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Abstract. The orbits of Titan and Hyperion represent an interesting case of orbital resonance of order 
one (ratio of periods 3/4), which can be studied within a reasonable accuracy by means of the planar 
restricted three-body problem. The behaviour of this resonance has been investigated by numerical 
integrations, of which we show the results in terms of the Poincar6 mapping in the plane of the 
coordinates r /=  x/[(2L -- 2G)] cos ( ~ H - -  t)  and ~ = -- x/[(2L -- 2G)] sin (c~ H -  t), keeping a con- 
stant value of the Jacobi integral throughout all integrations. We find the numerical 'invariant curves' 
corresponding to low and high eccentricity resonance locking (which seem stable, at least during the 
limited time span of our experiments) and show that the observed libration of Hyperion's pericenter 
about the conjunction lies inside the stable high eccentricity region. If initial conditions are chosen 
outside the stable zones, we have no more stable librations, but a chaotic behaviour causing successive 
close approaches to Titan. 

We discuss these results both from the point of view of the mathematical theory of invariant curves, 
and with the aim of  understanding the origin of the resonance locking in this case. The tidal evolution 
theory cannot be rigorously tested by such experiments (because of the dissipative terms which change 
the Jacobi constant); however, we note that the time scale of chaotic evolution is by many orders of 
magnitude smaller than the tidal dissipation time scale, so that the chaotic regions of the phase space 
cannot be crossed by a slow and 'smooth' evolution. Therefore, our results seem to favour the hypo- 
thesis that Hyperion was formed via accumulation of the planetesimals originally inside a stable island 
of libration, while Titan was depleting by collisions or ejections the zones where the bodies could not 
escape the chaotic behaviour. 

1. T he  T i t a n - H y p e r i o n  R e s o n a n c e  and  How to S t u d y  I t  

The  3 /4  r e sonance  locking  b e t w e e n  the  satel l i tes  o f  Sa turn ,  T i tan  and  H y p e r i o n ,  can  be  

descr ibed  as a h igh  eccen t r i c i ty ,  s imple  e - type  l i b ra t ion  (Greenbe rg ,  1973 ;  C o l o m b o  et  

al., 1974) .  This  means  t h a t  we have  an in teger  c o m b i n a t i o n  o f  angle variables 

tp = 3)~ T - -  4XH + C~H, (1)  

w h i c h  is l ibra t ing  a b o u t  a m e a n  value w i t h o u t  do ing  a comple t e  c i rcu la t ion .  Here XT and  

XH are the  m e a n  long i tudes  o f  T i t an  and  H y p e r i o n  respect ively ,  whi le  ~ u  is t he  long i tude  

o f  H y p e r i o n ' s  per icenter .  A l t h o u g h  t he  phys ica l  m e c h a n i s m  w h i c h  assures t he  s tab i l i ty  o f  
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this kind of orbital resonance is well known, the Titan-Hyperion case is still puzzling 

because up to now the origin of the resonance has remained an open problem, and the 

authors who have participated - until recently - in the discussion of this subject 

(Goldreich, 1965; Sinclair, 1972; Colombo and Franklin, 1973; Greenberg, 1973, 1977; 
Peale, 1976) have not presented any conclusive arguments supporting the proposed 
explanations. Therefore, we have tried to explore the dynamical behaviour of  Hyperion's 

orbit (and of the orbits which are nearby to the real one in the phase space), in order to 
see what evolutionary models are really consistent with celestial mechanics. This task can 

be accomplished with very precise numerical experiments; but the results of such exper- 

iments are far more illuminating if presented in a geometric form which fits in the frame 

of the contemporary stability theory for dynamical systems, mainly as regards the results 

of  the so-called KAM theory (after Kolmogorov, Arnold and Moser). 

Since the relative inclination of the two orbits is very small (6 ')  and Titan's longitude 

of pericenter plays no role in the libration, the dynamical problem can be modelled quite 

well as a restricted three-body problem in which a secondary body (Titan) of mass 

# =  1/4151 revolves about a primary (Saturn) of mass ( 1 - -# ) ,  and the third body 

(Hyperion) moves in the same plane as a zero-mass test particle (in fact, the mass of 

Hyperion is about 2 • 10-7 Saturn's mass). Within the scope of this model we neglect the 

eccentricity e T  = 0.0289 of Titan's orbit and the perturbations produced by other bodies; 

but as we shall see, the real libration of Hyperion is modelled very well in spite of these 

simplifying assumptions (all the quoted orbital elements are taken from the 'Explanatory 

Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical 

Almanac', Her Majesty's Stationery Office, London). 

