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Abstract. In Sections 1-6,  we determine an approximate analytical model for the density and tem- 
perature distribution in the protoplanetary cloud. The rotation of the planets is discussed in Section 7 
and we conclude that it cannot be determined from simple energy conservation laws. 

The velocity of the gas of the protoplanetary cloud is found to be smaller by about 5 • 103 cm s -1 
in comparison to the Keplerlan circular velocity. If the radius of the planetesimals is smaller than a 
certain limit rl ; they move together with the gas. Theft vertical and horizontal motion for this case 
is studied in Sections 8 and 9. 

As the planetesimals grow by accretion theft radius becomes larger than r~ and they move in 
Keplerian orbits. As long as theft radius is between r~ and a certain limit r 2 their gravitational inter- 
action is negligible. In Section 10, we study the accretion for this case. 

In Section 11, we determine the change of the relative velocities due to close gravitational en- 
counters. The principal equations governing the late stages of accretion are deduced in Section 12, 
In Section 13 there are obtained approximate analytical solutions. 

The effect of gas drag and of collisions is studied in Sections 14 and 15, respectively. Numerical 
results and conclusions concerning the last and principal stage of accretion are drawn in Section 16. 

1. Simplifying Assumptions 

We assume that around the Sun there revolves in circular orbit the protoplanetary cloud 

of  gas and dust, which is prevented by its large angular momentum from infall. The 

protoplanetary cloud possesses a strong density concentration towards its equatorial 

plane, (e.g., Safronov, 1969; Kusaka et al., 1970; Cameron, 1973; and our Section 4). 

Below we give some justification for having neglected magnetic fields, turbulence and 

gravitational instability. A first general justification is the fact that we are able to model  

the formation of  the planets without  these three phenomena. A second point  is that 

their occurrence is questionable. 

(i) Magnetic Fields. At present there exists no convincing evidence that magnetic 

fields have played a decisive role in the formation history of  the planetary system except- 

ing perhaps the resolution of  the angular momentum problem of  the collapsing Sun 

(Okamoto,  1969; Horedt,  1978b) and the slowing down of  a fast spin rate o f  the pri- 

mordial Sun (Mestel, 1970). Because of  the transient natur6 of  magnetic fields and the 

high degree of  arbitrariness concerning strength and structure of  the fields we have 

neglected magnetic fields. 

(ii) Turbulence. A necessary but  not  sufficient condit ion for the onset of  turbulence 

is that R e  >~ 106 (ter Haar, 1972; Horedt,  1975b), where Re  denotes the Reynolds 

number. The Reynolds number depends on two somewhat arbitrary numbers, the charac- 

teristic length and the characteristic velocity and could be made for the protoplanetary 
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cloud equal to about 1011 (Safronov, 1969; ter Haar, 1972). But the nonrandom orien- 

tation of the spin axes of stars in galactic clusters (Ferrer and Jaschek, 1973) as well as 
the tendency towards perpendicularity between spin axes of binaries and their orbital 
plane (Weis, 1974) show that turbulence does not play a decisive role, even during collapse 
of the Sun. Because turbulence, if it occurs at all, dissipates during several years in the 
protoplanetary cloud (Safronov, 1969; ter Haar, 1972), we have it neglected. 

(iii) Most authors agree that the density of the protoplanetary cloud was too low for 
gravitational instability to occur, (e.g., Goldreich and Ward, 1973). Moreover, because of 
analytical difficulties, most authors establish merely the instability conditions in an ideal- 
ized medium (Horedt, 1970; 1973b) without investigating the behaviour after onset of 

instability. Numerical work (Larson, 1972a; Black and Bodenheimer, 1976)on rotating 
collapsing clouds does not show concludent results with respect to the onset of instability 
in the protoplanetary cloud. 

We have neglected also fragmentation of colliding planetesimals because it does not 
seem to be important at the low relative velocities occurring in our model (Figure 10). 
Besides, we have only uncertain information about the velocities of fragmented planetesi- 
reals and their mass distribution function (e.g., Bandermann, 1972; Hallam and Marcus, 
1974; Kaula and Bigeleisen, 1975). 

2. The Mass Excess in the Protoplanetary Cloud 

The actual mass of  the planetary system is about 0.001431/(3/= solar mass) and it seems 

not likely that the mass of the protoplanetary cloud was larger than 0.1M. Below, we 

summarize our arguments. 

(i) The mass of the protoplanetary cloud deduced from the actual mass of the planetary 
system and corrected for additional gas content should be larger than 0.01M and lower 
than about 0.07M, (Weidenschilling, t977b, and our Section 5). 

(ii) A mass excess of the protoplanetary cloud considerably larger than 0.1M poses the 
question where this additional mass has gone. We are not able to show what could happen 
with about 10-100 Earth masses of rocky planetesimals spread in the region of the terres- 
trial planets. Why there exist at present only remnants of about 2 Earth masses with 
bodies as small as the asteroids? The large amount of gas could be blown away by a n  
intense T-Tanri-like solar wind, (Horedt, 1978a). However, according to Bodenheimer, 
(1972; p. 18) it seems unlikely that an ordinary star loses more than a negligible fraction 
of its mass during the T-Tauri stage, mainly because the mass loss rates deduced initially 
by Kuhi seem to be grossly overestimated. It seems therefore very difficult to understand 
how the T-Tauri-like solar wind with a total mass of only several percent of solar mass 
could blow away from the protoplanetary cloud gases with mass exceeding considerably 
its own mass. To be on the safe side, we use throughout for the protoplanetary cloud its 

minimum mass of 0.011M from Section 5. 
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3. The Temperature Problem in the Protoplanetary Cloud 

From the theoretical viewpoint, grains could be melted completely even at Pluto's distance 

from the Sun by a contracting gas sphere in quasihydrostatic equilibrium, as will be shown 
subsequently. We identify the contracting gas sphere with the Sun. 

(i) For convective equilibrium of the outer parts of a gaseous sphere we can integrate 
immediately the equation of hydrostatic equilibrium 

dp/  dr = --  G M p / R  2 , (3.1) 

where p and p is the pressure and density of the gas, G the gravitational constant, M is 

the solar mass (a constant) and R is the distance from the Sun. The adiabatic equation of 
state is valid: p = const p~, where 7 is the ratio between the specific heats at constant 
pressure and volume. Equation (3.1) yields 

T -  To = (7 -- 1)IJGM(1/R --  1/Ro)/~.4PT, (3.2) 

where we have used the ideal gas law 

p = ~ oT/~ ,  (3.3) 

where T is the temperature of the gas, ~ the gas constant and g = 2.4 (Kusaka et  al., 

1970) the mean molecular weight of the gas of the protoplanetary cloud. The radiation 
pressure asT4/3 (as is the Stefan constant)is neglected throughout with respect to the gas 
pressure from Equation (3.3)-i.e., 

p >> laa, T a / 3 , ~ .  (3.4) 

(ii) For radiative equilibrium of the outer parts we have to add to Equation (3.1) the 

equation of radiative equilibrium 

d T / d R  = - 3KLp/167rascR2T 3, (3.5) 

and solve simultaneously, c denotes the velocity of light, L is the luminosity of the Sun 

(a constant) and K - t%p~ the opacity (Ko, or, 13 = const.; a 4= -- 1 ;/3 4: 4). Dividing 
Equation (3.1) by (3.5) we obtain with the boundary condition p = 0 if T = 0 the equation 

( ~/12)a+ l fl~ l / (a + 1) = 16rCascGMT3-r 4 - -  t3)LKo. 

Inserting into Equation (3.5) and integrating we obtain an equation similar to Equation 

(3.2), ( e l  Chandrasekhar (1939) for Kramers opacity) 

T --  To = (a  + 1) I IGM((1 /R)  - ( 1 / R o ) ) / ( 4  - -  [3)~P. (3.6) 

Assuming that To -~ 0 ifRo >> R, we have from Equations (3.2) and (3.6) 

T ~ I ~ G M / ~ 2 R  = 3.8 x 101S/R; 

i.e. T ~- 6500 K for Pluto. 

It should be noted that, because of rapid gravitational contraction, such a high 
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TABLEI 
Temperature ofthe plan~esirnalsnearthe eq~tofialpl~e ofthe protopNn~ary 

doud. ~hemis~omLewis(1972,1974) 

Planet AU Tchem T(Lo) T(81LQ) Tb The 

Mercury 0.4 1400 K 442 K 1326 K 172 K 139 K 
Venus 0.7 900 325 975 122 99 
Earth 1.0 600 276 828 103 83 
Mars 1.5 450 224 672 84 68 
Asteroids 2.8 300 165 495 64 52 
Jupiter 5.2 150 121 363 49 40 
(satellites) 
Saturn 9.5 100 89 267 37 30 
(satellites) 
Uranus 19.3 75 63 189 28 23 
Neptune 30.2 50 50 150 24 19 
Pluto 39.8 - 44 132 22 18 

temperature could last only for an interval t = (R3/2GM) 1/2, (2 years for Pluto), of the 

order of the free fall time (Larson, 1972a; Cameron, 1973; Horedt, 1976). 
The temperature distribution near the equatorial plane of the protoplanetary cloud as 

inferred from chemical studies of meteorites and the composition of the planets and satel- 
lites is shown in the first column of Table I and seems the most reliable one (Anders, 
1972; Lewis, 1974). It corresponds approximately to a temperature distribution 

Tehem cx 1]R. (3.7) 

Even if we assume that the chemical composition of the planets is already FLxed by 

meter-sized planetesimals, the temperature Tehem should be maintained for at least 103yr 
in the inner parts of the solar system and for 10Syr in the outer parts (see Table III). 

We have already shown that during gravitational contraction of the Sun extending up 

to Pluto's orbit, high temperatures (T 2 1000 K) could be maintained in the protoplanet- 

ary cloud only for several years. If we assume a supermassive (1M) protoplanetary cloud, 

then a temperature of order Tehem could be maintained for about 103 yr by gravitational 

energy liberated from contraction of this cloud (Cameron and Pine, 1973, Fig. 14; 

Cameron, 1973). However, as it is obvious from Section 2 such a high mass of the proto- 
planetary cloud introduces other difficulties. 

In the following, a possibility of attaining a temperature comparable to Tehera by a 
simple radiation controlled temperature distribution is indicated. 

The temperature estimate from Equation (3.7) is valid with some approximation only 

for the planetesimals of the protoplanetary cloud. The temperature of the gas of the 

protoplanetary cloud could differ grossly from the temperatures used in this paper (see 
Section 5), though we have assumed for simplicity that gas and planetesimals have 
approximately the same temperature. 

We distinguish two different stages in the evolution of the protoplanetary cloud, 
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namely when the cloud is opaque to solar radiation and when it is approximately trans- 
parent (Section 5). 

If the protoplanetary cloud is opaque to solar radiation, only its surface will be heated 
by the Sun up to temperatures Tb shown in Table I according to Equation (5.3) for a 
luminosity L of the Sun equal to its actual luminosity Lr The last column shows the 
temperature The that would appear in the equatorial plane of the opaque protoplanetary 
cloud calculated from Equation (5.5). It will be argued in Section 5 that the opaque stage 
of the protoplanetary cloud is not likely to last for long time. 

If the protoplanetary cloud is transparent to solar radiation, the temperature of a spin- 
ning planetesimal is given approximately by the black body temperature at distance R, 
(e.g., Larson, 1972b) 

T = (L/4ascR2) I/4. (3.8) 

Table I shows T from Equation (3.8) for L = L| and L = 81L| With respect to the 
possibility of a high luminosity phase of the Sun we refer to the calculations of Larson 
(1972a), which show that the Sun could reach a maximum luminosity of 25L| for about 
l0 s yr. A luminosity of about 100L| is also reconcilable with hydrodynamic calculations 
but only for about 104 yr (Kusaka et  al., 1970; Fig. 1; Bodenheimer, 1972; Fig. 6). 

Tehem from Table I is included 'between the values of T for L = L .  and L = 81L| 
From Table V-I, it appears that the accretion time of a planet increases with increasing 
distance from the Sun by about four orders of magnitude. Tehem is in agreement with the 
temperature T from Equation (3.8) if we assume a continuous decrease of solar luminosity 
from about 100L| during the formation of the terrestrial planets to its present value L| 
during the formation of the outer planets. 

For a given constant luminosity of the Sun we have near the equatorial plane of the 
cloud (see Equations (3.7), (3.8), (5.4), (5.5)) 

Tebem cc R-a; Tb, The o: R-3/7; T oc R -u2. (3.9) 

To sum up: during the earliest stages of contraction of the Sun and of the protoplanet- 
ary cloud grains (small planetesimals) could vaporize. Then, the temperature of the proto- 
planetary cloud falls rapidly (Anders, 1972, pp. 196-201) but is maintained at level 
Tehem by a high luminosity of the Sun, which decreases during accretion of the planets 
from about 100L. to L| 

4. Hydrostatic Model of the Protoplanetary Cloud 

We can derive a self-consistent solution of the equations 
(Weizs~icker, 1943) 

ap/~l = -- GMpl/R 3 + w21p, 

~p / Dz = -- GMpz ]R 3, 

by assuming that the temperature changes as 

of hydrostatic equilibrium 

(4.1.) 
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T = A R  -b, (.4, b = const.; b > 0; b 4= 1) (4.2) 

l and z are cylindrical coordinates of a frame with the centre in the Sun. We have R = 
(l 2 + z2) in ,  where l is the distance from the rotation axis Oz, and z the height above the 
equatorial plane, co is the angular velocity of the gas of the protoplanetary cloud, rotating 
circularly around the Sun. We follow closely Weizs~cker's (1943) solution of Equations 
(4.1) by introducing Equations (3.3), (4.2) into Equation (4.1) and making the substitution 

p = exp ~o. (4.3) 

Equations (4.1) become 

( JTAR-b /p ) (ar  - b ~ A R - b - 2 1 1 p  = -- GMl/R 3 + r (4.4) 

(~r -- b,_q2AR-b-2z/p = - 6 M z / R  3. (4.5) 

From R 2 = l 2 + z 2 we have 

a~o/Oz = (z/R)a~o/OR. (4.6) 

Equation (4.6) is introduced into Equation (4.5) and the result can be integrated 

= In R b -- GMgRb-1/A~7(b  -- 1) + B(l), (4.7) 

where B(/) is an unknown function of I. Equation (4.4), with Equation (4.7), becomes 

dB(l)]dl = ~B(l)/3l = # w 2 R b l / ~ Z .  (4.8) 

Equation (4.8) shows that 602 must be of the form 

6o 2 = ~Ol(1)/R b, (4.9) 

since B is a function of l only. As will be obvious later it is convenient to express 6~ 2 in 
terms of the circular Keplerian angular velocity (GM/13) 112. This can be done by writing 
602 under the additive form 

6o 2 = (GM/I 3-b + ~o2Q))/R b, (4.10) 

where ~0~(l) is an unknown function of I. We have in the equatorial plane 

6o 2 Iz =o = GM/la + ~%(1)/lb. 

Introducing Equation (4.1 O) into Equation (4.8), we find that 

B(l) = uGMlb-I / f i2A + qJ(l), (4.11) 
where 

d r  = N~2/~A.  (4.12) 

We substitute Equations (4.11) and (4.12) into Equation (4.7) and then into Equation 
(4.3) 

p = R b exp (GMp(I b-1 - - R b - l ) / . ~ A ( b  -- 1) + ~). (4.13) 

If we take into account the fact that 
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R b-1 ~ lb - l (1  + (b -- 1)z2/21 z) if z ~ I/3, 

Equation (4.13) transforms int o 

p = l b exp ( -  GMpz=/2..@AI 3-b + 4) ,  (z <~ l/3), 
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(4.14) 

(4.15) 

We assume that a planet in the equatorial plane at distance l from the Sun has formed 
from the matter in a ring of width A1. Denoting by m the mass of this ring, we find that 

f? fo m = 4nlAl  p dz ~-4nIAl  p dz 

= 47r exp ~Oll+bAl foeXp (--GMpz2/2~Al 3-b) dz 

= (81r3J2A/GMp)lnl  (s+b)/2 exp ~Al; (4.16) 

Zb will be defined only in Equation (4.30), by using the result that the mass of the cloud 
above height zb is negligible. We have 

m ~-- 21rolAl, (4.17) 

where o denotes the surface density of the protoplanetary cloud. Since a ~x l-a/2 (Weiden- 
schilling, 1977b) and &l ~x l (Equation (4.20), we have 

m = const, l 1/2 (4.18) 

and from Equation (4.16) 

(exp ~)12+b/2&l = const. (4.19) 

We make the plausible assumption that the rings from which successive planets have col- 
lected their mass are adjacent and that their boundary lies midway between successive 

planets. We denote by l i_ 1, Ii, li+ 1 the mean distance of successive planets. According to 
our assumption 

All = q i + l  + li)/2 --(li  "Jw li_1)/2 = (/i+1 - - l i -2) /2  

= (liq - l d q ) / 2  = li(q 2 - 1)]2q 

i .e .  Alicc li. (4.20) 

We have used the observational fact that the distance between successive planets is given 
approximately by the Titius-Bode law, written (el. Nieto, 1975; Horedt et al., 1977)as 

li+l = qli = 1.73//, (q = const.). (4.21) 

Introducing Equation (4.20) into Equation (4.19) we find that 

exp ~ ~x 1-3-b/2 (4.22) 

From Equation (4.12) we get 



70 G.P. HOREDT 

~o 2 = (J2A/t.tl) d~/dl = -- (3 + b / 2 ) ~ A / p l  2, 

and using Equation (4.10) we have 

6o 2 = GM/Rbl 3-b -- (3 + b/2).CPA/Rbgl 2 

GM/I 3 -- (3 + b / 2 ) ~ A / I s l  2§ -- bGMz~/21 s 

GM/I 3 --(3 + b/2)~CPA/lal 2+b 

= GM/t 3 -- 1 3 ~ A / 4 ~ l  s/2, (z g l /3),  (4.23) 

We put b = �89 as follows from Equation (3.8). It can be easily shown that for our numer- 
cal model the second-order term in z 2 arising in Equation (4.23) from the expansion of 
R -1/2 is negligible with respect to 13~A/4~l s/2 if z <~ l/3. 

