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Abstract. Using the stochastic collection equation we find that the time scale for rain out of liquid 
iron in a Saturn mass protoplanet is rapid compared with other evolutionary time scales and hence 
iron protoplanetary core formation is inevitable. The survival of this core during subsequent proto- 
planetary evolution and the consequences of the rain-out on the evolution are also discussed. 

1. Introduction 

Models of the primitive solar accretion disk by Cameron (1978) indicate that giant 

gaseous protoplanets are formed by gravitational instabilities as the disk rotates 

around a central condensation. These protoplanets, consisting mostly of hydrogen 

and helium with a small quantity of heavy elements convectively mixed throughout 

as grains, continue to evolve; contracting and growing warmer much as a low mass 

star does. Evolutionary calculations of these objects done by DeCampli and Cameron 

(1978) show that if the mass of the protoplanet is less than a Jupiter mass, then the 

interior conditions require that the iron which would be present as clumped inter- 

stellar gains would melt and remain liquid for up to l0 s yr. Other minerals would 

melt in protoplanets but, for simplicity, we will only consider iron. The melted 

iron drops would form a cloud and we would expect a rain-out of large iron drops 

after a period of coalescence. We shall show in a sample calculation that the coalescence 

and rain-out of iron drops in a protoplanet are very rapid compared to evolutionary 

time scales and hence that mass transport of iron to the center of a protoplanet 

is an efficient mechanism for core formation. After the addition of other possible 

mineral melts this protoplanetary core would either become a planetary core for 

the Jovian planets, or the planets themselves for the terrestrial planets following 

atmospheric mass loss by overflow of the inner Lagrangian point as calculated by 
DeCampli and Cameron (1978). 

In Section 2 we will discuss the method used to model the rain-out of drops. The 

physics required for the modeling is described in Section 3; this includes drop 

velocities and collisional cross sections. A sample coalescence calculation for a 

pre-Saturn protoplanet and the relevant time scales are considered in Section 4. 

In Section 5 we will discuss survival of the core during subsequent protoplanetary 
evolution. 
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2. The Cloud Model 

By the time a protoplanet forms from the accretion disk the interstellar grains would 
have clumped to some extent (Cameron, 1975). As the protoplanet continues its evolution 
the environment in its deep interior would be such that the clumped iron grains would 
melt and form droplets (DeCampli and Cameron, 1978). These droplets would grow by 
coalescence - e.g., a bigger drop which is falling faster than a smaller one would catch 

up with the smaller drop, coalesce, go even faster and thus potentially be able to coalesce 
at a greater rate with smaller drops. To model this process mathematically we use the 

stochastic collection equation which has been used very successfully to model the rain- 
out of water from warm clouds in the Earth's atmosphere. (Young, 1974; Ogura and 
Takahashi, 1973; Takada, 1971 ; Danielsen et al., 1972.) 

Given a number density function f(x) where f(x)dx is the number of drops per unit 
volume in the size interval x to x + dx and x is the mass of a droplet, then the time 
evolution of the spectrum f(x) by coalescence is  given by the following stochastic 
collection equation 

C x/2 
~f(x)/at = Jo f (x-x ' )v(x-x ' ,x ' ) f (x ' )dx '  

- ~ f(x)V(x, x')f(x')dx' (1) 

(Berry, 1967), where V(x, x') is the collection kernel for drops with masses x and x';  
it will be discussed in Section 3. The first integral is the gain of x-drops from drops 
whose masses sum to x and the second integral is the loss of x-drops due to collisions 
of drops with x to all other x '  mass drops. The expression AtV(x, x')f(x')dx' gives the 
probability that a particular x-drop will collect an x'-drop during the time interval At. 

The cloud is assumed to be large enough so that the number density function f(x) 
represents an average volume unit within the cloud. This requires that the extent of the 
cloud must be greater than the mean distance that a drop will fall during the time covered 
by the computation. This assumption will be examined later. 

In contrast with the meteorological rain drop production we do not need to include 
the growth of drops due to condensation in a protoplanet. The drops form initially by 
melting of clumped interstellar grains and further growth is by coalescence only. In this 
paper we also did not include drop breakup from any cause. If we are allowed to use 
the analogy of rain drop formation in the Earth's atmosphere then Srivastava (1971) 
has shown that inclusion of drop breakup in the model only results in a 30% time delay 
in the growth of a distribution (containing mostly medium sized drops to large rain- 
drop sizes). Growth time from small to medium sized drops is affected very little. Further- 
more once a stationary distribution is reached (i.e., where the breakup rate is equal to 
the growth rate) the mean radius of the distribution differs by less than 5% from the 
results of a calculation which does not include drop breakup. These observations will 
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not affect our conclusions. The mechanisms of drop breakup will be discussed in greater 
detail in the next section. We also neglect the growth of small drops due to wind shear 

(Manton, 1974; and Ryan, 1974). Inclusion of this effect (to be done in a subsequent 

paper) is expected to significantly deplete the small drop population and hence opacity 
sources in the protoplanet. 

