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Introduct ion  

The mucosal immune system is the first line of defense against numerous pathogens 
which are encountered by the host through the respiratory and gastrointestinal tracts. 
To induce antigen-specific T cell and antibody responses at mucosal surfaces, one must 
consider the common mucosal immune system, which consists of mucosal inductive 
and effector tissues [67, 72]. For example, both oral and intranasal immunization 
have been shown to induce mucosal immune responses, since these pathways can 
effectively stimulate immunocompetent cells in gut-associated and nasopharyngeal- 
associated lymphoreticular tissue [9, 52, 57]. Molecular and cellular analyses of reg- 
ulatory T cells, IgA-committed B cells, and antigen-presenting cells (APC) in Peyer's 
patches (PP), a major example of the gut-associated lymphoreticular tissues (GALT), 
have shown that mucosal secretory IgA (S-IgA) responses are regulated by c~fl T 
cells and derived cytokines [10, 42, 44, 48, 50, 52, 68, 98]. These regulatory T cells 
are usually CD4 ÷ and are subdivided into at least two subsets, namely CD4 ÷ Thl and 
Th2, based upon distinct profiles of cytokines produced and major functions in host 
immune responses [80, 99]. It is well established that Thl cells secrete interleukin-2 
(IL-2), interferon-7 (IFN-7) and lymphotoxin-c~, and function in cell-mediated immu- 
nity for protection against intracellular bacteria. In addition, Thl cells also provide 
limited help for B cell responses by producing IFN-7 which supports IgG2a synthesis 
in mice. The Th2 cells preferentially secrete IL-4, IL-5, IL-6, IL-10 and IL-13 and 
provide effective help for B cell responses, especially for IgG1, IgE and IgA synthesis 
[4, 5, 7, 15, 24, 34, 61, 82]. 

Large numbers of CD3 ÷ T cells which reside in the intestinal epithelium are com- 
monly termed intraepithelial lymphocytes (IEL); it is estimated that one CD3 ÷ T cell 
can be found for every six epithelial cells [21] with evidence for close membrane 
association between T cells and adjoining epithelial cells. Although IEL possess sev- 
eral unique characteristics when compared with T cells in other organized systemic 
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lymphoid tissues, perhaps the most unique feature of IEL is the occurrence of high 
numbers of 76 T cells. For example, it has been shown that 20-80% of IEL ex- 
press ",/~ heterodimer chains of T cell receptor (TCR) dependent on age, strain and 
microenvironment [8, 25, 32, 79, 100]; however, it is now generally agreed that an 
approximate equal frequency of 76 and c~/3 T cells are seen in IEL isolated from 
young adult mice [25, 79, 100]. In addition to c~fl T cells and their derived cy- 
tokines for mucosal immunity, it is important to consider the role of 76 T cells in the 
homeostasis of mucosal immune responses. Despite numerous studies to gain a better 
understanding of thymic and extrathymic development of 76 T cells in murine IEL, 
very little information is currently available regarding the precise biological role of 
the 76 T cell subset. Studies of TCR-deficient mice suggest an important role for 76 
T cells in immune responses to intracellular bacteria and parasites [60, 77, 103]. For 
example, 76 T cells appear to be required for control of mycobacterial infections [77] 
and contribute to immunity following Plasmodium yoelii vaccination, since TCR~5-/- 
mice fail to respond normally to these intracellular microorganisms [103]. The 76 T 
cells also play an accessory role in the late stages of protective immune responses 
to Mycobacterium boris Bacillus Calmette-Guerin [60]. These observations clearly 
implicate 76 T cells in microbial immunity, but the precise manner in which 76 T 
cells result in mucosal immune responses remains unclear. 

Epithelial cells have also been considered to be important immunocompetent cells 
in the mucosal immune compartment, and these cells play major roles in the trans- 
port of S-IgA via the polymeric-Ig receptor (or secretory component; SC), cytokine 
production and uptake of antigen (including the possibility of antigen processing and 
presentation) [72]. Further, it was recently shown that intraepithelial 76 T cells mod- 
ulate growth and differentiation of epithelial cells [6, 53]. Thus, a triad cellular and 
molecular internet between 76 T cells, epithelial cells and c~/3 T cells appears to be 
essential for the induction and regulation of antigen-specific IgA antibody produc- 
tion. This review focuses on mucosal cell interactions, including T and B cells and 
epithelial cells for the regulation of mucosal immunity, inflammation and tolerance. 

