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Abstract. In Sections 1--6, we determine an approximate analytical model for the density and tem-
perature distribution in the protoplanetary cloud. The rotation of the planets is discussed in Section 7
and we conclude that it cannot be determined from simple energy conservation laws.

The velocity of the gas of the protoplanetary cloud is found to be smaller by about 5 X 10°cms™
in comparison to the Keplerian circular velocity. If the radius of the planetesimals is smaller than a
certain limit r,; they move together with the gas. Their vertical and horizontal motion for this case
is studied in Sections 8 and 9.

As the planetesimals grow by accretion their radius becomes larger than 7, and they move in
Keplerian orbits. As long as their radius is between r, and a certain limit 7, their gravitational inter-
action is negligible. In Section 10, we study the accretion for this case.

In Section 11, we determine the change of the relative velocities due to close gravitational en-
counters. The principal equations governing the late stages of accretion are deduced in Section 12,
In Section 13 there are obtained approximate analytical solutions.

The effect of gas drag and of collisions is studied in Sections 14 and 15, respectively. Numerical
results and conclusions concerning the last and principal stage of accretion are drawn in Section 16.

1. Simplifying Assumptions

We assume that around the Sun there revolves in circular orbit the protoplanetary cloud
of gas and dust, which is prevented by its large angular momentum from infall. The
protoplanetary cloud possesses a strong density concentration towards its equatorial
plane, (e.g., Safronov, 1969; Kusaka et al.,, 1970; Cameron, 1973; and our Section 4).

Below we give some justification for having neglected magnetic fields, turbulence and
gravitational instability. A first general justification is the fact that we are able to model
the formation of the planets without these three phenomena. A second point is that
their occurrence is questionable.

(i) Magnetic Fields. At present there exists no convincing evidence that magnetic
fields have played a decisive role in the formation history of the planetary system except-
ing perhaps the resolution of the angular momentum problem of the collapsing Sun
(Okamoto, 1969; Horedt, 1978b) and the slowing down of a fast spin rate of the pri-
mordial Sun (Mestel, 1970). Because of the transient naturé of magnetic fields and the
high degree of arbitrariness concerning strength and structure of the fields we have
neglected magnetic fields.

(ii) Turbulence. A necessary but not sufficient condition for the onset of turbulence
is that Re 2 10° (ter Haar, 1972; Horedt, 1975b), where Re denotes the Reynolds
number. The Reynolds number depends on two somewhat arbitrary numbers, the charac-
teristic length and the characteristic velocity and could be made for the protoplanetary
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cloud equal to about 10! (Safronov, 1969; ter Haar, 1972). But the nonrandom orien-
tation of the spin axes of stars in galactic clusters (Ferrer and Jaschek, 1973) as well as
the tendency towards perpendicularity between spin axes of binaries and their orbital
plane (Weis, 1974) show that turbulence does not play a decisive role, even during collapse
of the Sun. Because turbulence, if it occurs at all, dissipates during several years in the
protoplanetary cloud (Safronov, 1969; ter Haar, 1972), we have it neglected.

(iii) Most authors agree that the density of the protoplanetary cloud was too low for
gravitational instability to occur, (e.g., Goldreich and Ward, 1973). Moreover, because of
analytical difficulties, most authors establish merely the instability conditions in an ideal-
ized medium (Horedt, 1970; 1973b) without investigating the behaviour after onset of
instability. Numerical work (Larson, 1972a; Black and Bodenheimer, 1976) on rotating
collapsing clouds does not show concludent results with respect to the onset of instability
in the protoplanetary cloud.

We have neglected also fragmentation of colliding pianetesimals because it does not
seem to be important at the low relative velocities occurring in our model (Figure 10).
Besides, we have only uncertain information about the velocities of fragmented planetesi-
mals and their mass distribution function (e.g., Bandermann, 1972; Hallam and Marcus,
1974; Kaula and Bigeleisen, 1975).

2. The Mass Excess in the Protoplanetary Cloud

The actual mass of the planetary system is about 0.0014M (M = solar mass) and it seems
not likely that the mass of the protoplanetary cloud was larger than 0.1M. Below, we
summarize our arguments.

(i) The mass of the protoplanetary cloud deduced from the actual mass of the planetary
system and corrected for additional gas content should be larger than 0.01M and lower
than about 0.07M, (Weidenschilling, 1977b, and our Section 5).

(ii) A mass excess of the protoplanetary cloud considerably larger than 0.1M poses the
question where this additional mass has gone. We are not able to show what could happen
with about 10-100 Earth masses of rocky planetesimals spread in the region of the terres-
trial planets. Why there exist at present only remnants of about 2 Earth masses with
bodies as small as the asteroids? The large amount of gas could be blown away by an .
intense T-Tauri-like solar wind, (Horedt, 1978a). However, according to Bodenheimer,
(1972; p. 18) it seems unlikely that an ordinary star loses more than a negligible fraction
of its mass during the T-Tauri stage, mainly because the mass loss rates deduced initially
by Kuhi seem to be grossly overestimated. It seems therefore very difficult to understand
how the T-Tauri-ike solar wind with a total mass of only several percent of solar mass
could blow away from the protoplanetary cloud gases with mass exceeding considerably
its own mass. To be on the safe side, we use throughout for the protoplanetary cloud its
minimum mass of 0.011M from Section 5.
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3. The Temperature Problem in the Protoplanetary Cloud

From the theoretical viewpoint, grains could be melted completely even at Pluto’s distance
from the Sun by a contracting gas sphere in quasihydrostatic equilibrium, as will be shown
subsequently. We identify the contracting gas sphere with the Sun.

(i) For convective equilibrium of the outer parts of a gaseous sphere we can integrate
immediately the equation of hydrostatic equilibrium

dp/dr = —GMp/R?, (3.1)

where p and p is the pressure and density of the gas, G the gravitational constant, M is
the solar mass (a constant) and R is the distance from the Sun. The adiabatic equation of
state is valid: p = const p”, where 7 is the ratio between the specific heats at constant
pressure and volume. Equation (3.1) yields

T—To = (y— DUGM(1/R — 1/Ro)/#, (3.2)
where we have used the ideal gas law
p =% pTlu, (3.3)

where T is the temperature of the gas, % the gas constant and u = 2.4 (Kusaka et al.,
1970) the mean molecular weight of the gas of the protoplanetary cloud. The radiation
pressure a,T%/3 (a5 is the Stefan constant) is neglected throughout with respect to the gas
pressure from Equation (3.3)-i.e.,

p > ua,T33.%. (3.4)

(ii) For radiative equilibrium of the outer parts we have to add to Equation (3.1) the
equation of radiative equilibrium

dT/dR = —3kLp/16ma,cR?*T3, (3.5)

and solve simultaneously. ¢ denotes the velocity of light, L is the luminosity of the Sun
(a constant) and x = Kop“Tﬁ the opacity (kg, @, = const.; & #—1; % 4). Dividing
Equation (3.1) by (3.5) we obtain with the boundary condition p = 0 if T = 0 the equation

(PIW* 1™ Y@+ 1) = 161a,cGMT>P-%/3(4 — B)Lk,.

Inserting into Equation (3.5) and integrating we obtain an equation similar to Equation
(3.2), (¢f. Chandrasekhar (1939) for Kramers opacity)

T~Ty = (a+ 1DuGM((1/R) —(1/R))/(4 — B).Z. (3.6)
Assuming that Ty =~ 0 if Ry > R, we have from Equations (3.2) and (3.6)
T~uGM/#R = 3.8 x 10"¥R;

i.e. T~ 6500K for Pluto.
It should be noted that, because of rapid gravitational contraction, such a high
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TABLE I

Temperature of the planetesimals near the equatorial plane of the protoplanetary
cloud. Tohem is from Lewis (1972, 1974)

Planet AU Tchem T(Lo) T(81Le) Tp Tve
Mercury 0.4 1400K 442K 1326 K 172K 139K
Venus 0.7 900 325 975 122 99
Earth 1.0 600 276 828 103 83
Mars 15 450 224 672 84 68
Asteroids 2.8 300 165 495 64 52
Jupiter 52 150 121 363 49 40
(satellites)

Saturn 9.5 100 89 267 37 30
(satellites)

Uranus 19.3 75 63 189 28 23
Neptune 30.2 50 50 150 24 19
Pluto 39.8 - 44 132 22 18

temperature could last only for an interval 1 = (R*/2GM)"'?, (2 years for Pluto), of the
order of the free fall time (Larson, 1972a; Cameron, 1973 ; Horedt, 1976).

The temperature distribution near the equatorial plane of the protoplanetary cloud as
inferred from chemical studies of meteorites and the composition of the planets and satel-
lites is shown in the first column of Table I and seems the most reliable one (Anders,
1972; Lewis, 1974). It corresponds approximately to a temperature distribution

Tenem < 1/R. (3.7)

Even if we assume that the chemical composition of the planets is already fixed by
meter-sized planetesimals, the temperature Tonem should be maintained for at least 10%yr
in the inner parts of the solar system and for 10%yr in the outer parts (see Table III).

We have already shown that during gravitational contraction of the Sun extending up
to Pluto’s orbit, high temperatures (7 2 1000K) could be maintained in the protoplanet-
ary cloud only for several years. If we assume a supermassive (1M) protoplanetary cloud,
then a temperature of order Tenem could be maintained for about 103 yr by gravitational
energy liberated from contraction of this cloud (Cameron and Pine, 1973, Fig. 14;
Cameron, 1973). However, as it is obvious from Section 2 such a high mass of the proto-
planetary cloud introduces other difficulties.

In the following, a possibility of attaining a temperature comparable to Tepem by a
simple radiation controlled temperature distribution is indicated.

The temperature estimate from Equation (3.7) is valid with some approximation only
for the planctesimals of the protoplanetary cloud. The temperature of the gas of the
protoplanetary cloud could differ grossly from the temperatures used in this paper (see
Section 5), though we have assumed for simplicity that gas and planetesimals have
approximately the same temperature.

We distinguish two different stages in the evolution of the protoplanetary cloud,
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namely when the cloud is opaque to solar radiation and when it is approximately trans-
parent (Section 5).

If the protoplanetary cloud is opaque to solar radiation, only its surface will be heated
by the Sun up to temperatures Tp shown in Table I according to Equation (5.3) for a
luminosity L of the Sun equal to its actual luminosity Le. The last column shows the
temperature Ty, that would appear in the equatorial plane of the opaque protoplanetary
cloud calculated from Equation (5.5). It will be argued in Section 5 that the opaque stage
of the protoplanetary cloud is not likely to last for long time.

If the protoplanetary cloud is transparent to solar radiation, the temperature of a spin-
ning planetesimal is given approximately by the black body temperature at distance R,
(e.g., Larson, 1972b)

T = (L/4a,cR?)"*. (3.8)

Table I shows T from Equation (3.8) for L = L, and L = 81L.. With respect to the
possibility of a high luminosity phase of the Sun we refer to the calculations of Larson
(1972a), which show that the Sun could reach a maximum Iuminosity of 25L, for about
10° yr. A luminosity of about 100L, is also reconcilable with hydrodynamic calculations
but only for about 10* yr (Kusaka et al., 1970; Fig. 1; Bodenheimer, 1972; Fig. 6).

Tenem from Table I is included between the values of T for L = Le and L = 81Ls.
From Table VI, it appears that the accretion time of a planet increases with increasing
distance from the Sun by about four orders of magnitude. Tehen is in agreement with the
temperature T from Equation (3.8) if we assume a continuous decrease of solar luminosity
from about 100L, during the formation of the terrestrial planets to its present value Lo
during the formation of the outer planets.

For a given constant luminosity of the Sun we have near the equatorial plane of the
cloud (see Equations (3.7), (3.8), (5.4), (5.5))

Tehem & R™'; Tp, Toe R, T o« R7V2, 3.9

To sum up: during the earliest stages of contraction of the Sun and of the protoplanet-
ary cloud grains (small planetesimals) could vaporize. Then, the temperature of the proto-
planetary cloud falls rapidly (Anders, 1972, pp. 196-201) but is maintained at level
Tenera by a high luminosity of the Sun, which decreases during accretion of the planets
from about 100L, to Le.

4. Hydrostatic Model of the Protoplanetary Cloud

We can derive a self-consistent solution of the equations of hydrostatic equilibrium
(Weizsicker, 1943)

aplol = — GMpl/R® + w?p,
op/oz = —GMpz/R3, (4.1)

i

by assuming that the temperature changes as
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T = AR7® (4,b=const.;b>0;b#1) (4.2)

I and z are cylindrical coordinates of a frame with the centre in the Sun. We have R =
(1% + z%)Y2 where [ is the distance from the rotation axis Oz, and z the height above the
equatorial plane. w is the angular velocity of the gas of the protoplanetary cloud, rotating
circularly around the Sun. We follow closely Weizsicker’s (1943) solution of Equations
(4.1) by introducing Equations (3.3),(4.2) into Equation (4.1) and making the substitution

p = expo. (4.3)
Equations (4.1) become

(PAR®Ju)(d9/dl) — bPAR™® 2y = —GMIIR® + v, (4.4)

(PAR®|u)0y/dz) ~ b RAR™® %zJu = —GMz/R3, 4.5)

From R? =% + z? we have

9p/dz = (z/R)dyp[oR. (4.6)
Equation (4.6) is introduced into Equation (4.5) and the result can be integrated

¢ = InR® — GMuR®> A% — 1) + B()), 4.7
where B(/) is an unknown function of /. Equation (4.4), with Equation (4.7), becomes

dB(D/dl = 8B()/al = uw?R%l.%A. (4.8)
Equation (4.8) shows that w? must be of the form

w? = ¢;(D/R", (4.9)

since B is a function of I only. As will be obvious later it is convenient to express w? in
terms of the circular Keplerian angular velocity (GM/I*)2. This can be done by writing
w? under the additive form

w? = (GMJI3% + o, (D)/R®, (4.10)
where @,(7) is an unknown function of /. We have in the equatorial plane
W lomo = GMII* + o2 (/1.
Introducing Equation (4.10) into Equation (4.8), we find that
B() = uGMI® Y. @A + (), 4.1
dy/dl = plp,/FA. “4.12)

where

We substitute Equations (4.11) and (4.12) into Equation (4.7) and then into Equation

4.3)
p = RYexp (GMu(I® ' —R*™1)/2A( — 1) + ¥). (4.13)

If we take into account the fact that
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ROV 2 1PN + (b —1)2%21%) if z S )3, (4.14)
Equation (4.13) transforms into
p = 1% exp (— GMuz*2RAI>° + ), (z $1/3), (4.15)

We assume that a planet in the equatorial plane at distance / from the Sun has formed
from the matter in a ring of width A/. Denoting by m the mass of this ring, we find that

i

Zb =3
m = 4mlAl fo pdzz4nmlj p dz
0

fl

47 exp YI'*PAl f exp (— GMuz?2.#A41°"%) dz
0

(BT P AIGMp) 215 *D2 exp YA, (4.16)

zp will be defined only in Equation (4.30), by using the result that the mass of the cloud
above height z,, is negligible. We have

m =~ 2nglAl (4.17)

where o denotes the surface density of the protoplanetary cloud. Since o « 1732 (Weiden-
schilling, 1977b) and Al « I (Equation (4.20), we have

m = const.[? (4.18)
and from Equation (4.16)
(exp ¥)I*>*°2A1 = const. (4.19)

We make the plausible assumption that the rings from which successive planets have col-
lected their mass are adjacent and that their boundary lies midway between successive
planets. We denote by /;_4, I;, I;,, the mean distance of successive planets. According to
our assumption

Al = (li+1 4‘1,-)/2*(1,- +li—l)/2 = (li+1 “li—z)/2
= (g —lile)2 = Iq* —1)/2q
i.e. Ali Cxli. (420)

We have used the observational fact that the distance between successive planets is given
approximately by the Titius-Bode law, written (cf. Nieto, 1975; Horedt ef al., 1977) as

livr = ql; = 1.731;, (g = const.). 4.21)
Introducing Equation (4.20) into Equation (4.19) we find that
expy « [737P2 (4.22)

From Equation (4.12) we get
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¢y = (PAUD) dYldl = — (3 + b/2)RA U,
and using Equation (4.10) we have
w? = GM/R®®~% — (3 + b/2).RA/R u*
~ GMJI® — (3 + bj2).FA > — bGMZ? 25
~ GMII? — (3 + bj2) %A Jul**
GM{I® — 13.2A/4u1%%, (z $1)3), (4.23)

I

i

We put b =14 as follows from Equation (3.8). It can be easily shown that for our numer-
cal model the second-order term in z* arising in Equation (4.23) from the expansion of
R7™Y2 is negligible with respect to 13.%4/4ul*'? if z S /3.