Figure 1 shows an integrated librating orbit similar to Hyperion's one in the reference 

frame rotating with the mean motion of Titan. The three characteristic lobes of the curve 

are due to the fact that, because of the 3/4 resonance, between two successive conjunc- 

tions Hyperion must complete three revolutions (with corresponding apocenters and peri- 

centers) in the inertial reference frame. Obviously, the conjunction always occurs near the 
apocenter, so that too close encounters between the two satellites are not allowed and the 

resonance assures a stability which otherwise could not exist (Roy, 1979). 
The most suitable coordinate set for our study is the usual set of action-angle or 

Delaunay synodic variables L = x/a, G = x/[a(1 -- e2)], l = mean anomaly, g = ~ r - -  t 
(hereinafter unsubscripted elements will be Hyperion's ones, Titan's elements being 
a T = 1 ,  e T = O,  I r = t ) ,  but in order to avoid the singularity corresponding to e = 0 we 
introduce the Poincar6 synodic variables 

X/[(2L -- 2G)] cosg, (2) 

L,  

with X reducing to the true anomaly for (L -- G) -+ 0, i.e. for e -~ 0. 
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Fig. l. An orbit similar to Hyperion's one in the reference frame rotating with Titan- The libration 
is shown by the spreading of points about the resonant periodic orbit which would appear as 

a closed line. 

The topological structure of the solutions is determined by  a fact known from theor- 

etical proofs by Arnold and Moser and from numerical experiments by  Contopoulos,  

H6non and others (for a review see Moser, 1973): some solutions can form invariant tori 

which surround (in the phase space) the periodic orbits of  first and also o f  second kind. 

In order to see how these invariant manifolds can bound and control  the possible motions,  

we have to present the global dynamics in a way which reduces the dimensionali ty and 

allows to display the results in an easily understandable graphical form. This can be done 

by using a method  going back to Poincar6, that of  surfaces o f  section (or Poincar6 maps): 

we choose an angle variable - here the mean synodic longitude X - and take a section of  

the phase space defined by a constant value o f  that angle - here X = 0 or multiple of  360 ~ 

This means that we record the elements o f  the perturbed mot ion once every conjunction, 

because k = l + U o  H - t = I + & H - I T = O  indicates conjunction in the sense of  mean 

anomalies. Since the restricted three-body problem has an exact first integral, the Jacobi 

integral H, by  restricting the analysis to a level 3-manifold o f  H the surface o f  section 

(defined by  X = 0, H = const.) becomes bidimensional.  Hence the long term behaviour o f  

an orbit  may be described by plott ing the successive points of  intersection of  the orbit  
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Fig. 2. The same orbit of  Figure 1 represented in the phase space by the method of  surfaces of  
section. The polar angle with respect to the origin in the ~, ~ plane is the angle between Titan and 

Hyperion's pericenter, the radius is a ~j 4e (neglecting higher order terms in e). 

itself with the chosen surface of section. It follows that, by this method, fixed points 

correspond to periodic orbits and invariant curves to invariant tori. 

2. The Numerical Experiments 

We have developed the computer program ORBIT2 with the aim of performing the 

following tasks: to solve numerically the equations of motion of the restricted three-body 

problem with a high degree of accuracy; to change coordinates from Cartesian ones 
(easier to use for the numerical integration) to Poincar4 synodic variables; to take by 
interpolation the intersection with the surface of section; to display the obtained points 

in a graphical output (video or plotter). The program worked interactively, allowing us to 
change initial conditions keeping a constant value of H, to display the resulting orbits 

separately or together, to get graphical and/or numerical outputs. The main difficulty was 

connected with the requirement of a high precision throughout the integrations, avoiding 

that accumulated numerical errors could affect the results in a relevant way. It is well 
known (Brouwer, 1937) that the numerical error along track accumulates more than 
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Fig. 3. Four superimposed librations with the same value of the Jacobi integral (H = -- 1.507 880): 
below, three librations of the high eccentricity type; above, one of the low eccentricity type. 

linearly with time, so that very long integrations become exceedingly expensive (because 

of  the very small stepsize needed) or of  poor reliability. The problem was solved with a 

method of  rather high order (Adams-Moulton eighth-order predictor-corrector) with 

automatic stepsize control�9 The accumulated numerical error was tested by means o f  

two-body experiments: we can estimate that for the worst points (i.e., at the end of  the 

integration interval) the accumulated error was smaller than 10 -3 radians in the angle g 

