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Abstract. After recalling the contribution of Halley, J, Kepler, and G. Darwin to our understanding of 
the secular acceleration of the Moon, we establish a set of differential equations for the variation of the 
semi-major axis, and the inclination of the Moon on the maximum area plane. These equations are 
obtained without expanding the disturbing function, due to the tidal bulge, in term of the elliptic 
elements. The equations thus obtained are simple enough to allow us a qualitative discussion of the 
solution, followed by a numerical integration. 

The results obtained show the Moon was in the distant past in a retrograde orbit, approaching the 
Earth, its inclination increasing towards 90~ once after a closer approach to the Earth, the Moon 
receeded and it will finally reach an equilibrium point, the orbital and the equatorial planes being 
blended. 

The solution of the equations appears as a fascicle of curves, becoming extremely dense as we come 
nearer to the present. Owing to the high sensitivity of the solution to the initial conditions, a weak 
disturbance added to our modeled forces may lead to a past situation very different from the conclu- 
sion drawn by Goldreich (1966) and MacDonald (1964); the minimal approach distance could be 
greater than 10 Earth's radii. 

1. Introduction 

Numerous papers have been (and will be) published which are concerned with the Moon's 

orbit and, more precisely, its evolution under the effects of the tides. 

As a matter of fact, E. Kant, followed by Lalande in 1774, was the first to point out, 

in 1754, that the tides had to be the cause of the lengthening of the day. 

However, these ideas were expressed with the aim of explaining the apparent secular 

acceleration of the Moon's longitude, namely the variation of the Moon's mean motion. 

Finally, P. S. Laplace announced in 1787 (exactly one century after the first edition of 

Newton's Pn'ncipia Mathematica) he had come to an explanation which was in perfect 

agreement with the observations. Unfortunately for Kant and Lalande and some others, 

the calculations of Laplace were only in terms of Newtonian mechanics without any tidal 

hypothesis. 

Some decades later, Airy and Hansen increased the observed values while C. Delaunay 

and Adams decreased the theoretical value found by P. S. Laplace. 

We must wait until the end of the last century, and for the work of G. H. Darwin to 

get a global treatment of the effects of the tides on the Moon's orbit and on the Earth's 

rotation. Darwin concluded that in the distant past, the Moon was closer to the Earth 

than at present and that the duration of the day was shorter. But these conclusions 

depended upon the rheological behaviour of the Earth. In Darwin's theory, the Earth is 

assumed to be viscous. Modern investigators, such as Gerstenkom (1955), Goldreich 

(1966), Kaula (1964), MacDonald (1964), reexamined the problem and their conclusions 
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are in accordance with Darwin's theory concerning the present, but are different concern- 

ing the past; that is to say, the time when the Moon was closer to the Earth. Moreover, 

their conclusions differ one from another. This is due to the different patterns used to get 

the tidal torque between the Earth and the Moon. MacDonald used a constant geometric 

lag angle, whereas Goldreich and Kaula kept a constant phase lag for all frequencies. 

In our opinion, these methods are not free from defects. If  we consider the simplest 

case (i.e., the equatorial circular orbit of the Moon), only the M2 tide acts upon the Moon 

in the spherical harmonic of the second order. The tidal torque must vanish if the Moon's 

orbital mean motion (n) and the Earth's angular velocity (co) become equal. It appears to 

be true in Darwin's work but not in MacDonald's and Kaula's papers. 
These facts led us to keep to Darwin's formulation of a time delay, namely: an interval 

of time At between the stress in the Earth due to the Moon and the moment when the 
Earth gets its equilibrium figure. The span of tidal frequencies (2 x 10-5-10 -6 Hz) allows 

us to assume no dependence of At with the frequency. 
Darwin derived a relationship between this time delay and the viscosity coefficient, in 

accordance with his model of dissipation. We are here only concerned with a mathematical 

model, while the time delay represents the whole dissipation in the Earth and oceans. In 

this case, At is related to the factor Q (Goldreich and Soter, 1966). 
Apart from the introduction of At, the tidal torque is computed from the tidal inter- 

action potential, using Love numbers formalism, as in Kaula's (1964) and Lambeck's 
(1975) papers. It is obtained in arbitrary coordinates of an inertial frame of reference. A 

derivation of the Fourier expansion of this potential can be found in Mignard (1978). 