The difference between the Keplerian circular velocity ¥, and the velocity V; of the
rotating gas of the cloud is found from Equation (4.23) to be

Vo= Vg = (GM/R)V* — wl

> (GMIDY*((3 + b[2)RAI' ~°J2uGM + 2%(— 1 + b)[41?)
1324 /8u(GM)Y? — (GM) 222815/
~ 13.R4/8u(GM)V? = 525x 10°cms™, (b=14;251/3)

il

where we have used also Equation (3.8) with (4.24)
A4 = (L{dnasc)V?. (4.25)

Equation (4.15) underlines the great importance of the small velocity difference V. — ¥,
which assures the outward decrease of density in the protoplanetary cloud. For the den-
sity, we obtain from Equation (4.15) with the initial conditions p = p(ly, 0) at I =1,
z = 0 and with Equations (3.8), (4.2) and (4.22)

p(,2) = p(lo, OYUf15)>*"" exp (— GMuz*2.2A41°"?)
= 0o, O)U/1o) '/ exp (— GMuz*/2.RTI%);
(T=Al" b=4,z51/3). (4.26)
In the equatorial plane
p(1,0) = p(lo, O)(Ifle)>*"P
oo, O)L) ™4 (b =42 51/3), (4.27)

Inserting Equation (4.27) into Equation (4.26), we find for the density distribution
with height (¢f. Safronov, 1969) the expression

o, z) = p(l,0) exp (— GMuzY2.211%), (z <1/3). (4.28)

I

I

From Equation (4.28), we can determine a reasonable height z; for the extension of
the protoplanetary cloud. This could be given conveniently by the e-folding density
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o(, zp)/p(,0) = l/e = const. (4.29)
With Equation (4.29), we obtain from Equation (4.28) the height
zp = QRPTIIGMWY?, (zp $1/3), (4.30)

Between the height —zp and z;, there is contained about 85% of the whole mass of the
protoplanetary cloud. From the tables of the error function it results that the surface
density op between the heights — zp and zy is related to the surface density o between the
heights — o0 and * by

Zh
Op = f‘zb p(l,Z)dZ

b
J o o(l, 0) exp (— GMuz?/2.2T13) dz

i

0.843 f o(l, 0) exp (— GMuz?/2.92T1%) dz

]

0.843p(l, 0)(2r. R T13/GMu)™>

= 0.8430, 4.31)
where

o

L, p(l,2) dz

Q
il

o(l, 0) f: exp (— GMuz*/2.RT1%) dz

p(l, 2)(2n R TI®|GMu)?
= 7%p(l, 0)zs, (4.32)

From Table II follows that the condition zp £ I/3 is fulfilled for the planetary system.
Near the surface of the Sun Equation (4.30) becomes

Zpo = (QRTRIGMWY?, zp0/Ro = 0.0145,

where R, is the radius, and 7 the surface temperature, of the Sun.
If z 2 I/3 we have from Equations (4.13) and (4.22)

p(l,2) = p(lo, OYR®I™>*2[15 3+ x
x exp (GMu(I®~' — R 1/ 24(b — 1)), (z 2 1/3).
If =% and A given by Equation (4.25) this equation yields values of the density
which are well below those of interstellar clouds if R <Rpjyto, s0 that our approximation
for z £1/3 from Equations (4.26)-(4.28) represents practically the whole protoplanetary

cloud.
Table II shows that p(/, 0) decreases by about six orders of magnitude if we move from
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Fig. 1 Vertical cross-section of the protoplanetary cloud, (S denotes the Sun).

Mercury to Pluto. But because of the logarithmic dependence of z on p(J, z}{p(l, 0), it is
obvious that the variation of p(Z, 0) with 7 does not affect the order of magnitude of z,,.
If the constant 1/e = 0.368 from Equation (4.29) would be decreased maximally by six
orders of magnitude to 1/107%e, then z, from Equation (4.30) increases only by the
factor 3.7. So we could assume with good approximation that above height z, the density
drops rapidly below the values found in interstellar clouds and the mass of the cloud is
concentrated with sufficient approximation in the disk shown in Fig. 1.

5. Opacity of the Protoplanetary Cloud

(i) Early Stage. An approximately reliable determination of the opacity of the proto-
planetary cloud has been made only for the earliest stages, when small planetesimals
similar to interstellar grains are present in cosmic abundance. For this case we assume
a mean Rosseland opacity of k¥ = 0.15cm?g™ in the cloud (Larson, 1972b). However,
even for this stage there are possible large variations of the opacity (Cameron and Pine,
1973, Figs. 5, 6).

In the early stage, the planetesimals are of interstellar grain size and well mixed with
the gas. In this stage, the gas temperature is of the same order as the temperature of the
planetesimals, provided that p 2 10™2gem™, (Larson, 1972b). This density delimitation
is fulfiled practicalty for the whole protoplanetary cloud.

We discuss at first the opacity in the radial direction, when R 221, ie. z $1/3. The
cloud is considered opaque to solar radiation if its optical depth 7 between the distances
{, and l, is larger than 2/3,

12
T o= J; kp(, 0)dl > 2/3. (5.1

With Equation (4.27) and x ~ const, we obtain (I;p(!,, 0) <l p(l;, 0) from Table I)

T = dklip(ly, 07 > 2/3 or khip(ly,0) > 7/6 ~ 1. (5.2)
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If we insert into Equation (5.2) the relevant density p(/;, 0) from Table II, we find
that the optical depth is of order unity and below for the three outer planets (10" cm <
I; <6 x10%cm), while up to the region of Jupiter the optical depth is 7> 1. The
densities p(l, 0) from Table II are lower limits so that the cloud could be completely
opaque provided that k =0.15cm?g™ ifz S z,.

If the protoplanetary cloud is transparent to solar radiation and when the small dust
grains are well mixed with the gas, the temperature of gas and dust is given for the early
stages with good approximation by Equation (3.8), (Larson, 1972b; Miki and Nakano,
1975).

If the protoplanetary cloud is opaque at the early stage it appears as a concave disk
(see Fig. 1), whose surface is heated by solar radiation and starlight. The temperature T}
at the surface of the disk at level z =z, has been calculated by Kusaka et al. (1970)

T} = 2LR, /3% a,cl® + (L Tmage)® " (2.RIGMulP)Y*" + (4/Dd((1z/3kp) dT*/dD)/dl + T,
@< 13). (5.3)

The symbol Toy = 15K denotes the black-body temperature of an external radiation
field, for instance from stars formed in the vicinity of the protoplanetary cloud. This
external radiation field is appreciable only for the three outer planets, (Table I). Since
there exists no published derivation of Equation (5.3) we note that the first term of
this equation arises from heating by the Sun when z, <R, and the second term when
Zp 2 Re. Both terms can be determined in a straightforward manner from Safronov’s
(1969) textbook. The third term corresponds to the radiative energy flow inside the disk
and was found to be negligible (Kusaka et al., (1970). It can be deduced by writing the
radial radiation flow inside the protoplanetary cloud at distance / as F = — (2mlzpa5¢/3kp)
x dT*/dl (7> 1, zp $1/3), Kusaka personal communication). The main contribution
to the temperature comes from the second term of Equation (5.3)

Ty =~ (L/Tma,c)* "2 RIGMu) 1737 = const x1737, (z51/3). (5.4)

When the optical depth of the protoplanetary cloud is large in the equatorial plane at
distance [ it will be large also along the vertical z-direction in the vicinity of the equatorial
plane up to the height z,. In this case, the protoplanetary cloud can be approximated by
a plane-parallel medium of large optical depth and the temperature T}, at height z,, is
related to the temperature Ty, in the equatorial plane by (Safronov, 1969, Chap. 4)

Tpe = 3V8T,/2'% = 0.81T,, (r>1), (5.5)

T, and T, both are prohibitively small if L = Lo (see Table I) and would require a solar
luminosity of several hundred L, to be in accordance with Topey, for the terrestrial

planets. This could be an indication that the protoplanetary cloud was transparent for
most time.

(ii) Later Stage. The small planetesimals grow to objects with radii 103-10%cm
during 10%-10%yr, and settle towards the equatorial plane firming a disk of minimum
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thickness 1-100 km, (see Sections 8-10). It islikely that the opacity of the protoplanetary
cloud drops considerably when the radius of the planetesimals becomes large in compari-
son to the wavelength of radiation from the Sun, (Cameron and Pine, 1973). No cal-
culations exist concerning this case which lasts for the overwhelming part of the accretion
process (Tables ITI-1V). According to Equation (5.2) if k € 2 x 10 5cm?g™" the proto-
planetary cloud is transparent outside Mercury’s orbit, (p(l;,0) < 1078 gem™; 1, >
6 x 10**cm; Table II). In this case, the condensation of gases onto the planetesimals is
likely to be controlled by the black-body temperature from Equation (3.8), though the
kinetic temperature of the gas at large distances from the planetesimals could be higher
by orders of magnitude (e.g., Arrhenius and Alfvén, 1971). As it is obvious from Equa-
tion (4.30) the vertical boundary of the cloud z, increases only as T/Z, so that even for
gas temperatures of several thousands degrees z; increases only by the factor 3-4 with
respect to the values from Table II. For our calculations, we have assumed that the
temperature is given by Equation (3.8) for L = L, which should be regarded as a lower
limit for the temperature of gas and dust during the accretion process. It will be obvious
from the context of the paper that our results do not depend crucially on the tempera-
ture of gas and dust in the protoplanetary cloud.

Summarizing, during the earliest stages, the protoplanetary cloud could be opaque to
solar radiation. But the planetesimals clump rapidly into larger ones and settle towards
the equatorial plane, so that the cloud inside 50 AU is likely to be transparent during
the accretion process of the planets. The temperature of the planetesimals is given by
Equation (3.8) with a variable solar luminosity (Section 3), while the temperatures of the
gas at large distances from the planetesimals could be considerably larger.

6. Initial Density Distribution in the Equatorial Plane

From Equations (4.16) and (4.28), we obtain for the mass of the protoplanetary cloud in
a ring of width Al

2p
m = 4nlAl L pdz

_~_41rlAlJ; pdz

R

4nlp(l, 0)Al L exp (— GMuz?/2. %A15'?) dz

= (8m° R A/GMu)"*p(l, 0)I°*Al, (z, <1/3). (6.1)

We assume that approximately the whole accretable matter of the protoplanetary
cloud passed into the actual planets, which accreted from adjacent concentric rings
with the planet in the middle of each ring. m, in Table II denotes the actual observed



76 G. P. HOREDT

mass of the planet. From Weidenschilling’s (1977b) Tables 1 and 2, we can deduce with
Mgy the initial empirical mass m;, of gas, ice and dust corresponding to each planet. If
we equate my, from our Table II to m in Equation (6.1) we obtain with Al from Table IT
the empirical initial density py,(/, 0) in the equatorial plane. Our values for the terrestrial
planets are somewhat different from those of Weidenschilling (1977b) since we have
assumed a mass fraction of Fe equal to 0.0011 (Podolak and Cameron, 1974; Table I).

For the determination of the surface density of planetesimals o, from Table II we
make the fundamental assumption that inside the asteroid belt the planetesimals are
formed only from the rocky fraction of the protoplanetary cloud (mass fraction 0.00343)
and outside the asteroid belt from rock and ice (mass fraction 0.0158; Podolak and
Cameron 1974; see also our Section 16).

For Pluto, we have my, = mg,/0.0158, We attribute little importance to all values
concerning Pluto because of its uncertain origin (Horedt, 1974¢) and of its small mass,
which has suffered recent downward revision; it seems to be now of order 0.01m, rather
than 0.1mg as we have assumed (m, denoting the mass of the Earth).

The total mass of the protoplanetary cloud m;, is obtained from

1 zb
m, = 21rf f lo(l, 2) di dz
1,J~2

1R

1l poo
2mp(lo, 0)13”4£ f 1774 exp (— GMuz*2A %15'?) dl dz
o

= (32 R AIGMU)'? o(lo, SV (1> 14, 2, S U3). (6.2)

The empirical minimum total initial mass m;, ; is obtained by adding together the
empirical values my, from Table II: i.e.,

My = 2.23 x10%'g = 0.011M. (6.3)

Equating the empirical value m;, ; to the theoretical value m; from Equation (6.2), we
obtain for I, = 0.4 AU equal to Mercury’s distance from the Sun

oo, 0) = 1.4x1078gem™, I, = 5.8 x 102cm; (6.4)
and from Equation (4.27),
p(l,0) = 1.40 x 1078(1/5.80 x 10371114, (6.5)

As seen from Figure 2, the theoretical density distribution from Equation (6.5) is
smaller for the larger planets than the empirical density p;, (!, 0) because of our averaging
procedure. The low empirical density in the region of Mars and of the asteroids appears
to be a secondary effect of the evolution of Jupiter (Safronov, 1969, Chap. 13; Horedt,
1974b; Weidenschilling, 1975), The low empirical derisity in the region of Mercury is
probably a secondary effect due to the high temperature in this region, so that only
solids with high melting point are accreted, (Weidenschilling, 1977b). Inside Mercury no
planet could accrete because of the high temperature.
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Fig. 2.  Observational (continuous line) and theoretical (broken line) density distribution in the
equatorial plane of the protoplanetary cloud.

The angular momentum K; of the whole protoplanetary cloud is

K,

l 2y
J. 2mp(l, 2)Pew dl dz

I,/ -2p

3 oo
~ 2n(GM)'"? fl j p(l, 0)P"% exp (— GMuz? /2 RAI'?) dI dz

BT°F A/w)"*p(ls, 0)5' 21
= m(GMD'*[2, (> 1y, 1z, S 13). (6.6)

The angular velocity w =~ (GM/I*)!/? is approximately equal to the circular Keplerian
angular velocity. With m, from Equation (6.2) we obtain the minimum angular momen-
tum of the protoplanetary cloud

K, = 3.07 x 10 gem?s7L. 6.7)
Pressure and density in the equatorial plane are connected by

p(t,0) = p(lo, 0)(p(l, 0)/p(lo, 0))"*'*,
as follows from Equations (3.3), (3.8) and (4.27).