The role of Thl-  or Th2-deficiency in mucosal B cell responses 

It is well known that Thl and Th2 cells communicate regulatory signals via their 
respective cytokines [80, 99]. For example, IL-2 and IL-4 produced by Thl and Th2 
cells, respectively, are important for the growth of both types of T cells, whereas IFN- 
7, a product of Thl cells, down-regulates Th2 cell function, while IL-10, secreted by 
Th2 cells, inhibits Thl cells [80, 99]. Although both Thl and Th2 cells can provide B 
cell help for subsequent antibody responses, Th2 cells are more adept at facilitating B 
cell responses, including mucosal S-IgA production [80]. To elucidate the role of Thl 
and Th2 cells in mucosal T - B cell interactions, cytokine gene-targeted knockout 
mice have provided an important experimental model, and we briefly describe our 
recent studies with cytokine knockout mice below. 

Immune responses in IFN-7-deficient mice 

To examine the importance of Thl-type cells and their derived cytokines such as 
IFN-7 in the development of vaccine-induced mucosal S-IgA and serum IgG sub- 
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class responses, IFN-7-deficient (IFN-7 -/-) mice were orally immunized with live 
attenuated Salmonel la  expressing Tox C (fragment C) of tetanus toxin or alternatively 
oral tetanus toxoid (TT) with cholera toxin (CT) as mucosal adjuvant. Mucosal vac- 
cination via the respiratory tract was also carried out by intratracheal instillation of 
a replication-deficient adenovirus vector (Ade-5-1acZ) expressing/3-galactosidase (/3- 
gal) [105]. Immunization with all three vaccine regimen elicited strong systemic IgG 
and mucosal S-IgA antibody responses in the absence of IFN-7. Only oral recombi- 
nant (r) Sa lmone l la -Tox  C at a dose of 10 l° colony-forming units elicited stronger 
serum titers of TT-specific IgM, IgG and IgA antibodies in IFN-7-/- mice when com- 
pared with wild-type mice, probably because of the substantial increase in numbers of 
Salmonel la organisms in the Peyer's patches (PP) and spleen of IFN-7  -/- mice. The 
ability of radenovirus - lacZ and rSalmonella - Tox C to induce transgene-specific 
(i.e., TT or/3-gal) IgG2a and IgG3 antibodies appeared to be compromised in IFN- 
7 -/- mice. There was, however, a compensatory increase in transgene (i.e., TI" or 
/3-gal)-specific IgG1 with little or no detectable IgE. In contrast, the vaccine regimen 
of TT plus CT induced TT-specific IgG1, IgE, and S-IgA antibodies in both WN-7 -/- 
and wild-type mice of similar magnitude. These results suggested that IFN-7 was not 
essential for the development of mucosal S-IgA responses to a Th 1-dependent mucosal 
vaccine (i.e., rSalmoneIla - Tox C or r-adenovirus - lacZ). In addition, this cytokine 
did not contribute to CT induced mucosal S-IgA responses, which was previously 
shown to be a strong inducer for a Th2-type pathway (Table 1) [105]. 

Cytokine-specific enzyme-linked immunospot assay (ELISPOT), enzyme-linked 
immunosorbent assay (ELISA), and reverse transcriptase-polymerase chain reaction 
(RT-PCR) assays were used to analyze Thl and Th2 cytokine response profiles in 
CD4 + T cells isolated from mucosal (i.e., PP or lung) and systemic (i.e., spleen) 
compartments. When CD4 + T cells from these tissues were restimulated in vitro with 
antigen, CD4 + T cells from mice orally immunized with rSalmonella or intranasally 
administered radenovirus elicited increased numbers of transgene-specific Th2-type 
cells producing IL-4 and IL-5. IFN-7-/- mice, like wild-type mice, developed a strong 
Th2 type response to TT when co-administered with CT as mucosal adjuvant. Thus, 
Th2 type responses to oral rSalmonella and intranasal radenovirus vaccines were ele- 
vated in the absence of IFN- 7 when compared with control, background mice, whereas 
immune responses to TT delivered with CT as mucosal adjuvant were essentially the 
same as seen in wild-type mice (Table 1) [104]. 

T helper subsets and B cell responses in IL-4- / -  mice  

IL-4 gene knockout (IL-4-/-) mice showed diminished Th2 type responses and were 
unable to undergo mucosal S-IgA responses to soluble protein when co-administered 
orally with CT as adjuvant [55, 65, 87, 104]. To determine if IL-4 was also essential for 
the induction of mucosal antibody responses to live vaccine vectors, we immunized 
IL-4-/- mice with rSalmonella - Tox C or radenovirus - lacZ. Both live vaccine 
systems readily induced transgene-specific mucosal S-IgA antibody responses in IL- 
4 -/- mice. The major serum IgG subclass was IgG2a, and in all cases, neither total 
nor antigen-specific IgGl or IgE responses were induced in IL-4-/- mice, confirming 
the importance of IL-4 for regulation of antigen-specific IgG1 and IgE responses [65, 
87]. These results were consistent with our fndings in normal mice which showed 
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Table 1. Antigen-specific Thl and Th2 cytokine profiles of CD4 + T cells from IL-4-/- and IFN-3'-/- mice 

Antigens and Mouse strain Thl type Th2 type Mucosal 

vectors / adjuvants IFN,¥ IL-4 IL-5 IL-10 IgA 

rSalmonella Tox C 
Control + - - + + 
IL-4-/- + - - + + 
IFN_~-/- _ + + + + 

Tetanus toxoid 
Control - + + + + 
IL-4-/- + . . . .  

