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A number of scientists active in planetary quarantine have questioned the logarithmic 
extrapolation of microbial survivor curves over non-measurable ranges to obtain 
thermal sterilization cycles for spacecraft applications (DAvIEs and HOROWITZ, 1966; 
GEmER et al., 1965; JAFFE, 1963). If  observed non-logarithmic survival is the result of 
either sampling errors or population inhomogeneity, then sterilization cycles can safely 
be set by extrapolation after the curve has entered its final linear phase. If non- 
logarithmic survival is an intrinsic function of the organism itself, then conceivably 
gross errors can result from such extrapolation. This communication briefly describes 
a model based on chemical reaction kinetics in which non-logarithmic survival is 
inherent in the organism. Results are compared to data for Bacillus coagulans. 

Assume that microbes die independently, there is no reproduction, and the exposed 
population is homogeneous. Then, the expected population at time t is given by 

E [X (t)] = X (0) p (t) 

where X(0) is the initial population and p (t) is the probability of single spore survival 
to time t. Assume that in a thermal environment, microbial deaths result from 
chemical reactions which activate one or more of N independent death mechanisms, 
i.e., the microbe contains N vital systems such that survival depends on all N being 
functional. Then, the probability of single microbe survival to time t is given by 

N 

p(t)  = [ I  {1 -- [1 -- qi( t)]"},  (1) 
i = 1  

where n i is the number of duplicate subsystems in the ith system, i=  1, ..., N, and 
q~(t) is the probability that a subsystem of the ith type is functional at time t. Note 
that the function carried out by the ith system can be performed provided any one of 
the n~ duplicates in the system is viable. 

Candidates for vital subsystems might include single molecules, say DNA, or 
perhaps aggregates of protein molecules. GINOZA and ZINM (1961) have observed that 
with heat, DNA rapidly loses up to 98% of its activity and then undergoes a deactiva- 
tion process which obeys simple first-order kinetics. Thus, it seems reasonable to 
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assume vital subsystems of single molecules deactivated by a reversible reaction 
competing with a first-order reaction. Since the reactions are monomolecular, it is 
reasonable to assume the reversible reaction is also of first order. In addition, assume a 
vital system consisting of an aggregate of protein molecules. It is not expected that 
deactivation of the entire aggregate is required for microbial death. Thus, for sim- 
plicity, assume that the probability that the system is functional is equal to the number 
of molecules active at time t divided by the initial number. Since protein inactivation is 
often of higher order (JoHNsON et al., 1954), assume the protein aggregate is degraded 
by a second-order reaction. 

For example, consider only the above two vital subsystems and hypothesize that 
the system of single molecules has n 1 duplicate subsystems and that the aggregate of 
protein is not duplicated. Then, if Vz(t ) is the number of protein molecules active at 
time t, q2(t) = V2 (t)/V2 (0). Thus, 

p(t)  ----- (1 -- [1 -- ql(t)]"'} {1 -- F1 - q2(t)] I} 

= {1 - [1 - q~ (t)]"'} {v2(t) /v2(o)} .  (2) 

Values for ql (t) and V2 (t) are assigned via chemical kinetics of small systems. 
Stochastic processes have been applied to such problems by MCQUARRIE (1963). 
Briefly, from an initial concentration Y(0) of A molecules in the reversible first-order 

kl 

reaction A ~ B, competing with the first-order reaction A ~ C, the expected con- 
k-1  

centration E{ Y(t)} of A molecules at time t is given by 

E{Y(t)} = e -k~'[Y(0)/(k I + k_t) ] [kie-(k~+k-')r k _ i ] .  

Thus ql (t) is taken to be 

qI (t) = [e-k2'/(kl + k_,)]  [k,e-(k'+k-') '  + k_ l ] .  (3) 

From an initial concentration Y(0) of A molecules the second-order reaction 
2A k B yields an expected concentration at time t Of approximately 

E ( Y ( t ) }  = r(0)/{1 + Y(0)[ek '- l ]}.  

Thus V 2 (t)/V2 (0) is assumed to be 

V2 (t)/V2 (0) = 1/{1 + V2 (0) [e kt- ' ]}.  (4) 

It should be noted that the familar logarithmic model results from Equation (1) 
by assuming that N =  l, n I = 1, and the vital subsystem consists of one molecule being 
deactivated by a first-order reaction. 

A comparison of an expected survivor curve generated from Equation (2) with 
q~ (t) and V2(t) obtained via Equations (3) and (4) to observed data for Bacillus 

ki 
coagulans is given in Figure 1. The reaction-rate constants for the reactions A ~ B 

k -1  

and A-~ C are, k 1 ---4 hr -1, k_ 1 =.01 hr -1, and k2=2 hr -1. The protein-aggregate 
system contains 20 molecules inactivated by the second-order reaction 2A L D where 
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the reaction rate constant k = 10 molec. - 1 h r -  1. Observed data for Bacillus coagulans 
is taken from DAVIES and HOROWXTZ (1966). The dash line represents a linear extra- 

polation of the observed data after a two-decade population decrease. As can be seen, 
the questions regarding this extrapolation may indeed have a sound rational basis. 

This work was done under NASA Contract R-09-019-040 and is supported by the 
U.S. Atomic Energy Commission. 
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