The mathematical solution of Equation (1) is done by the method of Berry and 
Reinhardt (1974). Their numerical approach to the solution of the stochastic collection 
equation, which is described in detail in their paper, is very accurate. We will describe 
the method briefly. Following Berry and Reinhardt (1974) we discretize f(x) by defining 

r(J) = ro exp [ ( J -  1)/Jo], (2) 

4 71" r a x(J) = ~ PL o exp [3 (J - - t ) / Jo ] ,  (3) 

where OL is the density of the liquid drops (OL = 7 g cm -3) and r(J) is the radius of 
drops in mass bin J with mass x(J). For the calculation presented here ro = 5 x 10 -4 cm 
(the smallest radius considered), J assumed values from 1 to 100. Hence, the maximum 
radius considered is 46.341 cm - the largest mass bin actually occupied was for J = 91, 
r = 16.38 and Jo is a constant chosen below. We further define G(J)=  3x 2 f(x)/Jo 
where G{f) is the mass of drops per unit volume per unit logarithm of the radius 
(G(J)dJ = xf(x)dx). By use of these definitions Equation (1) may be written as 

ac(J)at x(J)jo , ( f x(J) V(Jc,J) 
- _ ~ a(sO x(JOx(J')  c (J ' )  

J., . . . . . .  v ( ] , y ' )  / r ' ,  

-- ,,,k oa o - ta )x -~ j7 -  ) G(J') ] ,  (4) 

where 

Ja = x/2 = J--Join2~3 = J - - 2  

2 
Je = J+ iT-~  -ln [1 --2(a '-a)/2],  

if Yo = 6/ln 2, 

and Jm is the maximum index corresponding to the largest mass bin occupied. The 
solution for G(J) in Equation (4) as a function of time proceeds as follows: 

(1) calculate the gain and loss integrals for all J, sum for each J and get GAIN + LOSS 
= G'(J), the change in mass bin J per unit time; 

(2) find the maximum relative change in G(J), i.e. maximum ([G'(J)/G(J)[); 
(3) limit the forward time step such that any G(J) is not changed by more than 5%. 

(Halving this to 2-1/2% made no difference in the calculation); 
(4) reset G(J) to G(J) + G'(J)zXt where At = 0.05/maximum [G'(J)/G(J)] and finally 
(5) go to step 1. 

Equation (4) requires the evaluation of the gain and loss integrals and consequently 
interpolations in the function G to calculate G(Je). To demonstrate the accuracy of 
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Berry and Reinhardt's (1974) integral evaluation and interpolations let us define L b and Le 
to be the liquid iron content (L = f x f (x)dx)  at the beginning and end of a calculation 

respectively, then in the calculation presented below the error ratio IL b --Lel/Lb was less 
than 5% over approximately 15 000 forward integrations of Equation (4). 

The shape of the initial mass distribution was chosen to approximate that of cloud 

droplets in the Earth's atmosphere. A commonly used approximate initial mass distri- 
bution is the Pearson type III distribution (Berry and Reinhardt, 1974; or Leighton 

and Rogers, 1974). In terms of G(J) this distribution may be written as 

C(J) 3L(v + 1) T M  
= s v+2 exp [-- (v + 1)s] (5) 

r(v + 1) 

where s=x(J)/~Linit ,  2f, ini t=mean mass of the initial number distribution= 

f x f ( x ) d x / f / ( x ) d x ,  L = f x f ( x ) d x = l i q u i d  iron content (gem-a),  the vat f ( x ) =  
1/(v + 1) and v = 1 here. Since some clumping of interstellar grains is expected, the 

mean radius of the mass distribution function was chosen as 10#m. This is roughly 

the geometric mean of the interstellar dust distribution (Mathis et al., 1977) and the 

mean radius of the distribution that Cameron (1975) calculates for grain clumping in 

the primitive solar nebula using optimistic clumping probabilities. The mass fraction of 
iron in the cloud was taken as 0.001. 

