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Abstract. We separate the tidal evolution of a planet-satellite system with zero eccentricity in two 
phases: phase 1 - from the formation of the system to satellite's corotation (satellite's corotation 
means that its spin angular velocity equals the orbital angular velocity); phase 2 - after satellite's coro- 
ration. 

We study the planet-satellite system during phase 1 with Darwin's graphical method and obtain an 
upper limit to satellite's Q which discloses whether or not it is corotating. Moreover we obtain some 
qualitative information about the future evolution of the corotating satellites. 

The present work does not give any new result for the Earth-Moon case and for the Neptune-Triton 
case. 

1. Introduction 

The tidal evolution of  a planet-satellite system with zero eccentricity can be separated in 

two phases: phase  1 - from the formation of  the system to satellite's coro ta t ion;phase  2 

- after satellite's corotat ion.  Phase 2" has been studied by Darwin (1908) in the Earth- 

Moon case with a very simple graphical method.  

We show that in the planet-satellite systems of  the solar system it is possible to apply 

Darwin's method also to phase 1. Moreover, if  the spin angular velocity of  the planet does 

not  change from the satellite corotat ion to date, we calculate the satellite's corotat ion dis- 

tance and the time interval t e necessary to reach such a distance, as function of  satellite's 

Q. I f  we want t c <: 109y, an upper limit to satellite's Q is obtained which says whether or 

not  it is corotating. 

The following satellites seem to corotate:  

Phobos and Deimos. 

Amalthea, Io, Europa, Ganymede,  Callisto. 

Janus, Mimas, Enccladus, Tethys, Diane, Rhea, Titan, Hyperion, Japetus. 

Miranda, Ariel, Umbriel, Titania, Oberon. 

Moreover we obtain some qualitative information about the future evolution of  the 

corotat ing satellites. 

In the Earth-Moon case and in the Neptune-Triton case, where the masses of  planet 

and satellite are comparable,  and planet 's  spin angular momentum (a.m.) is comparable 

with the orbital a.m., phase 2 dominates with respect to phase 1 and the present work 

does not  give any new result. 
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2. From the Formation of the Planet-Satellite System to Satellite's 
Stable Corotation (Phase 1) 

We consider a planet-satellite system satisfying the following hypotheses: 
H y p o t h e s e s  A 

(i) circular orbits (e -- 0), 
(ii) planet's despin rate equal to zero (cOp = 0), 

(iii) satellite's spin angular velocity parallel to the orbital angular velocity (ws ILK). 
In the solar system it seems reasonable to use the Hypotheses A during phase 1. The 
hypothesis (ii) is correct because in the solar system the planet's spin (a.m.) is always 
much greater than the satellite's spin (a.m.), and so COp ~ cos. 

In these hypotheses the total a.m. and the total energy of the planet-satellite system, J 
and E, are given by 

G l n M m  
J = [scos  + ] ' p c o p  + ( M + m ) x n r l n ,  (1) 

2 E  = lsw2s + 12060 2 - -  G 2 / 3 M m ( M  + m)- l /3n  z/3 , 

where I s and Ip are the moments of inertia of  satellite and planet, respectively; m and M, 
their masses; cos and cop, their spin angular velocities; n, the orbital angular velocity; and 

G, the universal gravitation constant. 

It is better to use a new system of units obtained from the following conditions 

M m  G l n M m  
= 1, Is = 1, ( M + m ) l  n - 1. (2) 

M + m  

From (2) it follows that 

G-2/aMm(M+ m) -1/3 = 1, (3) 

and (1) becomes 
1 

, 2 + Xco~ - - - - ,  (4) J = co s + x c o p + r  i n  2 E  = co s 
r 

where 
X = Ip / I s .  (5) 

In the new system of units cos, Xcop and r x/a are just the satellite's spin a.m., the planet's 
spin a.m. and the orbital a.m. of the system. Writing (4) we used the third Kepler's law in 
the new system of units - i.e., 

n -1/3 = r 1/2. (6) 

