ERRATA CORRIGE

On Convex Vectorial Optimization in Linear Spaces

A. Bacopoulos ${ }^{1}$ And I. Singer ${ }^{2}$

Abstract

We observe that the results and proofs of Ref. 1 are valid only for finite convex functionals, and we give some other corrections to Ref. 1.

Key Words. Vectorial and scalar optimization, convex programs, best approximation, characterization of minimal elements, existence of minimal elements, uniqueness of minimal elements.

All the results and proofs in Ref. 1 are valid under the assumption that the convex functionals f_{1}, f_{2} defined on the linear space E are finite, i.e.,

$$
f_{i}(E) \subset R=(-\infty,+\infty) \quad \text { for } i=1,2 .
$$

The weaker assumption, made in Ref. 1 , that f_{1}, f_{2} are proper, i.e.,

$$
f_{i}(E) \subset(-\infty,+\infty] \quad \text { and } f_{i} \neq+\infty \quad \text { for } i=1,2,
$$

must be replaced by the assumption that f_{1}, f_{2} are finite, as shown by the following example.

Example. Let $E=R=(-\infty,+\infty)$. Define proper convex functionals f_{1}, f_{2} on E by

$$
\begin{aligned}
& f_{1}(x)= \begin{cases}1 & \text { for } x \in[-1,+1], \\
+\infty & \text { for } x \notin[-1,+1],\end{cases} \\
& f_{2}(x)=x \quad \text { for } x \in R,
\end{aligned}
$$

and let $G=[-2,2]$. Then, it is not true that the equality

$$
\begin{equation*}
\mathscr{V}_{G}\left(f_{1}, f_{2}\right) \cap\left\{y \in E \mid f_{1}(y)=c\right\}=\mathscr{S}_{G \cap\left\{y \in E \mid f_{1}(y) \subseteq c\right\}}\left(f_{2}\right) \tag{6}
\end{equation*}
$$

[^0]of Ref. 1, Theorem 2.1, holds for all $c \in R=(-\infty,+\infty)$ satisfying
\[

$$
\begin{equation*}
\inf _{g \in G} f_{1}(g) \leq c \leq \inf _{g \in \mathscr{F}_{G}\left(f_{2}\right)} f_{1}(g) \tag{5}
\end{equation*}
$$

\]

Indeed,

$$
\begin{aligned}
& \inf _{g \in G} f_{1}(g)=1 \\
& \mathscr{S}_{G}\left(f_{2}\right)=\{-2\}, \quad \inf _{g \in \mathscr{S}_{G}\left(f_{2}\right)} f_{1}(g)=+\infty
\end{aligned}
$$

but, for any c with $1<c<+\infty$, we have

$$
\begin{gathered}
\left\{y \in E \mid f_{1}(y)=c\right\}=\varnothing \\
\mathscr{S}_{G \cap\left\{y \in E \mid f_{1}(y) \leq c\right\}}\left(f_{2}\right)=\mathscr{S}_{[-1,+1]}\left(f_{2}\right)=\{-1\} \neq \varnothing
\end{gathered}
$$

There are two incorrect claims in the proof of Ref. 1, Theorem 2.1 (for f_{1}, f_{2} proper), which are also shown by this example, namely:
(a) On page 178 , it is claimed that, for any $c \in(-\infty,+\infty)$ satisfying (5), any

$$
g_{0} \in \mathscr{S}_{G \cap\left\{y \in E \mid f_{1}(y) \leq c\right)}\left(f_{2}\right) \backslash\left\{y \in E \mid f_{1}(y)=c\right\}
$$

and any $g \in G$ such that

$$
\begin{equation*}
f_{2}(g)<f_{2}\left(g_{0}\right) \tag{9}
\end{equation*}
$$

the convex function

$$
\varphi(\lambda)=f_{1}\left(\lambda g_{0}+(1-\lambda) g\right), \quad 0 \leq \lambda \leq 1
$$

is continuous on $[0,1]$. However, for any c with $1<c<+\infty$ and for $g_{0}=-1$, $g=-2$, we have now

$$
\varphi(\lambda)=f_{1}(-2+\lambda)= \begin{cases}+\infty & \text { for } \lambda \in[0,1) \\ 1 & \text { for } \lambda=1\end{cases}
$$

(b) On page 180 , it is claimed that, for any $g_{0} \in \mathscr{V}_{G}\left(f_{1}, f_{2}\right)$, we have

$$
c=f_{1}\left(g_{0}\right) \in R=(-\infty,+\infty)
$$

However, in the above example,

$$
\mathscr{V}_{G}\left(f_{1}, f_{2}\right)=\{-2\} \cup\{-1\}
$$

and, for $g_{0}=-2$, we have

$$
f_{1}(-2)=+\infty
$$

If we assume that f_{1}, f_{2} are finite, then the above claims become correct. Indeed, if f_{1} is finite (and convex) on E, then the restriction of f_{1} to the two-dimensional subspace spanned by g_{0} and g is continuous; hence, $\varphi(\lambda)$ is continuous on $(-\infty,+\infty)$ so the claim (a) becomes correct.