We note here that the time evolution of Equation (4) scales inversely with L, the 

liquid iron content, i.e. if one changes the mass fraction of iron to 0.01 instead of 0.001 

the time of growth to a certain size is less by a factor of 10. (L oc mass fraction of iron.) 

3. The Collection Kernel 

COLLISIONAL CROSS-SECTION 

The collection kernel V(x, x ' )  which contains most of the physics is more easily discussed 

in terms of the radii r L and r s where r L and r s are the radii of the large and small iron 
drops respectively. To clarify further discussion we will first consider the geometric 
collisional cross section. For this case 

V(rL, rs) = n(rL + rs) 2 Av, 

Av = ]v(rL)--v(rs) [ and v(r), 

is equal to the velocity of drop r (discussed below). Since drop collisions actually occur 
in an atmosphere, it is more appropriate to use an aerodynamic collection kernel; or, 
more explicitly, 

V(rL, rs) = lrr~ Yc: Av, 

where Ye is the linear collision efficiency. For the geometric case only Yc = 1 + rs/r L 
or Ye is a linear function of rs/r L. In our sample calculation we used the aerodynamic 
collision efficiencies of Lin and Lee (1975). Figure 1 shows the collision efficiencies of  
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iron drops in the same protoplanet environment which is used for the collection calcu- 

lation of Section 4. The data of Lin and Lee were scaled to the protoplanet environment 

by calculation of the Reynolds number for a water drop in their environment and assum- 
ing that an iron drop with the same Reynolds number in a protoplanet has the same 

collision efficiency. Observation on Figure 1 shows that the aerodynamic collision 
efficiencies differ considerably from the geometric collision efficiencies (dashed curve). 
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Fig. 1. Aerodynamic linear collision efficiencies for a Saturn mass protoptanet. The number 
associated with each line gives the radius of the larger drop in cm. Dashed curve shows geometric 

collision efficiencies. 

The efficiency of collisions of drops with a small radius ratio (rs/r L <~ 0.I)  is decreased 
because the smaller drop has a tendency to be pushed away from the larger collecting 

drop. For two nearly equal size droplets (rs/rr, >~ 0.8) the collision efficiencies are greater 

than the geometric cross-section because, despite the fact that the collected drop is 
pushed away by gas flow in front of the collecting drop, the disturbed gases in back 
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of the collecting drop drag the collected drop into its wake region. The lowest Reynolds 

number (for rL) considered by Lin and Lee was 0.15. It is reasonable to assume that as 

the Reynolds number goes to zero a lower limit for Ye is of order rs/rL, in other words 

the impact parameter has to be at least of order r s. For a lower limit of Ye, we chose 

rs/r L. This is shown in Figure 1 with the label r s -~ 0. 

IRON DROP VELOCITIES IN AN ATMOSPHERE 

Before discussing the velocities of iron drops in a hydrogen and helium atmosphere it is 

instructive to determine the size range of interest. 

A lower limit on the drop size can be found by consideration of surface effects during 

condensation. One can show (Rogers, 1976; p. 59; or Huang, 1963; p. 38) that drops 

with radii smaller than a critical radius 

2al l#  
r m i n  - -  

p L k B T l n  S 

are unstable towards evaporation. In the foregoing equation H is the mass of a hydrogen 

atom, p is the molecular weight of the condensable, S is the ratio of the actual pressure 

to the saturation vapor pressure, a is the surface tension of the fluid with density PL, kB 
is Boltzmann's constant and Tis the temperature. According to DeCampli and Cameron's 

(1978) Saturn protoplanet models a typical value for the saturation ratio, S, is 3. Taking 

this value for S and a temperature of 1850K we find rmi n ~ 10 -7 cm. However since the 
minimum drop size considered in this paper is greater than 10 -s cm we will only display 

information for drops larger than 10 -5 cm. At the other end of the scale, there are three 

mechanisms which limit drop growth; (1)aerodynamic instabilities (Pruppacher and 

Pitter, 1971; and Klett, 1971), (2) turbulence and (3)collision induced drop breakup. 

(Brazier-Smith et al., 1972). Klett (1971) did a stability analysis of circular capillary- 

gravity waves in a drop and arrived at an upper limit for the aerodynamic instability of 

a drop as 

11,2 
rma x = 1 .84  (PL -- P)g] ' 

where p is the density of the gas through which the drop is falling, g is the acceleration 

of gravity and o is the surface tension. For g = 1.2 cm s -2 (conditions similar to those 

in a protoplanet), rma x = 27 cm. As mentioned earlier, drop breakup is only expected 

to effect the growth time from medium sized drops to large sized drops. Since large 

drops may conservatively be defined as those drops with radii ~ 5 cm, the conclusions 

of this paper are not vitiated by excluding drop breakup from the model. 