The difference between the Keplerian circular velocity Ve and the velocity Ve of the 
rotating gas of the cloud is found from Equation (4.23) to be 

Ve -- Vg = (GM/R)  a/~ -- w l  

~-- (GM/l)I/z((3 + b/2).C?Al a -b /2gGM + 22( - 1 + b)/4l 2) 

= 13~.~A/Sg(GM)V2 _ (GM)a/2z2/8 l s/2 

~_ 13~.~A/8t.t(GM) 1/2 = 

where we have used also Equation (3.8) with 

A = (L/47rasc) 1/4. 

5.25 x 103cms -1, (b =�89 <~I/3) 

(4.24) 

(4.25) 

Equation (4.15) underlines the great importance of the small velocity difference Ve-  F e 
which assures the outward decrease of density in the protoplanetary cloud. For the den- 
sity, we obtain from Equation (4.15) with the initial conditions p = p(lo, 0) at l = lo, 
z = 0 and with Equations (3.8), (4.2) and (4.22) 

p(t, z)  = p(to, O)(t/lo) -3+bn exp (-- GMI.tz2/2~Al 3-b) 

= P(lo, 0)(I/lo) -11/4 exp (-- GM#z2/2JPTI3); 

(V  ~ AI -b, b = �89 ~ I/3). (4.26) 

In the equatorial plane 

Oq, O) = 0(lo, 0)(l/lo) -3.b/2 

= P(lo, O)(l/lo) - w 4 ,  (b = �89 <~ l/3), (4.27) 

Inserting Equation (4.27) into Equation (4.26), we find for the density distribution 
with height (cf. Safronov, 1969) the expression 

p(l, z)  = p(l, 0) exp (-- GM~z2/2~PTI3), (z <~ l/3). (4.28) 

From Equation (4.28), we can determine a reasonable height zb for the extension of 
the protoplanetary cloud. This could be given conveniently by the e-folding density 
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p(l, zb)/p(l ,  0) = 1/e = const. 

With Equation (4.29), we obtain from Equation (4.28) the height 

Zb = (2,r in ,  (zb <~ //3), 
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(4.29) 

(4.30) 

Between the height - -Zb and zb there is contained about 85% of the whole mass of the 

protoplanetary cloud. From the tables of  the error function it results that the surface 

density ob between the heights -- Zb and zb is related to the surface density o between the 

heights -- ~' and ~ by 

f:~ ob = zb p ( l , z )  dz 

f? = p(l, O) exp (-- GMlaz2/2,~Tl a) dz 
Zb 

f- 
= 0.843 - ,  p(l, O) exp (-- GMgz2/2J2TI  3) ~ 

= 0 .843pq ,  O)(2rr~773/aMU) in 

= 0.843o, (4.31) 
where 

o = f-_~ p(l, z) dz 

= p(l, O) f_ :  exp ( - -GMlzz2/2J2TI  3) dz 

= p(l, z)(2rr~CPT/3/GMp)I'2 

= rrlnp(l, O)zb, (4.32) 

From Table II follows that the condition Zb <~ l/3 is fulfilled for the planetary system. 

Near the surface of the Sun Equation (4.30) becomes 

zb~ = (2~2T~Ra /GMIJ) 1/2, Zb|174 = 0.0145, 

where R| is the radius, and T| the surface temperature, of the Sun. 

I f z  ~> l/3 we have from Equations (4.13) and (4.22) 

p(l, z )  = p(lo, O)(RbI-3-b/~/lo a§ x 

x exp (GMp(I b - ~ _ R b- a )/,,@A (b -- 1 )), (z >~//3). 

If b = �89 and A given by Equation (4.25) this equation yields values of the density 

which are well below those of interstellar clouds i fR <Rplu~o, so that our approximation 
for z <~//3 from Equations (4.26)-(4.28) represents practically the whole protoplanetary 
cloud. 

Table II shows that p(l, 0) decreases by about six orders of magnitude if we move from 
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Fig. 1 Vertical cross-section of the protoplanetary cloud, (S denotes the Sun). 

Mercury to Huto. But because of the logarithmic dependence of z on p(l, z)/p(l, 0), it is 
obvious that the variation of p(l, 0) with I does not affect the order of magnitude ofzb. 
If the constant 1/e = 0.368 from Equation (4.29) would be decreased maximally by six 
orders of magnitude to 1/10-6e, then z b from Equation (4.30) increases only by the 
factor 3.7. So we could assume with good approximation that above height zb the density 
drops rapidly below the values found in interstellar clouds and the mass of the cloud is 
concentrated with sufficient approximation in the disk shown in Fig. 1. 

5. Opacity of the Protoplanetary Cloud 

(i) Early Stage. An approximately reliable determination of the opacity of the proto- 
planetary cloud has been made only for the earliest stages, when small planetesimals 
similar to interstellar grains are present in cosmic abundance. For this case we assume 
a mean Rosseland opacity of k = 0.15cm2g -l in the cloud (Larson, 1972b). However, 
even for this stage there are possible large variations of the opacity (Cameron and Pine, 
1973, Figs. 5, 6). 

In the early stage, the planetesimals are of interstellar grain size and well mixed with 
the gas. In this stage, the gas temperature is of the same order as the temperature of the 
planetesimals, provided that p ~> 10 -22 g crn -3, (Larson, 1972b). This density delimitation 
is fulfilled practically for tile whole protoplanetary cloud. 

We discuss at first the opacity in the radial direction, when R ~ I, i.e. z < l/3. The 
cloud is considered opaque to solar radiation if its optical depth T between the distances 
I~ and l~ is larger than 2/3, 

~i2Kp(l, r = 0) dl > 2/3. (5,1) 

With Equation (4.27) and K ~ const, we obtain (12p(12, O)~llp(ll,  O) from Table II) 

= 4Kllp(l~,O)/7 2> 2/3 or Kllp(ll,0) > 7/6 ~ 1. (5.2) 
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If we insert into Equation (5.2) the relevant density p(li ,  O) from Table II, we find 
that the optical depth is of order unity and below for the three outer planets (101%m < 
ll < 6  x 1014cm), while up to the region of Jupiter the optical depth is z>> 1. The 
densities p(/, 0) from Table II are lower limits so that the cloud could be completely 
opaque provided that K = 0.15 cm2g -~ ifz < Zo. 

If the protoplanetary cloud is transparent to solar radiation and when the small dust 
grains are well mixed with the gas, the temperature of gas and dust is given for the early 
stages with good approximation by Equation (3.8), (Larson, 1972b; Miki and Nakano, 

1975). 
If the protoplanetary cloud is opaque at the early stage it appears as a concave disk 

(see Fig. 1), whose surface is heated by solar radiation and starlight. The temperature T0 
at the surface of the disk at level z = z0 has been calculated by Kusaka et al. (1970) 

T~ = 2LRJ37r2as cla + (L/7nasC)8/7(2~/GMld3) 4/7 + (4/Dd((Iz/3Kp) dT4/dl)/dl + Te4xt, 

(z < l/3). (5.3) 

The symbol Text = 15 K denotes the black-body temperature of an external radiation 
field, for instance from stars formed in the vicinity of the protoplanetary cloud. This 

external radiation field is appreciable only for the three outer planets, (Table I). Since 
there exists no published derivation of Equation (5.3) we note that the first term of 
this equation arises from heating by the Sun when zo ~ R ,  and the second term when 

z 0 >~ R| Both terms can be determined in a straightforward manner from Safronov's 
(1969) textbook. The third term corresponds to the radiative energy flow inside the disk 
and was found to be negligible (Kusaka et al., (1970). It can be deduced by writing the 
radial radiation flow inside the protoplanetary cloud at distance l as F = --(27rlz~sc/3Kp) 
x dT4/dl (r >> 1, z0 ~<//3), Kusaka personal communication). The main contribution 

to the temperature comes from the second term of Equation (5.3) 

To "" (L/7zrasc)2/7(2~/GMg)l/71-3/7 = const X I-3/7 ,  (g <~ l/3). (5.4) 

When the optical depth of the protoplanetary cloud is large in the equatorial plane at 
distance I it will be large also along the vertical z-direction in the vicinity of the equatorial 
plane up to the height zo. In this case, the protoplanetary cloud can be approximated by 

a plane-paraUel medium of large optical depth and the temperature T0 at height z 0 is 
related to the temperature Toe in the equatorial plane by (Safronov, 1969, Chap. 4) 

The = 31/8Tb/21/2 = 0.81To, 0">> 1), (5.5) 

T 0 and The both are prohibitively small if L = L,  (see Table I) and would require a solar 
luminosity of several hundred L| to be in accordance with Tehem for the terrestrial 
planets. This could be an indication that the protoplanetary cloud was transparent for 

most time. 
(ii)Later Stage. The small planetesimals grow to objects with radii 103-104cm 

during 102-10Syr, and settle towards the equatorial plane firming a disk of minimum 
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thickness 1-100 kin, (see Sections 8-10). It is likely that the opacity of the protoplanetary 
cloud drops considerably when the radius of the planetesimals becomes large in compari- 
son to the wavelength of radiation from the Sun, (Cameron and Pine, 1973). No cal- 
culations exist concerning this case which lasts for the overwhelming part of the accretion 
process (Tables Ill-IV). According to Equation (5.2) if ~ <~ 2 x 10-Scm2g -1 the proto- 
planetary cloud is transparent outside Mercury's orbit, (o(ll,0)<~ 10-8gcm-3; ll > 
6 x 10'2cm; Table II). In this case, the condensation of gases onto the planetesimals is 
likely to be controlled by the black-body temperature from Equation (3.8), though the 
kinetic temperature of the gas at large distances from the planetesimals could be higher 
by orders of magnitude (e.g., Arrhenius and Alfv6n, 1971). As it is obvious from Equa- 
tion (4.30) the vertical boundary of the cloud zb increases only as T 1/2, so that even for 
gas temperatures of several thousands degrees Zb increases only by the factor 3-4 with 
respect to the values from Table II. For our calculations, we have assumed that the 
temperature is given by Equation (3.8) for L = L| which should be regarded as a lower 
limit for the temperature of gas and dust during the accretion process. It will be obvious 
from the context of the paper that our results do not depend crucially on the tempera- 
ture of gas and dust in the protoplanetary cloud. 

Summarizing, during the earliest stages, the protoplanetary cloud could be opaque to 
solar radiation. But the planetesimals clump rapidly into larger ones and settle towards 
the equatorial plane, so that the cloud inside 50AU is likely tobe  transparent during 
the accretion process of the planets. The temperature of the planetesimals is given by 
Equation (3.8) with a variable solar luminosity (Section 3), while the temperatures of the 
gas at large distances from the planetesimals could be considerably larger. 

6. Initial Density Distribution in the Equatorial Plane 

From Equations (4.16) and (4.28), we obtain for the mass of the protoplanetary cloud in 
a ring of width 

fo m = 41rlzS] O dz 

"~ 4rdAl fo=p dz 

~0 ~ 4trip(l, 0)Al exp (-- GMpz2/2.CPAl s/2) dz 

= (8rr3.~24/GM#)UZp(l, 0)19/4Al, (z b <~ l/3). (6.1) 

We assume that approximately the whole accretable matter of the protoplanetary 
cloud passed into the actual planets, which accreted from adjacent concentric rings 
with the planet in the middle of each ring. mobs in Table II denotes the actual observed 
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mass of the planet. From Weidenschilling's (1977b) Tables 1 and 2, we can deduce with 
mob s the initial empirical mass rain of gas, ice and dust corresponding to each planet. If 
we equate rain from our Table II to m in Equation (6.1) we obtain with Al from Table II 
the empirical initial density Pin(/, O) in the equatorial plane. Our values for the terrestrial 
planets are somewhat different from those of Weidenschilling (1977b) since we have 
assumed a mass fraction of Fe equal to 0.0011 (Podolak and Cameron, 1974; Table I). 

For the determination of the surface density of planetesimals • from Table II we 
make the fundamental assumption that inside the asteroid belt the planetesimals are 
formed only from the rocky fraction of the protoplanetary cloud (mass fraction 0.00343) 
and outside the asteroid belt from rock and ice (mass fraction 0.0158; Podolak and 
Cameron 1974; see also our Section 16). 

For Pluto, we have min = mobs/0.0158. We attribute little importance to all values 
conceming Pluto because of its uncertain origin (Horedt, 1974c) and of its small mass, 
which has suffered recent downward revision; it seems to be now of order 0.01m. rather 
than 0.1m, as we have assumed (m. denoting the mass of the Earth). 

The total mass of the protoplanetary cloud m t is obtained from 

f . l  [ . z  b 

mt = 21r •1" ~-|zblp(l' z )d l  dz 
o 

1 

= 21rp(/o, . ~ m / 4  f l" , - v 4  w,o / f �9 exp (-- GMlaz2/2A.r s/z) dl dz 
d lod  - ~  

= (327ra~2A/GMla) 1/2 p(lo, 0)l~1/411:2, (l >> Io, zb < I/3). (6.2) 

The empirical minimum total initial mass min, t is obtained by adding together the 
empirical values min from Table II: i.e., 

mir~t = 2.23 x 10alg = 0.0113/. (6.3) 

Equating the empirical value mir ~ t to the theoretical value m t from Equation (6.2), we 
obtain for lo = 0.4 AU equal to Mercury's distance from the Sun 

p(lo, 0) = 1.4 x 10~agcm -a, lo = 5.8 x 1012cm; (6.4) 

and from Equation (4.27), 

p(l, 0) = 1.40 x 10-8(//5.80 X 1012) -11/4. (6.5) 

As seen from Figure 2, the theoretical density distribution from Equation (6.5) is 
smaller for the larger planets than the empirical density pin(l, 0) because of our averaging 
procedure. The low empirical density in the region of Mars and of the asteroids appears 
to be a secondary effect of the evolution of Jupiter (Safronov, 1969, Chap. 13; Horedt, 
1974b; Weidenschilling, 1975). The low empirical derisity in the region of Mercury is 
probably a secondary effect due to the high temperature in this region, so that only 
solids with high melting point are accreted, (Weidenschilling, 1977b). Inside Mercury no 
planet could accrete because of the high temperature. 
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Fig. 2. Observational (continuous line) and theoretical (broken line) density distribution in the 
equatorial plane of  the protoplanetary cloud. 

The angular momentum Kt of the whole protoplanetary cloud is 

f l , z  b 

I,'f_: "" 27r(GM)1/2 o p(l, 0)l 3/2 exp (-- G M p z 2 / 2 ~ A I  sn)  dl dz 

= (87r3flZA]p)l/2p(to ' 0)loU/41 

= mt(GMl)l/2/2, (l>>lo, Zb <~ //3). (6.6) 

The angular velocity o~ ~ (GM/13) 1/2 is approximately equal to the circular Keplerian 
angular velocity. With m t from Equation (6.2) we obtain the minimum angular momen- 
tum of the protoplanetary cloud 

K t = 3.07 x 10Slgcm2s-l. (6.7) 

Pressure and density in the equatorial plane are connected by 

p(l, 0) = P(/0, O)(p(l, O)lp(lo, 0)) 13'11, 

as follows from Equations (3.3), (3.8) and (4.27). 

7. Rotation of the Planets 

To put into evidence the importance of the density distribution in the protoplanetary 
cloud for considerations regarding the axial rotation of the planets we write Equation 
(4.27) under the form 

p(l, O) = P(/o, O)(1/lo) c, (7.1) 
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where c = const. We assume as throughout this paper that the planet formed in the middle 

l of  a ring between the distances/(1 - e) and I(1 + e), where e is the maximum eccentricity 
of  planetesimals reaching the growing planet of  miss  M and radius r. 