7. Rotation of the Planets

To put into evidence the importance of the density distribution in the protoplanetary

cloud for considerations regarding the axial rotation of the planets we write Equation
(4.27) under the form

p(,0) = p(lo, 0)(¥/lo)°, (7.1)
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where ¢ = const. We assume as throughout this paper that the planet formed in the middle
1 of aring between the distances I(1 — e) and i1 + ¢), where e is the maximum eccentricity
of planetesimals reaching the growing planet of mass M and radius 7.

Analogous to Equation (6.6), we have for the angular momentum of the protoplanet-
ary cloud between I(1 —¢e) and I(1 —e)

K = (87r3ﬁ A/u)”zp(lo, 0)1(15/4)+C((1 + e)(15/4)+c__(1 _e)(15/4)+c)/
((15/4) + c)ig, (¢ # —15/4). (7.2)

For the mass of the planet which we set equal to the mass of the protoplanetary cloud
between (1 —e) and /(1 + e) we have, by analogy with Equations (6.1) and (6.2),

m = (8773@A/GMH)I/ZP(IO’O)I(13/4)+ C((l + e)(13/4)+c
— (1 —e) B )(13/4) + N, (¢ # —13/4). (7.3)

We assume the planetary spin axis to be directed along the z-axis and project the
angular momentum on the z-axis; the orbital angular momentum of the protoplanetary
cloud must be larger (because of dissipation) than the orbital angular momentum of the
planet m(GMI)'’? plus its spin angular momentum kmr?w,, where k (k<04) is the
normalized radius of gyration and w, the spin angular velocity. Thus we have

K > m(GMDY? + kmr*w,. (7.4)

We insert Equations (7.2) and (7.3) into Equation (7.4) and obtain after expansion up
to €® (e <0.3;Section 16)

P, > 6kr*Ple*P2 +¢), (c & —2), (7.5)

where P, = 2m/w, and P = 2n(I®/GM)'/? is the period of axial rotation and the orbital
period, respectively.

We have excluded for our deduction the values ¢ = — 15/4 and — 13/4. In these cases,
we obtain a logarithmic relation for K and m, respectively, but the final result from
Equation (7.5) is the same. If ¢ = — 2, we obtain by expanding Equations (7.2) and (7.3)
up to the fifth power ine,

P, > 1280kr’P/e*?, (c = —2). (7.6)

If ¢~ —2 we have values between those from Equations (7.5) and (7.6). Equation
(7.5) shows that if ¢ <— 2 there can occur also retrograde spins. As shown by Equation

(7.6) the singularity for ¢ = — 2 occurs because of our analytical approximations. For our
model of the cloud we have ¢ = — 11/4 and
P, > —8kr*Ple* 2. (7.7

From our equations it appears that the spin angular momentum of the planets is a
small quantity of third order with respect to the eccentricity e (e < 1) of the planetismals.
Our deduction shows also the crucial role of the density distribution in the protoplanet-
ary cloud: for our density model there are possible, also retrograde spins.
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I conclude that simple energy conservation laws are completely inadequate to deter-
mine a precise, reliable value of planetary spin, (e.g., Mitra, 1970; Horedt, 1975a). It
appears that the problem of planetary spin can be investigated only along the lines
developed by Giuli’s (1968) numerical work (e.g., Kiladze, 1970; Harris, 1977).

8. Vertical Motion of Small Planetesimals (r, <r <r,)

When the radius of planetesimals is smaller than r, from Equation (9.6) the resistance
of the gas is very large and the planetesimal is forced to rotate approximately together
with the gas. Since z <z, < /3 for most planetesimals, it is possible to study the motion
separately in the vertical z-direction and in the horizontal /-direction. This has been done
in the present section and in the next one.

It is not quite clear whether interstellar grains could grow during collapse of an inter-
stellar cloud (Horedt, 1975¢; Scalo, 1977). In the region of the terrestrial planets most
grains are likely to be vaporized, but as has been shown by Hartmann (1970), when the
gas is cooling there condense rapidly planetesimals of interstellar grain size. When all
condensable gases have been accreted onto small planetesimals, their further growth is
a complicated task and could occur mainly by electrostatic and electromagnetic inter-
action (Arrhenius and Asunmaa, 1973; Coradini ef al., 1977) and by collisions. We make
the most simple assumption that the planetesimals grow only by mutual collisions with
collision efficiency 1, i.e. each impact is completely inelastic.

We start with a radius of the small planetesimal similar to the grain radii in inter-
stellar clouds, namely 7, = 107° cm in the region of the terrestrial planets and r, = 10~ cm
outside the asteroid belt. The planetesimals are assumed to be initially well mixed with
the gas. Their mass fraction is taken equal A = 0.00343 (fraction of rocky material) for
the region of the terrestrial planets and X = 0.0158 (fraction of rock and ice) for the
outer planets, (Podolak and Cameron, 1974).

It appears convenient to define the mean density of the gas p({) between the height
—2zp and z, from Figure 1. This gas density is approximately equal to the total initial
density of gas and dust, since dust constitutes at most 0.0158 fractions of the total
mass. We average the gas density only between —z, and z, because most planetismals
move only between these heights, excepting perhaps for the later stages when r > 103km
and when the gas drag is relatively unimportant. In fact, the mean density p({) between
—2zy, and z,, is of the same order as the density in the equatorial plane, as follows from
Equation (8.1): i.e.,

°
I

p =20 = | o, 2) dz/2z,

~zp

0.843 f_ p(l, 0) exp (— GMuz*2.#TP) dz/2z,

i

0.4217"2p(1, 0) = 0.745p(1, 0). (8.1)
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The initial density of planetesimals in the equatorial plane is given by
pos(l,0) = Ap(l,0), (A=0.00343 or 0.0158). 8.2)

The mean initial density of planetesimals between height — z,, and z;, is from Equations
(8.1)and (8.2)

Pop(D) = No(D) = 042172 np(1, 0) = 0.4217"%p,,(1, 0). (8.3)

For the early stages of accretion we consider only the planetesimals present initially
between —z; and z,. But the planetesimals settle towards the equatorial plane and for
the later stages of accretion we can assume with good approximation that also planetesi-
mals which were initially outside the heights —z, and z, participate in the accretion
process. Therefore, for the early stages (Sections 8-10), we consider only the truncated
surface density opp, between height —z, and z,. Its mathematical expression follows
from Equations (4.31) and (8.2)

Opp = AOp., (8.4)

The total surface density of planetesimals o, is related to the truncated surface density
Opp by Equation (4.31)

opp = 0.8430,, (8.5)
where
0, = f M, 2) dz = No(l, 0)2aPTPIGmu)''? = 1'2p (1, 0)z,,
(8.6)
and
Opp = 0.8431" % pou(l, 0z, = 20,5 (D)2 (8.7)

In view of the uncertainties of the problem, the distinction made in this paper between
0opp and for the early stages and oy, for the later stages seems to be superfluous. However,
we are able to define only by this distinction a reasonable mean value for the density of
planetesimals p,, which is representative for 85% of their mass.

The planetesimals settle towards the equatorial plane of the cloud and a grain initially
at height z, will reach after a certain interval the height z (0 <z <z,). The conservation
of mass is given by the constancy of the surface density 0,5 = const., or from Equation
8.7

[)pbzb = ﬁpZ, (88)

where p, is the mean density of planetesimals between the heights — z and z. For the
sake of simplicity we shall set 3, = p,(J).

Throughout this paper we take into account the resistance of the gas on the planetesi-
mals, which appears to be important. The velocity with respect to the gas v of a spherical
planetesimal of mass m and radius » changes due to the resistance P; from the gas as
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mdofdt = —P,, (i=1,2,3). (8.9)

Due to their remarkable simplicity we have adopted for the resistance P; the equations
given by Williams and Crampin (1971), (see also Horedt, 1971, 1973¢; Adachi et al,,
1976)

AmpWrtv[3 = P, r<3Lg[2 v<4W/3,

(4nsr3[3) dv/dt = —( 2mpWLrv = P, if r>3L,[2, v<2L W/,
apriv? = P, v = Min(4W/3, 2L Wir).
(8.10)

We are working only with spherical planetesimals of radius 7 and mass m = 4n6r/3,
where 8 denotes the uniform density: 6§ =3 gem™ for the rock in the terrestrial region
and § = 1.5gecm™ for the rock and ice mixture in the region of the outer planets.
W= (8.#T/nu)""? is the mean thermal velocity of the gas, and L, = umy;/2'/24po,, the
mean free length of path in the gas, where my = 1.67 x 107 % g is the mass of the hydrogen
atom and o0,, = 10™°cm? is an approximate cross-section of the atoms and molecules
of the gas. The viscosity of the gas is given by v = pWL,/3 (Williams and Crampin, 1971;
Horedt, 1975¢).

The value P; maximizes P, and P as long as v<X 4W/3. Therefore P, maximizes also
the time of sedimentation towards the equatorial plane and we use P; for the resistance
in this and in the following sections 9 and 10. The vertical motion of grains has already
been studied (e.g., Safronov, 1969; Kusaka et al, 1970) and we treat only briefly the
three principal cases.

(i) Sedimentation without accretion of planetesimals (r, =7 = const.). This case is
only of theoretical interest, because the planets cannot form when no growth of planetesi-
mals occurs. The equation of vertical motion under the influence of the gas drag P; and
the solar gravitation GM/R? ~GM/I?, (z <z, Z I[3) is

d?z/de® + (pW/or,) dz/dt + GMz/I? = 0. (8.11)
With the initial conditions z = z;, dz/dr = 0, if £ = 0, we obtain
z = z, exp (— GMr,8t/BpW) — (z, GM8*r} [P p* W) x
x exp (— pWt/r,8) =~ z, exp (— GMbr,t/IP pW); (8.12)

because for our numerical values GMr362 < p*W? . The density changes with Equation
(8.8) as

Pp = Ppb €xp (GMSr, t/PpW). (8.13)

(ii) Growth proportional to the thermal velocity of planetesimals, (dr/d¢ o W,,). This
assumption has been used by Kusaka et al. (1970) though it appears that |dz/d¢| is for our
numerical examples considerably larger than the thermal velocity of planetesimals W,,,
(see Case (iii)). We have
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W, = (9%pT/4mr®8)2, (8.14)

where kg = 1.38 x 107 *%erg/degree denotes the Boltzmann constant. The accretion is
given by (we take p,;, instead of p,, see Case (iii))

drfdt = pppWp/46 = (3§pb/8)(kBT/raTr53)”2. (8.15)
The integral of Equation (8.15) is
r= (3% + (155,5/16) (kg T/nd3) 2 1)*'5, (8.16)

As will be shown in the next case (iii) the term dz2/ds? is negligible with respect to
the other terms, so that Equation (8.27) can be used

dzfdr = — GMrbz/pWP. (8.17)
Introducing Equation (8.16) into Equation (8.17) and integrating, we get
t = (16/15p,5) (83 kg T)*'* x

X [((215,uPI W/L6GMB*/ %) (kg T/m)/*1n (B, Bps) + 12" — 1§2].
(8.18)

The time ¢, (dr/dr « W)p) necessary for the density g, to grow {0 eppp and the corres-
ponding radius » from Equation (8.16) are listed in Table ITl. The most rapid grain growth
is obtained by the most plausible assumption from the next case.

(iii) Growth of planetesimals proportional to sedimentation velocity (dr/dr = dz/d¢).
The numerical integration offers somewhat different results for this case in comparison
to analytical evaluations, but the general trend of the results is preserved (e.g., Williams
and Crampin, 1971). We have assumed that the relative velocity between the planetesi-
mals is equal to their sedimentation velocity with respect to the Sun —dz/d¢. The
accretion rate becomes

dm/dt = 4ndr*dr/dt = — mr?p, dz/dt. (8.19)

With Equation (8.8), we can integrate Equation (8.19)

r—ry = (2pPpp/43) In (2p/2). (8.20)
If we put in Equation (8.19) 5, = f,p = const., we obtain

r—ry = Ppp(2Zp —2)/48, (8.21)
and the maximum radius if z €z, is |

Tmax = PpbZp/48. (8.22)

Equation (8.20) cannot be used for further analytical evaluations because of the
logarithmic term. We use Equation (8.21) instead of Equatjon (8.20); in fact because
of the logarithmic dependence in Equation (8.20) the maximum radijus given by Equation
(8.20) is for any reasonable value of z,/z only about ten times larger than ry,,, from
Equation (8.22). The equation of motion is similar to Equation (8.11)
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TABLE HI

Characteristic heights, velocities, radii, densities and time intervals for the first stages of accretion.

. ; <r<r)
I. Vertical motion o Y

Planet ty [y1] ty [yr] ty [yr] Pmax [cm] 7 [cm]

r = const. drfdt = Wy dr/dt = dz/ds dr/dr « dz/dt drfdt = Wp,
Mercury 3.21 X 10° 1.56 x 10* 5.77 X 10% 6.35x 107! 2.88 x 1073
Venus 3.21 X 10 2.68 X 10* 1.37 X 10° 2.49 X 107t 1.70 X 1973
Earth 3.21 X 10¢ 3.55x 104 2.14 X 10° 1.53x 107! 1.28x 1073
Mars 3.21 X 10¢ 510 % 10* 3.76 X 10° 8.13X 1072 8.93x 107
Asteroids 3.21 X 10° 8.57 x 10* 8.48 X 10° 3.28x 1072 5.31% 107*
Jupiter 6.42 X 10° 1.16 X 10° 4.11 X 10° 1.19 x 107t 7.98 X 1074
Saturn 6.42 X 10° 1.94 x 105 9.02 X 103 4.75 X 1072 4.71 X 107°
Uranus 6.42 X 10° 3.54 X 10° 2.17 % 10% 1.68x 1072 2.67 X 107*
Neptune 6.42 X 10° 5.19 X 10° 3.75 X 104 8.52%X 107? 1.91x 107*
Pluto 6.42 X 10° 6.53 X 10° 5.14 X 104 5.72% 1073 1.15%x 107

II. Horizontal motion

Planet t, r, F Pps z, |dlfde, Ip—1,
[yr] [em] [cm] [gem™?] fem] fems™] {cm]