Though there is no doubt that the tidal dissipation is responsible for the evolution of 

the Moon's orbit, we are not able today to take precise account of it. Of course, the 

location of the dissipation in the Earth or (and) in the oceans has an effect upon the tidal 

torque between the Earth and the Moon. For the ocean tides, it is now welt known that 

most of the energy exchange takes place in the shallow seas, and no information is avail- 

able about their past location. Furthermore, the generally accepted early history of the 

Earth supposes that the atmosphere and the hydrosphere originated by outgassing from 

the inner Earth during the first aeon of its life. The dissipation, then, was not caused by 

the ocean; so one can imagine that the present state is not the mean one. Besides, the 

strong value of the secular acceleration of the Moon (h _~ 30" cy -2) involves too short a 

time of evolution. For these reasons, it seems to us interesting and reasonable to investi- 

gate the effect of  a solid Earth by means of the Love numbers and a time delay. 
This paper is composed of four sections. Section 1 contains the computation of the 

part of the tidal torque from which secular terms in the Moon's motion are arising. 

Section 2 follows, with the derivation of dynamical equations, restricted to the circular 
case, using an average process on the precessional period. The constancy of the angular 
momentum reduces the problem to a second-order one and the trajectory can be visualized 
in a two-dimensional phase space. In Section 3, we attempt to offer a qualitative discussion 
of the sea of the trajectories and, in addition, some properties are established for the cases 
of the Moon and Triton. In this section, we shall discuss the problem set by the initial 
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conditions. Section 4 is devoted to a numerical integration of this second-order system of 

equations. 

2. Tidal Torque 

The action of the Moon upon a fluid element on the Earth can he studied with the help 
of a second-order limited expansion of the potential 

/.2 

Uo = Gm* r-~P2(cos s) _ 2r *SGm* [3(r-r*)  2 - r  :" r*2], (1) 

where s is the angle between the direction r* to the Moon and the one r to the point where 
the potential is calculated. If we suppose that the deformation is synchronous with the 

stress, the theory of Love numbers yields to an additional Earth gravity field whose 
value at the Earth's surface is given by 

U(RE) - k2Gm* [3(RE �9 r*) 2 - -R~- r*~] ,  (2) 
2r *s 

where RE is the equatorial radius of the Earth and k~ the second degree Love number. 
Outside of the Earth, the potential will be the exterior solution of the Laplace's 

equation, with the boundary value given by (2). That solution is unique and (cf. Kellogg, 
1967) given by 

U(r) = U(RE) R3 
?.3 , 

G~*R s 
U(r) = k2 '"  - E  [3(r " r*) 2 - r  z . r  *z]. (3) 

2r *s. r s 

Equation (3) gives the additional potential in a suitable form to study the disturbance in 
the motion of an artificial satellite, due to the tidal bulge of the Earth. This method was 
generally used to obtain the value of k2 (Lambeck et al., 1974). 

In this case, the retardation of the deformation has no important effect on the com- 
putation. But we are here intere, sted in the evolution of the Moon, and the secular terms 
arise only if we take account of the delay in the response of the Earth. 

For a rigid Earth, instantaneously distorted, we have the additional potential at time t, 
at point r, with the Moon's coordinate r*, given by Equation (3) 

U = F(r, r*). 