Analogous to Equation (6.6), we have for the angular momentum of the protoplanet- 

ary cloud between l(1 - e) and 1(1 - e) 

K = (8rr3NP A/u)l/~p(lo, O)l(lS/4)+e((1 + e) Os/4)+* -- (1 --e)<ls/4)+e)/ 

((15/4) + e)l~, (c ~ -- 15/4). (7.2) 

For the mass of  the planet which we set equal to the mass of  the protoplanetary cloud 
between/(1 -- e) and/(1 + e) we have, by analogy with Equations (6.1) and (6.2), 

m = (81rS~CPA/GM#)l/2p(lo,O)103/4)+ e((1 + e) ~ * 

- -  (1 --e)O3/4)+e)/((13/4) + c))/g, (c * -- 13/4). (7.3) 

We assume the planetary spin axis to be directed along the z-axis and project the 

angular momentum on the z-axis; the orbital angular momentum of the protoplanetary 

cloud must be larger (because of dissipation) than the orbital angular momentum of  the 
planet m(GMO 1/2 plus its spin angular momentum kmr2cos, where k ( k <  0.4) is the 

normalized radius of  gyration and co s the spin angular velocity. Thus we have 

K > m(GMl) 1/2 + lonr2cos. (7.4) 

We insert Equations (7.2) and (7.3) into Equation (7.4) and obtain after expansion up 
to e 3 (e < 0.3; Section 16) 

Ps > 6kr2P/e212( 2 + c), (c :~ -- 2), (7.5) 

where P~ = 2rr/co, and P = 21r(13/GM) 1/2 is the period of  axial rotation and the orbital 

period, respectively. 
We have excluded for our deduction the values c = -- 15/4 and -- 13/4. In these cases, 

we obtain a logarithmic relation for K and m, respectively, but the final result from 

Equation (7.5) is the same. I f  c = -- 2, we obtain by expanding Equations (7.2) and (7.3) 

up to the fifth power in e, 

P, > 1280kr2P/e412, (c = - - 2 ) .  (7.6) 

If  c ~ -  2 we have values between those from Equations (7.5) and (7.6). Equation 
(7.5) shows that if c < -- 2 there can occur also retrograde spins. As shown by Equation 
(7.6) the singularity for c = -- 2 occurs because of our analytical approximations. For our 

model of  the cloud we have c = -- 11/4 and 

Ps > -- 8kr2P/e212. (7.7) 

From our equations it appears that the spin angular momentum of the planets is a 

small quantity of  third order with respect to the eccentricity e (e "~ 1) of  the planetismals. 
Our deduction shows also the crucial role of  the density distribution in the protoplanet- 
ary cloud: for our density model there are possible, also retrograde spins. 
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I conclude that simple energy conservation laws are completely inadequate to deter- 
mine a precise, reliable value of planetary spin, (e.g., Mitra, 1970; Horedt, 1975a). It 

appears that the problem of planetary spin can be investigated only along the lines 
developed by Giuli's (1968) numerical work (e.g., Kiladze, 1970; Harris, 1977). 

8. Vertical Motion of  Small Planetesimals (rb < r < rl )  

When the radius of planetesimals is smaller than rl from Equation (9.6) the resistance 
of the gas is very large and the planetesimal is forced to rotate approximately together 
with the gas. Since z <~ Zb <~ 1/3 for most planetesimals, it is possible to study the motion 
separately in the vertical z-direction and in the horizontal/-direction. This has been done 
in the present section and in the next one. 

It is not quite clear whether interstellar grains could grow during collapse of an inter- 
stellar cloud (Horedt, 1975c; Scalo, 1977). In the region of the terrestrial planets most 
grains are likely to be vaporized, but as has been shown by Hartmann (1970), when the 
gas is cooling there condense rapidly planetesimats of interstellar grain size. When all 
condensable gases have been accreted onto small planetesimals, their further growth is 
a complicated task and could occur mainly by electrostatic and electromagnetic inter- 
action (Arrhenius and Asunmaa, 1973; Coradini et al., 1977) and by collisions. We make 
the most simple assumption that the planetesimals grow only by mutual collisions with 
collision efficiency 1, i.e. each impact is completely inelastic. 

We start with a radius of the small planetesimal similar to the grain radii in inter- 
stellar clouds, namely r b = 10 -s cm in the region of the terrestrial planets and rb = 10 -4 cm 
outside the asteroid belt. The planetesimals are assumed to be initially welt mixed with 

the gas. Their mass fraction is taken equal X = 0.00343 (fraction of rocky material) for 
the region of the terrestrial planets and k = 0.0158 (fraction of rock and ice) for the 
outer planets, (Podolak and Cameron, 1974). 

It appears convenient to define the mean density of the gas 9(/) between the height 
--ZD and zb from Figure 1. This gas density is approximately equal to the total initial 
density of gas and dust, since dust constitutes at most 0.0158 fractions of the total 

mass. We average the gas density only between --z  b and z b because most planetismals 
move only between these heights, excepting perhaps for the later stages when r > 103kin 
and when the gas drag is relatively unimportant. In fact, the mean density 9(/) between 
- z  b and zb is of the same order as the density in the equatorial plane, as follows from 
Equation (8.1): i.e., 

= ~(l) = f zb p(l, z)  dz/2z b 
- z  b 

= 0.843 ~ p(l, o) exp ( -  G M v z : / 2 ~ T l  3) dz/2zb 

= 0.421zrl/2p(/, 0) = 0.745p(l, 0). (8.1) 
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The initial density of planetesimals in the equatorial plane is given by 

Ppb( l ,O)  = )tp(l, 0), ()t = 0.00343 or 0.0158). (8.2) 

The mean initial density of planetesimals between height -- z b and z b is from Equations 
(8.1) and (8.2) 

Ppb( l )  = )t[)(l) = 0.4217rXn~o(/, 0) = 0 .4217r1 /2ppb( l ,  O ). (8.3) 

For the early stages of accretion we consider only the planetesimals present initially 

between - z  b and Zb. But the planetesimals settle towards the equatorial plane and for 

the later stages of accretion we can assume with good approximation that also planetesi- 

mals which were initially outside the heights - -z  b and z b participate in the accretion 
process. Therefore, for the early stages (Sections 8-10), we consider only the truncated 

surface density Opb between height - -z  b and z b. Its mathematical expression follows 
from Equations (4.31) and (8.2) 

Opb = ) tab . ,  (8.4) 

The total surface density of planetesimals op is related to the truncated surface density 
Opb by Equation (4.31) 

opb = 0.843ap, (8.5) 

where 

and 

~ oo 

Op = )tp(l, z )  dz = Xp(l,  O)(27r~.~Tl3/Grnu) 1/2 = rra/2 ppb(1 , O)z b 
oo 

(8.6) 

Opb = 0 . 8 4 3 r c l n  ppb(l ,  O)z b = 2~pb( l )z  b. (8.7) 

In view of the uncertainties of the problem, the distinction made in this paper between 
Opb and for the early stages and % for the later stages seems to be superfluous. However, 

we are able to define only by this distinction a reasonable mean value for the density of 
planetesimals Pv which is representative for 85% of their mass. 

The planetesimals settle towards the equatorial plane of the cloud and a grain initially 

at height z b will reach after a certain interval the height z (0 < z < Zb). The conservation 
of mass is given by the constancy of the surface density apb = const., or from Equation 
(8.7) 

PpbZb : p p Z ,  ( 8 . 8 )  

where ~p is the mean density of planetesimals between the heights - z  and z. For the 
sake of simplicity we shall set Pv = Pv(/) �9 

Throughout this paper we take into account the resistance of the gas on the planetesi- 

mals, which appears to be important. The velocity with respect to the gas v of  a spherical 
planetesimal of mass m and radius r changes due to the resistance Pi from the gas as 
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m d v / d t  = --Pi, ( i = 1 , 2 , 3 ) .  (8.9) 

Due to their remarkable simplicity we have adopted for the resistance Pi the equations 

given by Williams and Crampin (1971), (see also Horedt, 1971, 1973c; Adachi et al., 

1976) 

[ 4nTJWr2v/3 = P1 

(4rr6r3/3) dv/dt = -- ~ 2n~WL#rv = P2 if 
I 
~ nP r2v2 = P3 

r <~ 3Lg/2 v <<. 4W/3, 

r >~ 3Le/2, v<<. 2LeW/r, 

v ~> Min(4W/3, 2LgW/r). 

(8.1o) 
We are working only with spherical planetesimals of radius r and mass m = 47r6r3/3, 

where 6 denotes the uniform density: 6 = 3 g cm -3 for the rock in the terrestrial region 

and 6 = 1.5 gcm -3 for the rock and ice mixture in the region of the outer planets. 

W = (8 ~P T/nla) l/2 is the mean thermal velocity of  the gas, and Lg = lamn/21/2 4~om the 
mean free length of path in the gas, where rn n = 1.67 • 10 -24 g is the mass of the hydrogen 

atom and an, = 10-1Scm 2 is an approximate cross-section of the atoms and molecules 

of the gas. The viscosity of the gas is given by v = f)WLg/3 (Williams and Crampin, 1971; 

Horedt, 1975c). 

The value P1 maximizes P2 and P3 as long as v~< 4W/3. Therefore P1 maximizes also 
the time of sedimentation towards the equatorial plane and we use P1 for the resistance 

in this and in the following sections 9 and 10. The vertical motion of grains has already 
been studied (e.g., Safronov, 1969; Kusaka et al., 1970) and we treat only briefly the 

three principal cases. 
(i) Sedimentation without accretion of planetesimals (rb = r = const.). This case is 

only of theoretical interest, because the planets cannot form when no growth ofplanetesi, 

mals occurs. The equation of vertical motion under the influence of the gas drag P1 and 
the solar gravitation GM/R 2 ~ GM/I 2 ; (z <~ Zb ~ 1/3) is 

d2z/dt 2 + (~W/Srb) dz/dt + GMz/I 3 = 0. (8.11) 

With the initial conditions z = Zb, dz/dt = 0, if t = 0, we obtain 

z = z b exp (-- GMrb6t/13~W) - (zbGM62r~/13p2W 2) • 

x exp!(-fJWt/rb6 ) ~ zb exp (--GM6rbt/13f)W); (8.12) 

because for our numerical values GMr~6 2 ~ 792W213. The density changes with Equation 
(8 .8)  as 

Pp = Ppb exp (GM6r b t/la~W). (8.13) 

(ii) Growth proportional to the thermal velocity of planetesimals, (dr/dr a: Wp). This 

assumption has been used by Kusaka et al. (1970) though it appears that Idz/dtl is for our 

numerical examples considerably larger than the thermal velocity of planetesimals Wp, 
(see Case (iii)). We have 
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Wp = (9kB T/4rrra6) 1'2, (8.14) 

where k B = 1.38 x 10-16erg/degree denotes the Boltzmann constant. The accretion is 
given by (we take 0pb instead of pp, see Case (iii)) 

dr/dt  = ~pb Wp/48 = (3~pb/8)(kB T/ralr63) 1/2. (8.15) 

The integral of Equation (8.15) is 

r = (rg/2 + (15~pb/16)(kBT/lr63)l /2t)2/s .  (8.16) 

As will be shown in the next case (iii) the term dz2/dt 2 is negligible with respect to 
the other terms, so that Equation (8.27) can be used 

dz/dt  = -- aMrSz /~  Wt 3 . (8.17) 

Introducing Equation (8.16) into Equation (8.17) and integrating, we get 

t = (16/15~vb)(~r63/kBT) 1/2 x 

• [((21ppbpZ3W/16GMSS/2)( k ,  T/n)  1/21n (Op/Ovb) + r~/2) s/7 - r g / 2 ]  �9 

(8.18) 

The time tb(dr/dt  c~ Wp) necessary for the density Opb to grow to e~pb and the corres- 
ponding radius r from Equation (8.16) are listed in Table III. The most rapid grain growth 
is obtained by the most plausible assumption from the next case. 

(iii) Growth of planetesimals proportional to sedimentation velocity (dr/dt  ~ dz/dt) .  

The numerical integration offers somewhat different results for this case in comparison 
to analytical evaluations, but the general trend of the results is preserved (e.g., Williams 
and Crampin, 1971). We have assumed that the relative velocity between the planetesi- 
reals is equal to their sedimentation velocity with respect to the Sun --dz/dt. The 
accretion rate becomes 

d m / d t  = 41r6r2 dr/dt  = --7rr2~p dz/dt.  (8.19) 

With Equation (8.8), we can integrate Equation (8.19) 

r -  r b = (Zb~pb/46) in (zb/z) .  (8.20) 

If we put in Equation (8.19)tSp = ~Spb = const., we obtain 

r - -  rb = Ppb(Zb -- Z)/46, (8.21) 

and the maximum radius if z ~ Zb is 

rmax = ~pbZb/43. (8.22) 

Equation (8.20) cannot be used for further analytical evaluations because of the 
logarithmic tenn. We use Equation (8.21) instead of Equation (8.20); in fact because 
of the logarithmic dependence in Equation (8.20) the maximum radius given by Equation 
(8.20) is for any reasonable value of zb/z  only about ten times larger than rmax from 
Equation (8.22). The equation of motion is similar to Equation (8.11) 
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TABLE III 

Characteristic heights,  velocities, radii, densities and t ime intervals for the  first stages o f  accretion. 

I. Vertical mot ion  (% <<" r <~ rl). 

Planet tb [yr] t b [yr] tb [yr] rrnax [cm] r [cm] 

r = const, dr/dt cc Wp dr/dt c~ cIz/dt dr/dt ~ dz/dt dr/dr ~ Wp 

Mercury 3.21 X 106 1.56 X 104 5.77 • 10: 6.35 X 10 -1 2.88 X 10 -3 
Venus  3.21 X 10 ~ 2.68 X 104 1.37 X 103 2.49 X 10 -1 1.70 • 10 -3 
Earth 3.21 X 106 3.55 X 104 2.14 • 103 1.53 X 10 -1 1.28 • I0  -3 
Mars 3.21 X 106 5.10 X 104 3.76 X 103 8.13 X 10 -2 8.93 X 10 -4 
Asteroids 3.21 X 106 8.57 X 104 8.48 X 103 3.28 • 10 -2 5.31 • 10 -4 
Jupiter 6.42 X l 0  s 1.16 • l0  s 4.11 X 103 1.19 X 10 -1 7.98 • 10 -4 
Saturn 6.42 X l0  s 1.94 x l0  s 9.02 X 103 4.75 X 10 -2 4.71 X 10 -4 
Uranus  6.42 X l0  s 3.54 • 10 s 2.17 • 10 4 1.68 X 10- :  2.67 X 10 -4 
Neptune  6.42 • l 0  s 5,19 • l0  s 3.75 X 104 8.52 X 10 -3 1.91 X 10 -4 
Pluto 6.42 X l 0  s 6.53 X l0  s 5.14 X 104 5.72 X 10 -3 1.15 • 10 -4 

II. Horizontal  mo t ion  

Planet t 1 rl r P P l  zl Idl/dtll l b - -  l 1 

[yr] [cm] [cm] [gcrn -3] [cm] [ cms  -1] [cm] 

Mercury 8.34 • 102 61.1 4.21 • 10 -s 9.42 X 10 -9 8.08 X l0  s 5.11 X 102 9.25 X 10 ~ 
Venus  2.00 X 103 66.3 4.77 X 10 -s 1.46 X 10 -9 2.05 • 10 9 1.41 • 103 6.37 X 107 
Earth 3.14 X 103 81.3 5.11 X 10 -s 5.52 X 10 -1~ 3.31 X 10  9 2.82 X l0  s 1.75 X 108 
Mars 5.60 • 103 105 5.63 X 10 -5 1.59 • t0  -1~ 6.16 • 10  9 6.86 X 103 6.46 X l0  s 
Asteroids 1.30 X 104 155 6.69 • 10 -5 2.64 X 10 -11 1.49 X 101~ 2.50 X 104 4.41 X 10 9 

Jupiter 6.43 X l0  s 214 6,47 X 10 -4 1.66 • 10 -11 4.30 X 10 l~ 4.37 X 104 2.68 • 101~ 
Saturn 1.44 X 104 85.2 6.99 • 10 -4 2.49 X 10 -1~ 1.15 • 10 l~ 4.37 X 104 1.63 • 1011 
Uranus  3.64 • 104 30,1 7.66 • 10 -4 2.87 X 10 -13 3.51 X 1011 4.37 X 104 1.27 X 1012 
Neptune  6.51 X 104 15.3 8 . I0  • 10 -4 6.99 X 10 -14 7.32 • 1011 4.37 • 104 4.76 X 101~ 
Pluto 9.12 X 104 10.2 8.46 X 10 -4 3.04 X 10 -14 1.13 X 1012 4.37 X 104 1.04 X 1013 

d ( m  dz/dt)/dt  + m ~ W  dz/r6 dt + rnGMz/l 3 = 0; ( 8 . 2 3 )  

o r ,  u s i n g  E q u a t i o n  ( 8 . 1 9 )  w i t h  ~p = Ppb, (Ppb = Xp) ,  

d2z/dt 2 + (fiW/r6 )(1 -- ( 3 X / 4 W )  d z / d t )  dz/dt + GMz/l 3 = 0.  ( 8 . 2 4 )  

B e c a u s e  Idz/dt[  < 4W/3 a n d  X < 1, we  h a v e  ( 3 k / 4 W ) l d z / d t l  < 1. W i t h  a s u i t a b l e  m e a n  

v a l u e  F o f  r E q u a t i o n  ( 8 . 2 4 )  b e c o m e s  a n a l o g o u s  t o  E q u a t i o n  ( 8 . 1 1 ) :  i .e . ,  

d2z/dt 2 + (#W/r--f) dz/dt + GMz/I 3 = 0;  ( 8 . 2 5 )  

w i t h  t h e  s o l u t i o n ,  a n a l o g o u s  t o  E q u a t i o n  ( 8 . 1 2 ) ,  o f  t h e  f o r m  

z ~ z b e x p  ( - -  GM6ft/13~lr ( 8 . 2 6 )  

B u t  t h i s  s o l u t i o n  is i d e n t i c a l  t o  t h e  s o l u t i o n  o f  E q u a t i o n  ( 8 . 2 4 )  w i t h o u t  t h e  f i r s t  

t e r m  d2z/dt 2 i f  r = f .  We c o n c l u d e  t h a t  t h e  f i r s t  t e r m  in  E q u a t i o n  ( 8 . 2 4 )  is neg l ig ib l e  

so  t h a t  E q u a t i o n  ( 8 . 2 4 )  c a n  b e  w r i t t e n  a p p r o x i m a t e l y  as  
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(~W/rS) dzldt + GMz/l 3 = 0. (8.27) 

With Equation (8.19) the solution of Equation (8.27) is found to be 

t = (~WI3/GMSrb (1 + ~pbZb/48rb)) 

X In [zb(1 + ppb(Zb -- Z)/48rb)/Z], Z < Z b (8.28) 

For our numerical examples we have ~pbZb/48rb >> 1, SO that even in the logarithmic 
term of Equation (8.28) ~pb(Zb --z)/48rb becomes the leading term if z ~ zb,  (z <Zb). 