Mercury 8.34 X 10> 61.1 421X 107° 942x107° 8.08x 10® 5.11x10* 9.25Xx 10°
Venus 200x 10°  66.3 477X 107 146X 107° 2.05x 10° 1.41x10* 6.37 % 107
Earth 3.14 X 10° 813 511X 107° 5.52x107'° 3.31x10° 2.82x 10® 1.75X% 10°
Mars 5.60x 10° 105 563X 107° 1.59x 107 6.16 X 10° 6.86 X 10° 6.46 X 10°
Asteroids  1.30 X 10* 155 6.69X 10™° 2.64 X 107'" 1.49 X 10 2.50 X 10* 4.41x 10°
Jupiter 6.43% 10° 214 6.47% 10" 1.66X 107" 4,30 X 10" 4.37 X 10* 2.68 X 10'°
Saturn 1.44 X 10* 852 699X 10 249X 107** 1.15x 10" 4.37x 10* 1.63x 10"
Uranus 3.64 X 10*  30.1 7.66 X 107*  2.87 X 107'®* 3.51 x 10" 4.37X 10* 1.27 X 10'?
Neptune 6.51X 10* 15.3 8.10X 107 6,99 X 107 7.32xX 10" 4.37x 10* 4.76 X 10*?
Pluto 9.12x 10* 10.2 846x 10™* 3.04x 107" 1.13X 10'* 4.37x 10* 1.04 X 10**

d(m dz/dp)/dt + mpW dz/rs dt + mGMz/P = O, (8.23)
or, using Equation (8.19) with g, = ppp , (Bpp = D),

d?z/de* + (GW/rs)(1 — (3N/4W) dz/dr) dz/dt + GMZ/Z3 = 0. (8.24)

Because |dz/d¢| < 4W/3 and A < 1, we have (3N/4W)|dz/df| < 1. With a suitable mean

value 7 of r Equation (8.24) becomes analogous to Equation (8.11): ie.,

d?z/de* + (pW/PS) dz/dt + GMz/IP = 0; (8.25)
with the solution, analogous to Equation (8.12), of the form

z =~ z,, exp (— GMS7t/IPpW). (8.26)

But this solution is identical to the solution of Equation (8.24) without the first
term d?z/de* if r = 7. We conclude that the first term in Equation (8.24) is negligible
so that Equation (8.24) can be written approximately as
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(8W/rs) dz/dt + GMz/IP = 0. 8.27)
With Equation (8.19) the solution of Equation (8.27) is found to be
t = (WP [GMbry, (1 + Ppyzy [4875))
X In [zp(1 + Bpylze — 2)/467p)/2], 2 <z} (8.28)

For our numerical examples we have p,pz;,/46r, > 1, so that even in the logarithmic
term of Equation (8.28) p,p(zp —2)/48r, becomes the leading term if z # 24, (z <zp).
Therefore, by using Equation (8.8), Equation (8.28) becomes

I = (413W/7\GMZb) In (Zb(bp - ppb)/“‘arb): (p—p #’ppb; p_p >'5pb)

and (8.29)

Pp = Ppp T (481y/zp) exp \GMzyt/4PW) = ppp + B exp at, (8.30)
where
Bop # Bp- o = NGMz, [APW, § = 48ry/z,.

The time interval #,, needed to increase g, by the factor e is listed in Table III. From
Equations (8.8) and (8.30) we obtain a simple expression for the sedimentation velocity

dzfdr = Poyze d(1/Bp)/dt = —cz, (z # 2), (8:31)

which is smaller than 4W/3, so that P, is indeed a reliable approximation to the gas drag.

9. Horizontal Motion of Small Planetesimals (r, <r <r,)

For radii smaller than r; from Equation (9.6), the resistance of the gas is so large that the
tangential motions with respect to the gas of the protoplanetary cloud are efficiently
damped. Therefore, we can neglect the tangential motion of planetesimals with respect
to the radial motion in a plane parallel to the equatorial plane. We introduce in this plane
a rectangular (x, y)-frame, rotating together with the gas of the cloud at angular speed .
The equations of motion projected on the coordinate axes are (e.g., Horedt, 1973a)
withz < 1/3

d(m dx/dr)dt + Py, + (mGMJP — mestyx — 2mes dy/de

0, 9.1)
d(m dy/dr)/dt + Py, + (mGM/PP — mw?)y — 2mew dx/dt = 0, (9.2)

where P;, and P;, are the projections of P; (i =1, 2, 3) from Equation (8.10). Because
of the reasons outlined above is sufficient to study the motion only radially, so that
we can neglect one of the equations (9.1) and (9.2). If we take, for instance, the radial
direction along the x-axis, we can neglect also the last term in Equation (9.1) and replace
xbyl: ie.,
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d(m dljde)/dt + P, + (mGM/P —mw?)l = 0, (9.3)

where P; = P; and we have taken as in the previous section i = 1. If we replace m in
Equation (9.3) by a mean value M, we can show exactly as for Equation (8.23) that the
first term is negligible so that Equation (9.3) becomes by using Equation (4.23)

(4ngWrt[3) difdt = — miGM/P — w?) = — 1376 R A[3ul®?
or
difdt = — 136r@A[4upWi>’?. (9.4)

Equation (9.4) characterizes approximately the horizontal inward motion of a planetesi-
mal under the influence of gravitation and of large resistance from the gas which rotates
circularly with speed V. The resistance P, maximizes P, and Py (v < 4W/3)so it decreases
the velocity of inward motion and the time of accretion. In fact Py is valid for the whole
planetary system if 7 2 ry, and up to r = r; for the outer planets.

We determine the approximate maximum radius 7; up to which the planetesimal can
be considered to rotate together with the gas, i.e. the approximate limit at which gas drag
becomes small in comparison to the gravitation from the Sun. We define r, conveniently
by the condition that the velocity v of the planetesimal with respect to the gas decreases
e-times during a period of orbital revolution

P = 2n(B|GM)'/2, (9.5)

The motion of a planetesimal under the influence of gas drag alone is given in Equa-
tion (8.9). If we integrate Equation (8.9) for r =r; by using Equation (8.10) and the
condition vy /v = e, (Vls=¢ = vo) We find (¢f. Whipple, 1972)

ri =1{ (3pWL P[26)"? if  ry > 3Lg/2; vo < 2L W/ry, (9.6)
l 3Ppvy /(e — 1) vo 2 Min (4W/3; 2L W/ry)

The characteristic relative velocity between planetesimals and gas is taken equal to
Vo =V,—V,=525x10°cms™ from Equation (4.24). Though the definition of r, is
somewhat arbitrary it can be considered as a reasonable delimitation between two dis-
tinct regimes of motion: if r, <r<r; the motion of planetesimals is slow with respect
to the circular velocity of the gas V, and if #>r; the motion is essentially a Keplerian
ellipse perturbed by a relatively small resistance from the gas.

The radius of the planetesimals increases according to

dr/dt = — (p,/48) dl/dt = 13.PAr(ppy + B exp at)/16upWIP/2, 9.7

The inward velocit&'— dlfdt¢ approximates only very grossly the relative velocity
between planetesimals, analogous to — dz/ds in the preceding section. It is obvious
from Table III that accretion is much more efficient in the horizontal direction than in
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the vertical direction. Therefore, we have integrated Equation (9.7) between r;, and 7,
instead between 7,,,, from Equation (8.22) and r,

In (ry/ry) = 13RA(Bpot 1 + Blexp oty — 1)[a)/ 16upWI', if pp1 % ppp,
(9.8)

and
In (ry/ry) = 13 RApp1 [16upWI> >0 if  ppy > Ppp- (9.9)

Because g1 > ppp We have calculated #; from Table III according to, (cf. Equation 8.30))
fy = In (5y/B)fa 9.10)

The length of inward motion can be obtained by introducing into Equation (9.4) a
suitable mean radius 7 of the planetesimals during the time interval ¢,. The integral of
Equation (9.7) between an arbitrary radius r and ry, is

r = ryexp [13.RA(P,pt + Blexp ot — 1)/a)/16upWP'?]. 9.11)

We can deduce the mean radius 7 by averaging the time dependent part of Equation
(9.11) over the interval ¢;: i.e.,

tl
Pppt + Blexp at — 1)/a= fo (Bt + Plexp ot — 1)/a) di/ft,.

Performing the integration and introducing the result to Equation (9.11) we find that

7= ry exp (13.PA(Bppt1/2 + Pp1/e’ty — Bla)/16upWI>'?). (9.12)
The distance of inward motion is (Table 1II)
I, =1y = 136F.RAt, [AupWI®'?, (9.13) (9.13)

where [, denotes the value of / at the initial moment corresponding to 7, and, I; = I(t,).
A more detailed expression for Equation (9.7) would be

dr/dt = — (p,/48)(dI/dA)(1 + 8nBGr2/3(dl/dr)?); (9.13)

but the second term in the paranthesis, the gravitational accretion term, is completely
negligible.

From the values listed in Table III we could draw the following conclusions: The
planetesimals grow during 103-10%yr up to meter-sized objects, mainly because of their
horizontal motion. The accretion due to the motion in the vertical direction is not so
important but increases considerably the spatial density of planetesimals, which becomes
comparable to the gas density in the vicinity of the equatorial plane after the interval ¢,.

10. Further Contraction Towards the Equatorial Plane (r, <r<r,)

We have introduced this section in order to bridge the gap between the stage when the
planetesimals begin to move in Keplerian orbits and the stage when gravitational interactions
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between the planetesimals become important. During this stage the radius increases
100-1000 times (Table IV) but it is questionable if our model is very realistic because
the planetesimals are likely to differ grossly in size and in the inclination i of their orbits
with respect to the equatorial plane of the cloud. The planetesimals are assumed to move
in approximately circular Keplerian orbits of inclination

i~tgi=z/l, (z 5 1/3), (10.1)

where z is the maximum height attained by the planetesimals (z = fpp2p/5,)-

I was not able to solve the problem whether the gas between height ~ z and z main-
tains its velocity difference V, — V, with respect to the approximately circular velocity
of the planetesimals V.. On the one hand, the density of planetesimals near the equatorial
plane increases from the value g,y ~ p at moment ¢ to 5, =~ 10%p at moment ¢, (Table
IV). The mass of planetesimals between — z and z becomes considerably larger than the
mass of the gas, so that the planetesimals could accelerate the gas up to their velocity V.
On the other hand, the mean distance between the planetesimals is even at moment #,
and at Mercury’s distance from the Sun about 20 times larger than their dimensions, so
that the gas could maintain its velocity V.

I made the assumption that because the planetesimals constitute at most 1.6% of the
whole cloud mass, the gas of the cloud readjusts its velocity by internal cloud motion in
order to maintain also near the equatorial plane the velocity difference ¥, — ¥, required
by hydrostatic equilibrium.

We could have made also the alternative assumption that the gas between height —z
and z is accelerated by planetesimals up to their velocity ¥,, though in this case no
equilibrium configuration is possible within the limit of our assumptions. In this case,
the evolution of the disk of planetesimals would occur by mutual collisions, without gas
drag. The evolution time is in this case several orders of magnitude larger because the
relative velocity between planetesimals is U; instead of — dl/dz, (U; < |dl/dz|; see Equa-
tion (10.14)).

We reproduce below only the equations written under the assumption that the gas
continues to move with velocity ¥, also between height —z and z. The resistance is
given as before by Py, though for the inner planets P, and P, are more appropriate. P;
maximizes P, and P; since the relative velocity between gas and planetesimals is =
Ve — Vg <4W[3, neglecting the influence of small orbital inclinations. Because gravi-
tational perturbations are small, the planetesimals move in nearly circular orbits. The
semimajor axis of a planetesimal can be approximated by ! since z < and its decrease
due to gas drag is given (cf. Equation (14.1) by

—dijdr = 2P,(PPIGMY*m = 2pW(V, — V) (IPIGM)'?rs. (10.2)

The relative velocity between planetesimals is given as in the preceding section by
- dl/dz, because the relative velocity introduced from the difference in inclination
U; is about 102-10” times smaller, as it is obvious from Equation (10.14). The decrease
in inclination due to gas drag (¢f: Equation (14.3)) is given by
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Fig. 3.  Velocity vectors for the intermediary stage of accretion (r, <r <r,)

difdt = — (I/GM)'"? cos uPy¢/m, (10.3)

where Py¢ is the component of Py perpendicular to the orbital plane and u the angle be-
tween the planetesimal and the node of its orbit. We have neglected the contribution of
colliding planetesimals to the decrease of di/ds because in this case the perturbing force
is given by P; instead of P, and P3; < P;. We have

Pi¢ = 4upWrive[3m, (10.9)

where ¥ is the component of v perpendicular to the orbital plane. From Figure 3 and the
spherical triangle containing the orbit of the planetesimal and of the equator we get

U = Vgsiny = Vg sinicosuf(1— sin?u sin®i)'? ~ V,icosu, (10.5)

because i~ 0 and (V. —V,)/V. < 1. From Equations (10.3), (10.4) and (10.5) we
get

difdt = — pWi cosu/rs. (10.6)
Differentiating Equation (10.1) we get from Equation (8.8)
difdt = — (z5Ppu/IP3)(dPp/d1). (10.7)

Equating Equation (10.6) to (10.7) and using Equations (8.8) and (10.1), we obtain
for the increase of density the expression

dp,/dr = pLpW|2rs, (10.8)

where we have introduced instead of cos®u its mean value 1/2. The radius of the planetesi-
mal increases according to

dr/dr = —(p,[48) dIfdt = pp,W(V,— V) (I3 /GM)"*[2r5>. (10.9)
Dividing Equations (10.8) and (10.9) we obtain by integration
ro—ry = (P/GMY* (V.= V) (B2 — Pp1)/8, (10.10)

where 7, and pp,, are the radius and the density at moment ¢,. The radius r, isdetermined
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only by Equation (13.15). Introducing Equation (10.10) into Equation (10.9) we have
(Table IV)

t,—t, = (28/pW)
X [ro—r1+ Ppr(Ve— Vg)(ls/GM)”z/5 —r1) In (Bp1/8,2)1;

or, since r, » ry and ppy > Pp1,
lh—1t = 25r2/ﬁW (1011)
The variation /; — I, of the distance from the Sun is very large for Neptune and Pluto

(= 1/3; Table IV) but in view of the many uncertainties of this stage we do not attribute
too much importance to this fact. From Equations (10.2) and (10.9) we find by integration

LY? = 17"+ 2V~ V) In (Bpa/Pp1) (GM)'2. (10.12)
The relative velocity which would appear from the difference in inclination is (Figure 3)
U; = Vlsin Y| = (GM/I)''?i cos ul = 2zppp(GM/1%)\ 7P, (10.13)

where we have used the mean value 2/w of |cos #| and also Equations (8.8) and (10.1).
Comparing Equations (10.2) and (10.13) and using Equation (10.10) in the form

r = (/GM) (V. — Vebpl5,
we find that the condition
|dijde| > U,
is fulfilled always for our numerical examples: namely,
npW(I%/GM) %[z B,y > 1. (10.14)
The radius at which gravitational accretion becomes important is from Equation (9.13)
876Gr*/3(difdD)* 2 1,
or, with Equation (10.2),
P = P 2 BEWPA(V, — Vy)/4n82 G3 M), (10.15)

As is shown in Table IV this radius is > r, and comparable to r, so that the simple
Equation (10.9) is valid approximately if 7 < r,, giving a lower limit to the accretion rate.
As it is obvious from Tables III and IV the planetesimals reach radii of 0.1-1 km during
several hundred years for Mercury and several 10%yr for Pluto.

11. Velocity Dispersion by Close Encounters

Before turning to the late stages of planetary accretion (r, <r<r;) we develop a
crude theory in order to obtain the increase of the relative velocity U between planetesi-
mals by gravitational encounters. Strictly speaking, by mutual encounters there occurs
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merely a statistical increase of the dispersion of the velocities according to a quadratic
sum rule, i.e. if we start with a small relative velocity U, and assume that after each
encounter the relative velocity U, changes by AUj, then after a large number n of
encounters, the expectation of U? equals the quadratic sum of the individual deflections

U = ¥ QUY, (AU <Us; US Uy). AL
k=1

We consider only encounters occurring inside the gravitational sphere of action (Opik,
1966a)

sg = R(m/2M)'?, (11.2)
sg = W(m[2M)'3, (z 5 1/3). (11.3)

When a large planetesimal moves in a circular orbit and encounters within the frame-
work of the circular restricted three body problem a small planetesimal their relative
velocity before and after encounter is invariant, (e.g., Horedt, 1972a, b; 1974a). This
idealized case occurs only approximately in the actual planetary system and was certainly
absent during accretion of the planets, because of the large number of encountering
planetesimals. Changes of the relative velocity U by encounters can occur only within
the framework of the eccentric three or many body problem.

Let us consider a rotating (R, ¢, {)-frame with the centre in the planetesimal. Let the
R-axis be directed along the vector Sun-planet, the y-axis in the orbital plane at right
angle to the R-axis and the {-axis perpendicular to the orbital plane of the planetesimal.

At distance R the semimajor axis @, the eccentricity e and the inclination i of the
planetesimal with respect to a ficitious body moving with circular velocity

Ve = (GM/R)'?* ~ (GM/)"?,  (z S IJ3), (11.4)

or

can be expressed in terms of their relative velocity U with respect to this body (Opik,
1951; Wetherill, 1967) as

GMfa = V?—2U,V,—U?, (11.5)
e = QU,/V,+ U¥VE? + UR(1V? — U,V —UYV?), (11.6)
sin’i = UY/(UE + (V. + U,)?); (11.7)

Ug, Uy, Uy are the components of the relative velocity U: U? = U+ U2 + UZ. We
shall use frequently the approximation of echipartition of the components of U with
respect to the equatorial plane of the protoplanetary cloud

Ui = U2 = U} = U?/3, (11.8)

where U denotes the equipartition velocity. For the accretion of the planetse < 0.3isa
sufficient delimitation, so that U is generally much smaller than V, (Figure 10). The
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mean values from Equations (11.5)-(11.7) are (U = U, =T, =0; Uy = U2 =U}=
T%3; Opik, 1966b)

lja = (V2 —U*/GM, (11.9)
e? = sU%3V2, e ~ SY/3tty, (11.10)
sin?i = U?[3V2, sini ~ i ~ J[3Y?y,. (11.11)

We determine subsequently very approximately the change of the relative velocity U
in two simple cases:

(A) Change of the relative velocity U due to encounters between planetesimals of
equal mass moving in eccentric orbits (m, = m,; = m). Let us denote by m; and m,
(m; =m, =m) the masses of two encountering planetesimals with semimajor axes
ay and a; (@; ®a, ~a) and with small and equal eccentricities e, e; (e; = e, = ¢) and
inclinations #,, i (i; =i, = i) with respect to the equatorial plane of the protoplanetary
cloud. Ug denotes the relative velocity of the barycentre of two encountering planetesi-
mals with respect to a circular Keplerian velocity V, at the point of closest approach,
U, and U, the relative velocities of the two planetesimals with respect to V., and Ug,,
Ugs (Ugy1 = Ug,) the relative velocities of the planetesimals with respect to their
barycentre. If w— &, denotes the angle between Uy and Ug; we have (Figures 4 and 5)

U12 = Ué+ U%;l—'ZUGUGl cos El: (11.12)
U = U+ Uk, +2UgUg, cos &;. (11.13)

After an encounter Ug,, Uy, are deflected by an angle v, which is generally small
(y €1, see Equation (13.6)), so that U;, U,, £ change by the small quantities AU,,
AU,, A%;. We get by differentiation of Equations (11.12) and (11.13) and from the
spherical triangles in Figure 5 (Ug = const., Ugy = Ugy = const., v< 1; cf. Horedt,
1972a,b)

UlAUl = _UGUGIA cos §; =~ vysin 21 cosn = "‘UgAUz, (1114)
because

cos (m— &) = cos y cos (m— &)+ siny sin (m— &) cosn,
and fory <1

Acos§; = cosé;— cosEp =~ ysing cosn.

The prime denotes the value of §, after the encounter.
If V,, V, and V denote the velocities of m,, m, and of the barycentre with respect
to the Sun, we have from Figure 4

Vi = Vi+U% —2VgUg, cosvy, (11.15)
V3

V&+ Uky + 2VgUg, cosvy; (11.16)

and
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Fig. 4. Gravitational deflection of the velocity vectors (r, <7 <7,).
‘w

g,
l
A

Fig. 5.  Gravitational deflection of the velocity vectors (r,<r<r;)

ViAV, = —Ug1VgAcosvy = Ug Vg ysinvy cos u
= — V,AV, = GMAa,[2a? = —GMAa,[24%, (11.17)
because
cos (m —v1) = cos vy cos (m —v,) + sin v sin (7 —v,) cos u,
Acosp; = cosvy —cosvy =~ vsinp cosp, (r<l,
and

V3 = GM(2/R — 1/ay), V3% = GM(2/R — 1/ay), R = const.

We have determined the relative velocity U, between the planetesimals my, m, in
terms of their relative velocity U with respect to a fictitious circularly moving mass point
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in the equatorial plane of the protoplanetary cloud. We have (Opik, 1951)
U? = 3GM/R — GM/a — 2GMa""*(1 — e*)*'? cos i/lR¥'?, (11.18)

where i is the inclination with respect to the equatorial plane of the protoplanetary
cloud. For small eccentricities and inclinations of # we can expand the radius vector as

1/R = (1+ecosy)fa(l —e?) =~ (1 +ecosy+ e?)a,
where ¢ is the anomaly of the elliptic motion. The expression for U becomes
U? = GM(e* —3é* cos®p/4 +i% + 0(e3,i*))a ~ GM(5¢2/8 + i*)/a,
(11.19)

where we have substituted cos®y by its average value 1/2. Using Equations (11.10) and
(11.11) we find the transformation coefficient between the equipartition velocity U and
U from Equation (11.19)

U? ~ GM(25/24 + 1/3)0%Via ~ 11048, U =~ 1.177, (11.20)
because for moderate eccentricities ¥? = GM/R ~ GM/a up to the first order in e.
The angle i;, between the orbits of m; and m, is related to the inclinations iy, i, of

my, m, with respect to the equatorial plane of the protoplanetary cloud by (Wetherill,
1967; Equation (26))

COS i1 = COS iy COS iy + sin iy SiN 73 COS a3 (i1.21)

wyz is the angle between the nodes of m;, m, with respect to the equatorial plane.
The influence of the last term in Equation (11.21) vanishes on the average, so that
(1,12 <1)
i~ B+ or iy =2V, (i = i, =i). (11.22)
The direction of the circular velocity V7, relative to which U; and U, are defined
at the point of encounter is chosen along the bisector of the angle i,,, so that

Ut = GM(5¢}[8 + %,/4)a,, U3 = GM(5€3/8 +i%:/4)a,,  (11.23)

where i from Equation (11.20) turns into iy,/2.

It should be noted that e and i are mean values, the eccentricity and inclination of a
planetesimal changing in fact between 0 and a certain maximum value epyay, imax, I€Spect-
ively. Therefore, the angle x between U; and U, changes between O and 7 so that the
cos x term in

U3 = U+ U2 —2U,U, cosx ~ Ui+ U} (11.24)
Ld

vanishes on the average. According to our assumptions e; =e; =e, [} =iy =1, 4 ~
a, ~ a, and we find with Equations (11.20), (11.22)-(11.24)

U3, =~ U} =~ 2GM(5¢*(8 + i%,/4)/a
= 2GM(5¢*/8 + i*[2)fa ~ 290%[12 ~ (58/33)U2. (11.25)
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Fig. 6.  Average position of the relative velocities,

Equation (11.25) defines a mean approximate relation among: (i) the relative velocity
Uy, between planetesimals moving in orbits of eccentricity e and inclination i with respect
to the equatorial plane of the protoplanetary cloud, (e, i < 1). (ii) the relative velocity U,
or U, (U; = U,) of the planetesimals with respect to a circular velocity V7, of inclination
i1af2 = i[2V? =1, [2Y% = [,/2'/? relative to the orbits of the planetesimals. (iii) the relative
velocity U of the planetesimals with respect to the circular velocity Ve in the equatorial
plane of the protoplanetary cloud and (iv) the equipartition velocity U/3'/% = |Ug| =
[U,i = |U¢| with respect to the equatorial plane of the protoplanetary cloud.

The transformation coefficients between U;, U and U are close to unity as should be
expected on general grounds, but we have preserved them in our calculations

U ~ (332920, ~ (11/8)Y2U ~ (33/58)'2U,,. (11.26)
Because my = m,, we have
Ugr = Ugz = Un/2; (11.27)

and because the mean value ¥ of the angle x between the two velocities is close to 7/2
we find from the rectangular triangle of Figure 6 that

Us = Ugy = Ugz = Up/2. (11.28)

The relative velocity U; of m; with respect to the circular velocity Vo, = (GM/R)'?
can be written according to Equation (11.18), (i > i12/2)

U? = 3GM/R — GM/a, — 2GMa}’*(1 — e2)/? cos (i1o/2)/R¥?.  (11.29)

At another point of the orbit of m; having the radius vector R’ the relative velocity
can be written as R — R'| < 2a,¢;)
U2 = 3GM/R' — GMJa; —2GMal’*(1 — e3)*?cos (i /2)/R"*'%  (11.30)

During an encounter between m, and m, at radius vector R the orbital elements
change by Aa,, Aey, Aiy so that the corresponding change of Uy is (R = const.)

2R32U AU IGM = R*?Aa,a} — AQ2a1*(1 — %)% cos (i1,/2)). (11.31)

Due to the change of the orbital elements at radius vector R, the relative velocity
U’ of m, at radius vector R’ changes as (see Equation (11.30), R' = const.)

2R,3/2U1AU1/GM: R,3/2Aa1/ﬂ% e A(2ai/2(l _e%)1/2 cos (112/2)) (1 1.32)
Combining Equations (11.31) and (11.32) we get the change of the relative velocity
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U’ at radius vector R' due to a close encounter at radius vector R in the form
UyAUY ~3GM(R' —R)Ad, [4R'a? + R¥2U, AU, JR™?. (11.33)

The mean value of |R" — R| is given by
2ae 2ae
R'—R| = f J;) IR' —R|dR'dR J L dR'dR = 2ae/3. (11.34)

With the aid of Equations (11.14), (11.17) and (11.34) the Equation (11.33) turns into
UiAU; ~ % (a,e4[RUg Vg sin vy cos u + UglUg vy sin £ cos .
(11.35)
Taking into account that
Ve = (miVy +mVy)(my +my) = (Vi + V)2,
VizVy,=V, Vg = V, + Oe),
Equation (11.35) becomes with Equation (11.10)and for R ~a,
UyAUY = (2 (5/3)Y20Ug, sin vy cos u+ UgUg; sin &, cosn)y. (11.36)

The mean value of the sin v; averaged over the surface of a sphere of unit radius is

™

sinv, = 2n L sin?v,dv, /d4n = n/4 = sin &y (11.37)

and the mean value of |cos uj, |cos 7|

lcosnl = Icos | = 2/m. (11.38)
The deflection angle v is given by (Horedt 1972b, and Equation (13.5))

t8(v/2) = 4/2 = G(my +my)[Uhs, (v<1), (11.39)

where s is the target radius of encounter, equal to the distance between m, and the
asymptote of the hyperbolic orbit of m, around m, . Using Equations (11.37)-(11.39)
and the approximate equations (11.27) and (11.28) we finally find that

UL AU, ~ [£(20/29)Y2 + 1/2]7U% ~ +(20/29)Y2Gm/s ~ — U, AUS.
(11.40)

We have preserved only the larger constant (20/29)¥? because the signs in the rectangular
parenthesis of Equation (11.40) can be combined arbitrarily.

(B) Change of the relative velocity due to encounters between a large mass m, and
small planetesimals of mass m (m, = m, > m; = m). The eccentricity e, and inclination
ip of the large mass m, are assumed to be given by the limiting value due to collisions
with small planetesimals of mass m with orbits of moderate eccentricity e and inclination
i (see Equation (15.14))
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e, = e(m/2my)? <e; i, = i(m/2my)"? <i; (11.41)

ip and 7 being defined with respect to the equatorial plane of the protoplanetary cloud.
The semimajor axes of 7, and m are equal up to the first order in e: @, = a + O(ge).

The relative velocity U, of m,, with respect to the circular velocity V, in the equatorial
plane is approximately equal to the relative velocity Ug of the barycentre of m,, and
m (m < my; (see Equation (11.19)

Uy ~U2 = GM(5¢2/8 + i2)/a,. (11.42)

The relative velocity U of m with respect to the circular velocity in the equatorial
plane is given by Equation (11.19). From Equations (11.41) and (11.42) we have

U%4 = GM (5Sme*[16my, + im[2my,) = mU?*[2m,,. (11.43)

The relative velocity Ug,, between the barycentre and m is approximately equal to the
relative velocity U since Ug ~ U, < U: i.e,,

Ugy =~ U. (11.44)
The variation of the relative velocity U of m is, according to Equation (11.33),
UAU" = 3GM (R' —R)Aa/4R'a* + RY*UAUJR'Y?. (11.45)
We have, analogously to Equation (11.14),
UAU = UgUg, 7 sin & cos m, (11.46)
¥ 2 2Gmy, JU% s ~ 2Gm, |U%s, (y<1). (11.47)

where

Using Equations (11.37)-(11.39), (11.43), (11.44) we obtain

UAU = +(mm,)"?G/[2"2. (11.48)
We have also analogous to Equation (11.17)

GMAa/2a? = UgVeg7ysin v cos . (11.49)

We discuss the following two cases:

(i) Change of U with respect to the small planetesimals of mass m. In this case,
IR —R'| ~ 2ae/3 and Equation (11.45) becomes with Equations (11.48) and (11.49)
analogous to Equation (11.40), (e = (40/33)2U/V,, Vg ~ V)

U'AU" = + (40/33)2Gmy, /s £ (mmyp)2G[2Y2s ~ (40/33)"?Gm, /s.
(11.50)

(ii) Change of U with respect to the large planetesimal of mass m,. In this case,

IR —R'| ~ 2a,e,/3 and Equation (11.45) becomes with Equations (11.46) and (11 47)
U'AU' = % e,Ug Vgy sin v cos p = UgGm, /Us. (11.51)

By introducing e, = (5/3)20,/V,, = (40/33)"2U, |V, =~ (40/33)"*Us/V, we get
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U'AU' ~ (£ (40/33)V% + 1)GmyUg /Us ~  (40/33)Y2Gm,Ug /Us, (11.52)

where U, denotes the equipartition velocity of m, and we have neglected + 1 with
respect to the larger coefficient (40/33)V2,

12. Principal Equations for the Late Stages of Accretion

The probability of encounter within the maximum target radius for encounters s, from
Equation (11.2) has been determined already by Opik (1951) and Wetherill (1967). The
probability given by Wetherill for eccentric orbits of m, and m, is of the form

Pe = szUnR/[87% sinipletg o lafal (1 —e})V2(1 —e3)"?, 2.1

where
ctga; = U;gR/(GMa,(1 —e}))¥2. (12.2)

U,r denotes the projection of U, on the R-axis. The maximum probability of encounter
p. could be four times larger than p,, since for four particular values of the perihelion
there are possible encounters between m; and m,.

For moderate inclinations we have according to Equations (11.7) and (11.22)
sin iy, 2 2Y2U¢/V,. |Usgl from Equation (12.2) is independent of the inclination of
the orbit and on the average equal to the projection of U on the R-axis |Ug|. The average
of the product sin iy,lctga;| & |[Ug Ul appearing in the denominator of Equation (12.1)
can be estimated as follows: The components of the relative velocity U can be written
in terms of the elongation a and of the azimuth § with respect to the y-direction in the
equatorial plane (cf. Opik, 1966a) as

Ugp = Usinasing, U, = Ucosa, Uy = Usin acosp. (12.3)
The average value of |UrUg| over a sphere of unit radius is
w2 /2 .
URUs| = ” U? sin®a sin B cos B dadﬁ/” sin o dadf = 2073,
0
0 (12.4)
where, because of symmetry, we have integrated only over the interval (0, 7/2). With our

assumption of equipartition U turns into U, which is independent of & and B. The averages
of the squared components of U are equal, and we quote as an example only

UL = [ fomw sin®a sin®B dadB/ f f " in adadg = 023,
v 0

Uy = Uj = U¢, (12.5)
in accordance with Equation (11.8). With Equation (12.4), Equation (12.1) becomes
Pe ~4p, = 352UpGY2MY*V, U, [27*10%7 a3 (1 — e3)V2. (12.6)

For moderate eccentricities we can neglect e3 and bezause U? = 12U%,/29 we find
with a, ~a, ~R, V, = (GM/R)"*
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Pe = 2952GM/[2%21R* U, = (29 x 33)V%s2GM[327R*U, (z S 13).
12.7)

For a large number of encountering planetesimals and for moderate eccentricities,
p. from Equation (12.1) takes a value close to its maximum value for circular orbits,
i.e, p. = 4p,, (Wetherill, 1967).

For the encounter probability of a circularly moving mass m,, with a mass m, Opik
(1951) gives

Pep = s2U[2n? sin ilctg alRa®(1 — )2, (12.8)
which can be transformed analogously to Equation (12.7) into
Pep = 3352GM[32nR*U (z S 1/3). (12.9)

As is obvious from Equations (12.7) and (12.9), the quantities p, and p,, differ
only by the factor (33/29)2 = 1.07. We have made calculations for the two cases (A)
and (B) already discussed in the previous section.

Case (A): All planetesimals are assumed to have the same mass, eccentricity and
inclination.

Case (B): A single major planet of mass m, moves in an approximately circular orbit
encountering planetesimals of much smaller mass m (1 € m,, ), which are assumed to have
equal mass, eccentricity and inclination.

As suggested by the numerical work of Dodd and Napier (1974) the second case is
much more realistic, but our results for the two cases are for most planets comparable,
After n close encounters the expectation of the relative velocity U is, according to
Equation (11.1)

U = i (AUR)* = i Per(AUL) Aty (12.10)
k=1

k=1

where p,y, is the probability of encounter after the kth encounter and At = 1/per the
mean interval between encounters. By imparting Af;, into much smaller steps of length
df we can write Equation (12.10) under the integral form

0 = [ pe@vrar (1z.11)

Before introducing Equations (11.40) and (11.50) into Equation (12.11), they should
be averaged over s. A mean value of the target radius s can be obtained by observing that
the probability p(s) of occurrence of a target radius smaller than s is proportional to
the volume ofa cylinder of radius s: p(s) « 7s*. The mean value is then (Horedt, 1972a, b)

- g 2 K3
§ =f s* ds J sds = 25,/3, (12.12)
0 0
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because the distribution function of s changes as s when p(s) « s2. Introducing Equation
(12.12) into Equations (11.40) and (11.50), we obtain

AUy = £(45/29)"*Gm/U\s,, (12.13)
AU' = £(30/11)"*Gm,[U's,. (12.14)

We discuss separately the two cases from the previous section.
Case (A): Introducing, instead of p, and AU, Equations (12.7) and (12.13) into
Equation (12.11), we obtain

t
U? = f . 45G*Mm?dt/327U31% , (z S 1J3,R =1, U ~U,);

and by its differentiation we find that
dU, /dt = 45G3*Mm?/64aUt1*;
or, by taking into account Equation (11.25), we get
AUy, fdt = 45GPMm* 272 aU,1*
o dU/dt = (33/29)*%45G*Mm?/64nU*1*, (z < 1/3). (12.15)

Equation (12.15) represents the increase of the velocity dispersion due to mutual encoun-
ters between planetesimals of mass m.

Case (B) Introducing Equations (12.9) and (12.14) instead of p, and AU in Equation
(12.11) we obtain analogously to Equation (12.15)

dUfdt = 45G3Mm}[32q1°U*, (z < 1]3). (12.16)

Equation (12.16) represents the increase of the velocity dispersion of small planetesimals
with equal mass due to encounters with a circularly moving large mass m,, .

The probability of collisions p,, p.p is obtained if we replace s, by the target radii for

collisions s, (in Equation (12.7)) for Case (A) between planetesimals of equal mass and

by s¢p (in Equation (12.9) for Case (B) for collisions between a large planetesimal m,
and small planetesimals of equal mass m. We have

Pe = 29s2GM/[2°?7R*U,,,

s2 = 4r1 (1 + 8nG8r[3U%,) = 4(r* + 44nG8r*[29U?),
Pep = 33s2,GM/32nR*U,

s2, = (rp + 1) +81G8(r3 + ), +1)/3U?,

(12.17)

(12.18)

where 7, and r are, respectively, the radii of m, and m, and & is the constant density of
the masses m,, and m, (6 =3gcem™ for the inner planets, and § = 1.5gecm™ for the
giant planets and Pluto).

The feeding zone of a planetesimal m,; is approximately equal to the total mass of
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the planetesimals having the semimajor axes between/ —el and [ + el:
my = 2mla,Al = 4nl’ape, (Al = 2el,z 5 1[3), (12.19)

where o, denotes the total surface density of accretable matter and e is the mean
eccentricity of the planetesimals of mass m.

The influence of the gravitational sphere of action s, to the width of the feeding zone
is negligible (see Equations (13.2)-(13.4)).

With Equations (11.10) and (11.25), Equation (12.19) can be expressed in terms of Uy,
(for Case (A)) and U (for Case (B)):

my = 8(5/29)2nl%0,Up,/V, = 8(10/33)V2nl%0, UV, (12.20)

The number & of planetesimals of mass m is for Case (A)

N = my/m, (12.21)
and for Case (B)
N = (my —mp)m. (12.22)

During the mean interval 1/p, or 1/p,, there occurs one collision of m or m, with a
planetesimal of mass m, so that the growth of the mass m or m,, is given by

dm = p.m de, (12.23)
dmp = pepm dt. (12.24)

Taking into account that for Case (A) a planetesimal has the chance to collide with

N —1 planetesimals of mass 7 and the large planetesimal m,, (Case (B)) has the chance

to collide with N small planetesimals of mass m, the total growth of a planetesimal

becomes by using Equations (12.17) and (12.18) and m, = 4ndr3 /3, m = 4nér3/3:
Case (A)

dridt = 29(N — 1)s2GMm[2Y¥2 111U, (z S 1/3), (12.25)

dry/dt = 33Ns2,GMm/[1287%6r21°U, (z < 1/3), (12.26)

drfdt = (29 x 33)Y2(N — 1)s2GMm/[128n*6r%1%U, (z < 1/3). (12.27)

Case (B)

According to Equation (12.11) the increase of the velocity dispersion is given for
Case (A) by

AU [dt = 45(N — 1)GMm?*[2"*7U%, 1%, (z < I/3). (12.28)

The increase of the velocity dispersion for Case (B) comes from two parts:
() From mutual encounters between the small planetesimals of mass m, which is
expressed, analogously to Equation (12.28), as

(AU/dD),, = 45 (33/29)¥2G3Mm?|64nU% 1% . (12.29)

(i) From encounters between the large planetesimal m, and the small planetesimals
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of mass m, which is expressed analogously to Equation (12.16). Because m, moves in
a circular orbit, the relative velocity U between m, and m remains constant after an
encounter. Due to such an encounter there changes only the relative velocity U between
the planetesimals of small mass m. Therefore, we have multiplied dU/dt from Equation
(12.16) by the additional factor Nm/m,,, taking into account that the relative velocity
changes only for the fraction of mass Nm of the mass m, of the accretion band: i.e.,

(U/dD),, = 45G*MNmm? [32n1*Um,, . (12.30)

The total change dU/d¢ for Case (B) is given by the sum of Equations (12.29) and
(12.30)

dUfdr = (dU/dt)mp + (dU/do)y,
= (QNmmZ[my + (33/29)¥2(N — Dm*)45G*M[64nU%1* , (z51/3).
(12.31)
Equation (12.26) for the increase of the radius is, in fact, similar to the usual
accretion equation
drp/dt = s2,Up, [4673 (12.32)

for a mass of radius r, moving with relative velocity U in a medium of uniform density
Py This can be shown as follows:
The density p, can be expressed by the mass m;, of the accretion band as

my —my = 4nlpyzAl = 2p,zmy /oy
or

Py = 0p(1 —myp/my)[2z, (12.33)

where z is the height above the equatorial plane of the protoplanetary cloud up to which
the uniform medium extends. From Equation (11.11) we have

tgi~iaz/l~T[3V?V,. (12.34)
Introducing z from Equation (12.34) into Equation (12.33), we obtain

pu = 3V2GVMY?0,(1 —my,/my) 201%2 (12.35)
nd drpfdt = 3V2GYVMY52,0,(1 — my,/my)U/881% %12 U. (1236)

On the other hand, we get with Equation (12.20) and (12.22)

N = my(1 —mp/my)/m = 4(5/3)"*a1¥%0, U1 —my/my)/G*M"*m;
(12.37)
and introducing into Equation (12.26) we finally obtain
dr,/dt = 15Y252,0,(1 —myp /mp)GY2MY2U/AnSr2 U1¥>. (12.38)
Comparing Equation (12.36) to Equation (12.38), which are transformations of

Equations (12.32) and (12.26), respectively, we see that they distinguish only by the
factor
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2x 5¥2 g = 1.42. (12.39)

In view of our gross approximations this seems to be a satisfactory agreement.

13. Analytical Solutions

(1) Case A. The relevant equations are (12.25) and (12.28). In a first approximation
8m8Gr*{3U3, can be taken as the leading term of the factor s2 from Equation (12.25).
With this approximation, the division of Equations (12.25) and (12.28) yields

dUy, /dr = 45a8Gr[29U,
which integrates to (¢f. Safronov, 1969)
Uy, = (4518G[29)V?r. (13.1)

With this analytical approximation we can show that the radius of the gravitational
sphere of influence s, is negligible with respect to the width Al of the accretion band, i.e.

sg = Im[2M)"3 < Alf2 = el = (5/3)V201/V, (13.2)
Taking into account Equation (13.1) and U = (12/29)/2U,,, m = 478733 we obtain
1 <€ 223 x 3%3 x 5qV65V61V2 0916 (13.3)
Indeed, for I = Iyteyoury = 0.4 AU we have in accordance to Equation (13.3)
elfs, = 1.2 x 102, (13.4)
We can show also the consistency of our assumption y < 1 in Equation (11.39)
Y = 4Gm/U%5< 1. (13.5)

Taking into account that the mean value of s is 2s./3 = 2¥3I(m/M)"3/3 we find
with Equation (13.1) that

v = 33 x2%3 x 29M3 501381531 < 1, (13.6)
ifz < 1/3 and [ > 0.4 AU. From Equation (13.1) we obtain
8m6Gri/3U%, = 232/135 = 1.72, (13.7)

so that 878Gr?/3U%, indeed proves to be the leading term of 5? from Equation (12.25).
With Equation (13.7), Equation (12.25) becomes

dr/dr = 29 (1 + 232/135)NV — 1)GMm/[27*7*61% U, ; (13.8)

and with Equations (12.20), (12.21) and (13.1) after an elementary integration
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TABLE V

Maximum mass M,y = 4n8F3ax/3 from Equations (13.10) and
(13.13), and the ejection time intervals ¢,; from Equation (13.18)

Planet Mmax loj
2] {v1]

Mercury 7.80 x 10% 2.31 x 10"
Venus 1.97 X 10*” 2.69 X 10°
Earth 3.26 x 10*7 292 x10°
Mars 6.11 X 10?7 4,70 x 10"
Asteroids 1.52 x 1078 5.40 X 10'¢
Jupiter 3.67 x 10%° 342X 10°
Saturn 7.84 X 10%° 9.38 X 10¢
Uranus 2.27 X 10%° 1.14 x 10°
Neptune 4.61 X 10%° 1.62 X 10°
Pluto 6.67 X 10%° 7.18 X 103

t = (810m¥48¥4 11429 x 367G 20 M**) In (rmax + )/ (Fmax — 7)),
r < g (13.9)

where
Fmax = (900,,/29)”2(7715/25M)”4 (13.10)

is the maximum radjus attainable by the planetesimals (see Equation (13.13) and Table
V). If ¥ € rax, Equation (13.9) takes the simple form

r = 29Y2 x 3670, GYIMY2¢[2¥% x 5V2 x 33751¥2. (13.11)

We have used the approximate initial conditions r, Uy, = 0 if £ = 0. Equations (13.1)
and (13.9) represent the approximate solution for Case (A) and we show that only the
surface density o, is not known accurately.

The maximum radius 7y, of a planetesimal can be obtained easily from the condition
that the number of planetesimals in the accretion band should be at least 1: N > 1. With

Equations (12.20) and (12.21) this condition yields

N = 8(5/29GM) *no, 152Uy, /m > 1, (13.12)
or

F < (90 0,/29) Y25 IME)* = Frps. (13.13)

As long as |di/d¢| from Equation (10.2) is larger than U, from Equation (13.1) the
evolution of planetesimals is characterized by the relative velocity |dl/d¢| and occurs
according to Section 10. On the other hand, if Uy, > |dl/d¢|, the characteristic relative
velocity is U;, from Equation (13.1) and the evolution occurs according to Section 12.

The separation radius r, is obtained by equating Equation (10.2) to Equation (13.1)

AP IGMY " pW(V, — Vy)[r,8 = (4518G[29)%r,;

which yields
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Py = 21/2 X 291/413/4(ﬁw(Vc _ g))l/2/31/2 X 51/411'1/463/4G1/2M1/4.(13.15)

The separation velocity |dl/dt], = UP from the penultimate column of Table IV is
obtained by introducing r = r, into Equation (10.2) or (13.1).

(2) Case (B). We have obtained analytical solutions for Case (B) only when m, > Nm
and when the gravitational interaction between the small planetesimals of mass m is
negligible.

(i) Circularly moving planet in a medium of uniform density. An elementary solution
can be obtained in terms of Equation (12.32) when the mass m, moves in a circular
orbit around the Sun through a medium of uniform density p,. The relative velocity U
remains constant and s., ~ const., because m, is assumed much larger than the mass
of accreted dust. The density of accretable matter changes as

Py = Pua(my -‘mp)/(mb _mpo), (13~16)

where p,o is the density if mp = mpo, (mp,, Mpo =my). Integrating Equation (12.32)
with Equation (13.16) and the initial condition mp, =mypo if =0, we get a similar
equation as Equation (13.9), (s¢p, U = const.)

t = In((mp _mpo)/(mb _mp))/WSmebpuOU, (mp > Nm). (13.17)

(i) Elliptically moving planet. Neglecting the interaction between the small planetesi-
mals of mass m, we can apply Equation (11.52) for the gravitational interaction between
the small planetesimals and a much larger planetesimal of mass m,, eccentricity e, and
inclination i, with respect to the equatorial plane of the protoplanetary cloud. The
increase of the relative velocity U occurs according to the quadratic sum rule

n t
U = Y (pop)e(AUP AL, = f 45G MmUY di/1671°T5.
k=1 o

Taking into account also Equation (11.42), we find analogously to Equation (12.15)
dU/dt = 45G*M*mZ(5€3/8 + i2)/32mI5US;

and by integration with the initial conditions U=0if r=0
UT = 315G*M*m}(5e3/8 + i2)t/32ql°5. (13.18)

The time interval ¢ =17, from Equation (13.18) which is needed to increase the
relative velocity U up to U= (2Y% — 1)V, (the ejection limit) is shown in Table V
for the actual masses of the planets and for an average eccentricity and inclination e,
Ip =0.05. Our values for the Earth and Jupiter are #,; = 1.03 x 10'® and 7.08 x 10%yr,
respectively, in comparison to 10°yr for the Earth (e, =0.02;i, =0.03)and 1.5 x 10°yr
for Jupiter (e, =0.05; i, =0.02) from Opik’s (1966a) Tables 7 and 8. Our results
are given in closed form, whereas Opiks results follow only from his Tables. The dis-
agreement between Equation (13.18) and Opik’s results seems explainable if we take
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Fig. 7. Rectangular coordinates for the determination of the effect of gas drag (R, o, ¢)
and of collisions (R, x, y).

into account the different derivations and the fact that Opik’s (1966a) encounter prob-
abilities are up to two times larger due to his more sophisticated averaging procedure of
De;Pep-

It should be noted that Equation (13.18) becomes very uncertain if U > 0.5V, because
we have assumed for its deduction thate, i <€ 1.

14. Effect of Gas Drag

The effect of gas drag on the motion of planetesimals has been investigated recently by
Adachi er al. (1976), Weidenschilling (1977a), Donnison and Williams (1977). Generally,
the problem is tractable only numerically (Horedt, 1971, 1973c) but for the case of
small eccentricities and inclinations we deduce simple equations based on the change of
a, e, i for a planetesimal of mass 7 due to the resistance of the gas

da/dr = 2a¥*(— e sin @Pig fm — pP;,[Rm)/(GM(1 — €*))V'?, (14.1)
defdt = — (p/GMY"? sin @Pigfm — (p/GM)"*(p/R — Rja)Piplem, (14.2)
di/dt = — R cos uPy[(GMp)"*m; (14.3)

where Pip, Py,, Py are the components of the resistance P; (i = 1, 2, 3) from Equation
(8.10) on the axes from Figure 7: R is the direction of the radius vector from the Sun,
¢ is in the orbital plane perpendicular to R and { perpendicular to the orbital plane. ¢
denotes the anomaly, u the angle between planetesimal and node and p = a(1 —e?).
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If ¥ denotes the Keplerian velocity of the planetesimal, then the relative velocity between
planetesimal and gas is

v=V—V,. (14.4)

The components of V; are Vg =0, Vi, = Vg sin Y, Ve =—V, cos §. The ¢, ¢, x,

y-axes are in the tangential plane of the sphere from Figure 7. The angle 7/2 — ) between
the p-axes and V7, is also in the tangential plane. The components of v become (Figure 7)

v = (GM/p)?esinyg, v, = (GMp)'*/R —V,sin Y, v; = V, cos ¥.

(14.5)
From the spherical triangle in Figure 7 we get
sin ¢ = cos #/(1 —sin%i sinu)Y? =1 — 2 cosu/2,
cos ¥ = sinicos u/(1 —sin?i sin®u)V? ~icosu, (z<1/3), (14.6)
sin g = 1—:2/4, cos y = 0.
With P; = Pv/v and Equations (14.5) and (14.6), Equation (14.1) becomes
dafdt = 24%*P;[— (GM/a)"%e? sin®¢ — (1 + €?/2)(1 + e cos ¢) x
X ((GM/a)*(1 + e cos p)/(1 —e*)V2
— Vg + Vgi® cos?u/2)] (GM)Y*mv + O(3, i2). (14.7)

The term (1 + ¢2/2) comes from the expansion of (1 —e?)™V? in Equation (14.1).
We have substituted also R = p/(1 + e cos ¢). After some algebra, Equation (14.7) becomes

dafdt = 22%*P;[— (GM[a)"* + V, + e cos o(— 2AGM[a)"'* + V) +
+ (GM/a)""*(— €* sin*¢ —e* cos?¢ —e?[2 —
—i? cos?u/2)] (GM)*mv + O(e3, ). (14.8)

Before averaging this equation with respect to the time we have to introduce instead
of the anomaly ¢ the mean anomaly X, which is a uniform function of time

@~y + 2esiny, cos¢=cosx— 2esin’y. (14.9)

The last term of Equation (14.9) introduces an additional secular term. If we take into
account that sin?¢= cos’¢p =sin’x=4 we obtain with Equations (11.10) and (11.11)
the average decrease of a equal to

dafdt = —24¥°P;[(GM/a)"* — V, + 11 U*/12(GM/a)"'*] (GM)"*mw.

If z £ 1/3 the semi-major axis ¢ is approximately equal to the l-coordinate from the
Sun, so that (V,, ~ (GM/a)"'* =~ (GM/DV?, TU* = 8U?/11)

difdr = — APV, — V, + 2023V )(GM) *mo, (< 1J3).  (14.10)
For Equation (14.2) we have with Equations (14.5) and (14.6)
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defdt = P;[—esinp —(@¥?/R¥? —pY?RY?/a) x
x (1 + e cos p)? — Vo(R/GM)"*)[e] Imv + O@?). (14.11)
Since R™¥? ~4"¥%(1 + 3 e cos ¢/2) we obtain after some algebra
de/dt = P;[—esin*¢ — 2 cos ¢ (GM/a)V? — V) x
X (— 1 + e cos ¢/2)/V,] fmv + O(e?, i*). (14.12)

Because (GM/a)''? —V, <V, the contribution of 2esin’*x from Equation (14.9) is
negligible for averaging and we get

de/dt = —Pe/2mv. (14.13)

For the inclination we have from Equation (14.3) with Equations (14.5) and (14.6)
the expression

dif{dt = P,V R cosu cos Y/(GMp)"*mv = — Pii cos’uj/mv + 0(?),
and for the average decrease of the inclination
difdt = —Pi[2mv. (14.14)

The average change dU/dt of the relative velocity U due to the gas drag can be easily
determined from Equations (14.13) and (14.14). Differentiating Equations (11.10) and
(11.11) we have

@, = (3/5)V*V, de, (d0); = 3V*V, di, (14.15)

where (d0),, (40); denotes the variation of the relative velocity due to the variations
of e and i, respectively. Because of the smallness of (D), and (dU); the total change
of the relative velocity is given by

a0/t = (dU/dD), + (dU/de); = V,((3/5)"*de/dt + 32 di/ds). (14.16)

Introducing Equations (14.13) and (14.14) into Equation (14.16) we obtain, with
Equations (11.10) and (11.11), (dU/U = dU/0)

dU/dt = —P;U/mw. (14.17)

The relative velocity between a planetesimal and the gas could be determined from

Equation (14.5) but also by a simple reasoning: The relative velocity of the gas with

respect to a fictitious mass moving parallel to the gas with circular velocity Ve is ¥V, — Vo,

and the relative velocity between this fictitious mass and a planetesimal is ~ U if z $ [/3.
According to the simple vector sum rule we have

v = U+ (V,— V! —2Vy—Ve)Ucos e, (14.18)

where a denotes the angle between ¥, — V. and U. By averaging, the cos & term drops
and we get
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v (U2 + (V, — VB2, (14.19)

which is used in our numerical examples.

15. Effect of Collisions

We consider only completely inelastic collisions (e.g., Ziglina and Safronov, 1976),
because at the low relative velocities U, Uy, (Fig. 10) they seem to prevail. Let m; and
m, will be the masses and V|, ¥, the Keplerian velocities of two colliding planetesimals,
Their mass after collision is denoted by ms, (m3 = m, + m,), and their velocity follows
from the conservation of momentum

msVs = miVytmyVs. (15.1)
(i) Collisions between orbits of low eccentricity and inclination. The components

of the velocity ¥ (k= 1,2,3) on the radial R-direction and on the y-direction perpen-
dicular to R in the orbital plane are

Vir = (GM/ar(1 —e2))%ey sin g, Vip = (GMay(1 —ef))'’*/R
*k =1,2,3), (15.2)

where ay, ey, i, denote the semi-major axes, the eccentricities and inclinations of m,.
We project V, on the x, y-axes from Figure 7 in the plane perpendicular to the R-
direction: i.e.,

ka = ngo sin l]/k, ka = Vk,p cos wk' (15,3)
The projections of Equation (15.1) on the R, x, y-axes are therefore

my(a; (1 —e1)Y? sin Y1 /R + my(a;(1 —e3))V? sin /R

= (my + my)as(1 —€3))"? sin Y3/R, (15.4)
mi (a1 (1 —e]))? cos Y1/R + my(a,(1 —€3))? cos Y»/R

= (my +my)as(1 —e3))* cos ya/R, (15.5)
myeq sin /(@1 (1 —e))''? + mae, sin va/(a;(1 — €))7

= (m1 +my)es sin ps /(a3 (1 — e3))2. (15.6)

With sin ¥, ~ 1 from Equation (14.6) we obtain from Equation (15.4)
myal? + myad? = (my +my)ay?* + O, i2). (15.7)

This latter equation shows that the semi-major axis of two inelastically-colliding particles
lies between the two initial semi-major axes and the formation of jet streams as suggested
by Alfvén and Arrhenius (1970) is not possible in a medium of very large extensions.

If we use
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1/RV? = (1 + e, cos )" /(@ (1 — ;)"
in Equations (15.4) and (15.5) and also the approximation from Equation (14.6), we
obtain
myeq cos @, + mye, cos gy = (my +my)e; cos s + O(ed, i),
mye, sin ¢, +mye, sing, = (m; +my)e; sin g3 +O0(e, %), (15.8)
Myiy oS uy +myiy cosuy = (my +my)is cosuz + O(e2, it).
If we average the squares of Equations (15.8), the terms sin ¢, sin ¢,, cos ¢; COs ¢z,
and cos u; cos u,, disappear so that
(my +my)2e} = miet + mies, (15.9)
(my +my)?3 = mii} + mii}. (15.10)
Ifmy=m,=m, e, =e, =¢ i, =i, =1iwe get
al? +a¥? = 24Y%, e5 = e2V?, iy = i]2V?; (15.11)
i.e. after each collision the eccentricity and inclination diminishes by the factor 1.41;
whereas the behaviour of the semi-major axes is of no interest, because the extension

of the protoplanetary cloud is practically infinite. If m, > m, , we obtain from Equations
(15.7),(15.9), and (15.10)

a3 = ay T my(a; —ay)/ms,
es = ey +m (met —2m,el)2mie,, (15.12)
iy = iy +my(myi —2m,i3)2m3i,.
Ife,,i; ~ 0, we have
es = mqei/my, iy = myi/m,. (15.13)

The condition for increase of the eccentricity (inclination) by collisions is from
Equation (15.12)

es >e, if ey <ey (my[2my)V2,

(my > my) (15.14)
i >0y 0f iy <iy (my2m)V;

i.e. only if the planetesimal of large mass m, has a very low eccentricity (inclination)
in comparison to the other planetesimal m, , the eccentricity (inclination) could increase
after collision. The limiting eccentricity and inclination which could be obtained by
the planetesimal of large mass is given by Equation (11.41) with the notations m, = m,
ey =e, iy =i, My =mp, € =e,, i3 =1i,. Because we have from Eqution (15.14) e, =
e, <e=ey, i, =i, <i=i; the effect of collisions between m and m,, is neglected for
our Case (B) from Section 12. The effect of collisions is taken into account only according

to Equations (15.11) for planetesimals of equal mass m.
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The change of the orbital elements due to collisions is a discontinuous process with
respect to the time. However, this change could be averaged over the mean collision
time 1/p, by observing that e and i change by (1 —27V%)e and (1 —27V?); during
1/p., so that the differential equation giving the change of e and of i by collisions can
be written as

dejdt = —p,(1 —2"Y%e, di/dt = —p (1 —27V?)i. (15.15)

The total change of the relative velocity U due to collisions is the sum of the changes
of U due to the variation of e and {

dU/dt = (dU/dp), + (dU/dr);. (15.16)

With Equations (11.10), (11.11) and (15.15) Equation (15.16) transforms into

dU/dr = V,.((3/5)V*de/ds + 3V di/dr) (15.17)
= —p(1 =272 ((3/5)"?e +3%)) = —(2—2"")p.T,
or
dUjdt = —(2—2Y*)p,U. (15.18)

(ii) Collisions between a large planetesimal m, and small planetesimals m, (m, > my).
We assume that m, has an orbit of moderate eccentricity and inclination, while »; has
an approximately parabolic velocity. We project Equation (15.1) on the R-axis, so that

msVisp = myVig +myVyp. (15.19)
We have (pZ :aZ(l —eg)a €, il < 1)
Var = (GM/py)"?e, sin g,

)2 ey Ve singy;

= V,e, sin ¢,(1 + e, cos ¢,
and by averaging over cos @,
VZR = iZech/ﬂ. (15'20)

For the evaluation of the change of inclination we project Equation (15.1) on the
y-axis

maVsy = mi Vi, +m, Vs, (15.21)
and observe that, according to Equations (14.6) and (15.3), we can write

Vay = Vapcos ¥, =V, sini, cosuy >ip V, cosuy;
and by averaging over cos us,

Vay = %20, Ve (15.22)

Assuming equipartition of the velocities V; of the parabolically moving small plan-
etesimals, we can write
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Vip = Vi, = £ (2GM/R)V2/3V2 = +(2/3)V?V,. (15.23)

We observe that, in a first approximation, the average values of V5 and V,, are
equal if we substitute e, for i,. Therefore, we confine ourselves only to the discussion
of Equation (15.19), the final result being equally valid also for Equation (15.21). We
have

msVag = myVig +myVap
= myVig +(ms —my)Vog=m Vg + m3Vsp, (15.24)
since m, = my —my ~ms, (m, > m;). Equation (15.24) also states that
miVig 2ms(Vsgr —Vag) = m3AVsg,
(Vsr =Vor, AVisr = Vig —Var). (15.25)

The changes AV3p from individual collisions accumulate according to a quadratic
sum rule. If the initial value of V5 is zero, after n collisions we have

2
Vir

n n
kZI(AVsR)ﬁ = Y (mVig/my)i
= k=1

Il

@V2)3) ki (my fms 2. (15.26)
=1

If we make the plausible assumption that the masses m; grow together with my in
such a way that my/ms =~ const. during the accretional collisions, (Figure 9), then
Equation (15.26) becomes

Vi, = 2mV2k2, /3, (15.27)

where k,, =m;/ms denotes the mean value of my/m; during n successive collisions.
Since after each collision Vip = V, g, ms = m,, my[/ms ~=m; [m,, we can use Equation
(15.20) to obtain

Vig ~Vigp = 463V /n*. (15.28)

With the notations from our Case (B) (my =m, my =m,, m<mp)ande; =e,, i, =i,
we obtain from Equations (15.27) and (15.28)

ep ~ iy 2 m(n)6)*ky, (ky = m/mp). (15.29)
The mass increase dm, of m, due to dn collisions with small planetesimals of mass m is
dm, = kymydn or n = (1)k,,) In (my [my), (15.30)

where my, is the initial value of m, for n =0 collisions. With Equation (15.30), Equation
(15.29) can be written as
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Fig.8. Case (A) Mass increase of the planetesimals of equal mass. Continuous lines: collisions and

gas drag are considered. Broken lines: Analytical solution from Equation (13.9) without the effect of

gas drag and collisions; the asymptotic behaviour of # is omitted. The curves labeled with M, A, J, N
are for Mercury, the asteroids, Jupiter and Neptune, respectively.
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Fig.9. Case (B) Mass increase of the large planetesimal m, (continuous lines) and of the small
planetesimals of massm (broken lines) for Mercury (M), the asteroids (A), Jupiter (J) and Neptune (N).

ep = ip = MKy, In (mp/my)[6)"7, (15.31)

where for our calculations from Figures 8 and 9 we have In (m,,/mp,0) < 30.

If we assume, for instance, in Equation (15.29) k,,, = 10™? about 60 collisions with
nearly parabolically moving planetesimals are necessary to increase the eccentricity and
inclination of the large planetesimal to 0.1, a maximum value for most planets. If
k,, = 1073 — a value suggested by Safronov (1969; Table 12) from the inclinations of
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planetary spin axes — about 6000 collisions are necessary to produce the same effect;
n = 6000 if k,, = 1073 yields, from Equation (15.30), In (mp/mye) ~ 6, which is com-
patible with our limitation In (m,/mpe) S 30. On the other hand, if m/m, = 0.08 there
is necessary only a single collision (» = 1) to produce an eccentricity or inclination of 0.1.

We conclude that collisions with nearly parabolically moving planetesimals could
have contributed substantially to the actual eccentricities and inclinations of the planets,
because collisions between planetesimals of moderate eccentricity and inclination are
extremely inefficient to produce appreciable increase of the eccentricity and inclination
of my,, according to Equations (15.13)and (15.14). Since no precise values of k,,, = m/my,,
are available, we have neglected the above-mentioned possibility in our numerical
examples.

16. Numerical Results and Conclusions

The equations used for our numerical integrations follow easily from Equations (12.25)-
(12.28),(12.31),(14.10),(14.17) and (15.18).

Case (A): Planetesimals of equal mass, eccentricity and inclination. Uy, is the relative
velocity between planetesimals and z < //3.

drfdt = 29N — 1)s2GMm/[2"*7%611°U ,, (16.1)
AU, [dt = 45(N — 1)G*Mm?[2"*aUt,1* —
—29s2GMN — 1)(1 —27Y2))2"2m* —P,Uy,/mo,  (16.2)

st = 4r*(1 + 878Gr*[3U%)), (16.3)
v = (33U} /58 + (V. — Vp)*)'?, (16.4)
dlifdr = — 24PV, —V, + 11U}, [29V )/mvV,. (16.3)

Case (B): A major planetesimal of mass m,, orbiting circularly in the equatorial plane
of the protoplanetary cloud and numerous small planetesimals of equal mass, eccentricity
and inclination. The symbol U stands for the relative velocity between the large and the
small planetesimals, and z < //3. Furthermore,

dr,/dt = 33NsZ,GMm/[1287*6r21*U, (16.6)

dr/dt = (29 x 33)V3(N — 1)s2GMm/[1287%81°1*U, (16.7)

dU/dt = [2Nmm3[my, + (33/29)¥2(V — 1)m*145G3M[647U*1* —
—(29 x 33)V22GM(N — 1)(1 —27V?)/16m* — P;U/mv, (16.8)

Sop = (rp +1)? +81G8(ry + 1), +1)[3U2, (16.9)
52 = 477(1 + 44nG6r2 29U %), (16.10)
v= U+, - V"), (16.11)

difdt = — APV, — V, + 2U/3V,)moV,. (16.12)
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Fig. 10.  The relative velocity U,, of the planetesimals from Case (A) (continuous lines) and the
relative velocity U of the small planetesimals from Case (B) (broken lines). The analytical solution
without gas drag and collisions from Equation (13.1) has approximately the same form as
the continuous lines.
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Fig. 11. Decrease of the semi-major axes of the planetesimals from Case {A) (continuous lines)
and of the small planetesimals from Case (B) (broken lines). The broken-dotted lines denote the
actual semi-major axes of the planets: M — Mercury, A — asteroids, J — Jupiter, N — Neptune.

Dodd and Napier (1974) found from a numerical simulation of the accretion process
that there form a few planetesimals of very large mass m, in comparison to the mean
mass m of the majority of the other planetesimals. Therefore we have started the inte-
gration for our Case (B) with m,/m = 64. This ratio increases during the integration
up to 10* (for the terrestrial planets) and up to 107 (for the outer planets) as it is obvious
from Figure 9.

As suggested by observations, we made the assumption that between the asteroids and
Jupiter there occurs a density jump of the surface density 0, of planetesimals: inside
the orbits of the asteroids the planetesimals are formed from the rocky fraction of
matter of the protoplanetary cloud (mass fraction 0.00343) and outside from rock and
ice (mass fraction 0.0158;¢f. Section 6, and Podolak and Cameron, 1974).

It is likely that we have overestimated by the above assumption the density jump by
a factor of 1.5, because near the orbit of Jupiter there have condensed probably only
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Fig. 12. Decrease of the number of planetesimals in the accretion zone of Mercury (M), the Aster-
oids (A), Jupiter (J) and Neptune (N). Continuous lines are for Case (A), broken lines for Case (B).

water (mass fraction 0.00694 condensing at about 170K) and ammonia (mass fraction
0.00111 condensing at about 140 K; Podolak and Cameron, 1974). The remaining fraction
of methane (mass fraction 0.00432, condensing at about 60K) is likely to condense only
at the orbits of Uranus and Neptune, (see our Table I). In view of the other uncertainties
we neglect this overestimate and summarize below the principal conclusions:

(i) As a general rule we observe that the accretion time of planetesimals increases by
several orders of magnitude from Mercury to Pluto: If r <r,, the accretion time increases
from several hundred years for Mercury to several 10° yr for Pluto; if 7, <7 <r3 from
105-10° yr (Tables III, IV, VI; Figures 8 and 9). r, comes from Table IV and r; is the
final radius corresponding to the mass m3 = 47673 /3 from Table VI.

(ii) Because of the jump of the surface density between the asteroids and Jupiter,
the planetesimals evolve at nearly the same time scale in both regions, but the final
mass is about 30 times larger in the region of Jupiter (Figures 8 and 9, Table IV). This
seems to be the cause that Jupiter accreted also gas from the protoplanetary cloud,
its mass increasing grossly. The planetesimals accelerated by Jupiter during 10°~10° yr
(Table V) accreted andfor destroyed the planetesimals in the region of the asteroids,
(e.g., Weidenschilling, 1975). The actual asteroids appear as the remainders of a much
larger population. The fact that eccentricities and inclinations are of the same order
of magnitude in the asteroid belt (e ~7) favors the assumption that they originated
from collisions according to Equation (15.31) and not from close encounters for which
we have e/i = 5V/2 according to Equations (11.10) and (11.11).

(iii) An unexpected result of our calculations are the low final masses m3 for the
terrestrial planets, (~ 10% g). Because of the high collision probability in the terrestrial
region (p, «I™) the number of planetesimals drops quickly to 1 in an accretion
band (Figure 12).

This situation is not changed drastically if we assume the gas drag to be absent, as
occurs after blowing away of the gaseous component of the protoplanetary cloud by a
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T-Tauri-like solar wind (Horedt, 1978a). The masses 5 of the terrestrial planets obtained
by taking into account the effect of collisions and gas drag are considerably lower than
the maximum mass #1,,, (Table V), obtained from the analytical solution of Section 13,
without regarding collisions and gas drag.

Because of their small mass, the terrestrial planets were probably never surrounded
by large atmospheres and did not accrete gas from the protoplanetary cloud. Their small
masses seem to be also the principal cause of absence of well developed satellite systems.

(iv) Another unexpected result in accordance with observations are the large masses
(10% g) for the non-gaseous component of the giant planets, excepting Uranus and
Neptune for Case (A), Figure 8, Table VI. These large masses occur because the relative
velocities Uy, or U increase sufficiently fast to assure the spreading of the accretion band
as the planetesimals grow in mass. Because, for Uranus and Neptune, the time of accretion
is very long (p, <I™*; t; —t, 2 10° yr) these planets cannot accrete an appreciable
fraction of the principal gaseous components H and He, since these gases are blown away
during 10® yr, (see next point).

(v) Spiraling in due to gas drag has been calculated according to Equations (16.5)
and (16.12). We have also taken into account the decrease of density with height by
assuming that the gas of surface density ¢ extends only up to the height z* = ¢/g. Above
z* the gas drag is zero.

The inward motion of the small planetesimals m in Case (B) would be larger than their
distance from the Sun in the region of the outer planets, so that they leave during about
10 yr the accretion zone of these planets. The large planetesimals of equal mass 7 in
Case (A) have also considerable inward motion if the gas drag persisted for about 108 yr,
(Al = 8 AU for Neptune, Figure 11).

The maximum time during which the gases are blown away from the inner part of the
solar system can be estimated as follows: For simplicity, we consider approximately
circular orbits. In this case Equations (16.5) and (16.12) become for the resistance law
Py (e, i, U 0,0~ V, — V)

difdr = —3p(V, — V,)4/2rV,5
t = 2V (ADBR(V, — V). (16.13)

and

Substituting the relevant values for Mercury we find that, for Al/l=1/4, t=
7.8 x 107 yr. Thus if the planets are assumed to have formed at their actual distance from
the Sun, the gases from the inner part of the protoplanetary cloud should have been
blown away during 107-108 yr (Horedt, 1978a). Otherwise there occurs a considerable
decrease of the semi-major axes, even with the most generous assumptions.

From Equation (14.13), it can be shown that the large eccentricity of Mercury arose
only when the gas of the protoplanetary cloud was blown away from its zone. When gas
drag is present, Equation (14.13) becomes (P; = P5)

de/dt = —mprive/2m = —3%? x 11V2e2V /2% x 5V%15, (16.14)
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where we have used v~ U and Equations (11.10) and (11.26). Integration of Equation
(16.14) with the initial conditions e = eq at t = 0 yields if e, > e

t =272 x5V45(3%2 x 11V25V e. 16.15)
(4

Introducing the values for Mercury we find that its eccentricity would decrease from
ey (e > e€) to its actual value e = 0.2 during the very short time interval of 6600 yr.

(vi) General Conclusions. In the region of the terrestrial planets there accreted during
10°-107 yr several tens or hundred planetesimals of mass ~ 10% g. The increase of the
mass fraction of accretable matter by about 4.5 times between the region of the asteroids
and of Jupiter causes the latter to become more massive (Figures 8 and 9; Table VI) and
to accrete probably also matter from the region of the asteroids and of Mars.

Without any additional assumptions, Jupiter and Saturn accrete a very large fraction of
planetesimals (=~ 10%®g), and because of their large mass they would accrete later also
the major part of the gas. For Case (B), Uranus and Neptune grow also to appreciable
mass but only within several 10° yr.

Comets appear to originate from (i) planetesimals ejected by the giant planets (Opik,
1966a, b; Everhart, 1973; and our Table V); (ii) an original population of planetesimals
outside the region of Uranus, where because of the low collision probability a large num-
ber of planetesimals could be preserved (see Figure 12).

(vii) The major inconsistency of our model. A comparison between the actual non-
gaseous component of the planets m; o from Table VI and our mass values 723 from
Figures 8, 9 and Table VI shows that our model fails to give the correct final masses
for most planets by at least one order of magnitude. Excepting Uranus and Neptune this
occurs because the number of planetesimals in an accretion band of width 2e/ falls too
fast below unity and integration must be stopped.

A first point against our model could be made by questioning the validity of our
equations (16.1)-(16.12). If we suppose, for instance, that for a given radius 7, the
relative velocity U is larger by several times than in our calculation, the inner planets
could grow to their actual masses without difficulty, but the time scales for the formation
of the planets outside Jupiter are much too long (> 10° yr). This occurs because of the
substantial decrease of the second factor containing U753, U™ in Equations (16.3),
(16.9) and (16.10). The crucial role of the lowering of U by gas drag and collisions for
the formation of the outer planets comes also from this factor.

On the other hand, if U becomes much lower than in our models, the final masses
m3 for the inner planets become even much smaller than in Table VI. A test calculation
shows that an increase of the encounter and collision probability p,, Dep» De» Pep DY 2
factor of 2 has merely the effect to decrease the time of formation of the planets by
this factor and to increase the final mass (not the radius!) of the planets inside Saturn
by the same factor.

We conclude that there is little scope to modify the numerical factors arising from
our averaging procedures, though our simple treatment is certainly not very exact for
very close encounters, i.e. for large deflection angles.
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Fragmentation of colliding planetesimals seems to be not relevant in view of the low
relative velocities (Figure 10).

If we increase the poorly known surface density o of the protoplanetary cloud by
three times (see Case (B2) from Table VI), Uranus and Neptune accrete without difficulty
during 10° yr, whereas the masses of the planets up to Saturn increase only about three
times in comparison to Case (B). If we increase artificially the width of the accretion
band, the final masses mj increase approximately by the same factor, as shown by a
test calculation.

We conclude that the sole difficulty of our model is the fact that the accretion band
of the planets up to Saturn is devoided too fast from accretable planetesimals. This
difficulty could arise in our opinion from two sides, which can hardly be included in our
averaged equations (16.1)-(16.12):

(i) In reality there arises a certain dispersion of the orbital elements g, e, i and of the
masses. This dispersion could permit a much better argument between mj o, and mj
from Table VI, because planetesimals with very small inclinations are accreted much
faster than according to our averaged equations, while planetesimals with very large
eccentricities allow for a considerable increase of the width of the accretion band.

(ii) Close encounters are the most efficient perturbations as long as the orbits of
planetesimals intersect. When this is no longer the case (V< 1), then secular pertur-
bations of non-intersecting orbits become the sole perturbing factor, which can be
efficient as shown by numerical examples (Horedt ef al, 1977).
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