Fortunately for our purposes Beard (1976) has done a dimensional analysis of the 

empirical data for the fall velocities of water drops. This enables us to immediately 

apply his formulas to the calculation of iron drop terminal velocities in a protoplanet 

with an arbitrary atmosphere. Beard's formulas explicitly include the following 

effects: 
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(1) slip correction for when the drop size is on the order of the mean free path 
(Epstein regime), and 

(2) flattening of larger drops as a function of the drops' surface tension, a. 

Beard's formulas are fitted only up to the maximum terminal velocity. Drops larger 
than this have essentially the same velocity due to flattening (Berry and Pranger, 1974). 
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Iron drop terminal velocities as a function of radius and the acceleration of gravity, g. 

In Figure 2 we have plotted the terminal velocity of iron drops as a function of drop 
radius for 3 different values of the acceleration of gravity. Similarly, Figure 3 shows drop 
velocities at different pressures. The other parameters used for the plots are nominal 
values for temperature (1820 K), pressure (3 bar) and gravity (1.2 cm s -2). The interpret- 
ation of Figure 2 is straightforward; however, Figure 3 requires an explanation. The central 

straight portion is essentially Stokes's law and merely demonstrates that viscosity is inde- 
pendent of pressure. At the lower end the drop size becomes comparable to the mean free 
path (Epstein regime) and the velocity is faster than Stokes's law due to boundary slippage. 
The amount of slippage is dependent upon the pressure. At the upper end of the scale, 
large drops have very high Reynolds numbers and hence the force on them is independent 
of the Reynolds number (Landau and Lifshitz, 1959; p. 169) and thus dependent upon 
the gas pressure. The leveling of the curves is of course due to drop flattening. 
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Fig. 3. Iron drop terminal velocities as a function of radius and pressure, P. 

4. Results and Discussion 

In Figure 4 we have plot ted the results of  our integration of  Equation (4). On the ~;ertical 

axis G(x) is the mass (grams) of  drops per cubic meter per unit logarithm of  the radius 

(hence, the area under the curve is proport ional  to the mass of  drops at that radius). Each 

curve in Figure 4 represents a snapshot of  the mass spectrum of  drops in an arbitrary. 

(assuming boundary conditions are satisfied) cubic meter of  the cloud at a particular time. 

The environment of  the cloud where the coalescence occurs is very similar to that 

obtained by DeCampli and Cameron's (1978) evolutionary calculations of  an isolated 

protoplanet  where the mass of  the prot0planet  is one Saturn mass. We chose the follow- 

ing parameters: pressure = 3.0 bar, gravity = 1.2 cm s -2 , temperature = 1820 K (melting 

point  of  iron) and the mass fraction of  iron = 0.001. Under these conditions the maximum 

terminal velocity of  drops is approximately 32 m s -1 . This velocity is obtained by drops 

larger than 7.3 cm in radius. 
Observation of  Figure 4 shows that  the initial distribution with an approximate mean 

radius of  10/lm grew by coalescence to a distribution with a mean radius of  8 cm in 80 yr. 

The dashed line with spikes shows the growth of  the radius of  the mean mass of  the 

distribution, rg = (xg/~ 7rpL) 1/3 where xg = fx2f(x)/L. The bimodal character of  the final 
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Fig. 4. Mass spectrums of iron drops in a Saturn mass protoplanet as a function of time. Dashed 
curve with vertical spikes is rg (see text). 

distribution is a result of  the aerodynamic collection kernel (collisional cross section 

times relative velocity). 

We are now in a position to determine the validity of  the boundary conditions. As 

mentioned earlier the stochastic collection equation is valid as long as the distance that 

an average drop falls (during computation time) is small compared to the size of  the 

cloud (6.3 x 101~ cm in a Saturn mass protoplanet [DeCampli and Cameron, 1978]). 