IFN_3,-/- _ + + + + 

radenovirus 
Control + - - N.D. + 
IL-4-/- + - - N.D. + 
IFN-"/-/- - 5: + N.D. + 

rSalmonella Tox C, recombinant Salmonella expressing f~agment C of tetanus toxin; radenovirus f3-gal, 
recombinant adenovirus expressing fl-galactosidase; IL, interleukin; IFN, interferon; N.D., not determined 

that oral Salmonella and intranasal adenovirus vaccines potentiate mucosal S-IgA 
responses to expressed proteins in the absence of  IL-4 (Table 1) [87]. 

Oral rSalmonella and intranasal radenovirus elicited the same pattern of Th cell 
cytokine responses (e.g., IFN-'7 and/or IL-10) in both normal and IL-4- / -  mice, as 
evidenced by cytokine analysis of antigen-restimulated mucosal (i.e., PP or lung) and 
splenic CD4 + T cells. Oral immunization of  IL-4- / -  mice with T-f plus CT as mucosal 
adjuvant resulted in elevated Thl - type  cells producing IFN-'7. In addition to antigen- 
specific CD4 + T cells, these live vector vaccines also induced IL-6 production in 
populations of APC (i.e., macrophages and B cells). These studies showed that IL-4 
was not essential for the induction of antigen-specific mucosal S- lgA antibodies when 
the vaccine was delivered to mucosa-associated tissue by a recombinant live bacterial 
(e.g., Salmonella) or viral vector (e.g., adenovirus) (Table 1). 

A Thl  and Th2 cell internet for mucosally induced tolerance 

A role for oe/3 T cells and derived cytokines in systemic unresponsiveness 

Oral immunization has been shown to be a useful system to induce antigen-specific 
S-IgA and serum antibody responses. However,  oral administration of large doses or 
repeated administration of lower doses of  protein antigen has also been shown to in- 
duce systemic unresponsiveness in the presence of mucosal IgA responses [ 13, 31, 40, 
51, 73, 89, 106, 108]. These immunologically distinct and opposite immune responses 
in mucosa-associated and systemic tissues were originally termed oral tolerance [ 102]. 
More recent studies have also shown that intranasal administration of proteins may 
induce systemic unresponsiveness [69, 70], and this has led mucosal immunologists  
to term the induction of  systemic unresponsiveness to intranasally or orally delivered 
proteins- 'mucosal ly  induced tolerance' .  The most compell ing evidence to date sug- 
gests that T lymphocytes are the major cell type involved in the induction of mucosally 
induced tolerance [41, 49, 51, 56, 66, 81, 85, 95]. More recently, it was suggested that 
CD8 + T cells which produce transforming growth factor-/3 (TGF-13) are key regula- 
tors for induction of systemic unresponsiveness in mucosally induced tolerance [63, 
74, 75]. Thus, oral administration of myelin basic protein (MBP) induced TGF-/3- 
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producing CD8 + T cells which were capable of inducing systemic unresponsiveness, 
resulting in inhibition of experimental autoimmune encephalomyelitis (EAE) [63, 74, 
751. 

Recent studies using the models of autoimmune diseases have shown that the 
development of disease can be prevented by prior induction of oral tolerance by 
mucosal delivery of the antigen associated with the disease. This phenomenon has 
been shown in the experimental models of arthritis [113], IgA nephropathy [31], 
and EAE [47, 112], as well as with other disorders such as trinitrobenzene saltonic 
acid (TNBS)-induced colitis [19]. It has been proposed that the primary mechanisms 
of mucosally induced tolerance are either the generation of active suppression or 
clonal anergy, depending upon the antigen dose [22]. For example, low doses of 
orally administered antigen favor active suppression which is induced and mediated 
by secretion of suppressive cytokines such as TGF-fl, IL-4 and IL-10 by CD4 + T 
cells and/or Th2-type cells. On the other hand, a high oral dose regimen is thought to 
lead to clonal anergy, which is defined as a state of T lymphocyte unresponsiveness 
characterized by absence of proliferation, IL-2 production, and diminished expression 
of IL-2R [22]. In addition, mucosally induced tolerance could be elicited by selective 
activation of Thl- and Th2-type cells [29, 37]. Recent studies have suggested that 
induction of both Thl- and Th2-type cytokines were down-regulated when tolerance 
was induced by feeding a single high dose of antigen [30]. On the other hand, the Thl 
subset appeared to be more susceptible to the induction of tolerance in vitro when 
compared with Th2-type cells [711, and Thl-mediated responses were more easily 
tolerized than those requiring Th2-type cells in vivo [18]. 

