfectly negatively correlated with it. This means that the results 
here need not be consistent with those of Hadar and Seo. In fact, one is and the 
other is directly opposite. 

When losses get smaller in the FSD sense, insurance becomes a lower valued 
asset in the FSD sense, and hence according to Hadar and Seo, if independently 
distributed, less insurance would be included in the optimal portfolio. The con- 
c]usion here is the same even though insurance is not independently distributed 
from [M - X]. For Rothschild and Stiglitz decreases in risk, however, the situation 
is quite different. When the loss parameter becomes less variable, insurance be- 
comes less risky and if independently distributed more would be included in the 
optimal portfolio. Because of the perfect negative correlation, the finding here is 
just the opposite. When insurance becomes less risky it is also less necessary for 
diversification reasons and 8 is decreased. 6 

One can easily combine the results in theorems l and 3 to obtain a theorem 
concerning SSD changes in the loss distribution. Also, theorems concerning 
strong, relatively strong, or the most general restriction of this form, relatively 
weak increases in risk, defined by Dionne, Eeckhoudt and Gollier [1991], can be 
demonstrated under independence. Finally, the same methodology can be used to 
address the subject of background risk and the effect of changing it. This is carried 
out by changing the CDF for 2? when independence is assumed or by transforming 
~? in a deterministic fashion for the dependent random parameter case. This ex- 
tension is left to "future research." 
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Notes 

1. Exceptions include the analysis of incomplete insurance markets in Doherty and Schlesinger 
[1983], Schlesinger and Doherty [1985] and Doherty and Schlesinger [1986]. More recently, 
Hadar and Seo [1990] and Meyer and Ormiston [1991] deal with multiple random assets in the 
portfolio models, Kimball [1991] includes multiple risks in a general decision model, and Eeck- 
houdt and Kimball [1991] consider insurance demand with background risk. 

2. This same point can be made in decision models with only one random variable. For instance, 
if the outcome variable ~ is a convex function of the random variable ~, then risk increases in 
can lead to increases in expected utility for the decision maker who maximizes Eu(2). Walter Oi 
[1961] exploited this fact in analyzing the competitive firm many years ago. If the decision model 
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is positive linear in a single random variable, as is the most basic insurance model, then in- 
creases in risk for the random variable lead to increases in risk for the outcome variable. 

3. Sometimes it is more convenient analytically to consider the opposite changes, such as increases 
in risk, which decrease expected utility. 

4. To see this observe that G(y) = f0BG(Ylx)dF(x) where G(y) and F(x) are the marginal cumulative 
distribution functions for ~ and :~. Hence if F(x) is changed, either G(y) or G(ylx) for some x 
must change. 

5. Deterministic transformations cannot be used to break up mass points of probability, only to 
relocate it. Transformations which have a stochastic component can be used to break up mass 
points. The specific forms of deterministic transformations which lead to decreases in risk or 
stochastically dominant shifts have been determined elsewhere and will be mentioned as the 
need arises in the next section. See Meyer [1989] and Meyer and Ormiston [1989]. 

6. By constructing clever counterexamples, Hadar and Seo show that their conditions are neces- 
sary as well as sufficient. This may be possible here as well but has not been attempted as yet. 
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