(an along-track variable because o f  the rotating reference frame) and smaller than 10 -6 
in the radius x/(2L -- 2G) = X/(~ 2 + r~2). Therefore the figures we are going to discuss can 

be considered reliable, since the error is always smaller than the point indication used by 

the plotter. The value of  the Jacobi integral was selected to be H = -- 1.507 880 on the 

basis of  the known elements o f  the real Hyperion's orbit, and this value was conserved by 

the numerical integration with an error smaller than 3 x 10 -7. 
Figure 2 shows an orbit (i.e., the intersections o f  an orbit with the surface o f  section) 

in the ~-r/plane very similar to the observed one o f  Hyperion, which librates stably with 

an amplitude of  about 36 ~ about the mean value of  ~ (180~ with a libration period o f  

1.75 yr (Woltjer, 1928), that corresponds to about 10 synodic periods�9 This means that we 

expected to find, for suitable initial conditions, an invariant curve (section of  an invariant 
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Fig. 4. A high-amplitude libration which results in a chaotic behaviour. The numbered points, rep- 
resenting consecutive conjunctions, show the gradual wandering away from the 'false invariant curve'. 

toms) on which after ten successive iterations of the Poincar6 map the representative 

point would return very close to the initial position. This theoretical prediction was con- 

firmed by the numerical experiment: the orbit of Figure 2 has a libration period of ~ 10.1 
synodic periods and an amplitude of ~ 37 ~ in good agreement with the observed values. 

We remark that these results are satisfying because both the observations and the math- 

ematical model (neglecting a 0.029 eccentricity of  Titan) are approximate. 

Then we started to look for librations of larger amplitude (by changing the initial 

values of ~ and r/ and keeping H constant). Figure 3 shows four superimposed orbits, 
which suggest the existence of an 'ordered' region of high eccentricity librations that 
occupies all the 'crescent' zone of the Figure. The libration of highest amplitude, which is 
stable for many libration periods, has an amplitude of about 213 ~ and a period slightly 
smaller than 10 synodic periods. Also in Figure 3 we can see a low eccentricity libration 
(the heart-shaped curve), which is stable for a long time too. On the other hand, if initial 

conditions are chosen just a little outside the regions bounded by the high and low 
eccentricity librations of Figure 3, the situation changes radically. In Figure 4 we see that 
for a 'long' time the orbit seem to lie on an invariant torus: the minor satellite librates 
until the conjunction (X -- 0) occurs with maximum amplitude of the librating argument 
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Fig. 5. A chaotic orbit which surrounds the ordered zone. 

(i.e., with the minimum value o f  g) at the right top of  the crescent. At this instant the 

conjunction occurs near the pericenter and it is in fact a close approach to Titan (point 

number 5); then the orbit begins to oscillate outside the 'false' invariant curve, two more 

close encounters occur (points number 9 and 12) and finally the orbit is pushed far away 

from the llbration zone towards a very close approach to Titan (point number 16) 

followed by a 'chaotic'  evolution (the symmetry ~ -~ -- ~ is artificial, due to the fact that 

we plotted together two symmetric orbits to better exhibit the 'false' invariant curve). 

If initial conditions are chosen farther away from the ordered region, as shown by 

Figure 5 a more unstable libration results, which is very quickly destroyed by pertur- 

bations and followed by the 'chaotic'  behaviour with multiple close approaches to Titan. 

3. Discussion of  the Results 

For a deep understanding of  the preceding results, it is necessary to describe an 'order 1' 

resonance as a bifurcation o f  a family of  periodic orbits, in which a non-resonant family 

of  near-circular 'first kind' periodic orbits bifurcates into three different families for a 

critical value o f  the parameter which characterizes the family (the Jacobi integral in our 

case). Among these families, two are linearly stable (i.e., have pure imaginary Liapounov 
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Fig. 6. Interpretation of numerical results (qualitative sketch): 1: hyperbolic fixed point (unstable 
periodic orbit); 2: elliptic fixed point (stable periodic orbit of first kind); 3 : elliptic fixed point (stable 
periodic orbit of second kind); 4: largest possibly stable low eccentricity libration; 5: largest possibly 
stable high eccentricity libration; 6:36 ~ libration; 7: singular level curve of the 'second integral', 

which is destroyed by perturbations (as all other dashed lines). 