Therefore, by using Equation (8.8), Equation (8.28) becomes 

t ~ (413W/kGMzb) ln ( zb(~p- -~pb) /48rb) ,  (Pp~Ppb,  Pp>Ppb) 

and (8.29) 

tip ~--- fipb -{- (48rb/Zb) exp (XGMzbt/413W) = fipb + fl exp at, (8.30) 

where 

Ppb ~ Pp. a = XGMzb/413W, [3 = 48rb/z b. 

The time interval tb needed to increase fib by the factor e is listed in Table III. From 
Equations (8.8) and (8.30) we obtain a simple expression for the sedimentation velocity 

dz/dt = ~pbZ b d( l /~p) /d t  = --o~z, (z ~ zs), (8.31) 

which is smaller than 4141/3, so that P1 is indeed a reliable approximation to the gas drag. 

9. Horizontal Motion of Small Planetesimals (rb < r < rl)  

For radii smaller than rl from Equation (9.6), the resistance of the gas is so large that the 
tangential motions with respect to the gas of the protoplanetary cloud are efficiently 

damped. Therefore, we can neglect the tangential motion of planetesimals with respect 
to the radial motion in a plane parallel to the equatorial plane. We introduce in this plane 

a rectangular (x, y)-frame, rotating together with the gas of the cloud at angular speed w. 
The equations of motion projected on the coordinate axes are (e.g., Horedt, 1973a) 
with z <~ l/3 

d(m dx/dt)dt  + eix + (mGM/I 3 -- mw2)x  -- 2 m ~  dy/dt  = O, (9.1) 

d(m dy/dt) /dt  + Piy + (mGM/I 3 -- rnoo2)Y -- 2mr dx/dt  = 0, (9.2) 

where Pix and Piy are the projections ofPi  (i = 1, 2, 3) from Equation (8.10). Because 
of the reasons outlined above is sufficient to study the motion only radially, so that 
we can neglect one of the equations (9.1) and (9.2). If we take, for instance, the radial 
direction along the x-axis, we can neglect also the last term in Equation (9.1) and replace 
x by l: i.e., 
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d(m dl /d t ) /d t  + P1 + (mGM/I  a --  me t2 )  l = 0, (9.3) 

where Pi -= Pit and we have taken as in the previous section i = 1. If we replace m in 
Equation (9.3) by a mean value r~, we can show exactly as for Equation (8.23) that the 
first term is negligible so that Equation (9.3) becomes by using Equation (4.23) 

( 47r fiWr2 /3 ) dl/ dt = --  ml(  GM/I a --  co 2) = --  137rSra J 2  A / 3#l an 

o r  

dl/dt  = - 1 3 6 r . ~ A / 4 ~ W l  3n .  (9.4) 

Equation (9.4) characterizes approximately the horizontal inward motion of a planetesi- 
mal under the influence of gravitation and of large resistance from the gas which rotates 

circularly with speed Vg. The resistance P1 maximizes P2 and P3 (v < 4W/3) so it decreases 
the velocity of inward motion and the time of accretion. In fact P1 is valid for the whole 
planetary system i f r  "~ rb and up to r ~ rl for the outer planets. 

We determine the approximate maximum radius rl up to which the planetesimal can 
be considered to rotate together with the gas, i.e. the approximate limit at which gas drag 
becomes small in comparison to the gravitation from the Sun. We define rl conveniently 
by the condition that the velocity v of the planetesimal with respect to the gas decreases 
e-times during a period of orbital revolution 

P = 2~r(13 /a~  ' /z .  (9.5) 

The motion of a planetesimal under the influence of gas drag alone is given in Equa- 
tion (8.9). If we integrate Equation (8.9) for r = rl by using Equation (8.10) and the 

condition Vo/V = e, (vlt=o = vo) we find (el. Whipple, 1972) 

{ fiWP/6 ra <- 3LJ2;  Vo <- 4W/3 

rl  = (3~WL~P/26)  1/2 if rl  >~ 3Lg/2; Vo <~ 2LgW/r l ,  (9.6) 

3Pfivo/4(e --  1) Vo >i Min (4W/3; 2LgW/ra) 

The characteristic relative velocity between planetesimals and gas is taken equal to 

Vo = Vc - -  Vg = 5.25 x 103cm s -~ from Equation (4.24). Though the definition of rl is 
somewhat arbitrary it can be considered as a reasonable delimitation between two dis- 
tinct regimes of motion: if ro <- r <. r i the motion of planetesimals is slow with respect 

to the circular velocity of the gas Vg, and if r > r~ the motion is essentially a Keplerian 
ellipse perturbed by a relatively small resistance from the gas. 

The radius of the planetesimals increases according to 

dr/dt  = - -  (~p/46)  dl /dt  = 13~r + [3 exp at)/16la~Wl 3n.  (9.7) 

The inward v e l o c i @ -  dl/dt  approximates only very grossly the relative velocity 
between planetesimals, analogous to - -dz/dt  in the preceding section. It is obvious 
from Tabte III that accretion is much more efficient in the horizontal direction than in 
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the vertical direction. Therefore, we have integrated Equation (9.7) between rb and rx 
instead between r m ~  from Equation (8.22) and rl 

in ( r l / r b ) ~  13~A(/Spbt 1 + 13(exp at1 -- 1)/a)/161~Wl 3/2, if Pvl ~P Pvb, 

and (9.8) 
ln(rl/rb)~-- 13~A~p l /16# f )Wla /2a  if fSpl >> Pp6. (9.9) 

Because Ppl >> Ppb we have calculated tl from Table III according to, (cf. Equation 8.30)) 

t l  ~ in (~pllfl)/a. (9.10) 

The length of inward motion can be obtained by introducing into Equation (9.4) a 
suitable mean radius f of the planetesimals during the time interval tl. The integral of 
Equation (9.7) between an arbitrary radius r and rb is 

r = rb exp [13~2A(~pbt + fl(exp at  -- 1)/a)/16#fiWl3/2]. (9.11) 

We can deduce the mean radius ~ by averaging the time dependent part of Equation 
(9.11) over the interval tx: i.e., 

fipbt +/3(exp at  1)/a = fot'  -- (pp6t +/3(exp at  -- 1)/a) dt / t l .  

Performing the integration and introducing the result to Equation (9.11) we find that 

F = rb exp (13~i~A(~pbtx/2 + ~pa/a2tl -- ~/a)/16#~W13/2). (9.12) 

The distance of inward motion is (Table III) 

lb -- ll = 1 3 ~ f ~ A t l / 4 g f i W l  3/2, (9.13) (9.13) 

where 1 b denotes the value of l at the initial moment corresponding to rb and, ll = l (h) .  
A more detailed expression for Equation (9.7) would be 

dr/dt = -- (~p/46)(dl /dt)(a + 8~r6Gr2/3(dl/dt)2); (9.13) 

but the second term in the paranthesis, the gravitational accretion term, is completely 
negligible. 

From the values listed in Table III we could draw the following conclusions: The 
planetesimals grow during 103-10 s yr up to meter-sized objects, mainly because of their 

horizontal motion. The accretion due to the motion in the vertical direction is not so 
important but increases considerably the spatial density of planetesimals, which becomes 
comparable to the gas density in the vicinity of the equatorial plane after the interval q .  

10. Further Contraction Towards the Equatorial Plane (rl ~< r ~< r2) 

We have introduced this section in order to bridge the gap between the stage when the 
planetesimals begin to move in Keplerian orbits and the stage when gravitational interactions 
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between the planetesimals become important. During this stage the radius increases 

100--1000 times (Table IV) but it is questionable if our model is very realistic because 

the planetesimals are likely to differ grossly in size and in the inclination i of their orbits 
with respect to the equatorial plane of the cloud. The planetesimals are assumed to move 
in approximately circular Keplerian orbits of inclination 

i = tgi  = z/l , (z ~< lt3), (10.1) 

where z is the maximum height attained by the planetesimals (z = ~pbZb]~p)- 

I was not able to solve the problem whether the gas between height - - z  and z main- 

tains its velocity difference V e -- Vg with respect to the approximately circular velocity 
of the planetesimals V e. On the one hand, the density of planetesimals near the equatorial 
plane increases from the value tSpl ~ t5 at moment tl totSp2 ~ 104t5 at moment t: (Table 
IV). The mass of planetesimals between - z and z becomes considerably larger than the 
mass of the gas, so that the planetesimals could accelerate the gas up to their velocity V e. 

On the other hand, the mean distance between the planetesimals is even at moment t2 
and at Mercury's distance from the Sun about 20 times larger than their dimensions, so 
that the gas could maintain its velocity V e. 

I made the assumption that because the planetesimats constitute at most 1.6% of the 
whole cloud mass, the gas of the cloud readjusts its velocity by internal cloud motion in 
order to maintain also near the equatorial plane the velocity difference V c - V# required 
by hydrostatic equilibrium. 

We could have made also the alternative assumption that the gas between height - -z  
and z is accelerated by planetesimals up to their velocity Ve, though in this case no 
equilibrium configuration is possible within the limit of our assumptions. In this case, 
the evolution of the disk of planetesimals would occur by mutual collisions, without gas 
drag. The evolution time is in this case several orders of magnitude larger because the 
relative velocity between planetesimals is U i instead of - dl[dt, (Ui ~ ]dl/dtl; see Equa- 
tion (10.14)). 

We reproduce below only the equations written under the assumption that the gas 
continues to move with velocity V# also between height - z  and z. The resistance is 
given as before by P1, though for the inner planets P~ and P3 are more appropriate. P~ 
maximizes /~ and/ '3 since the relative velocity between gas and planetesimals is v = 
V e -- V e ~ 4W/3 ,  neglecting the influence of small orbital inclinations. Because gravi- 
tational perturbations are small, the planetesimals move in nearly circular orbits. The 
semimajor axis of a planetesimal can be approximated by l since z ,r l and its decrease 
due to gas drag is given ( e l  Equation (14.1) by 

-- dl/dt  = 2 P ~ ( l a / G 3 ~ n / m  = 2 ~ W ( V  e -- Ve)(13/GM)ln/r6.  (10.2) 

The relative velocity between planetesimals is given as in the preceding section by 
- - d l / d t ,  because the relative velocity introduced from the difference in inclination 
Ui is about 102-103 times smaller, as it is obvious from Equation (10.14). The decrease 
in inclination due to gas drag (cf. Equation (14.3)) is given by 
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parallel t^ ~ ~ ~  

Fig. 3. Velocity vectors for the intermediary stage of  accretion (r 1 ~< r ~< r 2) 

di/dt  = - (I/GM) i n  cos u P 1 j m ,  (10.3) 

where P ~  is the component of P~ perpendicular to the orbital plane and u the angle be- 
tween the planetesimal and the node of its orbit. We have neglected the contribution of 
colliding planetesimals to the decrease of di/dt  because in this case the perturbing force 
is given byP3 instead of P1 andPa ~P~. We have 

PI~ = 47rpWr2v~/3m, (10.4) 

where vy is the component of v perpendicular to the orbital plane. From Figure 3 and the 
spherical triangle containing the orbit of the planetesimal and of the equator we get 

v~ = V e sin ff = V e sin i cos u/(1 -- sin2u sin2/) in  ~-- Vci cos u, (10.5) 

and ( V e -  Vg)/Vc ~ 1. From Equations (10.3), (10.4) and (10.5) we because i ~ 0 
get 

di/dt  = - ~Wi cos2u/r& 

Differentiating Equation (10.1) we get from Equation (8.8) 

di/ dt = -- (Zb :.bllz~) (d:~/dt). 

(10.6) 

(10.7) 

Equating Equation (10.6) to (10.7) and using Equations (8.8) and (10.1), we obtain 
for the increase of density the expression 

dfip/dt  = ~p~W/2r~, (10.8) 

where we have introduced instead of cos2u its mean value 1/2. The radius of the planetesi- 
mal increases according to 

& / d t  = --(/7p/46) dl/dt  = f i p p ~ l ] ( V  e -  Vg)(la/GM)1/Z/2r52. (10.9) 

Dividing Equations (10.8) and (10.9) we obtain by integration 

r2 - -  r l  ---- q a l G M ) l l l ( V c - -  Vg)(Pp2 - - ~ . 1 ) / ~ ,  ( 1 0 . 1 0 )  

where r2 and Pp2 are the radius and the density at moment t2. The radius r:  is determined 
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only by Equation (13.15). Introducing Equation (10.10) into Equation (10.9) we have 
(Table IV) 

t2 - tl = (2M~W) 

• I t 2  - rl + (~p~(vc-  Vg)(:/GM)'2/8 - rO in (~pd~: ) ]  ; 
or, since r2 >> rl and~p2 >> Ppl, 

t2 -- fl = 2~r2/~W. (10.I1) 

The variation ll - 12 of the distance from the Sun is very large for Neptune and Pluto 
(-~ l/3; Table IV) but in view of the many uncertainties of this stage we do not attribute 
too much importance to this fact. From Equations (10.2)and (10.9)we find by integration 

121/2 = I~ 1/2 + 2(V c -  Vg) In (~p2/~pO/(GM) In. (10.12) 

The relative velocity which would appear from the difference in inclination is (Figure 3) 

Ui = Vcisin 41 = (GM/I) in  li cos ul = 2ZbPpb(GM/la)l/2/Trpp, (10.13) 

where we have used the mean value 2/n of Icos ul and also Equations (8.8) and (10.1). 
Comparing Equations (10.2) and (10.13) and using Equation (10.10) in the form 

r ~- ( : I G M ) ' n ( V o -  V~)~pla, 

we find that the condition 

tdl/dtl >> U~ 

is fulfilled always for our numerical examples: namely, 

n~W(lS/GM)ln/Zb~pb >> 1. (10.14) 

The radius at which gravitational accretion becomes important is from Equation (9.13) 

8nSGr2/3(dl/dt) 2 >~ 1, 

or, with Equation (10.2), 

r = rgrav ~> (3fiWlsn(Ve -- Vg)/4~r82Ga/2M1/2) 1Is. (10.15) 

As is shown in Table IV this radius is >> r~ and comparable to r2 so that the simple 
Equation (10.9) is valid approximately if r ~< r2, giving a lower limit to the accretion rate. 
As it is obvious from Tables III and IV the planetesimals reach radii of 0.1-1 km during 
several hundred years for Mercury and several 10Syr for Pluto. 

