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Abstract. We have integrated numercially the differential equations for the Moon's rotation with 
respect to an inertial coordinate system, and the variational equations for (i) the six initial conditions 
of the rotation; (ii) the moment-of-inertia ratios/3 and "r; and (iii) the coefficients of the thffd-degree 
gravitational harmonics. When these integrations are used in conjunction with our current lunar-orbit 
and Earth-rotation models, and all of the relevant initial conditions and parameters are adjusted to fit 
five years of McDonald Observatory lunar laser ranging observations, the root-mean-square (rms) of 
the postfit range residuals is 28 cm. When we adjust the lunar-rotation initial conditions separately to 
fit the physical libration angles given by the numerical model of Williams (1975), we find an rms 
orientation difference over a six-year interval of ~ 0.03 arcsecond, after removal of a constant bias. A 
similar comparison of our model with the semi-analytical model of Eckhardt (1981) yields an rms 
orientation difference of ~ 0.2 arcsecond. 

1. Introduct ion 

The problems posed by the Moon's rotat ion,  which is tightly coupled to its orbital 

motion,  have challenged theorists at least since the time of  Newton. With the techniques 

of  laser ranging (Bender et al., 1973) and very-long-baseline interferometry (Counselman 

et al., 1972, 1973a, b; Slade et al., 1977) now being used for observations of  the Moon, 

the measurement uncertainties have been decreased drastically, to nearly one hundredth 

of  a second of  selenocentric arc, and the problems of theoretical representation have been 

confounded correspondingly. Especially difficult is the development of  an analytical des- 

cription (Eckhardt,  1970, 1981 ;Migus, 1980) of  the Moon's rotation useful for the inter- 

pretat ion of  these modern observations. Thus, interpretat ions (for example,  King et  al., 

1976; Stolz et al., 1976; Williams, 1977; Calame and Mulholland, 1977) have been based 

on numerical integiations of  differential equations that describe the Moon's rotation. 

In this paper we discuss the numerical integration of  the differential equations for the 

Euler angles that define the  Moon's orientation with respect to an inertial coordinate 

frame. We compare this model  of  the Moon's rotation first with the available laser-ranging 

observations and then with two other theoretical descriptions: Williams' (1975) numerical 

integration of  the differential equations for the 'Cassini' l ibration angles, and Eckhardt 's  

(1981) semi-analytical model. 

2. Numerical Model 

Our numerical model is based on Euler's differential equations for the rotation of  a rigid 

body about its center of  mass. The coordinate system we used is described in Figure 1 

and the resultant equations are given in detail by Cappallo et al. (1977). The only 
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Fig. 1. Euler angles used to describe the orientation of the lunar body-fixed (xl, x2, x3) axes with 
respect to the inertiaUy fixed (~1, ~2, ~3) axes defined by the man Earth equator and equinox of 
1950.0. The longitude of the ascending node of the lunar equator is ~; the inclination is 0; and the 

angle of rotation about the lunar north-polar axis is qS. 

contributions to the torques that we have (so far) included in the integration of  these 

equations are those due to the Earth and the Sun, with each of  these bodies being treated 

as a point mass in the gravitational field of  the Moon. 
The adjustable parameters o f  the model include the six imtial conditions, the lunar 

moment-of-inertia ratios ~ [=(C--A/B] and 3" [-=(B --A)/C], and the third- and higher- 

degree coefficients in a spherical harmonic expansion of  the Moon's gravitational poten- 

tial. The variational equations for the adjusted parameters [given in detail by Cappallo et 
al. (1977)[ are integrated simultaneously with the equations of  motion. This parallel com- 

putation of  partial derivatives is more efficient and more accurate than the technique of  

finite-differencing of  integrated motions, which has hitherto been used with numerical 

models of  the Moon's rotation. 
An eleven-point Adams-Moulton predictor-corrector method (Smith, 1968) was used 
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to integrate both the equations of motion and the variational equations within the frame- 