characteristic exponents) and their position can be easily guessed, by  looking at Figure 3, 

at the centers of  the stable librations. But the most important for our problem is the third 

family, which is composed of  unstable periodic orbits (with two characteristic exponents 

real and of  opposite sign) and lies on the positive r/axis (that means conjunction at peri- 

center, an unstable configuration). Such a periodic orbit gives on the Poincar6 map an 
hyperbolic fixed point which is characterized by a stable and an unstable invariant curve; 

both these curves must surround the two stable periodic orbits. Figure 6 provides a 

qualitative description of  the bifurcation phenomenon by showing the level lines of  a 
'second integral', i.e., the system of  invariant curves which should result if the dynamical 

problem were integrable. 
These lines are the same that can be obtained by  averaging out the short-period terms 

of  the perturbation, i.e., the terms depending not only on the librating argument ~p and 
on the action variables, but also on the non-librating argument (Sinclair, 1972). But 
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Hamiltonian systems are 'generically' not integrable (Poincar~, 1892; Moser, 1955), so 

that the short-period terms are not negligible, and taking into account their effect the 

dashed curves become wildly oscillating. In particular the stable and the unstable curve of 
the hyperbolic fixed point, which in Figure 6 appear as a unique singular curve, split into 

two curves which 'generically' will intersect transversally each other at some points (see 

Arnold, 1976; Appendix 7). These are homoclinic points;if  the intersection is transversal, 

there is an infinite number of them, hence their topological closure is a non-trivial 

recurrent set (Poincar~, 1899, Ch. XXXIIt; Smale, 1%7; Moser, 1973, Oh. 3). Without 

entering more deeply into such a complex mathematical subject as homoclinic points and 

hyperbolic sets, from a qualitative point of view what happens is that around the singular 
level curve of the second integral (Figure 6) a 'chaotic region' must be necessarily gener- 

ated by the amplified resonant perturbative terms. This corresponds to the small divisors 

(produced by the resonance) which cause the series to diverge both in the classical pertur- 

bation theory and in the Birkhoff normal form theory. On the other hand, the KAM 

theory prescribes that around 'generic' elliptic fixed points (corresponding to linearly 

stable periodic orbits) we must have some invariant curves resisting to perturbations, 

therefore bounding two 'ordered regions' where the stability of librations is assured for 

every time span. But neither the stability theorem of KAM theory, nor the instability 

theorem about homoclinic points give any quantitative indication of practical value about 

the width and the boundaries of 'chaotic' and 'ordered' regions. Therefore we cannot 

hope to get valuable information about the stability of  librations of different amplitudes 

from analytical arguments. For instance, if we had supposed that short-period terms can 
be averaged out, we would conclude that stable librations up to 360 ~ are possible, what is 

definitely false as we have seen. 
It follows that, at the present state of  the theory, only numerical experiments can be 

used to obtain informations about the resonant regions as regards stability or instability 

for different initial conditions. Of course no finite numerical integration can prove the 

existence of an invariant curve; but if the width of an annular 'chaotic' region could be 
bounded, using the observed width in a numerical experiment, the known numerical 

error and the time span of the experiment, then in the two-dimensional case the existence 

of two bounding invariant curves would be indicated. Unfortunately not even this seems 
possible because, as we have seen in Figure 4, the wandering away from a 'false invariant 
curve' is very slow at the beginning, then becomes very fast when the orbit passes through 
a 'hole' in the 'false invariant torus'. This fact corresponds to the theoretical argument 

that the time scale of this wandering is of  the order o fexp  (1//jd)with 0 < d  < 1 (Arnold, 

1976, Appendix 8). Therefore, every numerical experiment can prove the stability only 

for the time interval of the performed integration, which is necessarily very small on the 

astronomical time-scale (at maximum some thousands of revolutions). On the other hand, 
if the result of  the numerical integration for a given orbit is a chaotic behaviour, then we 

can consider as proven for any time that at least in the region transited by that orbit the 

invariant curves have been disrupted by perturbations. 
An important feature of  this particular case (3/4 resonance with # = 1/415 t) is that 
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the chaotic region indicated by Figures 4 and 5 contains the singularity of  collision with 

Titan, so that any initial condition outside the outermost presumed invariant curves gives 

rise very quickly (a few tens of synodic periods) to very dose approaches to Titan. On the 

contrary, we do not determine if the same thing can happen to an orbit with initial con- 

ditions inside the presumed 'ordered region', perhaps after a very long lapse of time. Since 

Hyperion is librating with a 36 ~ amplitude, we must argue that at least up to this ampli- 
tude invariant curves do exist; but we can say nothing about the stability for, say, 1011 

revolutions (which correspond to the age of the system) of librations with an amplitude 

between 36 ~ and 213 ~ . 

