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ERRATA CORRIGE 

On Convex Vectorial Optimization in Linear Spaces 

A .  B A C O P O U L O S  1 A N D  I. S I N G E R  2 

Abstract. We observe that the results and proofs of Ref, 1 are valid 
only for finite convex functionals, and we give some other corrections to 
Ref. 1. 
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All the results and proofs in Ref. 1 are valid under the assumption that 
the convex functionals f l ,  f2 defined on the linear space E are finite, i.e., 

)~(E) C R = (-co, +c~) for i =  1,2. 

The weaker assumption, made in Ref. 1, that fl ,  f2 are proper, i.e., 

]~(E) C (-co, +co] and/) ¢--- +co f o r i = l , 2 ,  

must be replaced by the assumption that fi ,  f2 are finite, as shown by the 
following example. 

Example. 
fl ,  f2 on E by 

Let E = R = (-co, +co). Define proper convex functionals 

t I for x ~ [ -1 ,  +1], 
/fix) 1 +co for x~ [-1,  +1], 

f2(x)=x f o r x ~ R ,  

and let G = [ -2 ,  2]. Then, it is not true that the equality 

~ c ( f l ,  f2) ~ {Y ~ El f l (y )  = c} = ,'q~Gc~{y~Eifl(y)~c}(f2), (6) 
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of Ref. 1, Theorem 2.1, holds for all c • R = (-oo, +oo) satisfying 

inf f t(g) <- c <- g infh) fl(g). g~O 

Indeed, 

inf f l (g)= 1, 
g e e  

(5) 

and any g e G such that 

the convex function 

f2(g)<f2(go), (9) 

~o(h)=f~(ago+(1-h)g),  0--<a-<l,  

is continuous on [0, 1]. However,  for any c with 1 < c < +co and for go = - 1 ,  
g = - 2 ,  we have now 

{ l e °  f ° r h • [ 0 , 1 ) ,  
¢ ( a ) = f 1 ( - 2 + a )  = for h = 1. 

(b) On page 180, it is claimed that, for any go ~ o~(f~,  f2), we have 

c =/1(go)e g = (-co,  +co). 

However,  in the above example, 

~o(f~, A)  = { -2 }  ~, { -1};  

and, for go = - 2 ,  we have 

fl ( - 2 ) =  +co. 

but, for any c with 1 < c < +oo, we have 

{y e E l k ( y )  = c} = ®,  

~ { , ~ l a ~ . - < c } ( A )  = Se~_,. +~(A) = {-1} # 0 .  

There  are two incorrect claims in the proof of Ref. 1, Theorem 2.1 (for 
fl ,  f2 proper), which are also shown by this example, namely: 

Ca) On page 178, it is claimed that, for any c e (-co,  +co) satisfying (5), 
any 

go c ~o~{y~eth(y><~}(A)\{Y • E i f l ( y )  = c}, 
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If we assume that fl ,  fa are finite, then the above claims become correct. 
Indeed, if f l  is finite (and convex) on E, then the restriction of/'1 to the 
two-dimensional subspace spanned by go and g is continuous; hence, ~p ()t) is 
continuous on (-oo, +oo) so the claim (a) becomes correct. 

We note here that the claim (a) was used in Ref. 1 only to prove the 
existence of a number/~o, with 0-< )to < 1, such that 

(}to) = fl()togo + (1 -)to)g)-< c, 

but this can be also deduced directly from the convexity of ~o, without using 
the continuity of ~. Indeed, if 

~()t)->c 

for all 0 -<)t < 1, then, since 

~o(1) = f,(go) < c, 

we obtain, fixing any )to with 0---)to < 1 and taking a > 0 sufficiently small, 

c <- ~(a)to + ( 1 - a  )l )<- a~()to)+ ( 1 - a  )~o(1) 

<o~(ao)+(1-~)c  <c, 

which is impossible. 
On the other hand, it is obvious that the claim (b) becomes correct if f l  is 

finite. We note here that, in the part following this claim on page 180 of Ref. 
1, the relation 

go e Y'G(fl, f2) ~ {Y e E [ f l ( y ) -  < c} 

should be replaced by 

goc • ( f l ,  A)c~ {y ~ El f l (y )  = c}, 

and the order of the subsequent arguments should be interchanged as 
follows: first show, as in Ref. 1, that 

c =A(go) 

satisfies (5); then, finally, conclude by (6) that 

go ~ .St'Gm{yslctfl(y)<-'c}(f 2). 

Remark. If we assume that fl ,  f2 are finite, then the results of Ref. ! 
remain also valid if we delete everywhere in Ref. 1 the relations -oo < c < 
+co, since, for c = ±oo, (6) reduces to 

~b =,b. 
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Indeed, for c = +ce, by (5), 

whence, since f l  is finite, 

thus, 

inf A(g)  = +co, 
geb°~(f2) 

s ' G ( , 2 )  = 4,; 

while the left-hand side of (6) is again 4,, by the finiteness of fl .  
We also note that, throughout Ref. 1, °-g~(fl, f2) should read: 

~ a ( f l ,  f2), where the letter 7: stands for "vectorial." Furthermore, on page 
176 of Ref. 1, in the definition of the partial order relation 

(OQ, a2) ~< (~1, ~2) i n R  2 , 

the inequalities 

should be replaced by 

a l  -< a2 and ill-< 132 

a l -<f l l  and a2-<f12, 

respectively. 
Finally, we mention that some particular cases of Ref. 1, Theorem 2.1, 

have been also obtained, independently, by Gearhart  (Ref. 2). 
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