work of the M.I.T. Planetary Ephemeris Program (Ash, 1965a, 1965b, 1972). The inte- 

gration was done with steps of one-eighth day over the approximately six-year interval 

from Julian date 2 440 400 to 2 442 590. The orbital ephemerides of the Earth and the 
Sun, used for the evaluations of the torques acting on the Moon, had been obtained pre- 

viously (King et al., 1976; Ash et al., 1971). We checked for round-off and truncation 

errors .in our integration, and for consistency between our rotational equations and each 

of our variational equations by means of finite differencing, and found no evidence of 

any such errors as great as 10 -a arcseconds in the rotation, or one part in 10 4 in any partial 
derivative. 

3. Comparison with Laser Observations 

We compared our numerically-integrated model of the Moon's rotation with the laser 

ranging ('normal point') observations of the Apollo 11, 14, and 15, and the Lunokhod 2 
retro-reflectors obtained from t970 to 1975 by the McDonald Observatory (Abbott et 

al., 1973; Shelus et al., 1975; Mulholland et al., 1975; Shelus, 1976). For this com- 

parison, we adjusted simultaneously the six initial conditions of the Moon's rotation, the 
moment-of-inertia ratios/3 and % four coefficients of the third-degree terms in the Moon's 
gravitational potential,* the six initial conditions of the Moon's orbit about the Earth, 

five elements of the orbit of the Earth-Moon barycenter about the Sun (the longitude of 
the ascending node was fixed to define an origin of right ascension), the mass of the 

Earth-Moon system, the Earth's tidal lag angle, the three selenocentric coordinates of 

each lunar retroreflector, 126 parameters describing the variation of Universal Time (UT) 

(King et al., 1978), the geocentric latitude and radius of the McDonald Observatory (the 

longitude was fixed to define the origin of LIT), and a parameter representing a possible 

bias in the ranging observations in 1972 (Silverberg, 1975). An unfortunate consequence 

of simultaneous adjustment of so many parameters is the fact that errors in the lunar 

rotation model may have been masked to some extent by spurious adjustments to other 

(e.g., orbital) parameters. However, independent determinations of the other adjusted 

parameters with accuracies sufficient to enable us to use an a priori convariance matrix 

to advantage were not available. 
The root-mean-square (rms) of the post-fit range residuals was 28 cm. This value is 

about twice the rms range-measurement error estimated by Shelus (1977). The post-fit 

residuals (King et al., 1978) also have clearly discernible, systematic behaviour which is 

suggestive of deficiencies in our models, not only for the lunar rotation, but also for the 

lunar orbit and for the rotation of the Earth. Some effects which are not yet included in 
our model of the lunar rotation and which might contribute to the ranges residuals at the 

15-cm level are discussed below in Section 6. 

* We estimated only J3, C32, $3~ and $33 , since the current set of lunar ranging observations is rela- 
'lively insensitive to the other third-degree coefficients. See, for example, King et aL (1976). 
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4. Comparison with LLB-5 

Although, in a sense, comparison with observations provides the ultimate test of  a model, 

it is important to compare our numerical model of  the Moon's rotation with other 

theoretical models. In this section we compare ours with the numerical 'LLB-5' model de- 

veloped by Williams (1975).* This comparison is non-trivial not only because Williams' 

and our models were developed independently, but also because LLB-5 was generated by 

integration of  the differential equations governing the (small) Cassini angles that describe 

the libration of  the Moon with respect to a frame that rotates with the 'mean' lunar orbit, 

whereas our model was generated by means of  an integration in inertially-referred (Euler- 

angle) coordinates. The orbital ephemerides used in the two rotation integrations were 

also derived independently. 