For an inelastic response of the Earth, we introduce the time delay 

U = G(r, r*) = F(rl , r~),  
with 

rl = r, r~ = r * ( t - - A t ) +  e A t x  r*; 

t~ representing the rotation vector of the Earth; and At, the time delay. Present value of 
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At is about 10mn, so the quantities (rl - - r )  and (r~ --r*)  are small enough to infer G 
from F by using a first-order expansion in At, 

dr* 
r~ = r * - - v * - A t ,  v* = - -  

d t  

All computations have been made and we obtained for the additional part of  the poten- 
tial in the first order in At the equation 

k2Gm RE. At ( r ' r * ) [ r * ' ( ~ x r ) + r ' v * ]  
V(r, r*) = -- 3 rSr* s 

(r- v*) [5 (r" r*) 2 - r 2r '2]}. (4) 
2r .2 

The expression of the force acting upon a point mass (with mass unity) as well as the tidal 
torque is easily carried out from the Equation (4) 

F = gradrV, ~ = r •  

F = 3k2Gm*R~At(5;I(r'r*)[r*'(~xr)+r'v* ] r s r ,  s 

[5 ( r ' r* )  2 - r 2 r * 2 ] / - -  [r*" [ r * ' ( ~ x  r) + r OV~ ] 
2r .2 J 

(r*'v*) [5r*( r . r*)  - - r r  .2] ] + (r* x co + v*)(r- r*)] + - - 7 - -  
g ) 

k2Grn*R~ ( 
1~ = - - 3  rSr. s At ( r x r * ) [ r * - ( c ~ x r ) + r ' v * ]  

r*'V* } 
- 5 ~ (r x r*)(r'r*) + ( r . r* ) [ ( r .  ~ )  .r* - (r .r*)  co + r • v*] . 

But in our case, the tide-raising object - the Moon - is also the body of which the motion 
is studied; namely r* = r. Then, the two previous equations become simpler; and taking 
account of  the fact that the mass of  the Moon is different from unity, we obtain 

k2Gm2R~ 
F = -- 3 rl 0 �9 At [2r(r-  v) + r2(r x co + v)],  (5) 

k2Gm2R~ 
= - -3  r8 A t [ ( r . c o ) r - - r 2 ~ +  r x v], (6) 

The Equations (5) and (6) held for the additional force and torque, caused by the time 
delay, acting upon the Moon. 

For a circular and equatorial orbit, we find the classical result, in putting 

( c o - - n )  At = 6, 
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3k2Gm2R~ 
- 2r 6 sin (26), 

305 

where 6 = phase lag. 
The torque acting upon the Earth is exactly the opposite of the torque given by 

Equation (6), with the hypothesis of an isolated two-body problem. 

3. Dynamical Equations 

As soon as we know the tidal torque, it is easy to write the general equations of the motion 

for the Moon's and Earth's angular momenta. 

If  HM and HE, denote respectively, the Moon's and the Earth's angular momenta, we 

have 
dHM 

- : g ,  ( 7 )  
dt 

dHE 
- ~. (8) 

dt 

Thus, there are six first-order differential equations. Three integrals for the constancy of 

the total angular momentum are easily exhibited 

HM + HE = H ,  ( 9 )  

which reduces the system to a third-order one. The variables HE and HM are related to 
the variables r r, v by the equations 

H M = m r •  

HE = C ' c o ,  

where C is the principal momentum of inertia of the Earth around its rotation axis. With 

the help of Equation (9), Equation (6) can be written as 

- Cr s At" ( r . H ) r - - r 2 H + r  2 ~ r  2 H M . (10) 

All the variable parameters which concern the Earth rotation evolution have vanished and 

the solution of Equations (7) and (8) is reduced to the integration of Equation (7) and 

algebraic computation with the help of  (9). In these equations we have neglected the 
mass of the Moon with respect to that of the Earth. 

Hitherto, we did not need to choose a frame of reference because all formulas were 

expressed in terms of vectorial notation. To derive a set of scalar differential equations, 
we are forced to project the previous equations on a coordinate system. The best choice 
is made by using the z-axis lying along the total angular momentum; that allows us to 
carry out the so-called elimination of nodes. The ascending node of the orbit of the Moon 
and the descending node of the Earth's equator are blended. Furthermore, the constancy 
of H involves that the frame of chosen reference is inertial. 
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Fig. 1. Coordinate system. 