A role for IFN-~, in systemic unresponsiveness 

To elucidate the role of Thl and Th2 cells in mucosally induced tolerance, we have 
adapted our established oral tolerance model to IFN-2~ deficient (IFN-,-/-/-) mice. The 
IFN-'~-/- mice and normal background BALB/c mice were orally primed with 25 mg 
ovalalbumin (OVA) prior to systemic immunization with OVA (100 #g) in complete 
Freund's adjuvant (CFA). Serum from BALB/c mice orally immunized with OVA 
(tolerant group) showed significantly reduced levels of OVA-specific IgG, whereas 
IFN-',/-/- mice exhibit comparable levels of antigen-specific responses, when com- 
pared with those of control mice, which received oral-PBS and systemic OVA plus 
CFA (Table 2). We also examined the levels of OVA-specific serum IgG subclass re- 
sponses (IgG1, IgG2a and IgG2b) as indicators of Thl-  or Th2-type help. Control mice 
produced significant levels of both IgG 1 and IgG2a anti-OVA antibodies, whereas re- 
duced levels of both isotypes were seen in serum from the tolerant group of BALB/c 
mice (Table 2). No reductions in OVA-specific IgG1 responses were seen in IFN-7 -/- 
mice which were fed OVA. The absence of Thl-type responses was suggested by the 
observation that no OVA-specific IgG2a responses were seen in IFN--y-/- mice. 

When antigen-specific delayed-type hypersensitivity (DTH) responses were ex- 
amined, both orally tolerized IFN-'~ +/+ (BALB/c) and IFN--y-/- mice showed sig- 
nificantly lower DTH responses in comparison with their control groups (Table 2). 
Further, splenic T cells isolated from mucosally tolerized IFN-q, +/+ and IFN-~-/- mice 
showed significantly lower proliferative responses when compared with control mice 
(Table 2). OVA-specific Thl- and Th2-type cytokine synthesis by OVA-specific CD4 + 
T cells were significantly reduced in culture supernatants from the tolerized BALB/c 
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Table2. Induction of systemic unresponsiveness by feeding ovalbumin (OVA) to normal but not to IFN- 
"/-/- mice 

Serum Ab responses a Cytokine synthesis c 
Mouse strains IgG1 IgG2a DTH b Proliferation c Thl Th2 

IFN_,,/+/+ Control +++ ++ ++ ++ ++ +++ 

Tolerant + + + + + + 

IFN-v-/- Control +++ - ++ ++ - ++ 

Tolerant ++ - + + - + 

a Groups of normal control (BALB/c) or IFN-v -/- mice of the same background were given 25 mg of 
OVA orally (tolerant) or PBS only (control) 1 week before subcutaneous immunization with OVA in 
complete Freund's adjuvant (CFA). Secondary immune responses to OVA were induced by subcutaneous 
injection of OVA in CFA and with OVA/incomplete Freund's adjuvant 14 days after the first injection. At 1 
week after the second systemic immunization, serum antibody levels were measured by an enzyme-linked 
immunosorbent assay (ELISA) 
b OVA-specific delayed-type hypersensitivity (DTH) responses were determined by measurement of ear 
swelling following injection of OVA or PBS 
c Purified splenic T cells were cultured in the presence of OVA (1 mg/ml) and irradiated splenic feeder 
cells for 4 days. The amount of [3H]thymidine incorporation was determined. The culture supernatants 
were harvested 4 days after culture and analyzed by cytokiue-specific ELISA 

mice that exhibited decreased proliferative responses (Table 2). Interestingly, although 
low levels of cytokine synthesis were detected in splenic culture supernatants from 
orally immunized IFN-7-/-  mice, significant amounts of IL-4 synthesis were detected 
(Table 2). Taken together, these findings demonstrate that a single high oral dose 
of OVA induced systemic antigen-specific T cell unresponsiveness, whereas intact 
antigen-specific B cell responses were seen in IFN-v-/ -  mice. 