Owing to tidal friction on the satellite there is dissipation of energy. The total energy 
of the system decreases, the total a.m. is constant. The total a.m. does not change but 
there is a transfer between the satellite's a.m. and the planet's orbital a.m. (cop is constant 
in Hypotheses A) 
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With regard to this transfer of  a.m. two cases are possible; 

Case i (Figure 1) - the satellite's tidal bulges are pushed forward with respect to the 

line Mm - a fact giving rise to a torque on the satellite tending to decrease its spin angular 

velocity. The reaction of this torque on the planet will tend, with its component  perpen- 
dicular to the line Mm, to increase the distance r. 

D 

M 

Fig. 1. M and m are the  masses of  planet  and satellite, r is the  distance between their centers, ~ s  is 
the  spin angular Velocity of  the  satellite, n the  orbital angular velocity. The plane of  the sheet  is the  

orbital plane. The figure is no t  on scale. 

Case 2 (Figure 2) - the satellite's tidal bulges lag behind the line Mm, causing a torque 

on the satellite which tends to increase its spin angular velocity. The reaction of  this 
torque on the planet will tend, with its component  perpendicular to the line Mm, to 

decrease the distance r. 

We shall have Case 1 or Case 2 depending on the ratio ws/n: if  c% is greater than n + 
50% n Case 1 will take place, otherwise Case 2 will take place (cf. Goldreich and Soter, 
1966). 

The component  along the line Mm of the tidal forces on M does not modify the orbital 
a.m., but contributes to dissipate energy if the eccentricity of  the system is not zero. 

If  we put 
Y = J -- Xc% (7) 

and assume the orbital a.m. r 1/2 as independent variable, if we set r 1/2 =-x, Equation (4) 

become 

~, (x)  = 7 - x ,  2U(x) = ( i - x )  2 + X ~  - -  

The condition dE/dx = 0 is safeguarded by the equation 

X 4 --~TX 3 n t- 1 = O, 

1 
x2.  (8) 

(9) 
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M 

t ' l  

Fig. 2. M and m are the  masses of  planet  and satellite, r is the  distance be tween their centers, co s is 
the  spin angular velocity o f  the  satellite, n the  orbital angular velocity. The  plane of  the  sheet  is the  

orbital plane. The  figure is no t  on scale. 

which represents nothing but the satellite's corotation. In fact, if  we want the satellite to 
corotate,  w, = n, and the conservation of  total a.m., using (6), we have the system of 

equations 
~s = 1/x 3, f =  ~ + x, (10) 

which gives directly (9). 

Depending on the value of  J there are three cases for the solutions of  (9): 

Case a - J > Jmin = 1.75. (9) has two real roots xl  and x2 corresponding, respectively, 

to unstable and stable satellite's corotation (see Figure 3) 

Case b - J = amain = 1.75. (9) has only one real root x* = ] Z  The satellite's corotation 

at x = x* is clearly unstable. (Figure 4) 

Case c - J  < Jmin = 1.75. (9) has no real root (Figure 5). 

In Case a, from the values xl  and x2, knowing M, m and J,  it is possible to calculate the 

numerical values, in cm, of  the distances dl and d2 of unstable and stable corotation of 
the satellite. Moreover it is easy to see that 

0 . 7 5 f < x 2  < J ,  (11) 
i.e., 

G1/2Mm [ 1/2Mm 2 t . . ~  1/2 . G  r 1/ 
( M + m )  1'2~2 "~(IsC~ + \ M +  m /tc = S--(Ipwp)tc, (12) 

where the subscript tc means that the corresponding quantity is calculated at the coro- 

tation time of  the satellite. Thus if we verify that 
(a l )  - the planet's spin angular velocity does not change from the satellite's corotation 

to date; 
( w ~ ) t c  ~ (~op)t  a 

o r  

(~o~ + x)tc ~- (,.o~ + x)to, 



\ 
\ 

S E C U L A R  E F F E C T S  O F  T I D A L  F R I C T I O N  O N  T H E  P L A N E T - S A T E L L I T E  S Y S T E M S  207 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

/ 

\ 

k 
\ 

\ 

I 
/ 
! 
i 

/ 
! 