11. Velocity Dispersion by Close Encounters 

Before turning to the late stages of planetary accretion (r2 < r ~ ra) we develop a 
crude theory in order to obtain the increase of the relative velocity U between planetesi- 
reals by gravitational encounters. Strictly speaking, by mutual encounters there occurs 
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merely a statistical increase of the dispersion of the velocities according to a quadratic 
sum rule, i.e. if we start with a small relative velocity Uin and assume that after each 
encounter the relative velocity Uk changes by AU~, then after a large number n of 
encounters, the expectation of U 2 equals the quadratic sum of the individual deflections 

auk 
rt 

u 2 =  ~ (aG) 2, (laGl<G;U>>Uin). (11.1) 
k = l  

We consider only encounters occurring inside the gravitational sphere of action (Opik, 
1966a) 

sg = R ( m l 2 M )  1/3, (11.2) 
or  

sg ~ l (m/2M)  l/a, (z  < l/3).  (11.3) 

When a large planetesimal moves in a circular orbit and encounters within the frame- 
work of the circular restricted three body problem a small planetesimal their relative 
velocity before and after encounter is invariant, (e.g., Horedt, 1972a, b; 1974a). This 
idealized case occurs only approximately in the actual planetary system and was certainly 
absent during accretion of the planets, because of the large number of encountering 
planetesimals. Changes of the relative velocity U by encounters can occur only within 
the framework of the eccentric three or many body problem. 

Let us consider a rotating (R ,  ~o, ~')-frame with the centre in the planetesimal. Let the 
R-axis be directed along the vector Sun-planet, the C-axis in the orbital plane at right 
angle to the R-axis and the f-axis perpendicular to tile orbital plane of the planetesimal. 

At distance R the semimajor axis a, the eccentricity e and the inclination i of the 
planetesimal with respect to a ficitious body moving with circular velocity 

Ire = ( G M / R )  1/2 ~ (GM/l)  1/2, (z < 1/3), (11.4) 

can be expressed in terms of their relative velocity U with respect to this body (Opik, 
1951 ; Wetherill, 1967) as 

OM/a = V 2 --  2U~Vc - -  U 2, (11.5) 

e 2 = ( 2 U , / V c  + U2/V2c) 2 + 2 2 U~(1 /Vg  --  2 U , / V ~  ,2 --  U2/V2e) ' (t 1.6) 

sin2i = U~/(U~. + (Vc + U,)2); (11.7) 

Un, Ur U~- are the components of the relative velocity U: U z = ~ + L~ + U~. We 
shall use frequently the approximation of echipartition of the components of U with 
respect to the equatorial plane of the protoplanetary cloud 

U~ = U~ = U~ = f f 2 / 3 ,  (11.8) 

where O denotes the equipartition velocity. For the accretion of the planets e < 0.3 is a 
sufficient delimitation, so that U is generally much smaller than V e (Figure 10). The 
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mean values from Equations (11.5)-(11.7) are (UR = 0~ = U~- = 0; U~ = U~ = U~ = 
U2/3; Opik, 1966b) 

1/a = (V~ -- Oa)/GM, (11.9) 

e 2 = 5U2/3Vc 2, e ~ 51/2U/31/2Vc, (11.10) 

sin2i = Oa/3V2e, sini "" i "" 0131/2V c. (11.11) 

We determine subsequently very approximately the change of the relative velocity U 
in two simple cases: 

(A) Change of the relative velocity U due to encounters between planetesimals of 
equal mass moving in eccentric orbits (ml = m2 = m). Let us denote by ml and m2 
(m~ = m2 = m) the masses of two encountering planetesimals with semimajor axes 
al and a2 (al ~ a2 ~ a) and with small and equal eccentricities ex, e2 (ex = e2 = e) and 
inclinations il, i2 (il =/2 = / )  with respect to the equatorial plane of the protoplanetary 

cloud. Ua denotes the relative velocity of the barycentre of two encountering planetesi- 
mals with respect to a circular Keplerian velocity V~ at the point of closest approach, 
U1 and U2 the relative velocities of the two planetesimals with respect to Ve, and UG 1, 
UGa (Uaa = UG2) the relative velocities of the planetesimals with respect to their 
barycentre. If It-- Sa denotes the angle between U a and Ua a we have (Figures 4 and 5) 

U~ = U~ + U b l - -  2UoUGx cos~l, (11.12) 

U~ = U~ + U~2 + 2UaUa2 cos$I. (11.13) 

After an encounter Uol, UG2 are deflected by an angle % which is generally small 
(3' ~ 1, see Equation (13.6)), so that U1, U2, ~t change by the small quantities AU1, 
AU2, Aft. We get by differentiation of Equations (11.12) and (11.13) and from the 
spherical triangles in Figure 5 (Uo = const., Ual = Ua2 = const., 3 '~ 1; cf. Horedt, 
1972a, b) 

U1AU1 = - - U a U a l A c o s ~ l  "" 7sin~l  cost/ = -- U2AU2, (11.14) 

because 

cos (~r - gl) = cos 3' cos (~ - G) + sin 3' sin ( ~ -  G) cos n, 
and for 3' ,~. 1 

Lx cos ~1 = cos G - cos ~'1 ~ 3' sin ~1 cos n. 

The prime denotes the value of ~1 after the encounter. 
If V1, 112 and V o denote the velocities of rnl, m2 and of the barycentre with respect 

to the Sun, we have from Figure 4 

V~ = VS + U~I - -  2VGUol cosut, (11.15) 

V~ = V~+ U~2 + 2VaUG2 cosva; (11.16) 

and 
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Giavitational deflection of the velocity vectors (r~ ~< r < r3). Fig. 4. 

Gravitational deflection of the velocity vectors (r 2 ~< r < r3). 
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because 

and 

V 1 A  V 1 = - -  UG I VG A cOs1) I ~--- UG1VG ")[ Sin V 1 COS$.,/ 

= - V 2 & V 2  = G M / V q / 2 a ~  = - G M & a 2 / 2 a ~ ,  (11.17)  

cos (n - v'~) = cos 3' cos (rr - Vl) + sin 3' sin (~ - va) cos ta, 

A cos vl  = cos vl - -  cos v~ ~'  3' sin vl cos/.t, (7 < 1), 

= G M ( 2 ] R -  l /a1 ) ,  V~ = G M ( 2 ] R -  l [a2) ,  R = const.  

We have de termined  the relative ve loc i ty  U12 be tween  the planetesimals  m l,  m2 in 

terms o f  their relative ve loc i ty  U wi th  respect  to a f ic t i t ious circularly moving  mass po in t  
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in the equatorial plane of the protoplanetary cloud. We have (0pik,  1951) 

U 2 = 3GM/R - GM/a -- 2GMal/2(1 -- e2) a/2 cos i/R 3/2, (11.18) 

where i is the inclination with respect to the equatorial plane of the protoplanetary 

cloud. For small eccentricities and inclinations of rn we can expand the radius vector as 

I[R = (1 + e cos ~0)/a(1 --  e 2) ~ (1 ~- e cos ~o + e2)]a, 

where ~0 is the anomaly of the elliptic motion. The expression for U becomes 

U 2 = GM(e 2 -- 3e 2 cos2~0/4 + i 2 + O(e 3, : ) )[a  ~ GM(5e2/8 + i2)/a, 

(11.19) 

where we have substituted cos2~0 by its average value 1/2. Using Equations (11.10) and 

(11.11) we find the transformation coefficient between the equipartition velocity U and 
U from Equation (11.19) 

V 2 ~ GM(25/24+ 1/3)U2/V2ea ~ 11U2/8, V ~ 1.17U, (11.20) 

because for moderate eccentricities V~ = GM/R ~ GM/a up to the first order in e. 

The angle ia2 between the orbits of  ml  and m2 is related to the inclinations ix, i2 of  

rnx, m2 with respect to the equatorial plane of the protoplanetary cloud by (Wetherill, 

1967; Equation (26)) 

cos i12 = cos i1 cos i2 + sin ix sin i2 cos 6o12; (11.21) 

~ox2 is the angle between the nodes of ml, m2 with respect to the equatorial plane. 

The influence of the last term in Equation (11.21) vanishes on the average, so that 

(ix, i2 ~ 1) 

i~2 ~ i~ + i~ or ia2 ~ 21/2i, (ix = i2 =0.  (11.22) 

The direction of the circular velocity V' e relative to which Ux and U2 are defined 

at the point of  encounter is chosen along the bisector of  the angle ix2, so that 

U] = GM(5e~/8 + i]2/4)/al, U~ = GM(5e~/8 + i~2/4)/a2, (11.23) 

where i from Equation (11.20) turns into i12/2. 

It should be noted that e and i are mean values, the eccentricity and inclination of a 

planetesimal changing in fact between 0 and a certain maximum value emax, iraax, respect- 

ively. Therefore, the angle x between U1 and U2 changes between 0 and lr so that the 

cos x term in 

U ~  -- U~ + U~- -  2UxU2 cosx  ~ U] + U~ (11.24) 
4" 

vanishes on the average. According to our assumptions ea = e2 = e, il = i2 = i, al  ~ 
a2 ~ a, and we fred with Equations (11.20), (11.22)-(11.24) 

e~2 ~ 2U~ ~ 2GM(SeZ/8 + i]fl4)/a 

= 2 G M ( 5 : / 8  + i2/2)/a ,~ 2~t72/12 ~ (58/33)U 2. (11.25) 
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m l  [ ' ~ 1  

ul l , ,  

~ = 7r /2  U 2 

Fig. 6. Average posit ion o f  the  relative velocities. 

Equation (11.25) defines a mean approximate relation among: (i) the relative velocity 
U12 between planetesimals moving in orbits of eccentricity e and inclination i with respect 
to the equatorial plane of the protoplanetary cloud, (e, i ~ 1). (ii) the relative velocity U1 
or U2 (U1 ~/-/2) of the planetesimals with respect to a circular velocity V' e of inclination 
i12/2 = i/21/2 = il/2 in  = h/2 In relative to the orbits of the planetesirnals. (iii) the relative 
velocity U of the planetesimals with respect to the circular velocity Vc in the equatorial 
plane of the protoplanetary cloud and (iv) the equipartition velocity U/3 i n - -  I URI= 
IU~i =iUf] with respect to the equatorial plane of the protoplanetary cloud. 

The transformation coefficients between Uh U and 0 are close to unity as should be 
expected on general grounds, but we have preserved them in our calculations 

g ~ (33/29)1nU1 ~ ( l l / 8 ) l nU  ~ (33/58) In U12. (11.26) 

Because m l  = m 2 ,  we  have 

Uol = UG2 = U12/2; (11.27) 

and because the mean value ~ of the angle x between the two velocities is close to 7r/2 
we find from the rectangular triangle of Figure 6 that 

UG ~ UGI = UG2 = U12/2. (11.28) 

The relative velocity U1 of'm1 with respect to the circular velocity V'c = (GM/R) 1/2 

can be written according to Equation (11.18), (i -> i12/2) 

U~ = 3 G M / R - - G M / a ~ - -  2GMa~n(1--e~)l /Z cos ( i~ /2 ) /R  3n. (11.29) 

At another point of the orbit of ml having the radius vector R'  the relative velocity 

can be written as (]R -- R'I <<- 2al el ) 

U~ 2 = 3GM/R'  -- GM/a~ -- 2GMa~/Z(1 -- e~)lncos (i12/2)/R 'an. (11.30) 

During an encounter between m~ and m2 at radius vector R the orbital elements 
change by Aal, Ael, ~/1 so that the corresponding change of U1 is (R = const.) 

2R3nU1AU1/GM = Ra/2A~al/a~ -- A(2aln(1 -- e~) 1/u cos (in/2)). (11.31) 

Due to the change of the orbital elements at radius vector R,  the relative velocity 
U] of m 1 at radius vector R'  changes as (see Equation (11.30), R'  = const.) 

2R'anU1AU1/GM = R'3/zAal/a~ -- A(2aln(1 - e~) ' n  cos (i,2/2)). (11.32) 

Combining Equations (11.31) and (11.32) we get the change of the relative velocity 
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U'I at radius vector R' due to a close encounter at radius vector R in the form 

U'IAU'I ~ 3GM(R'--R)A?q/4R'a~ + Ra/2U1AU1/R 'a/2. (11.33) 

The mean value of JR' - R I  is given by 

/ff;~ (11.34) [R'--RI = f Jo ' - R , d R ' d R  = 

With the aid of Equations (11.14), (11.17) and (11.34) the Equation (11.33) turns into 

U'I AU'I ~ +- (ale1/R')Um VG7 sin vl cos/a + UaUal ~' sin ~t cos ~7. 

(11.35) 

Taking into account that 

V G = (mlV1 +rn2V2)/(rnl +m2) = (Vl + 112)12, 

v: vc vG = vc + o(ae);  

Equation (11.35) becomes with Equation (11.10) and for R' ~ al 

UtlAU' 1 ~ (+-(5/3)l/2uuG1 sin vl cos/~ +UGUm sin ~1 cos n)7- (11.36) 

The mean value of the sin v~ averaged over the surface of a sphere of unit radius is 

sin vl --- 2rr sin: Vl dVl/4n = n/4 = sin ~1; (11.37) 
0 

and the mean value of Icos ill, [cos rll 

Icos r/I = [cos/~[ = 2/n. (11.38) 

The deflection angle ~" is given by (Horedt 1972b, and Equation (13.5)) 

tg(7/2)~ 'y/2 = G(ml + m2)/U~l:s, ( 7 4  1), (11.39) 

where s is the target radius of encounter, equal to the distance between mx and the 

asymptote of the hyperbolic orbit of m2 around ml.  Using Equations (11.37}-(11.39) 
and the approximate equations (11.27) and (11.28) we Finally find that 

U'IAU'I ~ [+-- (20/29) 1/: -+ 1/2] 3'U'~12 ~- -+ (20/29)1/2Gm/s "~ -- U'2AU'2. 

(11.40) 

We have preserved only the larger constant (20/29) 1/: because the signs in the rectangular 
parenthesis of Equation (11.40) can be combined arbitrarily. 

(B) Change of the relative velocity due to encounters between a large mass mp and 
small ptanetesimals of mass m (m2 = mp >> ml = m). The eccentricity ep and inclination 
ip of the large mass mp are assumed to be given by the limiting value due to collisions 
with small planetesimals of mass m with orbits of moderate eccentricity e and inclination 

i (see Equation (15.14)) 
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ep = e(m/2mp)  1/2 < e ;  ip = i (m/2mp) u2 < i ;  (11.41) 

ip and i being defined with respect to the equatorial plane of the protoplanetary cloud. 
The semimajor axes o f m p  and m are equal up to the first order in e: ap = a + O(ae). 

The relative velocity Up of rnp with respect to the circular velocity Vc in the equatorial 
plane is approximately equal to the relative velocity U G of the barycentre of mp and 
m (m ~ mp; (see Equation (11.19) 

5~ o ~-- U~p = GM (5e~/8 + i~)/ap. (11.42) 

The relative velocity U of m with respect to the circular velocity in the equatorial 
plane is given by Equation (11.19). From Equations (11.41) and (11.42) we have 

U~G = GM(5me2/16mp + i2m/2mp) = mU2/2mp. (1 t.43) 

The relative velocity UGm between the barycentre and rn is approximately equal to the 
relative velocity U since UG "" Up ~ U: i.e., 

UGm ~-- U. (11.44) 

The variation of the relative velocity U of m is, according to Equation (11.33), 

U'AU'  = 3GM (R' - -R)Aa/4R 'a  2 + RanUAU/R  '3n . (11.45) 

We have, analogously to Equation (11.14), 

UAU = UGUGm7 sin ~ cos ~, (11.46) 
where 

7 "" 2Gmp/U~cms "" 2Gmu/U'2s, (3" ~ 1). (11.47) 

Using Equations (11.37)-(11.39), (11.43), (11.44) we obtain 

UAU = + (mmp)InG/21ns .  (11.48) 

We have also analogous to Equation (11.17) 

GMAa/2a 2 = UGVG7 sin v cos p. (11.49) 

We discuss the following two cases: 
(i) Change of U with respect to the small planetesimals of mass m. In this case, 

]R--R'[  ~ 2ae/3 and Equation (11.45) becomes with Equations (11.48)and (11.49) 
analogous to Equation (11.40), (e = (40/33)~/2U/Vc, VG ~-- Vc) 

U 'AU'  ,~ + (40/33)lnGmp/S + (mmp)V2G/21ns ~ (40/33)lnGmv/S.  

(11.50) 

(ii) Change of U with respect to the large planetesimal of mass mp. In this case, 
LR - -R ' I  "~ 2ape;/3 and Equation (11.45) becomes with Equations (11.46) and (11.47) 

U' AU'  ~-, + epUGm VG' )" Sin P COS t 2 + UGGmp/Us. ( 1 1 . 5 1 )  

By introducing ep = (5/3)a/2Up/Vc = (40/33)U2Up/Vc ~ (40/33)V2UG/Vc we get 
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U'AU' ~ (+ (40/33) v2 + 1)GmpUG/Us ~, + (40/33)a/2GmpUo/Us, (11.52) 

where 0~, denotes the equipartition velocity of mp and we have neglected + 1 with 
respect to the larger coefficient (40/33) 1/~. 