Cross talk between intraepithelial "/6 T cells and epithelial cells 

Cytokine receptor expression by mucosal ~5 T cells 

To understand the immunological function of V~ T cells in IEL, it is important to 
examine the interaction between cytokine and cytokine receptor(s) for V~5 T cells. 
An array of cytokines including IL-1, IL-2, IL-4 and IL-6 have roles in T cell ac- 
tivation, growth and proliferation [28, 33, 76, 110]. Among these interleukins, IL-2 
was originally isolated as a T cell growth factor and appeared to stimulate T cell 
growth directly without a requirement for other cytokines [110]. Recently, it was also 
shown that IL-7 can act on lymphocytes of the T cell lineage, despite the fact that 
this cytokine was initially discovered by its ability to initiate proliferation of B cell 
precursors [36, 83, 84]. In addition, this 25-kDa cytokine has been reported to en- 
hance anti-CD3 and iectin-induced proliferative responses of mature T cells [1, 14, 
78]. Further, it was also suggested that IL-7 may play an important role in T cell 
ontogeny since IL-7-specific mRNA has been demonstrated in murine thymus [83]. 
In addition, IL-7 induced proliferative responses in cultures containing fetal thymic T 
cell precursors and thymocytes [17, 20, 111]. Disruption of the IL-7 or IL-7 receptor 
(IL-7R) genes resulted in a 10- to 20-fold reduction of T cells in spleen and thymus 
[90, 107]. These findings demonstrated the importance of IL-7 for T cell development. 
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IL-2 and IL-7 were thought to serve as complementary T cell activation factors for 
thymus-derived '76 T cells in addition to c~/3 T cells [88]. Furthermore, since a com- 
bination of IL-2 and IL-7 induces high proliferative responses in peritoneal '76 T cells 
isolated from Listeria-infected mice in the presence of peritoneal macrophages [96], 
it was important to examine whether "76 T cells isolated from intestinal epithelium 
respond to these cytokines. 

7~TCR Dim 

Expression of IL-2R and IL-7R 

IL-2R IL-7R 1on 

. . . . . . . . . .  " "  4 

RT-PCR Analysis 

IL-2R IL-7R 

lo° lo~ 1~ 1~ lo, .., J . ~  

IL-2R ( 700 bp ) 
o ~ ^ ~ o / ¢ . r i B r i g h t  IL-7R ( 302 bp) 

100 101 102 103 104 100 101 102 103 104 

Fig. 1. Expression of interleukin-2 receptor (IL-2R) and IL-7R on ~,6 T cell subsets isolated from intra- 
epithelial lymphocytes (IEL). 3'6 T cells isolated from routine intestinal IEL were separated into two 
fractions based on the intensity of 3"6 TCR expression (e.g., 76 Dim and 3"6 Bright T cells). Flow cytometry 
analysis revealed that the ~Dim T cells express both IL-2R and IL-7R while the "7~ Bright T cells did not. 
When RNA was isolated from flow-cytometry-purified "76 Dim and ..f~'Bright T cells and then examined by the 
respective cytokine-specific reverse transcriptase-polymerase chain reaction (RT-PCR), 700 bp and 302 bp 
messages, which correspond to IL-2R and IL-7R, were detected only in the ~Dim T cells 

When purified CD3 + T cells from IEL of C3H/HeN mice (H-2 k) were analyzed 
for the expression of '76 TCR by flow cytometry, two distinct populations of "~6 T 
cells were observed (Fig. 1) [26, 101]. Of the CD3 + T cells, 40-50% were of the '76 
lineage and contained approximately equal frequencies of "76Dim (mean intensity of 
333 4- 22) a n d  "76 Bright (mean intensity of 702 4- 45) T cells. To characterize these two 
subsets of "76 T cells, "~6 Dim and "76Bright T cells were purified by flow cytometry, and 
were then examined for the expression of IL-2- and IL-7-specific receptors. '76 Dim 
T cells expressed low levels of both IL-2R or IL-7R (Fig. 1). In contrast, '76Bright 
T cells did not express receptors for IL-2 or IL-7. This result was supported by 
the analysis of mRNA expression for IL-2R and IL-7R using RT-PCR. When RNA 
was isolated from other aliquots of  '76 Dim or '76 Bright T cells, and examined for the 
respective cytokine receptor-specific PCR product, 700 bp and 302bp of amplified 
message which corresponded to IL-2R and IL-7R, respectively, were found only in 
the "76 Dim T cells (Fig. 1). On the other hand, neither IL-2R nor IL-7R mRNA was 
detected in RNA preparations obtained from "76Bright T cells. These results provide new 
findings that '76 Dim IEL constitutively express both IL-2R and IL-7R, while "76 Bright 
T cells do not harbor either receptor. 

It was important to examine whether "76 Dim T cells respond to exogenous IL- 
2 and/or IL-7 since these IEL express these cytokine-specific receptors in situ 
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(Fig. 1). When 3`~Dim T cells were incubated with an optimal concentration of IL-2 
(100units/ml) or IL-7 (5 ng/ml) for 24-72h,  high levels of DNA replication (stim- 
ulation index: - 80-100) were noted following 48 -72h  of incubation. Further, co- 
cultivation of IL-2 and IL-7 provided a synergistic effect for proliferation of 3`~Dirn 
IEL where a stimulation index of  greater than 400 was evident. In contrast to the 
3`~Dim T cell fraction, 3`~Bright T cells did not respond to either IL-2 or IL-7. These 
findings indicated that 3`~Dim T cells in IEL which express IL-2R and IL-7R respond 
to exogenous IL-2 and IL-7, with high level DNA replication and cell proliferation 
[26]. To support this observation, it was shown that the common cytokine receptor 3' 
(3`c) chain is shared by the IL-2R and IL-7R [54, 86]. Further, it was reported that 
disruption of  this 3`c chain in mice resulted in their inability to develop 3`~5 T cells 
[11]. More recently, studies have shown that the high-affinity receptor for IL-7 is 
essential for 3̀ ~5 T cell development [35, 64]. 