I 

! 

t 

/ 
/ 

/ 

/ 
/ 

xl x-: ~ f f  / / x - = r  1~; 

/ -. 

/ \ \  ~ t "  / / / /  

/ \ 

F ig .  3. The  h eavy  curve  is the  satell ite's coro ta t ion  curve which  gives its spin angular v e l o c i t y  as 

f u n c t i o n  o f  the  orbital  a . m . ,  x , :  to~ = 1Ix a. The  l ight  curve  is the  sateUite's sp in  a .m.  as f u n c t i o n  o f  x :  

co s --- ] - - x .  T h e  b r o k e n  c u r v e  is the  energy  o f  the  s y s t e m  as f u n c t i o n  o f  x .  Th i s  f igu re  c o r r e s p o n d s  

to  t h e  case  ] > 1 . 7 5 .  I t  is n o t  o n  scale.  

(c~) - the actual orbital a.m. is much greater than the spin a.m. of the satellite: i.e., 

(us + x)t~ ~ (x)to. 

( a a ) -  the satellite's corotation time, necessary in order that the separation distance 
reaches the value d2 owing to tidal friction on the satellite, is consistent with the age of 
the system 

te < 109 yr 

we can say that 

0.87ra <d2  <ra,  (13) 

where ra is the actual value of the distance between planet and satellite. 
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Fig. 4. The heavy curve is the sateUite's corotation curve which gives its spin angular velocity as 
function of the orbital a.m., x,: cos = 1/x3. The light curve is the satellite's spin a.m. as function of x: 
co s = J - - x .  The broken curve is the energy of the system as function of x. This figure corresponds 

to the case J = 1.75. It is not on scale. 

3. The Consequences of Satellite's Stable Corotation 

After  the satelli te 's stable coro ta t ion  has been established the tidal evolut ion  o f  the sys- 

t em ensues which has been studied by Darwin (1908)  and by Poincar~ ( 1 9 1 3 ) u n d e r  the 

fo l lowing hypotheses :  

Hypotheses B 
(i) circular orbits (e --- 0) 

(ii) mass-point  satellite 

(iii) planet 's  spin angular veloci ty  parallel to the  orbital  angular veloci ty  ( 5 0  II n')  
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Fig. 5. The heavy curve is the satellite's corotation curve which gives its spin angular velocity as 
function of the orbital a.m., x: co s = 1Ix 3 The light curve is the satellite's spin a.m. as function of x: 
cos = ]--x. The broken curve is the energy of the system as function of x. This figure corresponds 

to the case ] < 1.75. It is not on scale. 

The hypothesis  (ii) is correct  because,  after the  satelli te has neared its coro ta t ion  state, 

under  the hypothesis  o f  circular orbits there is no con t r ibu t ion  o f  satelli te 's t ide to the 

tidal evolu t ion  o f  the system. Moreover ,  the spin a.m. and the spin energy o f  the satellite 

are always negligible in the planet-satell i te systems of  the solar system. 

Under  these hypotheses ,  and using the new system o f  units given by (2), the total  a.m. 

and the total  energy o f  the system, L and e, satisfy the equat ions  

1 1 1 ( 1 4 )  COp(X) = -~(L--x), 2e(x) = -~(L--x) z x2. 
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Owing to the tidal friction excited on the planet, there occurs a dissipation of the 
energy: the total energy of the system decreases, the total a.m. remaining constant. The 

total a.m. does not change but there is a transfer between the planet's spin a.m. and the 

satellite's orbital a.m. The orbital a.m. of the system r in = x  can be adopted as an inde- 

pendent variable. 