To effect the comparison, we integrated the equations of  our model using the same 

values of  the lunar moment-of-inertia ratios and gravitational-potential harmonic coef- 

ficients as had been used in the generation of  LLB-5. To obtain initial conditions for this 

integration, we first calculated values for the Euler angles and their rates directly from the 

initial values of  the LLB-5 Cassini angles and rates, according to the definitions of  these 

angles. The results of  our Euler-angle integration were then transformed to Cassini angles 

at one-day intervals and compared with the corresponding values from LLB-5. This com- 

parison showed differences between the models at the level of  a few tenths of  an arc- 

second , that reflected mainly the inconsistencies between the fundamental coordinate 

frames to which Williams' and our angles are referred. These coordinate systems, which 

are defined operationally here by our orbital ephemerides, are known to differ in overall 

orier/tation at epoch ~ 1975 by a few tenths of  an arcsecond; there are also indications of  

a possible relative angular velocity of  the order of  0'.'01 per year (King et  al., 1978). 
In order to eliminate such inconsistencies as a cause of  apparent differences between 

our lunar rotation models, we subtracted a constant offset, or 'bias', from each of the 

Cassini angles given by LLB-5, and we adjusted these three biases and the six initial con- 

ditions of our integration to fit our model to LLB-5 in a least-squares sense. Specifically, 

we minimized the sum of the squared differences in the three Euler angles, evaluated at 

one-day intervals over the six-year span. 
The differences between our adjusted model and LLB-5 are shown in Figure 2. The 

estimated Cassini-angle biases, and the rms differences with the biases subtracted, are 

given in Table I. The greatest rms differences, in/9 and lo, correspond to differences of  

about 4 cm in range to the lunar-surface retro-reflector farthest from the sub-Earth point, 

so that one neither expects, nor finds (Cappallo et aL, 1977), a significant difference 

between the two models' abilities to fit existing laser ranging observations. The relatively 

large bias differences between the models are masked~ in fits to observations, by differen- 

ces in the values obtained for the selenocentric coordinates of  the retro-reflectors. 

* An early version of the latter model, called 'LLB-3', was described by Williams et al. (1973). 
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Fig. 2. Differences in Cassini libration angles between Williams' LLB-5 and our model, in the sense 
ours minus his. See text. 

TABLE I. 

Estimated biases and root-mean-square (rms) differences with the biases removed, for the Cassini 
angles describing lunar hbrations in longitude (r), latitude (o), and node (ira), resulting from the com- 
parisons of  our lunar rotation model with the LLB-5 model of Williams (1975) and the series-500 

model of Eckhardt (198t) .  At the surface of the Moon, 0'~01 is equivalent to ~ 8 cm. 

Williams Eckhardt 

CassinJ 
Angle bias rms bias r m s  

r 0~286 0t009 0~164 0'~069 
p 0~069 0'~024 0~023 0~114 
Ig 0'J083 0~021 0~091 0'~129 

5. Compar i son  wi th  Eckhardt's  Mode l  

A compar i son  o f  our numerical  m o d e l  wi th  an analyt ical  m o d e l  o f  the Moon's  rotat ion is 

important  because  o f  the poss ib i l i ty ,  w i th  an analyt ical  m o d e l ,  o f  dist inguishing readily 
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between free and force librations of the Moon. Such a comparison can also reveal an 
error in either model unless, importantly and unfortunately, the error happens to have a 

signature resembling that of one or more of the modes of the free libration. 

With this limitation in mind, we have compared our numerically-integrated model with 
Eckhardt's (1981) series 500 semi-analytic model. We adjusted our initial conditions and 

the Cassini-angle biases to fit the Cassini angles given by Eckhardt's model, following the 

procedure described in Section 4, but with one additional step: Since, in Eckhardt's 
libration theory, the effects of the so-called planetary and additive terms in the lunar 

orbit are neglected, we added 66 corresponding correction terms, calculated by Williams 

(1975) [see also Williams et aL, 1973] to Eckhardt's theory before making the compari- 

son with our model. These terms range in amplitude from ~ 0'.'005 to 14" of selenocentric 
arc and in period from near-monthly to 271 years. We also added to Eckhardt's theory 
seven terms calculated by Williams (1975) to compensate for the fact that the argument 

of the node in Eckhardt's development is reckoned from a moving equinox rather than a 
fixed direction in inertial space. 