Epithelial Cells ~J3 TCR + IELs 

Fig. 2. Expression of IL-2- and/or IL-7-specific mRNA by intestinal epithelial cells and c~13 TCR + IEL 
T cells. The RNA from freshly isolated epithelial cells and o~/3 T cells of intestinal epithelium were 
examined by IL-2- and IL-7-specific RT-PCR. Epithelial cells expressed mRNA for IL-7 (469 bp) but not 
IL-2 (502 bp), while c~/3 T cells harbored both messages 

Mucosal epithelial cells and eel3 T cells produce essential cytokines for 
intraepithelial ",/(5 T cells 

Based on the findings described thus far, it was important to determine the source 
of IL-2 and IL-7 for 3`~ T cell development in the intestinal mucosa. Since it was 
suggested that the source of  the IL-7-specific mRNA could be thymic epithelial cells 
and/or stromal cells [20, 36], intestinal epithelial cells were a logical candidate for 
production of IL-7. To identify the source of  IL-7-producing cells in the intestinal 
epithelium, epithelial cells and c~/3 T cells were isolated from the small intestine of  the 
same mice for the analysis of  IL-2- and IL-7-specific mRNA expression. Cytokine- 
specific RT-PCR analysis revealed that epithelial cells harbored mRNA for IL-7 but 
not IL-2 (Fig. 2) [26]. To support this view, it was shown that human epithelial cells 
were also capable of producing IL-7 [109]. In the case of  c~/3 T cells, mRNA for both 
IL-2 and IL-7 were noted by cytokine-specific RT-PCR analysis (Fig. 2). However, 
the intensity of  the PCR product was higher for IL-7 when compared with IL-2. Taken 
together, these findings suggested that both epithelial cells and c~13 T cells are sources 
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of IL-7 for neighboring 76 T cells. Thus, cell to cell interactions between epithelial 
cells and c~fl and 3,~5 IEL via IL-7 and IL-7R as well as IL-2 and IL-2R could be an 
important cytokine communication network for the activation and development of -y~5 
T cells in the intestinal epithelium. 

A recent study with WBB6/F1- W/W ° (c-kit) and WCB6/F1-SI/SI d (SCF) mutant 
mice has suggested that SCF and c-kit interactions play important roles in the de- 
velopment and maintenance of intestinal intraepithelial "y6 T cells [92]. Further, this 
study demonstrated that neighboring epithelial cells were able to produce SCF [92]. 
Thus, although normal levels of "y6 T cells were detected in IEL of both SCF and 
c-kit mutant mice at 4-8 wks of age, decreased numbers of this T cell subset were 
noted at 16 weeks of age [92]. These observations further indicated that cross talk 
between 76 IEL and epithelial cells are essential for homeostasis within the mucosal 
immune system. 

Potential role for mucosal "/6 T cells in S-IgA responses 

76 T cells are essential for maximum mucosal IgA responses 

The vast majority of "/6 T cells are located in the epithelium of the small intestine 
of normal mice [8, 32, 59], and this suggests a potential role for these cells in main- 
tenance of mucosal immunohomeostasis. Indeed, 76 T cells play an important role 
in immune responses to intracellular bacteria and parasites [60, 79, 104]. Further, it 
was recently suggested that IgE responses were regulated by splenic CD4-,  CD8- 
7~5 T cells [69, 70]. However, the precise function of regulatory 76 T cells in specific 
immune responses remains unclear. Our previous studies suggested that 3<5 T cells 
are important for the maintenance of mucosal IgA responses in the presence of sys- 
temic unresponsiveness (mucosally induced tolerance) induced by oral administration 
of antigen [23, 25]. 

To assess the role of 76 T cells for their participation in regulation of systemic 
and mucosal immune responses, we initially examined the effects of TCR-6 gene 
disruption on the numbers of IgM-, IgG- and IgA-producing cells in systemic and 
mucosal tissues, and the levels of IgM, IgG and IgA present in serum, saliva, bile 
and fecal extracts. When the frequency of Ig-producing cells were compared between 
spleens of nonimmunized TCR~-/- mice and control mice of the same (129 x B6) F2 
background (TCR6+/+), comparable numbers of IgM- and IgG-producing cells were 
seen. In contrast, the numbers of IgA-secreting cells in the intestinal lamina propria 
and PP of TCR6-/- mice were significantly lower than in control TCR6 +/+ mice [27]. 