We note here that the claim (a) was used in Ref. 1 only to prove the existence of a number λ_{0}, with $0 \leq \lambda_{0}<1$, such that

$$
\varphi\left(\lambda_{0}\right)=f_{1}\left(\lambda_{0} g_{0}+\left(1-\lambda_{0}\right) g\right) \leq c
$$

but this can be also deduced directly from the convexity of φ, without using the continuity of φ. Indeed, if

$$
\varphi(\lambda) \geq c
$$

for all $0 \leq \lambda<1$, then, since

$$
\varphi(1)=f_{1}\left(g_{0}\right)<c
$$

we obtain, fixing any λ_{0} with $0 \leq \lambda_{0}<1$ and taking $\alpha>0$ sufficiently small,

$$
\begin{aligned}
c & \leq \varphi\left(\alpha \lambda_{0}+(1-\alpha) 1\right) \leq \alpha \varphi\left(\lambda_{0}\right)+(1-\alpha) \varphi(1) \\
& <\alpha \varphi\left(\lambda_{0}\right)+(1-\alpha) c<c
\end{aligned}
$$

which is impossible.
On the other hand, it is obvious that the claim (b) becomes correct if f_{1} is finite. We note here that, in the part following this claim on page 180 of Ref. 1 , the relation

$$
g_{0} \in \mathscr{V}_{G}\left(f_{1}, f_{2}\right) \cap\left\{y \in E \mid f_{1}(y) \leq c\right\}
$$

should be replaced by

$$
g_{0} \in \mathscr{V}_{G}\left(f_{1}, f_{2}\right) \cap\left\{y \in E \mid f_{1}(y)=c\right\}
$$

and the order of the subsequent arguments should be interchanged as follows: first show, as in Ref. 1, that

$$
c=f_{1}\left(g_{0}\right)
$$

satisfies (5); then, finally, conclude by (6) that

$$
g_{0} \in \mathscr{S}_{G \cap\left\{y \in E \mid f_{1}(y) \leqslant c\right\}}\left(f_{2}\right) .
$$

Remark. If we assume that f_{1}, f_{2} are finite, then the results of Ref. 1 remain also valid if we delete everywhere in Ref. 1 the relations $-\infty<c<$ $+\infty$, since, for $c= \pm \infty$, (6) reduces to

$$
\phi=\phi
$$

Indeed, for $c=+\infty$, by (5),

$$
\inf _{g \in \mathscr{F}_{G}\left(f_{2}\right)} f_{1}(g)=+\infty,
$$

whence, since f_{1} is finite,

$$
\mathscr{S}_{G}\left(f_{2}\right)=\phi
$$

thus,

$$
\mathscr{S}_{G \cap\left\{y \in E \mid f_{1}(y) \leq c=+\infty\right\}}\left(f_{2}\right)=\mathscr{S}_{G}\left(f_{2}\right)=\phi
$$

while the left-hand side of (6) is again ϕ, by the finiteness of f_{1}.
We also note that, throughout Ref. $1, \mathscr{U}_{G}\left(f_{1}, f_{2}\right)$ should read: $\mathscr{V}_{G}\left(f_{1}, f_{2}\right)$, where the letter \mathscr{V} stands for "vectorial." Furthermore, on page 176 of Ref. 1 , in the definition of the partial order relation

$$
\left(\alpha_{1}, \alpha_{2}\right) \leq\left(\beta_{1}, \beta_{2}\right) \quad \text { in } R^{2}
$$

the inequalities

$$
\alpha_{1} \leq \alpha_{2} \quad \text { and } \beta_{1} \leq \beta_{2}
$$

should be replaced by

$$
\alpha_{1} \leq \beta_{1} \quad \text { and } \alpha_{2} \leq \beta_{2}
$$

respectively.
Finally, we mention that some particular cases of Ref. 1, Theorem 2.1, have been also obtained, independently, by Gearhart (Ref. 2).

References

1. Bacopoulos, A., and Singer, I., On Convex Vectorial Optimization in Linear Spaces, Journal of Optimization Theory and Applications, Vol. 21, pp. 175-188, 1977.
2. Gearhart, W. B., On Vectorial Approximation, Journal of Approximation Theory, Vol. 10, pp. 49-63, 1974.

[^0]: ${ }^{1}$ Professor, Département d'Informatique, Université de Montréal, Montréal, Québec, Canada.
 ${ }^{2}$ Research Professor, National Institute for Scientific and Technical Creation and Institute of Mathematics, Bucharest, Romania.