12. Principal Equations for the Late Stages of Accretion 

The probability of encounter within the maximum target radius for encounters sg from 

Equation (11.2) has been determined already by Opik (1951) and WetheriU (1967). The 
probability given by Wetherill for eccentric orbits of m 1 and m~ is of the form 

P'e = $2 U12R/87"(2 sin i12 [ctg oq [a~a~ (1 -- e~)V2(1 -- e~) v~, (12.1) 
where 

ctg al = U1RR/(GMaI(1 -- e~)) 1/2. (12.2) 

Uln denotes the projection of Ux on the R-axis. The maximum probability of encounter 

Pe could be four times larger than P'e, since for four particular values of the perihelion 

there are possible encounters between m i and rn2. 
For moderate inclinations we have according to Equations (11.7) and (11.22) 

sin i12 ~2a/2Uf/Ve. [U1R[ from Equation (12.2) is independent of the inclination of 
the orbit and on the average equal to the projection of U on the R-axis LUR I. The average 
of the product sin il2lctg~ll cc [UR U~I appearing in the denominator of Equation (12.1) 
can be estimated as follows: The components of the relative velocity U can be written 
in terms of the elongation a and of the azimuth/3 with respect to the ~0-direction in the 
equatorial plane (cf. Opik, 1966a) as 

UR = U sin ~ sin13, U~ = Ucosot, U~- = U sin a cos13. (12.3) 

The average value of IURUeI over a sphere of unit radius is 

ff 2 13/fc-,  IURU~I = j Jo  U sin3 a sin13 cos fl dad Jo sinadad13 = 2U/~/31r, 

(12.4) 
where, because of symmetry, we have integrated only over the interval (0, rr/2). With our 
assumption of equipartition Uturns into U, which is independent of o~ and t3. The averages 
of the squared components of U are equal, and we quote as an example only 

f f o /2U 2 sin213 / f f  sin = .  doedfl ~/2 doedfl U/2/3, /~R sin 3 a o a = 

t~R = U~ = U?, (12.5) 

in accordance with Equation (11.8). With Equation (12.4), Equation (12.1) becomes 

p~ "~4p" = 3s~,rt.J12 t-lt-'l/21Ar1/21711"~t " c'-'121"-rr /.~s/2=f'r2.3/2.2:, _e])l/2 "l ,,2~ (12.6) 

For moderate eccentricities we can neglect e] and be~:ause 02 = 12U~12/29 we find 

with al ~-a2 ~ R ,  Ve =(GM/R) 1/~ 
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Pe ~ 29s~GM/29'2~rR4U,2 = (29 x 33)'/2s~GM/32nR4U, (z < 1/3). 

(12.7) 

For a large number of encountering planetesimals and for moderate eccentricities, 

P'e from Equation (12.1) takes a value close to its maximum value for circular orbits, 
i.e, Pe = 4p~, (Wetherill, 1967). 

For the encounter probability of a circularly moving mass mp with a mass m, Opik 
(1951) gives 

Pep = s~ U/ 2n 2 sin ilctg a~Ra2 (1 --e2) v2 , (12.8) 

which can be transformed analogously to Equation (12.7) into 

Pep = 33s~GM/32nR4U (z ~ l/3). (12.9) 

As is obvious from Equations (12.7) and (12.9), the quantities Pe and Pep differ 
only by the factor (33/29) 1/2 = 1.07. We have made calculations for the two cases (A) 
and (B) already discussed in the previous section. 

Case (A): All planetesimals are assumed to have the same mass, eccentricity and 
inclination. 

Case (B): A single major planet of mass mp moves in an approximately circular orbit 
encountering planetesimals of much smaller mass m (m < rap), which are assumed to have 
equal mass, eccentricity and inclination. 

As suggested by the numerical work of Dodd and Napier (1974) the second case is 
much more realistic, but our results for the two cases are for most planets comparable. 
After n close encounters the expectation of the relative velocity U is, according to 
Equation (11.1) 

U 2 = (AU~) a = ~ peh(AU~) 2 At k, (12.10) 
k = l  k = l  

where Pek is the probability of encounter after the kth encounter and Atk = 1/pek the 
mean interval between encounters. By imparting Atk into much smaller steps of length 
dt we can write Equation (12.10) under the integral form 

= f ]  pe(AU)2dt .  (12.11) 
u 2 

Before introducing Equations (11.40) and (11.50)into Equation (12.11), they should 
be averaged over s. A mean value of the target radius s can be obtained by observing that 
the probability p(s) of occurrence of a target radius smaller than s is proportional to 
the volume of a cylinder of radius s: p(s) cc ns 2. The mean value is then (Horedt, 1972a, b) 

So IS: g = s: ds s ds = 2sg/3, (12.12) 
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because the distribution function of s changes 
(12.12) into Equations (11.40) and (11.50), we 

AU'I = + (45/29)l/2Gm/U'lS#, 

AU' = + (30/11)1/2Gmp/U'se. 

We discuss separately the two cases from the 

Case (A): Introducing, instead of Pe and 
Equation (12.11), we obtain 

as s when p(s) ~ s 2 . Introducing Equation 
obtain 

(12.13) 

(12.14) 

previous section. 
AU, Equations (12.7) and (12.13) into 

=jtr 45G3Mm2dt/32nU~l a (z <~ l /3 ,R  2 l ,  U'I ~-U~); 
0 

and by its differentiation we find that 

dU1/ dt = 4 5G3Mm2 /647rU~a l 4 ; 

or, by taking into account Equation (11.25), we get 

dU12/dt = 45G3Mm2/27/2nU~1214 
o r  

dU/dt = (33/29)s/245G3Mm2/647rU414, (z < l/3). (12.15) 

Equation (12.15) represents the increase of the velocity dispersion due to mutual encoun- 
ters between planetesimals of mass m. 

Case (B) Introducing Equations (12.9) and (12.14) instead of Pe and AUin Equation 
(12.11) we obtain analogously to Equation (12.15) 

dU/dt = 45G3Mm~/32~r14U4, (z <~ I/3). (12.16) 

Equation (12.16) represents the increase of the velocity dispersion of small planetesimals 

with equal mass due to encounters with a circularly moving large mass mp. 
The probability of collisions Pc, Pep is obtained if we replace sg by the target radii for 

collisions Se (in Equation (12.7)) for Case (A) between planetesimals of equal mass and 
by Sop (in Equation (12.9) for Case (B) for collisions between a large planetesimal mp 
and small planetesimals of equal mass m. We have 

Pc = 29s2eGM/29/2rrR4U12, 
(12.17) 

se 2 = 4r2(1 + 87rG6r2/3U~2) = 4(r z + 44rrGgr2/29U2), 

Pep = 33S2epGM/321rR4U, 
(12.18) 

sip = (rp + r) = + 8nGS(r~ + r3)(rp + r)/3U 2, 

where rp and r are, respectively, the radii of mp and m, and 6 is the constant density of 
the masses mp and m, (6 = 3 g cm -a for the inner planets, and 6 = 1.5 g cm -3 for the 
giant planets and Pluto). 

The feeding zone of a planetesimal rn b is approximately equal to the total mass of 
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the planetesimals having the semimajor axes between l --  el and l + el: 

m b =  2rrlopAl = 4rrl2ope, (A1 = 2el, z <~ l/3), (12.19) 

where % denotes the total surface density of accretable matter and e is the mean 
eccentricity of the planetesimals of mass m. 
The influence of the gravitational sphere of action sg to the width of the feeding zone 
is negligible (see Equations (13.2)-( 13.4)). 
With Equations (11.10) and (11.25), Equation (12.19) can be expressed in terms of U12 
(for Case (A)) and g (for Case (B)): 

rn b = 8 (5/29)l/27r12opU12/Vc = 8 (lO/33)V27r12opU/Vc. (12.20) 

The number N of planetesimals of mass m is for Case (A) 

N = m b / m ,  (12.21) 

and for Case (B) 

X = ( r o b - - m p ) / m ,  (12.22) 

During the mean interval 1[pc or 1]pcp there occurs one collision of m or mp with a 
planetesimal of mass m, so that the growth of the mass m or m u is given by 

dm = Pcm dr, (12.23) 

drop = pepm dt. (12.24) 

Taking into account that for Case (A) a planetesimal has the chance to collide with 
N -- 1 planetesimals of mass m and the large planetesimal mp (Case (B)) has the chance 
to collide with N small planetesimals of mass m, the total growth of a planetesimal 
becomes by using Equations (12.17) and (12.18) and mp = 47rgrg/3, m = 4zrSra/3: 
Case (A) 

dr/dt  = 29(N-- 1)s2cGM.m/213/21r~6r214U12, (z <~ l/3), (12.25) 
Case (B) 

drp/dt  = 33Ns2cpGMm/128zr2dr~14U, (z <~ I/3), (12.26) 

dr/dt  = (29 x 33)1/2(N-- 1)s~eGMm/1287r26r21"U, (z <~ I/3). (12.27) 

According to Equation (12.11) the increase of the velocity dispersion is given for 
Case (A) by 

dU12/dt  = 45(N-- 1)G3Mm2/27/~TrU4214 , (z <~ l/3). (12.28) 

The increase of the velocity dispersion for Case (B) comes from two parts: 
(i) From mutual encounters between the small planetesimals of mass m, which is 

expressed, analogously to Equation (12.28), as 

(dU/dOm = 45 (33/29)S/2G3Mm2/64rrU414. (12.29) 

(ii) From encounters between the large planetesimal mp and the small planetesimals 
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of mass m, which is expressed analogously to Equation (12.16). Because mp moves in 
a circular orbit, the relative velocity U between ra a and m remains constant after an 
encounter. Due to such an encounter there changes only the relative velocity U between 
the planetesimals of small mass ra. Therefore, we have multiplied dU/dt from Equation 
(12.16) by the additional factor Nra/rab, taking into account that the relative velocity 
changes only for the fraction of mass Nra of the mass rao of the accretion band: i.e., 

(dU/dt)m p = 45GaMNmm~/327r14U4mb. (12.30) 

The total change dU/dt for Case (B) is given by the sum of Equations (12.29) and 
(12.30) 

dU/dt = (dU/dt)mp + (dU/dt)m 

= (2Nmm~/mb + (33/29)s/2(N-- 1)ra2)45GaM/64nV414, ( z~  l/3). 

(12.31) 

Equation (12.26) for the increase of the radius is, in fact, similar to the usual 
accretion equation 

scpUpu/46r~ (12.32) drp/dt = 2 2 

for a mass of radius rp moving with relative velocity U in a medium of uniform density 
Pu. This can be shown as follows: 

The density Pu can be expressed by the mass m b of the accretion band as 

m b - - r a p  = 41rlpuzAl = 2Puzmb/ap 
or 

Pu = ap(1--mp/mb)/2z,  (12.33) 

where z is the height above the equatorial plane of the protoplanetary cloud up to which 

the uniform medium extends. From Equation (11.! 1) we have 

tg i ~--i ~ z/ l  "" U/31nVe. (12.34) 

Introducing z from Equation (12.34)into Equation (12.33), we obtain 

Pu = 31nGanM1/2 op(1 -- mp/mb )/2Ul 3n (12.35) 
and 

drp/dt = 3 1/2G1/2M1/2.2:icpOp~.l_ rl _mp/mb)U/861a/2r~U. (12.36) 

On the other hand, we get with Equation (12.20) and (12.22) 

N = rob(1--rap/rab)/m = 4(5 /3 ) l /2u lSnopO(1- -mp/mb) /GlnMlnm;  

(12.37) 

and introducing into Equation (12.26) we finally obtain 

drp/dt = 151/2S~cpOp(1-mp/rab)Ga/2M1/2U/47rSr~ a/2. (12.38) 

Comparing Equation (12.36) to Equation (12.38), which are transformations of 
Equations (12.32) and (12.26), respectively, we see that they distinguish only by the 
factor 
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2 x 5v217r = 1.42. (12.39) 

In view of our gross approximations this seems to be a satisfactory agreement. 

13. Analytical Solutions 

(1) Case A. The relevant equations are (12.25) and (12.28). In a first approximation 
2 from Equation (12.25). 8rrSGr2/3U22 can be taken as the leading term of the factor se 

With this approximation, the division of Equations (12.25) and (12.28) yields 

dU12/dr = 451r6Gr/29U12 

which integrates to (cf. Safronov, 1969) 

U12 = (457rSG/29)l/2r. (13.1) 

With this analytical approximation we can show that the radius of the gravitational 
sphere of influence Sg is negligible with respect to the width Al of the accretion band, i.e. 

sg = l(m/2M) a/3 ~ A l / 2  --- el = (5/3)1/2~/l/Vc (13.2) 

Taking into account Equation (13.1) and U = (12/29)1/2U12, m = 47r6ra/3 we obtain 

1 ~ 2 2/3 X :34/3 X 5~lm61mll/:/29M 1/6. (13.3) 

Indeed, for l =/Me~ury = 0.4 AU we have in accordance to Equation (13.3) 

el/sg = 1.2 x 102. (13.4) 

We can show also the consistency of our assumption ~' ~ 1 in Equation (11.39) 

=- 4Gm/U~2s ~ 1. (13.5) 

Taking into account that the mean value of s is 2sg/3 = 2~al(rn/M)l:s/3 we find 
with Equation (13.1) that 

T = 31/s x 2 ~/s x 29M1/3/5~l:a61/Sl~ 1, (13.6) 

i fz  <~ l/3 and l/> 0.4 AU. From Equation (13.1) we obtain 

87r6Gr2/3U~2 = 232/135 = 1.72, (13.7) 

so that 87rgGr2/3U~: indeed proves to be the leading term ofs~ from Equation (12.25). 
With Equation (13.7), Equation (12.25)becomes 

dr/dt = 29 (1 + 232/135)(N-- 1)GMm/29/27r2614Ua2 ; (13.8) 

and with Equations (12.20), (12.21) and (13.1) after an elementary integration 
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Maximum mass m m a  x = 
(13.13), and the ejection 

TABLE V 

41r6r~aax/3 f rom Equat ions (13.10) and 
t ime intervals tej f rom Equat ion  (13.18) 

Planet m m a  x tej 
[g] [yr] 

Mercury 7.80 X 1026 2.31 X 1011 
Venus  1.97 X 1027 2.69 X 109 
Earth 3.26 X 10 =7 2.92 X 109 
Mars 6.11 X 1027 4.70 X 1011 
Asteroids 1.52 X 10 a~ 5.40 • 1016 
Jupiter  3.67 X 1029 3.42 • 10 s 
Saturn 7.84 X 1029 9.38 • l 0  s 
Uranus  2.27 X 103~ 1.14 x 109 
Neptune  4.61 X 103~ 1.62 X 109 
Pluto 6.67 X 1030 7.18 • 1013 

t = (810rrsm6a/41n/4/29 x 367G1/2o~/2M 3/4) In (rma~ + r)/(rm~x -- r)), 

r < rmax, (13.9) 
where 

rraax = (90ap/29)1/2(TrlS /f3/D 1/4 (13.10) 

is the maximum radius attainable by the planetesimals (see Equation (13.13) and Table 
V). If r ,~ rmax, Equation (13.9) takes the simple form 

r = 291/2 • 367opGV2Ma/2t/23/2 • 51/2 X 33/r613/2. (13.11) 

We have used the approximate initial conditions r, U12 = 0 if t = 0. Equations (13.1) 

and (13.9) represent the approximate solution for Case (A) and we show that only the 
surface density Op is not known accurately. 

The maximum radius rm~ of a planetesimal can be obtained easily from the condition 
that the number of planetesimals in the accretion band should be at least 1 :N t> 1. With 
Equations (12.20) and (12.21) this condition yields 

N = 8 (5/29GM)1/2rropls/2U12/m 1> 1, (13.12) 
o r  

r ~< (90 Op/29)l/ZQrlS/M6) 1`4 = rmax. (13.13) 

As long as Jdl/dtl from Equation (10.2) is larger than U12 from Equation (13.1) the 
evolution of planetesimals is characterized by the relative velocity Jdl/dt[ and occurs 
according to Section 10. On the other hand, if U12 > [dl/dtl, the characteristic relative 
velocity is U12 from Equation (13.1) and the evolution occurs according to Section 12. 

The separation radius r2 is obtained by equating Equation (10.2) to Equation (13.1) 

o r  
Idl/dtl : U12, 

2(la /GM)I/2~W(Ve -- Vg)/r2~ = (457r6G/29)1/2r2 ; 

(13.14) 

which yields 
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r 2 = 21/2  X 291 /413 /4 (15W(V c - -  Ve))l/2/31/~ x 5 1 / 4 7 r l / 4 ~ 3 / 4 G 1 / 2 M 1 / 4 . ( 1 3 . 1 5 )  

The separation velocity Id//dtl2 = v12rr(2) from the penultimate column of Table IV is 
obtained by introducing r = r2 into Equation (10.2) or (13.1). 