The frequency of IgA-containing cells was also evaluated in tissue sections of je- 
junum and ileum by immunohistological analysis. Enumeration of the IgA-containing 
plasma cells in the lamina propria of the small intestine indicated a reduction in IgA 
plasma cells in TCR~5-/- mice. The reduction in IgA-producing cells in TCR~5-/- mice 
was confirmed by an assessment of antibody levels in serum, saliva, bile and fecal 
extracts using an isotype-specific ELISA. The IgA levels were reduced by approxi- 
mately 80% in fecal extracts obtained from TCR~5-/- mice when compared with fecal 
IgA levels in control TCRg +/+ mice. Serum IgA levels were also reduced in TCR~5-/- 
mice, whereas IgM and IgG levels were normal (Table 3). Further, IgA levels in saliva 
and bile of TCR~-/- mice were significantly lower than controls (Table 3) [27]. 
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Table3. Levels of total serum and secretory IgA antibodies in TCRS-/- mice 

K. Fujihashi et al. 

Mouse strains Fecal (#g/ml) Saliva (ng/ml) Bile (/~g/ml) Serum (/zg/ml) 
TCR~5-/- 2 + 1 244 5:19 270 4- 30 25 + 3 
TCR6 +/+ 11 + 2 753 4- 100 849 ± 155 125 4- 10 

Cytokine production by "76 IEL T cells 

Our previous studies and those of others indicated that "y6 IEL can produce an array of 
Thl-  and Th2-type cytokines, as well as TNF-c~ and TGF-¢3 [3, 102]. Specifically, the 
"76 IEL can secrete IL-5 and IL-6, which are key cytokines for inducing sIgA + B cells 
to differentiate into IgA plasma cells [3, 100]. Moreover, "76 T cells in other mucosal 
effector tissues such as the salivary glands, are committed to produce IL-5 and IL-6 
[38], and the frequency of IgA-producing cells is reduced in the salivary glands in 
the absence of "76 T cells (e.g., TCR6-/- mice) (data not shown). IgA-producing cells 
were also greatly reduced in intestinal tissues of IL-6-/- mice [93]. Thus, it is possible 
that impaired IgA responses in TCR6-/- mice could reflect the absence of mucosal 
"7~ T cells producing IgA-enhancing cytokines such as IL-5 and IL-6. 

Another possible explanation for our findings is that the lack of "76 T cells in 
intestinal epithelium negatively influences epithelial cell production of TGF-/3 and 
IL-6, which serve as IgA isotype-switching and differentiation factors, respectively 
[4, 5, 16, 62, 97]. T cell-derived cytokines, including IFN-"7, TNF-c~ and IL-4, can 
influence epithelial cell functions [58, 91]. All of these cytokines can be produced 
by "76 IEL [3, 100]. Further, ",/6 T cells have been shown to influence epithelial cell 
growth and function [6, 53]. In fact, reductions in both the numbers of intestinal ep- 
ithelial cells and their levels of major histocompatibility complex class II expression 
have been observed in TCR-6 gene disrupted mice [53]. Further, intraepithelial "76 
T cells have been shown to modulate growth of epithelial cells via the production 
of keratinocyte growth factor [6]. The absence of "76 T cells in the intestinal epithe- 
lium could, therefore, compromise the production of TGF-/3 and IL-6 production by 
epithelial cells which, in turn, may result in diminished IgA responses. 

Reduction of 7T-specific IgA responses in orally immunized TCR~5-/- mice 

The antibody response to TT was examined in TCR6-/- mice that were immunized 
orally with a vaccine containing TT and CT as mucosal adjuvant to investigate the 
potential involvement of 3'6 T cells in the induction of antigen-specific IgA responses. 
When TT-specific serum antibody responses were compared after three oral doses of 
the combined vaccine, the TCR6-/- mice and their normal littermates (TCR(~ +/÷) 
produced almost identical levels of serum IgG antibodies to both proteins, whereas 
lower serum IgA responses were seen in TCR6-/- mice. When TT-specific antibodies 
were assessed in fecal samples, lower antigen-specific IgA responses were noted in 
the TCR6-/- mice. To evaluate these findings at the single-cell level, we examined the 
frequency of antigen-specific antibody-forming cells (AFC) in different tissues of mice 
immunized orally with the combined vaccine using an ELISPOT assay. A reduction 
in the number of TT-specific IgA AFC was noted in both the PP and intestinal lamina 
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Fig. 3. Tetanus toxoid (TT)-specific antibody responses in TCR6-/- and control mice immunized orally 
with a combined vaccine containing TT and cholera toxin. Mononuclear cells isolated from the spleen, 
Peyer's patches and lamina propria of both TCR6-/- and control mice were subjected to the TT-specific 
ELISPOT assay. Antigen-specific IgM ([3), IgG ([~1) and IgA (ll) antibody-forming cells (AFC) were 
enumerated 

propria of  the orally immunized TCR/5-/- mice when compared with the control group 
of  mice (Fig. 3) [27]. 

