Correction

'Interpretation of Magnetic Anomalies of Dikes by Fourier Transforms' by S. Sengupta, Vol. 113 (1975), pp. 625-633.

Page 629
In the Case of 3(a): Inclined thick dikes of finite depth extent
$r_{3}^{2}=(x-h+l \cot \delta)^{2}+(d+l)^{2}$
$r_{4}^{2}=(x+h+l \cot \delta)^{2}+(d+l)^{2}$
$\psi=\arctan [(x+h+l \cot \delta) /(d+l)]-\arctan [(x-h+l \cot \delta) /(d+l)]$
Equations (25) through (29) should read as follows:

$$
\begin{align*}
F Z I(\omega)=4 \pi k \sin \delta[A-j B] \cdot(\sin \omega h / \omega) \cdot[j\{1-\exp (& -\omega l) \cdot \cos \omega a\} \\
& +\exp (-\omega l) \cdot \sin \omega a] \tag{25}
\end{align*}
$$

$$
\begin{align*}
F H I(\omega)=4 \pi k \sin \delta[B+j A] \cdot(\sin \omega h / \omega) \cdot[j\{1-\exp (& -\omega l) \cdot \cos \omega a\} \\
& +\exp (-\omega l) \cdot \sin \omega a] \tag{26}
\end{align*}
$$

$$
\begin{align*}
A I(\omega)=4 \pi k T \sin \delta \cdot(\sin \omega h / \omega) \cdot \exp (-\omega d) \cdot[1 & +\exp (-2 \omega l) \\
& -2 \exp (-\omega l) \cdot \cos \omega a]^{1 / 2} \tag{27}
\end{align*}
$$

$\phi Z I(\omega)=\arctan \left[\frac{A\{1-\exp (-\omega l) \cdot \cos \omega a\}-B\{\exp (-\omega l) \cdot \sin \omega a\}}{A\{\exp (-\omega l) \cdot \sin \omega a\}+B\{1-\exp (-\omega l) \cdot \cos \omega a\}}\right]$
$\phi H I(\omega)=\pi / 2-\phi Z I(\omega)$
Also
$\phi Z I(\omega)=\phi(0)+\delta-\beta \quad$ where $\quad \beta=\arctan [\sin \omega a /\{\exp (\omega l)-\cos \omega a\}]$
and
$\phi(0)=Z_{0} / H_{0} \sin \alpha$.
For high $\omega, \phi Z I(\omega)$ reaches the saturation value of $\phi(0)+\delta$ (as β tends to 0), from which δ can be found out. The value of l cannot be found uniquely by Kaplan's method but it can be estimated from the slope of $\phi Z I(\omega)$ for low values of ω. The slope of $\phi Z I(\omega)$ for low ω is $a / 2$ or $l \cot \delta / 2$. The diagram in Fig. 2 is formed by joining the peaks of the curve $A I(\omega)$ when $\cos \omega a=1$.