We call i the inclination of  the Moon's orbit on the Xy-plane and J the inclination of  

the Earth's equator on the same plane. With this coordinate system, we have the inclin- 

ation of  the Moon's orbit on the equatorial plane equal to I = i + J. Hereafter, the 

xy-plane will be called the absolute plane. Besides, between this set of  variables, the 

following relations hold: 

H E cos J + H M cos i = H, (9 ')  

H E sin J -- H M sin i = 0. 

We shall solve this system in terms of  (H, HM,i) to find (HE,J).  Let us derive two scalar 

equations for the variation of  the semi-major axis and for the inclination of  the Moon on 

the xy-plane : 
dH M 1 dHg~ 

HM" d ~ - -  2 dt - 2 : - H  M 

= -- 3 k2Gm2R~ At [(r" H)(r" HM) -- r2(H �9 HM) 
[ 

H. 
dHM 

dt  

Cr 8 

+ r  2 l + ~ r  = Hill , 

_ d(H-HM)_ E . H  
dt  

= - - 3  

(11) 

k2Grn2R~cr s At-[(r 

(12) 



THE EVOLUTION OF THE LUNAR ORBIT REVISITED 307 

But since we are looking for the secular evolution of  the Moon's orbit, an averaging of  the 

right-hand sides of  these equations has to be carried out. We have 

r ' H M  = r ' ( r x v )  = O. 

With e = O, r = a (semi-major axis) only the term (r- H) 2 -- r2H 2 requires some comput- 
ation: i.e., 

((r.H)2--r2H z) = (H2.z2--rZH 2) = - -H 2 . (X2 + y 2 ) .  

The formulas of  the elliptic two-body motion lead to 

( x 2 + y  2) = @(1 + cos2i) + O(e2). 
z 

By chosing for unity of  angular momentum the angular momentum of a satellite having 

the Moon's mass and revolving at the Earth's surface (grazing satellite), we then define 

three dimensionless variables 

H~ H' H M H 2 
X -  Y =  T -  

GMm2RE ' GMrn2RE ' GMrn2RE ' 
but 

HM = m(GMa) 1 /2 ,  H'HM = H'HM cos i, 
then 

a 
X - Y = T1/2X~/2 cosi .  

RE'  

gqe gather (11), (12), (13) and (14) to obtain 

d-T = X 7 X2 + X Y -  cz , 

dY KAt  [ YI 
d t -  X 8 ( T - - 2 Y ) X 2 + X Y 2 - - 2 ~ M  ' 

m 

where K is a compact form for 

Glr2k2(m/M) 2 
ap2 

(13) 

(14) 

(15) 

(16) 

with M = Earth's mass, a = C/MRS, and P-= period of  revolution of  an Earth-grazing 
satellite. 

The present approximate values of  these variables in the Moon's case are: 

X m 6 0 ,  Y m 7 1 ,  T i n 8 5 ,  

M 
a "  0.33, - - ' ~  81.3, k2 m0.3 ;  

rn 

K = 0.58 107/106 yr with the value of  At = 10ran. The last number is chosen in order to 

obtain the present rate of  the recession of  the Moon (3 cm yr-1). The value of  At deter- 

mines the time scale of  this problem and may have been very different in the past. 

Let us put Z =  cos i  and perform the change of variable Y =  T1/2 .XI /2 .Z  in 
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Equations (15) and (16). Finally, the two relevant equations which describe the evolution 

of the Moon's orbit are expressed in terms of X and Z as 

dtdX _ 4KAt~[__X [ z+ T , / 2 X a / 2 Z _ a m I  

dZ KAtT 1/2 
dt - X l a / ~  ( 1 -  z 2).  

(17) 

The two first-order equations (17) may be solved and the solution is substituted in 
Equation (9') in order to compute simultaneously the evolution of the speed of the 

rotation of the Earth as well as its spin axis orientation. 
Let us delay the exact integration to discuss the general features of the solution in the 

next section. 