These results suggest that "3'/5 T cells may serve an important regulatory role for 
the induction of mucosal IgA responses. The previous studies also suggested that 7/5 T 
cells may play an important role in the maintenance of  mucosal IgA responses in the 
presence of mucosally induced tolerance [23, 25]. One possible explanation for this 
interesting finding was that ,-//5 T cells may positively influence c~f3 Th2 cells, which 
directly regulate sIgA + B cells for the generation of  IgA plasma cells in mucosal 
tissues. In this scenario, a triad interaction between mucosal 7/5 T cells, c~fl Th2 type 
cells and sIgA ÷ B cell precursors could be involved in the induction of maximal IgA 
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responses to oral antigens. Experiments in mice [45, 60, 77] and in chickens [2, 43] 
indeed suggest that bi-directional interactions between a f3 and 76 T cells may have 
functionally important consequences (Fig. 4). Alternatively, the "yd T cells could have 
a direct effect either on the IgA isotype switching or the differentiation of sIgA + B 
cells (Fig. 4). A recent study indicates that activated -y~ T cells can express the CD40 
ligand (CD40L) and thereby induce IgE isotype switching [39]. Thus, it is possible 
that mucosal 3,~5 T cells expressing CD40L may be capable of directly interacting with 
CD40 +, sIgM + B cells to induce IgA isotype switching. The observation of significant 
IgA production in CD40-/- and CD40L-/- mice [12, 46, 94] also raises the possibility 
of an alternative set of interaction molecules that could allow 75 (or a/3) T cells in 
the mucosal compartment to induce IgA responses to ingested antigens. 

Prolifera--tion ,L-Z~.L # ~ @ " @ ? % Proliferation 

IL-5,1L-6 

Fig. 4. A mucosal T cell/B cell/epithelial cell internet for regulation of S-IgA responses (S-IGA secretory 
IgA, IL interleukin, R receptor, SCF stem cell factor, c-kit WBB6/F1-W/W v mutant mice, IEC intestinal 
epithelial cell, KGF keratinocyte growth factor [] 

Thus, 76 T cells may influence IgA B cell responses to ingested antigens via their 
interactions with other T cells and mucosal epithelial cells. Mucosal ",/6 T cells may, 
thus, regulate production of key cytokines for IgA B cell development by CD4 +, a/3 
T cells (e.g., IL-5, IL-6 and IL-10) and epithelial cells (e.g., TGF-fl and IL-6). The 
interactions between 3,~5 T cells, a/3 T cells, and epithelial cells in the induction and 
regulation of mucosal immune responses should be a fertile and productive area for 
future investigation. 
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Conclusions 

Mucosal  immune responses are strongly regulated by CD4 + T cells and their derived 
cytokines. In this regard, IFN-3 ,-/- mice (i.e., which lack Thl  and have elevated Th2 
cells) showed strong mucosal Th2-type responses together with S-IgA production, 
while IL-4- / -  (e.g., dominant Th l  and lack of Th2 cells) mice had impaired mu- 
cosal Th2 and IgA responses following oral delivery of TT and CT. However,  when 
rSalmonella or radenovirus were used for antigen delivery, significant levels of  mu- 
cosal IgA responses were induced in both IFN-'~-/-  and IL-4- / -  mice. The choice of  
the antigen delivery system which leads to optimal Th and B cell interactions are 
important for the induction of effective IgA responses, even in situations where the 
immune system is compromised.  It is clear that Th2-type cytokines are important in 
mucosal IgA responses; however, other cytokine combinations can compensate for 
mucosal immunity in situations in which Th2 cell responses are absent. Mucosal ly 
induced tolerance may be one approach to prevent several systemic immune disor- 
ders; however, the mechanism of  this phenomenon still needs to be elucidated. Our 
recent findings have suggested that IFN- 3, may play an important role in induction of 
systemic unresponsiveness since oral tolerance was not induced in IFN-'~-/-  mice. 

Our studies as well as those of others indicated that at least two phases of  a triad 
of cell interactions are important for the mucosal immune system. First, it has been 
shown that epithelial cell-produced IL-7 and SCF and c~/3 T cell-derived IL-2 are 
essential activation and growth signals for intestinal 3'~ T cells. Second, our studies 
with TCR ~ knockout mice have suggested that mucosal -y~5 T cells also play a critical 
role in the regulation of  mucosal IgA responses. Thus, a mucosal internet among "~5 
T cells, c~/3 T cells, and IgA B cells appear critical for mucosal homeostasis and for 
regulation of  specific mucosal immune responses. 
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