(2) Case (B). We have obtained analytical solutions for Case (B) only when mp >> Nm 
and when the gravitational interaction between the small planetesimals of mass m is 
negligible. 

(i) Circularly moving planet in a medium of uniform density. An elementary solution 
can be obtained in terms of Equation (12.32) when the mass mp moves in a circular 
orbit around the Sun through a medium of uniform density Pu- The relative velocity U 

remains constant and Sop ~ const., because rnp is assumed much larger than the mass 
of accreted dust. The density of accretable matter changes as 

Pu = Puo(mb -- mp )/(mb -- mvo ), (13.16) 

where Puo is the density if mp = mpo, (rnp, mpo ~--mb). Integrating Equation (12.32) 
with Equation (13.16) and the initial condition mp = mp0 if t = 0, we get a similar 
equation as Equation (13.9), (sop, U = const.) 

t = In ((mb --mpo)/(mb --mp))/TrS2cpmbPuO U, (mp >>Arm). (13.17) 

(ii) Elliptically moving planet. Neglecting the interaction between the small planetesi- 

mals of mass m, we can apply Equation (11.52) for the gravitational interaction between 
the small planetesimals and a much larger planetesimal of  mass mp eccentricity ep and 
inclination ip with respect to the equatorial plane of the protoplanetary cloud. The 
increase of  the relative velocity U occurs according to the quadratic sum rule 

ft 
U 2 = (pep)k(AU)2Atk = 45G3Mm~U~ dt/167r14U s. 

k = l  0 

Taking into account also Equation (11.42), we find analogously to Equation (12.15) 

dU/dt = 45G4M2m~(5e~p/8 + i~)/32zrlSU6 ; 

and by integration with the initial conditions U = 0 if t = 0 

U 7 = 315G4M2m~(Se~/8 + g)t/32~rl s. (13.18) 

The time interval t= te j  from Equation (13.18) which is needed to increase the 
relative velocity U up to U =  (21/2 - -1)V c (the ejection limit) is shown in Table V 
for the actual masses of the planets and for an average eccentricity and inclination ep, 
i v = 0.05. Our values for the Earth and Jupiter are tej = 1.03 x 101~ and 7.08 • 10Syr, 
respectively, in comparison to 109yr for the Earth (ep = 0.02; ip = 0.03)and 1.5 x 10Syr 
for Jupiter (ep =0.05;  ip = 0.02) from Opik's (1966a) Tables 7 and 8. Our results 
are given in closed form, whereas Opiks results follow only from his Tables. The dis- 
agreement between Equation (13.18) and Opik's results seems explainable if we take 
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Rectangular coordinates for the determination of the effect of gas drag (R, ~, ~) 
and of collisions (R, x, y). 

into account the different derivations and the fact that Opik's (1966a) encounter prob- 
abilities are up to two times larger due to his more sophisticated averaging procedure of 

Pe , Pep. 

It should be noted that Equation (13.18) becomes very uncertain if U > 0.5 Ve because 
we have assumed for its deduction that e, i ~ 1. 

14. Effect of Gas Drag 

The effect of gas drag on the motion of planetesimals has been investigated recently by 
Adachi et al. (1976), WeidenschiUing (1977a), Donnison and Williams (1977). Generally, 

the problem is tractable only numerically (Horedt, 1971, 1973c) but for the case of 
small eccentricities and inclinations we deduce simple equations based on the change of 
a, e, i for a planetesimal of mass m due to the resistance of the gas 

da/dt = 2aa/2(--e sin tPPiR/m --pPi~/Rm)/(GM(1 - - e2 ) )  1/2, (14.1) 

de/dt = -- (p/GM) 1/2 sin r  -- (p/GM)V2(p/R - R / a ) P j e m ,  (14.2) 

di/dt = - - R  cos uPi~/(GMp)V2m; (14.3) 

where Pin, Pir Pi~ are the components of the resistance Pi (i = 1, 2, 3) from Equation 
(8.10) on the axes from Figure 7: R is the direction of the radius vector from the Sun, 

is in the orbital plane perpendicular to R and ~ perpendicular to the orbital plane. 
denotes the anomaly, u the angle between planetesimal and node and p = a(1 --e2). 
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If  V denotes the Kepletian velocity of  the planetesimal, then the relative velocity between 

planetesimal and gas is 

v = V - -  Vg. (14.4) 

The components  of  Vg are Vga = 0, Vg~o = Vg sin 4 ,  Vg~- = -- Vg cos 4.  The % f , x ,  

y-axes are in the tangential plane of the sphere from Figure 7. The angle 7r/2 -- q; between 
the ~p-axes and Vg is also in the tangential plane. The components of  v become (Figure 7) 

v R = ( G M / p ) l n e  sin 9, v~o = (GMp)V2/R --  V e sin 4, v~- = Vg cos 4. 

(14.5) 

From the spherical triangle in Figure 7 we get 

sin ~ = cos i/(1 - - s in2 i  sin2u) v~ "" 1 - - i  2 cos2u/2, 

cos ~ = sin i cos u/(1 - -  sin2i sin2u) in  "~ i cos u, (z <~ l/3),  (14.6) 

sin~b = 1 - i 2 / 4 ,  c o s ~  = 0. 

With Pi = P i v /  v and Equations (14.5) and (14.6), Equation (14.1) becomes 

da/dt  = 2aW2Pi[ - ( G M / a ) l n e  2 s i n 2 ~ -  (1 + e2/2)(1 + e cos ~) x 

x ((GM/a)I/2(1 + e cos 9)/(1 - - e2 )  1/2 

--  Vg + Vgi 2 cos2u/2)] / (aM)V2mv + O(e 3, i3). (14.7) 

The term (1 + e2/2) comes from the expansion of (1 - - e2 )  -1/2 in Equation (14.1). 

We have substituted alsoR = p/(1 + e cos ~). After some algebra, Equation (14.7) becomes 

da/dt  = 2a3/2P i [-- (GM/a)  in  + Vg + e cos ~(-- 2(GM/a) in  + Ve) + 

+ ( G M / a ) l n (  - e 2 s in2~ - - e  2 co s2~0 - - e2 /2 -  

- i 2 cosZu/2)]/(GM)l/2mv + O(e 3, i 3 ). (14.8) 

Before averaging this equation with respect to the time we have to introduce instead 

of  the anomaly ~o the mean anomaly X, which is a uniform function of time 

~o "" X + 2e sin X, cos ~0 ~ cos X -- 2e sin2x. (14.9) 

The last term of  Equation (14.9) introduces an additional secular term. If  we take into 

account that sin2~ = cos2r = sin2x = �89 we obtain with Equations (11 .10)and  (11.11) 
the average decrease of  a equal to 

da/dt = --  2a3nP i[(GM/a) v2 --  Vg + 11 U2/12(GM/a)I /2]  / (GM)l /2mv.  

If  z <~ 1/3 the semi-major axis a is approximately equal to the/-coordinate from the 
Sun, so that (Vc ~ (Gm/a)  in  ~ (GM/l)  in  , U] 2 = 8U2/11)  

dl /dt  = - 213/2pi(v c - Vg + 2U2 /3Ve ) / (GM)V2mv ,  (z Z l/3).  (14.10) 

For Equation (14.2) we have with Equations (14.5) and (14.6) 
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de/d t  = Pi [ -  e sin2~ -- (pa/2/Ra/2 -- p l /2R l12/a) • 

• ((1 + e cos r _ Vg(R/GM)I/2)/e]  ~my + 0( i2) .  (14.11) 

Since R -3/2 =a-a/2(1 + 3 e cos r we obtain after some algebra 

de/d t  = P i [ -  e sin2~0 - 2 cos ~o ((GM/a) 1/2 - Vg) x 

x ( -  1 + e cos ~o/2)/Vg]/my + O(e 2, i2). (14.12) 

Because ( G M / a ) I / 2 - V u  ~ Vg the contribution of 2e sin2• from Equation (14.9) is 

negligible for averaging and we get 

de/d t  = -- P ie /2mv.  (14.13) 

For the inclination we have from Equation (14.3) with Equations (14.5) and (14.6) 

the expression 

di/dt  = Pi V#R cos u cos O/(GMp)l/2rnv = - -P i i  cos 2 u / m y  + O(i 2), 

and for the average decrease of  the inclination 

di/dt  = -- Pi i /2mv.  (14.14) 

The average change dU/d t  of the relative velocity U due to the gas drag can be easily 
determined from Equations (14.13) and (14.14). Differentiating Equations (11.10) and 

(11.11) we have 

(dU)e = (3 /5 )v2Vc  de, (dff/)i = 31/2Vc di, (14.15) 

where (dU)e, (d~])i denotes the variation of the relative velocity due to the variations 

of e and i, respectively. Because of the smallness of (d~)e and (d0)i the total change 

of the relative velocity is given by 

dU/d t  = (dU/dOe + (dU/dt)/ = Vc((3 /5) l /2de /d t  + 31/2di/dt). (14.16) 

Introducing Equations (14.13) and (14.14) into Equation (14.16) we obtain, with 

Equations (11.10) and (11.11), ( d U / U  = dU/U)  

dU[dt  = - P iU/mv.  (14.17) 

The relative velocity between a planetesimal and the gas could be determined from 
Equation (14.5) but also by a simple reasoning: The relative velocity of the gas with 
respect to a fictitious mass moving parallel to the gas with circular velocity Ve is V u -- V e, 

and the relative velocity between this fictitious mass and a planetesimal is ~ U if z ~ l/3. 

According to the simple vector sum rule we have 

v 2 = U ~ + (II# - Ire) 2 -2 (V~ - Vr or, (14.18) 

where a denotes the angle between Vg - Ve and U. By averaging, the cos a term drops 

and we get 
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v ~ (U 2 + (V,  - Vg)2) ~ ,  

which is used in our numerical examples. 
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(14.19) 

15. Effect of Collisions 

We consider only completely inelastic collisions (e.g., Ziglina and Safronov, 1976), 
because at the low relative velocities U, U12 (Fig. 10) they seem to prevail. Let ml and 
m2 will be the masses and V~, V2 the Keplerian velocities of two colliding planetesimals. 
Their mass after collision is denoted by m3, (m3 = m~ + m2), and their velocity follows 
from the conservation of momentum 

m3V3 = mlV l  +m2V2.  (15.1) 

(i) Collisions between orbits of low eccentricity and inclination. The components 
of the velocity Vk (k = 1,2, 3) on the radial R-direction and on the ~0-direction perpen- 
dicular to R in the orbital plane are 

VkR = (GM/ak(1 -- e~))V2ek sin ~k, Vk~, = (GMak(1 - e~))l/2/R 

(k = 1, 2, 3), (15.2) 

where ak, ek, ik denote the semi-major axes, the eccentricities and inclinations of mk. 
We project Vu~o on the x, y-axes from Figure 7 in the plane perpendicular to the R- 
direction: i.e., 

Vkx = Vk~o sin ~O~, Vky = Vk~ cos ~bk. (15.3) 

The projections of Equation (15.1) on the R, x, y-axes are therefore 

mx(al(1 --e~)) v2 sin ~I/R + m2(a2(1 --e~)) v2 sin ~2/R 

= (ml + m2)(aa(1 --e l ) )  v2 sin qJ3/R, (15.4) 

rnl(al(1 --e~)) 1/2 cos ~Ol/R + m2(a2(1 --e l ) )  vz cos ~2/R 

= (ml + m2)(a3(1 --e l ) )  1/2 cos ~O3/R, (15.5) 

mlel  sin ~01/(a1(1 --e~)) 1/2 + m2e2 sin ~0~/(a2(1 --e~)) 1/~ 

= (rnl + m~)e3 sin ~0a/(aa(1 - -e l ) )  1/2. (15.6) 

With sin ~k ~ 1 from Equation (14.6) we obtain from Equation (15.4) 

mla]/~ + m~a~/2 = (ml + m2)a~/2 + O(e~, i~). (15.7) 

This latter equation shows that the semi-major axis of two inelastically-colliding particles 
lies between the two initial semi-major axes and the formation of jet streams as suggested 
by Alfvdn and Arrhenius (1970) is not possible in a medium of very large extensions. 

If we use 
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1/R1/2 = (1 + ek cos r -- e~)) v2 

in Equations (15.4) and (15.5) and also the approximation from Equation (14.6), we 
obtain 

m l e l  cos~0a + m 2 e ~  cos~2 = (ma +m2)ea cos~0a + O(ek,2 lk),-2 

m l e l  sin ~01 + m2e2 sin ~2 = (ml  + m2)e3 sin r + O(e~, i~), (15.8) 

mlia  cosul + m 2 i 2 c o s u z  = (m~ +m2)ia cosu3 +O(eg,i~).  

If we average the squares of Equations (15.8), the terms sin ~ol sin r cos ~o~ cos ~ ,  

and cos ul cos u2, disappear so that 

(ml  + rn~_)2e] = 2 2 + 2 2 m l e l  m2e2, 

(ml  + m2)2i~ = 2.2 2.2 m i l l  + m 2 / 2 .  

If ml = m: = 

(15.9) 

(15.10) 

m, el = e 2  =e ,  il =i2  = i w e g e t  

a l l2+ a~/2 = 2 a~/2, e3 = e/21/2, ia = i/21/2 ; (15.11) 

i.e. after each collision the eccentricity and inclination diminishes by the factor 1.41; 
whereas the behaviour of the semi-major axes is of no interest, because the extension 
of the protoplanetary cloud is practically infinite. If m2 >> rnl ,  we obtain from Equations 

(15.7), (15.9), and (15.10) 

a3 = a2 + m l ( a l  - a 2 ) / m 2 ,  

e3 = e2 + m l ( m l e ~  -- 2m2e~) /2m~e2,  (15.12) 

i3 = i2 + ml(mli21 ' l 2m~i~)/2m~i2.  

I f  e2, i2 "~ O, we have 

e3 = rnae l /m2 ,  i3 = m l i l / m 2 .  (15.13) 

The condition for increase of the eccentricity (inclination) by collisions is from 

Equation (15.12) 

e3 >e2 if e2 < e l  ( m l / 2 m 2 )  1/2, 
(m2 >> ml)  (15.14) 

i~ >i2  if i2 < i l  (ma/2m2) l /2;  

i.e. only if the planetesimal of large mass m2 has a very low eccentricity (inclination) 
in comparison to the other planetesimal m~, the eccentricity (inclination) could increase 
after collision. The limiting eccentricity and inclination which could be obtained by 
the planetesimal of large mass is given by Equation (11.41) with the notations ml = m, 
ex = e, il = i, m2 = rap, e~ = e v, i2 = ip. Because we have from Eqution (15.14) e2 = 
ep ~ e = el, i2 = ip ~ i = il the effect of collisions between m and mp is neglected for 
our Case (B) from Section 12. The effect of collisions is taken into account only according 

to Equations (15.11) for planetesimals of equal mass m. 
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The change of the orbital elements due to collisions is a discontinuous process with 

respect to the time. However, this change could be averaged over the mean collision 
time l ip  c by observing that e and i change by (1 --2-1/2)e and (1 --2-1/~)i during 

l /pc ,  so that the differential equation giving the change of e and of i by collisions can 
be written as 

de~dr = --Pc(1 -- 2-1/2)e, di/dt  = - P c ( 1  -- 2-1/2)i. (15.15) 

The total change of the relative velocity U due to collisions is the sum of the changes 
of U due to the variation of e and i 

dU/dt  = (dU/dt)e + (dU/dt)i .  

With Equations (11.10), (11.11) an d (15.15) Equation (15.16) transforms into 

(15.16) 

dU/dt  = Ve((3/5)  1/2 de~dr + 31/2 di/dt) (15.17) 

--- - P c ( 1  -- 2-1/2)Ve((3/5)l /2e + 31/20 = -- (2 -- 21/2)pe0 , 
o r  

dU/dt  = -- (2 -- 21/~)peU. (15.18) 

(ii) Collisions between a large planetesimal m2 and small planetesimals rnl (m~ >> rnl). 
We assume that rn2 has an orbit of moderate eccentricity and inclination, while ml has 
an approximately parabolic velocity. We project Equation (15.1) on the R-axis, so that 

ma V3R = rnl V1R + rn2 V2R. (15.19) 

We have (P2 = a2(1 --e~), e2, i2 ~ 1) 

V2R = (GM/p2)I/2e2 sin 92 

= Vee2 sin ~02(1 +e2 cos~p2) 1/2 ~ e 2 V e  sin~02; 

and by averaging over cos ~02 

V2R = +- 2e2 Ve/Tr. (15.20) 

For the evaluation of the change of inclination we project Equation (15.1) on the 
y -axis 

m3 Vay = ml Vly +m2V2y, (15.21) 

and observe that, according to Equations (14.6) and (15.3), we can write 

V2y = V2~ cos ~2 ~- Ve sin i2 cos u2 ~ i2 Ve cos u2 ; 

and by averaging over cos u2, 

V2~ = +- 2i2 Ve/rr. (15.22) 

Assuming equipartition of the velocities V~ of the parabolically moving small plan- 
etesimals, we can write 
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V1R ~ Vly ~ + (2GM/R)l/2/3v2 = + (2/3)1/~Ve. (15.23) 

We observe that, in a first approximation, the average values of V2R and V2y are 

equal if we substitute e2 for i2. Therefore, we confine ourselves only to the discussion 

of Equation (15.19), the final result being equally valid also for Equation (15.21). We 
have 

maV3R = m l V a R + m 2 V 2 R  

= mlV1R +(m3 - m l ) V 2 R ~ - m l V l n  +m3V2R,  (15.24) 

since ms = m3 - - m l  = m 3 ,  (m2 >> ml) .  Equation (15.24) also states that 

ml VaR "~ m3(V3R -- V2R) = maAV3n, 

(V3R "~ V2R, AV3n = V3R -- V2R). (15.25) 

The changes AV3R from individual collisions accumulate according to a quadratic 
sum rule. If  the initial value of V3R is zero, after n collisions we have 

?/ 

V~R = 2 (AV3R)~ = ~ (mlV1R/m3)~ 
k = l  k = l  

= (2V~/3) ~ (ml/m3)~. (15.26) 
k = l  

If  we make the plausible assumption that the masses m~ grow together with m3 in 
such a way that rnl/m3 ,~ const, during the accretional collisions, (Figure 9), then 
Equation (15.26) becomes 

V~R 2 2 = 2nV~ kin~3, (15.27) 

where k m = ml/m3 denotes the mean value of maim3 during n successive collisions. 