The condition de/dx = 0 is given by the equation 

x 4 - L x  3 + X  = O, (15) 

which represents the planet's corotation. In fact, if we want the planet's corotation, 

COp = n, and the conservation of total a.m., using (6), we have the system of equations 

(~p : 1Ix a, L ~- ~r -[- X ,  (16) 

which give directly (15). 

Depending on the values of L and X, there are three cases for the solutions of (15): 

Case A - L > Lmin = 1.75X 1/4. (15) has two real roots X1 and )(2. 

X1 and X2 correspond, respectively, to unstable and stable planetary corotation. 

Case B - L = L m i  n --- 1.75~k 1/4. ( 1 5 )  has only one real root X* = ~L. 

The planet's corotation distance at X = X* is clearly unstable. 

Case C -  L ( L m i  n --- 1.75~ 1/4. (15) has no real root. 
In the case A, from the values X1 and X2, knowing M, m and L it is possible to calcu- 

late the numerical values, in cm, of the distances D1 and D2 of unstable and stable coro- 
ration of the planet. 

When the planet-satellite distance has reached the value d2 of satellite's stable coro- 

tation, if L > L m i n ,  the planet-satellite system can have three different evolutions: (a), 
(/3), (3'). (Figure 6) 

(a) - At satellite's stable corotation it holds X1 < x2 < X2. 

Owing to tidal friction on the planet the system evolves towards planet's stable corotation 
with (.Dp < 0  and ~ > 0. 

(/3) - For the satellite's stable corotation, 0 < x2 < X1. 

Owing to the tidal friction on the planet, the planet-satellite distance decreases while the 

planet's spin a.m. increases - i.e., ~ < 0, 63p > 0. 

(3) - For the satellite's stable corotation, x2 < 0. 
This is the case of a corotating satellite whose spin angular velocity is parallel to the 

orbital angular velocity but antiparallel to the planet's spin angular velocity. Owing to 
tidal friction on the planet the planet-satellite distance decreases and the planet's spin 
angular velocity decreases, i.e. 

dlr___l < O, 63p < O. 
dt  

We do not study the case x2 > X2 because x2 > X2 means that the satellite's spin a.m. is 
greater than the planet's spin a.m. and this relation never holds good in the solar system. 
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Fig. 6. The heavy curve is the planet's corotation curve which gives its spin angular velocity as func- 
tion of the orbital a.m., x,: cop = 1Ix  3. The light curve is the planet's spin angular momentum as func- 
tion of x :  cop = (L - - x ) / X .  The broken curve is the energy of the system as function ofx. This figure 

corresponds to the case L > Lmi n. It is not on scale. 

4. The Planet-Satellite Systems of the Solar System 

All the planet-satellite systems of the solar system satisfy the relation f >  1.75 and it 

means that Equation (9) has two real roots, x l  and x2 as in Figure 3. Clearly there is no 

satellite with f~< 1.75, because tidal friction would have destroyed such satellites (Figures 

4 and 5). 

Further the existing satellites cannot have had an initial orbital a.m. x(0) such that 

x(0) < 0 or 0 < x ( 0 )  < x l  because in these cases tidal friction would have destroyed them 

(Figure 3). On the other hand, it is not probable that they have had x(0) > x 2  because it 

means (apart from the small interval x2 < x  < f )  that the satellite's spin angular velocity 
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and the orbital angular velocity are antiparallel. Probably they have had xx < x ( 0 ) <  x2. 
Therefore, during phase 1, they evolved towards the satellite's stable corotation. 