4. Heuristic Discussion 

In the two equations (17), the right-hand side does not contain a time variable and the 

differential system is autonomous. So, the easiest way to obtain valuable information 
about the solutions consists in studying the phase space. For that, a very effective method 

is to eliminate the time and to find out how the trajectories in the (X, Z) phase plane 

look. 

For the system (17), we have 

dZ T1/2X1/2(1 -- Z 2) 

d---X = 4 {  X2 + ,/2 3/2 M ]  (18) 
ZT X - - ~ - - l  

m ~  

Now, as long as the right member of (18) can be determined for the point (X, Z), it pro- 

vides the slope and only one trajectory goes through this point. 

This procedure breaks down in case of indeterminacy which occurs at points of 
equilibrium, through which many trajectories may go. Therefore, we locate the equilibrium 

points and determine whether these equilibriums are stable or not. 

We obtain these points by setting the second part of system (17) equal to zero. Their 

coordinates are the roots of the equations 

Z = +1,  F(X) -- +1,  

Z = --1,  F(X) = - -1 ;  
with 

F(X) = T -1/2 m + X1 / . (19) 

The case Z = -- 1 is ruled out because of the positive value of the right-hand part of the 
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Fig. 2. 

+7 

0 
X 0 X 1 X 

Locus of point of the closest approach. 

last equation. In the plane (X- -Z)  the representative curve of the F(X) function owns a 
smaller value and in certain cases intersects the line Z = 1. Typical aspect of these curves 
can be seen in Figure 2. An equilibrium point exists only if the minimal value of F(X) 
is smaller than unity, which is expressed by the condition 

256 M 
- -  e - -  ~< T 2. ( 2 0 )  
27 m 

Physically this criterion is related to the possibility for the system to reach the synchron- 
ous rotation of the planet with the satellite's revolution. Let us now pay attention to 
some limiting cases. 

First, assume that the major part of the angular momentum is generated by the planet's 
rotation. Hence, we neglect the orbital motion 

T = GMm~RE - -~,, 

where D is the planet's rotation period. 
In the solar system, the Neptune-Triton pair belongs to this class. Then, Equation (20) 

becomes 

(eM) 3P4 256 D-4 ~> 2--7-- (21) 

This inequality is fully satisfied for the Neptune-Triton system. 
Conversely, we now neglect the planet's angular momentum with respect to that of the 
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) 
z = + l  

\ 
Fig. 3. Behaviour o f  the trajectories in the  vicinity of  the  singular points. 

satellite and Equauon (19)becomes 

\ 2 256 M 

>55- m- (22) 

In the Earth-Moon system, 80% of the angular momentum is embodied in the orbital 
motion of the Moon, the criterion can be used ana it is also satisfied. 

In both previous cases, the system (17) owns two equilibrium points given by the roots 

of the equation 

M 
X 2 - -  T 1 / 2 X 3 / 2  + 0~ - -  = 0;  ( 2 3 )  

m 

the value of Z being unity. 
Hereafter, we name the point A (Xo. 1) and B (X1, 1) with (Xo, XI) the positive roots 

of Equation (23), and Xo ~< X1. Another feature of the trajectories is seen in Figure 2. 

Inside the dashed area bounded by Z = + 1 and F(X) the slope dZ/dX is positive; it is 

negative elsewhere. The curve F(X) is the locus of the points where dZ/dX is infinite. 
Then, along the trajectories which intersect this curve, there is a minimal value of X, 

reached for the value Z = F(X). The meaning of the closest approach can be understood 
easily. In the circular case of a satellite in the equatorial plane, the minimal approach 
corresponds to the synchronous rotations of the satellite and the planet. For a nonzero 
inclination, Equation (23), with the help of the first two integrals (9'), is transformed in 

03 COS I ----- n .  

It is a generalization of the synchronous condition as was pointed out by MacDonald 

(1964). 
The study of the associated linear system in the vicinity of the points A and B, allows 
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Qualitative set of trajectories. Cosine of the inclination on the absolute plane versus the semi- 
major axis. (The unity is one Earth radius.) 

us to determine the character of  these equilibrium points. After some straightforward 

manipulations in linear equations, we conclude that the point A is an hyperbolic point 

whereas B is a node, a quasi-degenerate node for the Moon, the eigenvalues being given by 

4 
X 1 = ~ [ - - 2 X + ~ X 1 / 2 T 1 / 2 ] ,  

T1/2 
X2 = - -  2 X Ia/~-- ~ . 