4. The Origin of the Titan-Hyperion Resonance 

The theory which explains various cases of resonance locking among satellites of the 

outer planets as the result of differential tidal evolution of orbits (Goldreich, 1965) has 

been widely applied in recent years (for a review see Peale, 1976), assuming a 'smooth' 

evolution from non-resonant orbits (with circulating critical argument) to resonant stable 

librations corresponding to commensurable periods. Within this context, the Titan- 

Hyperion resonance is an anomalous case: the large orbital distance of Titan implies that 
the tidal increase of  its semimajor axis has been very small during the solar system's life- 

time, even if Saturn's tidal dissipation coefficient is close to the lower limit derived by 

Goldreich and Soter (1966). This conclusion led Colombo and Franklin (1973) to explore 

the possibility that the resonance is a primordial configuration, by evaluating the relative 

volume in the phase space of initial conditions giving rise to a libration. This hypothesis 

is supported by Roy (1979), on the basis of an empirical stability criterium which implies 

the instability of Hyperion's orbit if the effects of  the resonance are not taken into 

account. 
Our results impose to the tidal hypothesis (or to any other theory based on small 

non-conservative terms) an important constraint : the evolution can really take place only 

inside 'ordered' regions. This because the time scale of  tidal evolution is by many orders 
of  magnitude longer than the time scale of dramatic orbital changes inside a 'chaotic' 

region, due to multiple close encounters with Titan (which finally cause a collision or the 

ejection of Hyperion into an 'irregular' orbit). The 'chaotic' region cannot be crossed by a 

'smooth'  and slow evolution, and inside it the equations commonly used in the tidal 
theory have no meaning, since the divergence of perturbative series results in the impossi- 

bility of  isolating secular terms. 
This argument does not exclude the possibility of a tidal evolution from circulation to 

libration, because in the presence of dissipative terms the Jacobi integral is no more 
constant. If the tidal evolution changes semimajor axes and eccentricities just in the same 
way these parameters change along the family of periodic orbits (parametrized by the 
Jacobi integral) which continues into the high eccentricity librations, then the evolution 
can take place always inside a ' tube' of  ordered regions. However, the process of  capture 
into libration surely does not occur automatically for every inRial condition, and it would 
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be necessary to verify the possibility of such an evolution and its probability by system- 

atic numerical experiments (which cannot be easily replaced by analytical arguments, as 

we discussed before). We can conclude that in the case of  the Titan-Hyperion system the 
tidal theory meets with relevant difficulties to explain the formation of the actual res- 

onant configuration (even if it could account for some orbital evolution inside the ordered 
libration region). 

Therefore we are led to examine in some more detail the mechanism for the so-called 

'primordial' formation of the resonance. This mechanism was probably not a simple 

'natural selection' process among a number of  Hyperion-like objects with initial similar 

orbits. We rather suggest a model which is di:ectly related to the process of accumulation 

of large solid bodies within the protosatellite cloud which surrounded Saturn. The growth 

of Titan's embryo had to cause, in the neighbouring region of the cloud, increasing gravi- 

tational perturbations, and our experiments show that when these perturbations became 

comparable with the present ones, a large region of the phase space around the libration 

zone was quickly depleted by collisions or ejections. On the contrary, the relatively small 

'ordered' region (similar to the one shown in Figure 3) could continue to contain particles 

and small bodies in stable orbits. This material, confined in a narrow zone both in the 

physical space and in the phase space (i.e., with small relative velocities), could easily be 

accumulated into a single body whose present orbit must lie inside the same zone. We 

note that, while in the phase space the 'ordered' region has two detached components 

(low and high eccentricity librations), the corresponding orbits do intersect and therefore 

a single body can result from the accumulation process. Moreover, we can suggest a 

possible reason why Hyperion was formed at the 3/4 resonance and not at the 2/3 one, 

which is associated with a larger libration zone in the phase space (Colombo and Franklin, 

1973): the effectiveness of  the accumulation process was probably dependent not only 

on the amount of available solid material, but also on the existence of small relative vel- 

ocities in the corresponding 'libration island'. A more limited island could originate a 
relatively massive object more easily and/or within a shorter time than a broader island 
with higher libration amplitudes. 

The previous scheme is only qualitative: a more complete and quantitative theory 

for Hyperion's formation inside the 'libration island' could be formulated only on the 

basis of a detailed knowledge of the distribution of size and orbital elements among the 
bodies forming the protosatellite swarm. 
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