To assert that the existing satellites of the solar system corotate at distance d2 satisfy- 
ing (13) we must see if the conditions (al), (~2) and (~3) of Section 1 are fulfilled. With 
regard to (~1), it is verified for all satellites with the exception of the Moon and, probably, 

Triton. To convince ourselves of this fact, it suffices to evaluate the order of magnitude 

of the planet's corotation times. The condition (a2), is verified for all planet-satellite sys- 
tems of the solar system. For the satellites whose spin angular velocity is not known we 
compared the orbital a.m. of the system with the spin a.m. of the satellite assuming that 
it is rotating with the greatest angular velocity consistent with its gravitational stability. 
For the satellites whose mass is not known, we calculated its order of magnitude assum- 
ing reasonable values for the mass density. 

To ensure that (~3) is verified, it is necessary to calculate t c. The magnitude of the 
tidal torque on the planet due to the satellite is 

9GmZA s 
Nsp(r) - 4 ~  r-6, (17) 

where A is the radius of the planet; 

Q'p = Qp l +-3GM2 ] ,  (18) 

#p is the rigidity of the planet; and Qp, its dissipation function (Goldreich and Soter, 
1966). If the planet's spin a.m. is much greater than the satellite's spin a.m. it is possible 
to neglect cbp with respect to cb, but it is not possible to neglect the variation of the 

orbital a.m. of the satellite which occurs in order that the total a.m. is conserved, so that 

dL~ (19) 
N~p = d r '  

where L s is the orbital a.m. of the satellite, linked to the orbital a.m. of the system, Lo, 

by the relation 

M 
L s  - - -  L 0 ,  ( 2 0 )  

M + m  

GtnMm 
- -  1.1/2 Zo (M + m) "2 " (21) 

Furthermore, there is a torque on the satellite due to the planet, whose magnitude is 
given by 

9GM2aS -6 (22) 
Nps(r) = 4Q" r 

where a is the radius of the satellite, 
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1 387ra4psl �9 
Q" = Qs + 3Gm2 ] ,  (23) 

Ps being the rigidity of the satellite, and Q, its dissipation function (Goldreich and Soter, 
1966). The torque Nps tends to decrease (increase) the satellite's spin a.m. and the reation 
on the pianet tends to increase (decrease) its orbital a.m.: i.e., 

Nps = dLp ( 2 4 )  
d t '  

where Lp is the planet's orbital a.m. connected with the total a.m. Lo from the relation 

m 
- - - L o .  ( 2 5 )  Lp M +  m 

From (19), (20) and (21) it follows that 

2(M + m)3/Zrl/2 
(i),p = Nsp GlnMZm (26) 

where the subscript "sp" signifies that t: given by (26) is due to the torque N,p. From 
(21), (24) and (25) it follows that 

2(M + rn)3/2rl/2 
(i ')p s = N p s  GV2M2m , (27) 

where the subscript "ps" denotes that t given by (27) is due to the torque Nps. From (26) 
and (27) we have 

(r)ps Np8 M 
- ( 2 8 )  

Q:)sp Xsp m 

As it isM>>m and never results N w >>Np~ we see that 

(k)p, >> (k)sp, (29) 

which holds during phase 1. During phase 2, as we assume a mass-point satellite, it will be 
Q:)p, = 0. From (29) it follows that 

~- (&,;  (3 o) 

and, by use of (27), (22), 

where 
I: = D r -11/2  

8 

9GlnM(M + rn)3na s 
D s = 2mZQ, 

(31) 

(32) 

Therefore, the satellite's corotation time t c is given by 

2 
t c  = - -  ( r 2  3 ~  - r , .~3~2),  

13D s 
(33) 
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where r i is the initial planet-satellite distance. As r i < ra, Equation (33) becomes 

2 
t e " ~  r 13/2 (34) 

13D. a ' 

If we want te to be smaller than the age of the system 

t e < 109y,  (35)  

assuming g, ~ 10 xl dyne/cm 2 we calculated the maximum value of the satellite's Q such 

that (35) is verified - i.e., 

Q < Qmax ~ te < 109 y. 