The value of  X being Xo or X1 according to be in question A or B. In the Figure 3, we 

have crudely plotted some trajectories in the neighbourhood of  A and B. The dashed 
line represents the curve F ( X ) .  

All information now available allows us to sketch in Figure 4 the set of  trajectories in 

the phase space, restricted to the domain included between Z = 1 and Z = - 1, which 
only has a practical interest. 

In this diagram, we have represented the curve a,/3 and 3'; c~ and 3' are samples of  two 
classes, whereas/3 is unique. 

In Figure 4, the orientation indicated on the trajectories agrees with a positive sense of  

time towards the future, and we have considered the criterion (20) to be satisfied. 
Some interesting remarks can be made. If  at the outset the satellite is retrograde and 
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located in the equatorial plane, it stays in that plane, approaching the planet to end by 
collapsing on its surface. 

For a slightly different initial condition (Z "" -- 1) the dramatic end remains, whereas 
the orbital plane leaves the equatorial plane. 

A numerical investigation showed us that in the current state, Triton is represented by 

an a trajectory. So the semi-major axis is decreasing, while the period of rotation o f  
Neptune is increasing. The orbital plane moves away from the equatorial plane. 

The 7 curve is the most interesting for us, because the past and the future evolutions 
of the Moon's orbit are linked to this curve. 

Today, the recession of the Moon from the Earth is an evidence for its evolution; no 

catastrophic end has to be feared unless the act of the Sun (which will become relatively 
more important with respect to the Earth's one as the Moon is approaching B) changes it 

to an a evolution. From the position of the Moon on the 3' curve, two important con- 
clusions can be drawn. First the semi-major axis and the inclination of the orbital plane 

have suffered from considerable variations in the past and the minimal approach of the 
Moon has already occurred (no allowance is made for the Moon's age!) 

Secondly, the present position of the Moon is so close to the point B that a slight 

modification of the initial condition - that is, the today state - involves a very different 
result for the past, especially in the value of the minimal distance. 

The trajectory/3 is the only way to reach the hyperbolic point A. It is a critical curve 
which divides the phase plane in two regions; one filled by the o~ like curves, the other by 
the 3' like curves. So, the situation of the initial point with respect to the/3 curve deter- 

mines the kind of evolution. 
It remains the trajectory Z = + 1 which leads to the well-known result for the evolution 

of the Moon, assumed to be orbiting in the equatorial plane in a direct motion. The three 
usual cases are visible. For an initial state between the origin and A, the planet attracts 
the satellite which falls in spiraling on the primary. In all the other cases, the point B con- 

stitutes the final state. 

5. Numerical Integration 

The Equations (17) are numerically integrated in detail in the case of the Moon and some 
runs are devoted to Triton's one. The routine used is AMC1 (Adams-Moulton-Cowell for 

I 

first-order system) prepared by N. Borderies and L. Castel at C.N.E.S. in France. 
The principal problem in this integration lies in the choice of initial conditions. The 

present state of the Earth-Moon systeml is far from being an exact picture of the tidal 
evolution. The gravitational disturbance o~ the Sun has gradually obliterated the evolution 
of the isolated two-body system. From ~ a mathematical point of view, the complete 

solution of Equation (17) requires two kinds of data: 
(1) the coordinates (X, Z) of the starting point, and (2) the values of the different 

parameters which are present in Equation (17). 
Our goal is trying to find the orbit of the Moon in the distant past, we are, therefore, 
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Fig. 5. Variation of the inclination of the Moon on the absolute plane versus the semi-major axis. 
(The unity is one Earth radius.) 