The post-fit Cassini-angle differences are plotted in Figure 3; the rms differences and 

estimated biases are given in Table I. A spectral analysis of the six-year span of computed 
p- and/o-differences between our model and Eckhardt's, shows significant 'power' to be 

present at periods of ~ 27.0 and ~ 27.3 days, but has insufficient resolution to distinguish 
among several possible causes of the differences. 

The differences between our model and Eckhardt's are significantly larger than those 

between our model and LLB-5 and they are comparable in size to the differences given by 

Migus (1980) between his analytic model and Eckhardt's series-500 model. There is a con- 

stant latitudinal difference of--~0'~16 between the theories of Migus and Eckhardt (see 

Migus' Figure 2). This difference is equivalent to a 27.2-day term of similar amplitude in 

p and Ia.  Another possible source of the differences between our model and Eckhardt's is 

an error in the planetary and additive corrections which we applied to his model: Two 

terms in Williams' list, with periods of 27.10 and 27.44 days and amplitudes of 0'! 11 and 
0'.'15, respectively, are not present in an analogous list calculated by Migus (1977). 
Williams (1975) himself has suggested that the linearizing procedure used for the calcula- 
tion of the planetary and additive corrections may not have been adequate. 

There are also differences at the several-tenths-of-an-arcsecond level, both between 

Eckhardt's and Migus' basic theories, and betWeen Williams' and Migus' planetary and 
additive corrections, in terms with periods near that of the free libration in longitude, 

~2 .9  years.* Errors in these terms are masked in a comparison with a numerical theoi2r 
by adjustment of the latter's initial conditions. 

* Accurate calculation of such terms is obviously crucial to the use of an analytic theory for the 
detection of free libration. 
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Fig. 3. Same as Figure 2, except for Eckhardt's series 500 model. 

6. Summary and Conclusions 

Our numerical model of  the Moon's rotation, used in conjunction with our current 

models for the Earth's rotation and for the Earth's and the Moon's orbital motions, fits 

lunar laser ranging observations over a five-year period within 28 cm (rms). Our rotation 

model is consistent with the LLB-5 numerical model of Williams (1975) to within ~0'J01 

(rms) in longitude and ~ 0'~02 in latitude and node, except for biases in the Cassini libra- 

tion angles. Most of  these differences may be due to differences between the orbital 
ephemerides used by Williams and by us in the generation of  our respective rotation 

models. In both models, the Moon was treated as a rigid body with no nonzero gravita- 
tional barmonics beyond third degree, and subject to torques from only the Sun and the 
Earth, with these bodies represented by point masses. 

Our model differs from the series 500 semi-analytical model of  Eckhardt (1981) by 
0"07 (rms) in longitude and ~ 0"12 in latitude and node, after the subtraction of  con- 

stant biases and the application of  Williams' (1975) corrections to Eckhardt's model. 
These relatively large differences may represent the effects of  errors either in the correct- 
ions we have applied, or in Eckhardt's basic theory. 
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The Moon is, of course, not  a rigid body,  nor is the Earth a point  mass. We are there- 

fore in the process of  including the effects of  lunar elasticity and internal dissipation and 

also those of  the Earth's oblateness, in our equations of motion and in the variational 

equations that  we integrate simultaneously. We have already incorporated the effects of  

the lunar gravity harmonics of  fourth and higher degree, but so far we have kept  these 

coefficients set to zero and have not a t tempted to adjust them to fit observations. We 

now also have the capability of  integrating the Moon's rotational and orbital equations of  

mot ion concurrently,  a procedure which improves computational  efficiency and treats 

rigorously the cross-coupling between the two sets of  equations. With the completion of  

these modifications, we hope to have a lunar rotation model with accuracy exceeding that 

of  the best modern observations. 
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