From Table I, the following satellites seem to corotate: 
Phobos, Deimos; 
Amalthea, Io, Europa, Ganymede, Callisto; 

Miranda, Ariel, Umbriel, Titania, Oberon. 
In the case of Japetus the value of Qmax is small to be sure that it is corotating (great 

value of Q means small energy dissipation and vice versa), but there are reasons to think 
that it corotates (Cook and Franklin, 1970). 

As the eccentricities of these satellites are very small, it is reasonable to assert that 
their spin period equals the orbital period. The only exception could be Hyperion 

(e ~ 0.1042) whose spin period is probably smaller than the orbital period, like Mercury 
in its motion about the Sun. 

With regard to the Moon, which does not satisfy (~1) it began to corotate in a time 
interval much smaller than its age (Goldreich, 1972), we do not know the value of the 
Earth-Moon distance when the Moon began to corotate. The value of such distance is 
known only as function of the initial spin angular velocity of the Earth, which is unknown. 
So the present work does not give any new result in this case, which is still more compli- 
cated for the eccentricity of the orbit and its inclination on the ecliptic. 

Triton too, probably, does not satisfy (~1) and began to corotate in a time interval 
much smaller than its age. Furthermore it has an orbital a.m. antiparallel to Neptune's 
spin a.m. If we assume as positive the direction of Neptune spin a.m. it results L > 0, 

L = 1.18 x 104agcm2s-~, and J < 0  also if we do not know its value exactly. So during 
phase 2 the Neptune-Triton system will have (7) evolution (Figure 6). 

When the planet-satellite distance has reached the value of satellite stable corotation in 
a time interval smaller than 109y, being L >Lmin,  the planet-satellite system will have 
evolution (a), (/~) or (3') as shown in the following scheme: 

evolution (&  

Moon; 
Io, Europa, Ganymede, Callisto; 
Janus, Mimas, Enceladus, Tethys, Dione, Rhea, Titanus, Hyperion, Japetus; 
Miranda, Ariel, Umbriel, Titania, Oberon. 
evolution (~) 
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TABLEI  

Q m ~  

Phobos 2,09 • 109 
Deimos 3.31 • 10 ~ 
J V (Amalthea) 3.37 • 10 '~ 
Io 2.66 X 109 
Europa 1.14 • 108 

Ganymede 9.36 X 106 
Callisto 2.1 X 105 
J VI 4.81 X 10 -~ 
J VII 1.40 X 10 -2 
J X 7.42 X 10 -1 
J XII 2.34 X 10 -2 
J XI 1.31 X 10 -2 
J VIII 1.65 X 10 -2 
J IX 8.58 X 10 -3 
Janus 4.65 X 109 
Mimas 4.52 X 109 
Enceladus 1.03 • 109 
Tothys 5.16 X 108 
Dione 1.11 X 108 
Rhea 1.74 X 107 
Titanus 1.79 X l0  s 
Hyperion 4.75 X 103 
Japetus 48 A 
Phoebe 2,73 • 10 -3 
Miranda 2.42 X 108 
Ariel 3.87 • 107 
Umbriel 2.99 X 106 
Titania 2.97 X l0 s 
Oberon 3.60 X 104 
Nereide 9.29 X 10 -3 

Phobos. 

evolution (3') 
Triton. 

In the cases of Deimos and Amalthea, since they have a little eccentricity (0.0023 and 
0.003 respectiveIy), it will act the component along the line Mm of the tidal forces on M. 
Since their spin angular velocity is greater than n but not greater than n + 50%n they will 
probably follow the evolution (/3). 

Observational data confirm evolution (a) for the Moon (Van Flandern, 1970; Morrison, 
1972) and evolution (/3) for Phobos (Sharpless, 1945). The situation is rather uncertain 
for Deimos and Amalthea (Kerr and Whipple, 1954). There is no such information about 
the other satellites. 

In the planet-satellite systems having evolution (a) rough estimates of the planets' 
corotation times say that they are much greater than the age of the universe. Also if we 
assume very little values for planets' Q. 
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