Fig. 6. 
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Variation of the inclination of the Moon on the Eat'th equator versus the semi-major axis. 
(The unity is one Earth radius.) 

r 
C) 

looking for the present value which would be taken by  the parameters, if  their evolution 

has only been caused by tidal interaction between the Earth and the Moon. For  example, 

it is not  sure that the best value for the present duration of  the day is 24 h; other effects 

such as core-mantle coupling, tidal interaction with the Sun, variation of  G, may produce 

an accelerating or decelerating mechanism. 
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TABLE I 

Variation of  the value of the closest approach for different initial 
inclinations. X is taken equal to 60 at the  starting point  

cos i aiR cos i a/R 

0.998 2.7 0.988 8.6 
0.996 3.2 0.975 17 
0.993 4.0 0.960 34 

The same question is asked for the inclination of the Moon on the absolute plane. The 

present value of the mean inclination of the Moon's orbit on the Earth's equator is given 

by a simple averaging process: 

(cos I)  = cos il cos e, 

with il and e being, respectively, the inclination of the Moon's orbit on the ecliptic plane 

and the ecliptic obliquity. 

So blending (cos I) and cos (I), which is a valuable approximation, we find I ~--24 ~ 

By use of Equation (9'), we obtain T = 85, the period of rotation of the Earth being 

taken equal to 24 h, and the semi-major axis to 60.3 Earth's radii. 

In order to take account of the bad determination of the present state of the Earth- 

Moon system (in the sense explained in the previous paragraph), we tried many computer 

runs with different assumptions about the values of  I, T, Z. As foreseen after the heuristic 

discussion, Z is the more critical parameter. The current value is Z = 0.998 and we scanned 

about this value to obtain Figures 5 and 6. 

The results plotted on these figures are given with T = 85 and no important modifi- 

cation occurs if one changes this value. The integration was performed backward and for- 

ward in the time and stopped when a/RE = 100 in the past and in the future near aiR E = 0 

for c~ curves and aiR E near the synchronous state which would be reached at the point B 

for the 3' like curves. 
The inclination of the Moon on the absolute plane tends to zero (the greatest part of 

the angular momentum being borne by the orbital motion of the Moon); whereas, with 

respect to the equator, the inclination seems to increase. 

In fact, if we shorten the step of integration, the variation of this inclination is inverted 

and goes to zero at the point B. However, as long we neglect the Sun's effect, there is no 

point in studying the trajectories very close to the point B. The coordinates of B being 

X = 84.4, Z = + 1, we found from a rough numerical calculation that the Sun will change 

drastically our results for X > 84.1. 

An examination of the trajectory patterns shows the very important effect caused by a 

small change in the Z value. In Table I, we read the different values of the closest distance 

in the case of different Z values. 

Let us assume a retarding mechanism in the rotation of the Earth which would have 

occurred during a long interval of time; this is not included in our equations. Then the 
angular velocity of the Earth would be greater in the past than the calculated one. 
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The same conclusion could be drawn for the closest approach. The retardation of  the 

Earth due to the Sun goes in this respect. 

Hence, it is not  absurd to consider that the genuine position of  the Moon has never 

been so close to the Earth as the formal lower limit derived from the present state; and 

the difficulty arising from the Roche limit would be avoided. 

6. Concluding Remarks 

As shown in this study,  it is quite imaginable that in the past the Moon was orbiting in a 

retrograde way. A close approach of  the Earth without  involving a path crossing the 

Roche limit is found as a solution of  our simple model.  

From the above research, we cannot say the time-scale problem and the minimal 

approach problem are solved. But the same medicine may be used for both.  The new 

problem to be solved is formulated in the question: how could the inclination o f  the 

Moon on the absolute plane be more radically increased? We have only speculative 

answers to that question and in a forthcoming paper we intend to test their validity. 
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