Taking 'small' to mean one-tenth of  the cloud size we may write 

S? 6.3 x 109 cm = v(rg)dt, (6) 

(6) 
where v(rg) is the velocity of  the radius of  the mean mass and ta iS the allowable 

growth time in 1/10 of  the cloud. Simple trapezoidal of  integration of  Equation (6) 

gives ta = 75yr  and correspondingly rg, a = 1.0cm and v(rg, a ) = 8 5 0 c m s  -1. Drops 

larger than 1 cm in radius will of  course form and rain out from the lower parts of 

the cloud, but the time scale is not  as well defined. At the rate of  850 cm s -1 a 1 cm 

radius drop will fall from the top layer of  the cloud in 2 yr. Since 1 cm is considerably 
less than 27 cm (aerodynamic instability maximum drop radius) we do not expect drop 

breakup from any cause to play a significant role in the time scale of  growth to 1 cm 

in radius. 

In summary, drop growth takes approximately 75 yr and after growth some rain from 

all of  the cloud will be transported to the center of  the protoplanet within two years. 

This calculation should be regarded as approximate since we have ignored such effects 

as the variation of  gravity, drop breakup (for larger drops), wind shear growth (for 

smaller drops), and the inherent spherical geometry. Nevertheless, the time-scales should 

be of  the right order. The actual formation of  the core will be discussed in the next 

section. 
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5. Protoplanetary Core Formation and Subsequent Evolution 

Time Scale for Core Formation 

In the previous sections we have shown that in a protoplanet the rain-out of iron drops 

is an efficient mechanism for mass transport of iron to the center of the planet. Thus 

rain-out of iron leads to the formation of a protoplanetary core. Certain silicates would 
either rain-out with the iron (mixed in the initial clumped grains as solids) or possibly 

rain-out later depending upon the exact evolution of the protoplanet. Since droplet 

growth is so rapid compared with the evolutionary time scale we must conclude that a 

large cloud with high iron abundance throughout, such as used in the previous section, 

cannot actually exist in an evolving protoplanet. As the protoplanet evolves the cloud 

volume would expand slowly outward and rain-out would occur shortly after liquid iron 

appeared in each layer. Excluding convection, significant rain-out would continue as long 

as the cloud is expanding and iron remains liquid (up to l0 s yr in a Saturn mass proto- 

planet; cf. DeCampli and Cameron, 1978). On the other hand convection (which is 

expected) would act to bring fresh grains into even a small spherical cloud at the center, 
and the rain-out would essentially be finished in a time interval which is a few times the 

convective turnover time scale, say 400yr.  DeCampti and Cameron (1978) give 60 yr as 

the convective turnover time in a Saturn mass protoplanet. 
DeCampli and Cameron note further that since over 99% of the gravitational energy 

released by the infall of iron drops goes into viscous heating of the gases in the cloud 

layer, then the luminosity of a protoplanet during rain-out is approximately 10 times 

greater than it would be without rain-out. This excess luminosity, which would have 
serious consequences on evolutionary calculations demonstrates that grain rain-out must 

be included in the calculations for a correct picture of their evolution. The sudden energy 
release may lead to a substantial mass loss at the surface of the protoplanet, it would also 

almost guarantee convection in the cloud layer. Because of the higher temperatures pro- 

duced, this excess luminosity also greatly complicates the time scale for core formation. 

More careful modeling will be required, but the time scale is expected to be somewhat 

greater than the 400 yr arrived at above. 

SURVIVAL OF A CORE 

After rain-out the protoplanet is expected to evolve until the envelope surrounding the 

core is no longer saturated with iron vapor (DeCampli and Cameron, 1978). The question 

arises, will the core survive during subsequent evolution? Since less than 1% of the gravi- 
tational energy released during the dropfat! is released upon impact, heating at the core 

envelope boundary is expected to be minimal and thus energy transport is expected to 

revert back to radiation rather than convection a short time after rain-out ceases. 
Under these assumptions the evaporation would be governed by diffusion. The rate of 

change of the radius of a sphere is given by the following expression 

dr C 
- (7) 

dt r ' 
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c = ( s - 1 )  [XN  + .DPs(r)J ' (S) 

where L h is the latent heat of vaporization, PL is the liquid density, No, Avogadro's 
number; kB, Boltzmann's constanL ~, the mean molecular weight of the liquid, T, the 

temperature; K, the coefficient of thermal conductivity of the atmosphere; D, the 
diffusion coefficient of iron vapor in the atmosphere; and S=P/Ps(T), where P is the 

pressure at the core envelope boundary and Ps(T) is the saturation vapor pressure for 
iron at temperature T. (Cf. Leighton and Rogers, 1974; or Rogers, 1976; p. 69ff.) 

Dimensionally Equation (7) goes to ~-=R2/C where r is the life time of an object with 

radius R. For an Earth sized core, even under the extreme conditions of T = 5000 K, and 

P = 3 bar, r ~ 1013 yr. (See Appendix for details on the calculation of C). Hence a large 

protoplanet core would survive evolution after the rain-out is completed. 

