B. M. Mikhailov and F. B. Tutorskaya
N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences USSR

Translated from Izvestiya A kademii Nauk SSSR, Otdelenie Khimicheskikh Nauk, No. 11, p. 2068, November, 1960

Original article submitted August 10, 1960

We found that triallylboron reacts with ethyl mercaptan at -15°, and with equimolecular amounts of the reagents we obtained propylene and the ethyl ester of diallylthioboric acid in 62.5% of theoretical yield; b.p. 67-70 (11 mm); $\mathrm{d}_{4} 0.8419 ; \mathrm{n}_{\mathrm{D}}^{20} 1.4719$. Found: C $62.70 ; \mathrm{H} \mathrm{10.05;} \mathrm{B6.86} \mathrm{\% ;} \mathrm{MR51.24}. \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{BS}$. Calculated: C 62.36; H 9.81; B 7.02\%; MR 51.28.

The action of 2 moles of ethyl mercaptan on 1 mole of triallylboron formed: 1) the diethyl ester of allyithioboric acid in 51.8% of theoretical yield; b.p. $62-64^{\circ}(2 \mathrm{~mm})$; $\mathrm{d}_{4}^{20} 0.9563$; $\mathrm{n}^{2} \mathrm{D} 1.5182$. Found: C 48.60 ; H 8.66; B 6.39\%; MR 55.20. $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{BS}_{2}$. Calculated: $\mathrm{C} 48.28 ; \mathrm{H} 8.68 \mathrm{~B} 6.21 \%$; MR 55.76 .2) the product from the addition of ethyl mercaptan to the double bond of the diethyl ester of allythioboric acid in 31.8% of theoretical yield; b.p. $133.5-134^{\circ}$ (2 $\mathrm{mm}) ; \mathrm{d}_{4}^{20} 1.0076 ; \mathrm{n}_{\mathrm{p}}^{20} 1.5312$. Found: C45.97; H 8.91; B 4.58\%; $\mathrm{MR} 72.57 . \mathrm{C}_{9} \mathrm{H}_{21} \mathrm{BS}_{3}$. Calculated: C 45.75; H 8.96; B 4.58\%; MR 73.47.

We established that the latter compound may be obtained in 77.4% of theoretical yield by mixing ethyl mercaptan with the diethyl ester of allylthioboric acid. Ethyl mercaptan is also capable of adding to the di-n-butyl ester of allythioboric acid to form the di-n-butyl ester of 2 -ethylmercapto-n-propylboric acid with b.p. 104-106 ${ }^{\circ}$ (1.5 mm); $\mathrm{d}_{4}^{20} 0.9035 ; \mathrm{n}^{20} 1.4514$.

Found: C 60.22; H 11.18; B 4.20\%; MR 77.62. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BO}_{2} \mathrm{~S}$.
Calculated: C 59.99; H 11.23; B 4.16\% MR 77.44.

CORRECTIONS

In No. $5(1960)$ p. 811, the expression in the third column of the table should read: $\left[k, 10^{13}\right]$ in cc $\cdot \mathrm{sec}^{-1}$. On p. 951 the first formula from the top should read:

In No. 10 on p. 1821 formula (II) should read:

