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Abstract. A theory is presented for the dynamics of dust particles in an incompressible turbulent 
fluid. Grain-gas coupling occurs through friction forces that are proportional to the mean grain velocity 
relative to the gas. This test particle theory is applied to the case of a Kolmogoroff spectrum in a 
protostellar cloud. The mean turbulence induced grain velocity and the mean turbulent relative 
velocity of two grains are calculated. Whereas the former should determine the dust scale height, 
grain-grain collisions are influenced by the latter. For a reasonable strength of the turbulence, the 
mean induced relative velocity of two particles turns out to be at least as large as the corresponding 
terminal velocity difference during gravitational settling. 

1. Introduction 

It is probable that astrophysical dust clouds are often in a turbulent state. This then leads 

to the question of  the consequences for the dynamics of  the grains embedded in these 

clouds. As long as the mass density of  the dust is negligibly small compared to the total  

mass density there are essentially two effects: First o f  all, in a gravitational field, sedi- 

mentat ion is impeded to a varying degree depending on grain size, specific weight of  the 

grain material, gas density, and temperature,  that  together determine the time-scale for 

frictional coupling. Secondly, relative velocities between grains are induced, even for 

like particles, that lead to or increase the probabil i ty  of  grain-grain collisions. Since 

such collisions are not  only elastic but  will lead to sticking at low and to shattering at 

high relative velocities, turbulence will introduce changes in the grain size spectrum. We 

will consider grains in a neutral gas. 

In a dense protosteUar cloud we expect  random grain velocities to be still small enough 

so that  sticking is the dominant process. The consequent increase in particle size however 

results in increased sedimentation so that turbulence in the gas might possibly lead to 

faster sedimentation than occurs in a laminar gravitational collapse. It may even directly 

lead to large solid bodies that  later agglomerate into planets. With this latter idea in mind 

turbulent  effects on grains were discussed for example by  Cameron (1973). 

In this paper we shall be concerned with the general problem of  random grain velocities 

in a turbulent  gas. However, the parameters used are chosen with regard to a collapsing 
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cloud as discussed by Morrill et  al. (1978) so that turbulent collision rates can be com- 

pared with the laminar ones. 

2. Dynamics of Dust Particles 

A dust particle immersed in a gas or a fluid is primarily characterized by its friction time 

rf. Assuming the mean free path of  a gas molecule (mass m) to be large compared to the 

grain size, and its thermal velocity v m = ( 2 K T / m )  1/2 to be large compared to the mean 

relative velocity between the grain and the gas, then 

2 
(rr)-~ - v~-  p ~r8 vth M- ' ,  

where p, as, and M denote the mass density o f  the gas, the geometric cross section, and 

the mass of  a dust particle, respectively. Thus "of "" r Ps, where r is a linear dimension of  

the grain, and Ps its mass density. Taking r = 10 -4 cm, Ps = 1 gcm -3 , p "~ 10 -13 gcm -3 , 

and Vth ~ l0 s cm s- l ,  typical values for rf  range from 10 l~ to 1011 s during the early 

phase of  the Jeans collapse of  a 3Mo cloud (Tscharnuter, 1978). They are small com- 

pared to the typical collapse times of  a few 10 § t3 s. 

The equation of  motion of  a dust particle is 

dv = a~(x,  t) - L ( v - v G ) ,  (1) 
dt r t 

where v is the grain velocity, a6 its acceleration due to external volume forces, like 

gravity, and vG is the mean gas velocity. The gas velocity in turn is given by 

dr6 1 
= a G - -  - -  grad p, (2) 

dt p 

where p is the gas pressure and we have neglected the momentum loss of  the gas to the 

grains. Thus VG is considered as a given quantity in the present context. In order to 

describe turbulent motions, let vG, p and correspondingly v have an average - i.e., a lami- 

nar, plus a randomly fluctuating component:  v G = (vG> + 8vG etc. By definition the 

ensemble average <5v6> over the fluctuating component of  vG is zero, as is true for 5p and 

tiv. Inserting this into Equation (1) and subtracting the emsemble averaged equation we 

find that 
d_d 5v = -- 1 ~iv 4- --1 ~vG, (3) 
dt r f  Vf 

which is a [angevin equation with + ( l / r f )  5va as the random driving term. 
The selution of  Equation (3) can be expressed as 

it 

~v(t) = 1 f clt' exp {- - ( t - - t ' ) / r f}hVa(x( t ' ) ,  t') + 
rf 
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+ ~v(t = 0) exp {-- t/T:}, (4) 

where x(t') is the position of the dust particle at time t'. Thus for spatially varying 
~VG, solution (4) constitutes a nonlinear integral equation that can be solved only 
approximately. 

For this purpose we consider 5vG to be represented by spatial Fourier components 
(eddies) w(k, t) corresponding to velocity variations over the sale 27r/lk]: i.e., 

q - c o  

5VG(X, t) = j dkw(k, t) e ik~. (5) 
_ o 0  

The time variation of w(k, t) first of all consists of a factor exp {--fk[(vG)+ f~o dk' 
w(k', t) e ik'x] t} due to the convection of the eddy k by the average gas flow and the 
larger eddies k' (with [k'[ ~ [kl) on which it rides. In addition there exists an intrinsic 
time dependence of w(k, t) describing the statistical correlations for the eddy k; it is 
expressed in the form of an eddy life-time ~'k- 

In the trajectory integral of Equation (4) the convective time dependence of 5v6, 
as seen from the moving grain, enters through the factor e ikx in Equation (5). The two 
types of convective time dependences can be combined into an expression (r.h.s. of 
Equation (4)) of the type exp {1]r where Yrel is the speed of the grain relative 
to the eddy k. The technical details of the derivation will be published elsewhere. The 
result is that in the sense of an r.m.s, value, averaged over the random phases of the 
Fourier components w(k, t), the modulus of the quantity Vre 1 can  approximately be 
written as 

Vrel(k ) ~ V~ § f dk'P(k') , (6) 
ko 

where P(k) is the power spectrum of the fluctuations 5va, which is assumed to be iso- 
tropic and therefore only depends on k ~- [k[: i.e., 

(~iVG) 2 = ; dkP(k). (7) 
k0 

The largest scale of the turbulence is given by 2rr/ko; the grains can have an average 
(laminar) speed relative to the gas of magnitude VL, which may for example be due 
to an average sedimentation effect. 

With this quantity Vrel(k ) we can now approximately solve Equation (4) by dividing 
the eddies into two classes (at given particle radius, i.e. ~-f). 

Class 1 comprises all eddies in which a particle gets stopped by friction before it 
either crosses the eddy or before the eddy decays. This means that k ~ k*, where 

1 1 
- --k k* V~el(k* ). (8) 

Tf "i'k* 
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Clearly the particle under consideration 'sees' the eddies of class 1 as essentially a spatially 
homogeneous but time dependent medium, i.e. 5vo is homogeneous in space but varies 
in time. Class 3 comprises all eddies k >> k*. The particle interacts weekly with class 3 

eddies. 
Class 2 comprises the eddies k = 0(k*) and is not easily tractable. We omit it by 

approximating class 1 and class 3 by k < k* and k > k*, respectively. With these approxi- 
mations and assuming the phases of the eddies to be uncorrelated with each other we can 
calculate ((~V) 2) corresponding to the mean square of induced particle velocity 

((Sv) 2} = f dkP(k) rk .+'j dkP(k) 
7k 

ko 7k + Tf k* 7k + 7f 

IkWrel(k) 7 k "l'f } 
arctg | r ~ + r f  

X 
{kVrea(k) rk rk + rr rrj (9) 

We can also calculate the mean square ((ASv) 2) of the induced relative velocity between 

two particles (denoted by the index 1,2) 

k*O) 
((A6v):)= f dkP(k) rk(rr(1)--rr(2))~ + 

ko [r~ + rf(1)] Irk + rf(2)] [rf(1) + rf(2)] 

k *(2) 

+ ~ dkP(k) rk + 
J rk + rt(2) 

k*O) 

/g Vre l(k, 1 ) re rf(1 ) I 

+ dkP(k) rk + rf(1) (kVrel(k, 1) r k rr(1)t 
(1) ( J 

(1 ~ 2) } 

% 

+ (1 0) 

where (1 ~ 2) indicates interchange of index 1 and 2, while k*(1) < k*(2) was assumed. 
To obtain the total mean square relative velocity we have to add the term [VL(1) 

- -  VL(2)] 2 to the right-hand side of Equation (10). 

3 .  R e s u l t s  

We shall now apply the foregoing results to the case of a collapsing protostellar cloud 
(Tscharnuter, 1978; Morrill et al., 1978). For this we take typical parameters of the 
'hydrostatic core' which develops in the inner region. The values chosen are P ~ 10-t3 
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Fig. 1. R.m.s.  turbulence induced velocity (6v2) 1/2 o f  a dus t  particle o f  radius r, normalized to the  
r.m.s, turbulent  gas velocity (6v~) 1/2 , for two values of  the  average velocity V L of  the grain relative 
to the  gas. The  mass densi ty  o f  a grain is taken as l g c m  -3, the  gas densi ty as 10 -13 g c m - 3 ; k o  = 5 
X 10 -14 cm -I is chosen as the  smallest wave number  of  the  turbulence.  The quan t i ty  (6v~> t/2 is 

assumed to be c/3, where c denotes  the  speed o f  sound. 

gcm -3 , vm ~ l0 s cms  -1 , and ko ~ 5 x 10 -14 cm -1 , corresponding to a spatial extent 

along the rotation axis o f  about 8 AU at which the turbulence may be fed by, for ex- 

ample, the strongly nonuniform rotation. This 'hydrostatic core' denotes the region 

where free fall is stopped (essentially by an accretion shock) and within which - although 

it is still contracting - there exists an approximate state of  equilibrium between pressure 

plus centrifugal forces and gravity. As an educated guess we assume a Kolmogoroff 

spectrum P ( k )  ~ k -s /3 for the turbulence, with "rk ~ k -1 �9 ( k P ( k ) )  -1/2, and normalisation 

according to Equation (7). Hereby we have taken the inner scale 2zr /k  i of  the turbulence 

to be arbitrarily small; we can do this because of  the fact that k o / k i  = 0(10 -7) for the 
above parameters in an essentially neutral hydrogen gas. 

Whereas the results up to Equation (1) were rather general, such a choice for the form 

of  the turbulent spectrum introduces some arbitrariness. However, a number o f  astro- 

physical fluctuations appear at least to be given by power law spectra, in fact by chance 
or otherwise close to a Kolmogoroff spectrum. We mention here only the density and 

velocity fluctuations of  the interstellar medium (Lee and Jokipii, 1976) and the velocity 
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Fig. 2. Contour plot of normalized r.m.s, relative velocity between two particles in terms of their 
radii, given by the abscissa and ordinate, respectively. The normalization and the other parameters 

are the same as in Figure 1, retaining the value V L = 0 only. 

spectrum in the solar wind (Coleman, 1966). A more important question is the total 

strength of  the turbulence. Fortunately, at least for VL = 0, this factor can be eliminated 
by normalizing induced grain speeds to turbulent gas velocities. Below we will use results 

derived from atomic bomb tests (Colgate, private communication). Although they may 
lie on the high side, they should not be grossly unrealistic either. According to Equations 
(6), (8), (9) and (10), the quantities ((6v)2> u2 and ((A~V)2) 1/2 depend, for fixed VL, on 

particle properties only through r:.  Assuming the particles to be spherical with radius r, 
then Tf ~rp~. Thus, a plot o f  the fight-hand sides of  Equations (9)and (1)against r is in 

reality one against rf/p~. In Figures 1 and 2 we chose Ps = I. Such a value appears appro- 
priate for grains in a protostellar environment such as considered here (Greenberg and 
Whipple, private communications). For given values of  ((6v)2) t/2 and ((A6v)2) l/2 the 

radius r corresponding to a grain with density Ps is then given by r = r/Os (P~ in g cm -3 ). 
In Figures 1 and 2, the turbulence induced grain speed <6v:) u~ and the turbulence 

induced relative velocity ((A6v)2) 1/2 are normalized to the r.m.s, turbulent gas velocity 
((lye)Z) 1/2. For small grains, the normalised r.m.s, induced speed ((6v)~)lz2]((3va)2) 1/2 

is equal to 1 ; almost all energy resides in eddies of  class 1 and particles are tightly coupled 
to the gas. With increasing r however, k* diminishes. When k* reaches the minimum 
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possible value ko (for our parameters around r = several cm), then <(6v)2) '/2 starts to 

decrease, asymptotically ~ i/r ~ l/Tf. This behaviour (for VL = 0) is not strongly changed 

if we chose VL = l0  s cms  -1 , a very high value, which is o f  the order o f  the free fall 

speed of  the protostellar cloud. 

Figure 2 is a contour plot of  <(A6v)2>m/<(6va)2> 1/2 as a function of  the radii of  the 

two particles. Obviously the picture must be asymmetric around the 45 ~ line. Relative 

to a very large grain, r >> 10cm, a very small grain has a normalised r.m.s, velocity of  

about 1, since the large particle decouples from the gas almost completely, whereas 

the small grain is tightly coupled to the gas, as mentioned earlier. If, however, the larger 

particle has a radius such that k* = ko, then the turbulence induced normalised r.m.s. 

relative velocity has a maximum (dotted line) which for a small partner particle can 

exceed 1. This is so because the uncorrelated effects o f  eddies with k > k* add up 
quadratically. 

For similar particles the first two terms on the right-hand side of  Equation (10) dis- 

appear and only the uncorrelated effects from k > k* remain. These are small for small 

particles because then k* >> ko. For large particles they are again small because now rf is 

large. The maximum value ~ 0.885 appears for k* = ko. It should be pointed out that 

relative velocities between similar particles are not possible in a laminar gas flow except 

near stagnation points (e.g. near the midplane of  a collapsing disk). If  we assume <(6va) 2 )1/2 

c/3, where c is the velocity of  sound of  the gas (Colgate, private communicat ion)and 

insert c ~ lOScms -1 as a typical value, then we see that the r.m.s, relative induced 

velocity between particles of radii r ~  10-acm and r ~  10-2cm is of  the order of  

3 x 10 a c m  s -~ . This is at least as high as typical values for the corresponding difference 

VL(r = 10 -3) --  VL(r = 10 -2) of  the laminar terminal velocities (Morrill et al., 1978). 

Thus, particle collisions induced by turbulence may indeed play a significant role in the 

dynamics o f  dust in a protostellar environment if the gas is essentially neutral. In the case 

of  dust in an H II region, where the grains are charged, 7f becomes very much smaller 

due to Coulomb drag. Then relative velocities between grains induced by turbulence are 
probably negligible. 
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