Conclusions 

On the basis of a Saturn mass protoplanet we have shown that the rain-out of iron, using 

the stochastic collection equation, is a rapid and efficient mechanism for protoplanetary 

core formation. Further if the core envelope boundary is not convective the core would 

survive protoplanetary evolution after the rain-out and core formation has occurred.We 
also note that the energy released as large drops fall through the atmosphere has a sub- 
stantial effect on protoplanetary evolution. 

A subsequent paper will deal with protoplanets of different masses, rain of various 

possible mineral melts, different initial drop spectrums, and the effect of wind shear on 
drop growth. 

Appendix 

In this appendix we will give the details of the calculation of various microscopic para- 

meters such as viscosity, diffusion coefficient, etc., for a molecular hydrogen and helium 
gas mixture. 

Preliminary Definitions 

Define W = Xm + Ym where X m = X/AH~ , Ym = Y / A H e ,  X is the hydrogen mass 
fraction, Y is the helium mass fraction (chosen as 0.78 and 0.22, respectively), AI~ 2 and 
A He are the hydrogen and helium molecular weights respectively. 

Diffusion Coefficient 

Let Rrnn2 = Xm/W and R m H  e "= Y m / W .  Then the diffusion coefficient of iron into 
a molecular hydrogen and helium mixture is 

D = ( R m H  2 /DH2 _ Fe q- RmHe/DHe- F e )  -1 , 
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where D ~  and DHe are the binary diffusion coefficients of iron into H2 and He respec- 

tively (Chapman and Cowling, 1970; p. 354). DH~ - Fe and DHe - Fe are obtained by using 

a power law fit of binary diffusion coefficients of noble gas data, e.g. D1-2 = PA q 
where D1-2 is the diffusion coefficient of molecule 2 in a molecular gas of element 1, 

p and q are fitted constants and A2 is the atomic weight of molecule 2. As a result of the 

fitting procedure, DHe-Fe = 0.629 and DH2-Fe = 0.640cm2 s-1 at standard con- 
ditions (Chapman and Cowling, 1970; p. 263). Both coefficients were adjusted for tem- 

perature and pressure by use of the formula 

D(T, P) = Dse \273J 

where D~ is the diffusion coefficient at standard conditions (American Institute of  
Physics Handbook, 1972; pp. 2-250). 

Viscosity 

Assuming that the molecular collision cross sections for hydrogen and helium are the 
same, one can show (Reif, 1965; p. 473f) that the average viscosity for a mixture of 

hydrogen and helium can be expressed as 

~av = (~n:Xm + ~neYm)/W, 

where ~av is the average viscosity of the gas and r/a2 and THe are the viscosities of 

hydrogen and helium at the correct temperature which are obtained from the Sutherland 

interpolation equation 

273 + ti / T ',3/2 

where ~O.H~ = 8.51 X 10 -s poises and r/0, He = 1.842 x 1 0  . 4  poises, tH2 = 70.6K 

and the = 97.6 K (Smithsonian Physical Tables, 1956; p. 331). 

Thermal Conductivity 

We used the following formula for the thermal conductivity: 

K = �88 (93' -- 5)~Tev, 

where 7/ is the viscosity, 7 = Cp/ev, ep and ev are the specific heats (per gram) at con- 
stant pressure and volume of the hydrogen and helium gas mixture (Smithsonian Physical 
Tables, 1956; p. 142). 

Mean Free Path 

Again, assuming that the collisional cross sections of hydrogen and helium molecules are 

the same, one can show (Reif, 1965; p. 47t )  that the average mean free path may be 

expressed as 
l a v =  (ln2Xm + lneYm)/W, 
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where IH~ = 16 • 10 -6 cm and lae = 25.25 • 10 -6 cm are the mean free paths of  

hydrogen and helium, respectively, at 0 .9868bar  and 273K.  Further correction for 

temperature and pressure give 

l = l a v ( ~  (.0"986~8pX106) ( T t 1/2 

where r~2,~ is the viscosity of  the mixture at 273 K (Beard, 1976). 

Other Numerical Constants 

The value for the latent heat  of  iron, Zh, was taken as 7.23 x 101~ erg grn -1 (Smithsonian 
Physical Tables, 1956; p. 165). The value for the surface tension of  liquid iron was taken 

as o = 1780 dyn cm -1 (Handbook o f  Chemistry and Physics, 1974; p. F-29). 
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