Since after each collision V3R ~ Ven, m3 ~--me, ml/ma ~ m l / m e ,  we can use Equation 
(15.20) to obtain 

V~R ~ V~R e e 2 = 4e2 V~/~ . (15.28) 

With the notations from our Case (B) (ml = m, me = rnp, m ~ rnp) and e2 = %, i~ = ip 

we obtain from Equations (I 5.27) and (15.28) 

ep -~ ip ~ 7r(n/6)a/2krn , (kin = m/mp). (15.29) 

The mass increase drnp of mp due to dn collisions with small planetesimals of mass m is 

drop = kmmpdn or n = (1/km)ln (mp/mpo), (15.30) 

where mpo is the initial value of mp for n = 0 collisions. With Equation (15.30), Equation 
(15.29) can be written as 
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Fig. 9. Case (B) Mass increase of the large planetesimal m o (continuous lines) and of the small 
planetesimals of mass m (broken lines) for Mercury (M), the asteroids (A), Jupiter (J) and Neptune (N). 

ep = ip = rr(k m i n  ( m p / m p o ) / 6 )  1/2, (15.31) 

where for our calculations from Figures 8 and 9 we have In ( mp /mpo)  <~ 30. 

If we assume, for instance, in Equation (15.29) km = 10 -2 about 60 collisions with 

nearly parabolically moving planetesimals are necessary to increase the eccentricity and 

inclination of the large planetesimal to 0.1, a maximum value for most planets. If 

k m =  10 -3 - a value suggested by Safronov (1969; Table 12) from the inclinations of 



114 G.P. HOREDT 

planetary spin a x e s -  about 6000 collisions are necessary to produce the same effect; 

n = 6000 if k m = 10 -3 yields, from Equation (15.30), In (mp/rnpo) ~ 6, which is com- 

patible with our limitation In (mp/mpo) <~ 30. On the other hand, if m/m;  = 0.08 there 

is necessary only a single collision (n = 1) to produce an eccentricity or inclination of 0.1. 

We conclude that collisions with nearly parabolically moving planetesimals could 
have contributed substantially to the actual eccentricities and inclinations of  the planets, 

because collisions between planetesimals of  moderate eccentricity and inclination are 

extremely inefficient to produce appreciable increase of  the eccentricity and inclination 
of  mp, according to Equations (15.13) and (15.14). Since no precise values of  k m =  m/m;  
are available, we have neglected the above-mentioned possibility in our numerical 
examples. 

16. Numerical Results and Conclusions 

The equations used for our numerical integrations follow easily from Equations (12.25)-  
(12.28), (12.3 I),  (14.10), (14.17) and (15.18). 

Case (A): Planetesimals of  equal mass, eccentricity and inclination. U12 is the relative 
velocity between planetesimals and z <~ l/3. 

dr/dt = 29 (N- -  1)s2eGMm/213nTr26r21au12, (16.1) 

dU12/dt = 4 5 ( N - -  1)G3Mm2/27nTrU4214 -- 

-- 29s~GM(N-- 1)(1 - 2-1/2)/27n~rl 4 --PiU12/rnv, (16.2) 

2 = 4r2(1 + 87r6Gr2/3U~2), (16.3) Se 

v = (33U~2/58 + (V c -- Vg)~) a/2, (16.4) 

dl/dt = -- 2/Pi(V e -- Vg + l lU~2/Z9Ve)/mvV ~. (16.5) 

Case (B): A major planetesimal of  mass mp orbiting circularly in the equatorial plane 
of  the protoplanetary cloud and numerous small planetesimals of  equal mass, eccentricity 
and inclination. The symbol U stands for the relative velocity between the large and the 

small planetesimals, and z <~ l/3. Furthermore, 

drp/dt = 33Ns2epGMm/1287r26r~14 U, (16.6) 

dr/dt = (29 • 33) ln (N - 1)s~GMm/128~:6r214U, (16.7) 

dU/dt --- [2Nmm2p/mb + (33/29)Sn(N--  1)m2145G3M/647rU414 - -  

-- (29 x 33)lns2eGM(N-- 1)(1 -- 2-1/2)/167ri 4 --PiU/mv, (16.8) 

2 = (r v + r) 2 + 81rGS(rg + r3)(rp + r)/3U 2 (16.9) Sep 

2 = 4r2(1 + 44~rG6re/29U2), (16.10) Sc 

v = (U 2 + (V c --  V#)2) in ,  (16.11) 

dl/dt = - 21Pi(Ve - V# + 2U2/3Ve)/mvVc. (16.12) 
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Fig. 10. The relative velocity U12 of the planetesimals from Case (A) (continuous lines) and the 
relative velocity U of the small planetesimals from Case (B) (broken lines). The analytical solution 

without gas drag and collisions from Equation (13.1) has approximately the same form as 
the continuous lines. 
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Fig. 11. Decrease of the semi-major axes of the planetesimals from Case (A) (continuous lines) 
and of the small planetesimals from Case (B) (broken lines). The broken-dotted lines denote the 

actual semi-major axes of the planets: M - Mercury, A - asteroids, J - Jupiter, N - Neptune. 

Dodd and Napier (1974)  found from a numerical simulation of  the accretion process 

that there form a few planetesimals of  very large mass r% in comparison to the mean 

mass m of  the majority of  the other planetesimals. Therefore we have started the inte- 

gration for our Case (B) with mp/m = 64. This ratio increases during the integration 

up to 104 (for the terrestrial planets) and up to 107 (for the outer planets) as it is obvious 
from Figure 9. 

As suggested by observations, we made the assumption that between the asteroids and 

Jupiter there occurs a density jump of  the surface density ap of  planetesimals: inside 

the orbits of  the asteroids the planetesimals are formed from the rocky fraction of  

matter o f  the protoplanetary cloud (mass fraction 0 .00343)  and outside from rock and 

ice (mass fraction 0.0158; cf, Section 6, and Podolak and Cameron, 1974). 

It is likely that we have overestimated by the above assumption the density jump by 

a factor of  1.5, because near the orbit of  Jupiter there have condensed probably only 
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Fig. 12. Decrease of the number of planetesimals in the accretion zone of Mercury (M), the Aster- 
oids (A), Jupiter (J) and Neptune (N). Continuous lines are for Case (A), broken lines for Case (B). 

water (mass fraction 0.00694 condensing at about 170K)and ammonia (mass fraction 
0.00111 condensing at about 140 K;Podolak and Cameron, 1974). The remaining fraction 
of methane (mass fraction 0.00432, condensing at about 60 K) is likely to condense only 
at the orbits of Uranus and Neptune, (see our Table I). In view of the other uncertainties 
we neglect this overestimate and summarize below the principal conclusions: 

(i) As a general rule we observe that the accretion time of planetesimals increases by 
several orders of magnitude from Mercury to Pluto: If r < r2, the accretion time increases 
from several hundred years for Mercury to several 10 6 yr for Pluto; if r2 <r<r3 from 
10s-109 yr (Tables III, IV, VI; Figures 8 and 9). r2 comes from Table IV and r3 is the 
final radius correst~onding to the mass m3 = 47r~r~/3 from Table VI. 

(ii) Because of the jump of the surface density between the asteroids and Jupiter, 
the planetesimals evolve at nearly the same time scale in both regions, but the final 
mass is about 30 times larger in the region of Jupiter (Figures 8 and 9, Table IV). This 
seems to be the cause that Jupiter accreted also gas from the protoplanetary cloud, 
its mass increasing grossly. The planetesimals accelerated by Jupiter during 10s-106 yr 
(Table V) accreted and/or destroyed the planetesimals in the region of the asteroids, 
(e.g., Weidenschilling, 1975). The actual asteroids appear as the remainders of a much 
larger population. The fact that eccentricities and inclinations are of the same order 
of magnitude in the asteroid belt (e ~ i) favors the assumption that they originated 
from collisions according to Equation (15.31) and not from close encounters for which 
we have eli = 51/2 according to Equations (11.10) and (11.11). 

(iii) An unexpected result of our calculations are the low final masses m3 for the 
terrestrial planets, (~ 10 26 g). Because of the high collision probability in the terrestrial 
region (Pc cxl-4) the number of planetesimals drops quickly to 1 in an accretion 
band (Figure 12). 

This situation is not changed drastically if we assume the gas drag to be absent, as 
occurs after blowing away of the gaseous component of the protoplanetary cloud by a 
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T-Tauri4ike solar wind (Horedt, 1978a). The masses m3 of the terrestrial planets obtained 
by taking into account the effect of collisions and gas drag are considerably lower than 
the maximum mass rnma~ (Table V), obtained from the analytical solution of Section 13, 
without regarding collisions and gas drag. 

Because of their small mass, the terrestrial planets were probably never surrounded 
by large atmospheres and did not accrete gas from the protoplanetary cloud. Their small 
masses seem to be also the principal cause of absence of well developed satellite systems. 

(iv) Another unexpected result in accordance with observations are the large masses 
(102s g) for the non-gaseous component of the giant planets, excepting Uranus and 
Neptune for Case (A), Figure 8, Table VI. These large masses occur because the relative 
velocities Us2 or U increase sufficiently fast to assure the spreading of the accretion band 
as the planetesimals grow in mass. Because, for Uranus and Neptune, the time of accretion 
is very long (Pc oc l-4; t3 --t2 ~> 10 9 yr) these planets cannot accrete an appreciable 
fraction of the principal gaseous components H and He, since these gases are blown away 
during 108 yr, (see next point). 

(v) Spiraling in due to gas drag has been calculated according to Equations (16.5) 
and (16.12). We have also taken into account the decrease of density with height by 
assuming that the gas of surface density a extends only up to the height z* = e/ft. Above 
z* the gas drag is zero. 

The inward motion of the small planetesimals m in Case (B) would be larger than their 

distance from the Sun in the region of the outer planets, so that they leave during about 
10 a yr the accretion zone of these planets. The large planetesimals of equal mass m in 
Case (A) have also considerable inward motion if the gas drag persisted for about 108 yr, 
(AI ~ 8 AU for Neptune, Figure 11). 

The maximum time during which the gases are blown away from the inner part of the 
solar system can be estimated as follows: For simplicity, we consider approximately 

circular orbits. In this case Equations (16.5) and (16.12) become for the resistance law 
P3,(e ,  i, U ~ O ; v ~  V c - V . )  

dI/dt = - -  3t (Vo - -  VJI/2rV** 
and 

t = 2r6 Ve(Al / l ) /3~(V e -- Ve)2. (16.13) 

Substituting the relevant values for Mercury we find that, for s 1/4, t =  
7.8 x 107 yr. Thus if the planets are assumed to have formed at their actual distance from 
the Sun, the gases from the inner part of the protoplanetary cloud should have been 
blown away during 107-108 yr (Horedt, 1978a). Otherwise there occurs a considerable 
decrease of the semi-major axes, even with the most generous assumptions. 

From Equation (14.13), it can be shown that the large eccentricity of Mercury arose 
only when the gas of the protoplanetary cloud was blown away from its zone. When gas 
drag is present, Equation (14.13) becomes (Pi = / ' 3 )  

de/dt  = - - ~ r 2 v e / 2 m  = --33/2 x l l l /2e2Ve~/29/2 x 51/2r6, (16.14) 
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where we have used v ~  U and Equations (11.10) and (11.26). Integration of Equation 
(16.14) with the initial conditions e = eo at t = 0 yields if e0 >> e 

t = 2 9/2 X 5U2r6/3 a/2 x lll/2~Vee. (16.15) 

Introducing the values for Mercury we find that its eccentricity would decrease from 
eo (eo >> e) to its actual value e = 0.2 during the very short time interval of 6600 yr. 

(vi) General Conclusions. In the region of the terrestrial planets there accreted during 
10s-107 yr several tens or hundred planetesimals of mass ~ 1026 g. The increase of the 

mass fraction of accretable matter by about 4.5 times between the region of the asteroids 
and of  Jupiter causes the latter to become more massive (Figures 8 and 9; Table VI) and 
to accrete probably also matter from the region of the asteroids and of Mars. 

Without any additional assumptions, Jupiter and Saturn accrete a very large fraction of 
planetesimals (~ 102Sg), and because of their large mass they would accrete later also 
the major part of the gas. For Case (B), Uranus and Neptune grow also to appreciable 
mass but only within several 109 yr. 

Comets appear to originate from (i) planetesimals ejected by the giant planets (Opik, 
1966a, b; Everhart, 1973; and our Table V); (ii) an original population of planetesimals 
outside the region of Uranus, where because of the low collision probability a large num- 
ber of planetesimals could be preserved (see Figure 12). 

(vii) The major inconsistency of our model. A comparison between the actual non- 
gaseous component of the planets m3,obs from Table VI and our mass values rn3 from 
Figures 8, 9 and Table VI shows that our model fails to give the correct final masses 
for most planets by at least one order of magnitude. Excepting Uranus and Neptune this 
occurs because the number of planetesimals in an accretion band of width 2el falls too 
fast below unity and integration must be stopped. 

A first point against our model could be made by questioning the validity of our 
equations (16.1)-(16.12). If we suppose, for instance, that for a given radius r ;  the 
relative velocity U is larger by several times than in our calculation, the inner planets 

could grow to their actual masses without difficulty, but the time scales for the formation 
of the planets outside Jupiter are much too long (~ 109 yr). This occurs because of the 

substantial decrease of the second factor containing U ~ ,  U -2 in Equations (16.3), 
(16.9) and (16.10). The crucial role of the lowering of U b y  gas drag and collisions for 
the formation of the outer planets comes also from this factor. 

On the other hand, if U becomes much lower than in our models, the final masses 
rn3 for the inner planets become even much smaller than in Table VI. A test calculation 

shows that an increase of the encounter and collision probability Pe, Pep, Pc, Pep by a 
factor of 2 has merely the effect to decrease the time of formation of the planets by 
this factor and to increase the final mass (not the radius!) of the planets inside Saturn 
by the same factor. 

We conclude that there is little scope to modify the numerical factors arising from 
our averaging procedures, though our simple treatment is certainly not very exact for 
very close encounters, i.e. for large deflection angles. 
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Fragmentation of colliding planetesimals seems to be not relevant in view of the low 
relative velocities (Figure 10). 

If we increase the poorly known surface density o of the protoplanetary cloud by 

three times (see Case (B2) from Table VI), Uranus and Neptune accrete without difficulty 
during 109 yr, whereas the masses of the planets up to Saturn increase only about three 

times in comparison to Case (B). If we increase artificially the width of the accretion 

band, the final masses rn3 increase approximately by the same factor, as shown by a 

test calculation. 

We conclude that the sole difficulty of our model is the fact that the accretion band 

of the planets up to Saturn is devoided too fast from accretable planetesimals. This 

difficulty could arise in our opinion from two sides, which can hardly be included in our 
averaged equations (16.1)-(16.12): 

(i) In reality there arises a certain dispersion of the orbital elements a, e, i and of the 

masses. This dispersion could permit a much better argument between m3,obs and m3 
from Table VI, because planetesimals with very small inclinations are accreted much 

faster than according to our averaged equations, while planetesimals with very large 

eccentricities allow for a considerable increase of the width of the accretion band. 

(ii) Close encounters are the most efficient perturbations as long as the orbits of 
planetesimals intersect. When this is no longer the case (N~< 1), then secular pertur- 

bations of non-intersecting orbits become the sole perturbing factor, which can be 
efficient as shown by numerical examples (Horedt et aL, 1977). 
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