
Probab. Th. Rel. Fields 73, 395-413 (1986) Probabmty 
Theory Rek~t ed F'~lds 

�9 Springer-Verlag 1986 

Exchangeable Random Variables and 
the Subsequence Principle 

Istvfin Berkes 1 and Erika P6ter 2 

1 Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, 
Refiltanoda u. 13-15, Hungary 

2 Department of Mathematics, Institute of Building, Dfivid Ferenc u. 6, 
1113 Budapest, Hungary 

Summary. Call a sequence {X,} of r.v.'s e-exchangeable if on the same 
probability space there exists an exchangeable sequence {Y,} such that 
P(lX,-Y,l>=e)<=e for all n. We prove that any tight sequence {X,} defined 
on a rich enough probability space contains e-exchangeable subsequences 
for every e>O. The distribution of the approximating exchangeable se- 
quences is also described in terms of {X,}. Our results give a convenient 
way to prove limit theorems for subsequences of general r.v. sequences. In 
particular, they provide a simplified way to prove the subsequence theo- 
rems of Aldous [1] and lead also to various extensions. 

1. Introduction 

It has been known for a long time that sufficiently rarified subsequences of 
every norm-bounded sequence of r.v.'s behave like mixed i.i.d, sequences. A 
heuristic principle related to this phenomenon was formulated by Chatterji (see 
[7]): 

Subsequence Principle. Let T be a limit theorem valid for all sequences of i.i.d. 
r.v.'s belonging to an integrabiIity class L defined by the finiteness of a norm 
II IlL. Then if {X~} is an arbitrary (dependent) sequence of r.v.'s satisfying 
sup, IIX, IIL< + co then there exists a subsequence {X,k } satisfying T in a mixed 
form. 

For example, if {X,} is an arbitrary sequence of r.v.'s with sup, IIX, l[l< 
+ ~ then there is a subsequence {X,k} satisfying the strong law of large 
numbers in a mixed (randomized) form, i.e. 

1 N 
~ k~= 1 X .  --, X a.s. 
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for some integrable r.v. X (see [13]). If sup, llX,]12< +oe then there exists a 
subsequence {X,k } obeying the central limit theorem and the law of the 
iterated logarithm, again in a "randomized" form: 

1 N 
k__~ 1 (Xnk -X)=% N(0, Y) 

N 

lira ( 2 N l o g l o g N )  -1/2 ~ ( X , ~ - X ) = Y  1/2 a.s. 
N~oo k = l  

for some r.v.'s X and Y_>0; here N(0, Y) denotes Gaussian distribution with 
mean zero and (random) variance Y, i.e., N(0, Y) is the distribution of 3"Y1/2 
where ~ is an N(0, 1) variable independent of Y (see [2, 8, 9, 12]). Several 
further special cases of the principle have been proved by ad hoc methods, see 
[12] for an extensive bibliography. Although it is natural to expect a general 
theorem behind these examples, nothing beyond special cases has been ob- 
tained until 1977 when, using a new and powerful method, Aldous showed that 
the subsequence principle is valid for all distributional and a.s. limit theorems 
satisfying mild technical conditions. In his paper [1] he gave an interesting 
analysis of the structure of limit theorems and also gave examples of simple 
(although artificial) limit theorems T for which the subsequence principle is not 
valid. 

The purpose of the present paper is to prove theorems describing precisely 
the structure of sparse subsequences of general r.v. sequences. As we shall see, 
our theorems provide a simplified approach to the subsequence principle and 
lead to various extensions. To state the first result, call a sequence {X,} of r.v.'s 
e-exchangeable if on the same probability space there exists an exchangeable 
sequence {Y,} such that P { I X , - Y , ] > e } < e  for all n. Then our theorem can be 
formulated as follows: 

Theorem 1. Let {Xn} be a sequence of r.v.'s bounded in probability and let en be 
a positive numerical sequence tending to zero. Then, if the underlying probability 
space is large enough, there exists a subsequence {X,~} such that, for all l> 1, 
the sequence {X,~, X,,+ ,, ...} is erexchangeable. 

Thus, every tight sequence {X,} contains a subsequence {X,k } which is 
"exchangeable at infinity" in the sense that for any large l, the tail sequence 
{Xn,,X,,+, . . . .  } is a small perturbation of an 'exchangeable sequence. By 
De Finetti's theorem every exchangeable sequence is conditionally i.i.d, with 
respect to its tail field whence it follows easily that limit theorems for i.i.d.r.v.'s 
continue to hold for exchangeable sequences in a mixed form. (See [1], p. 63 
and p. 65 for a formalization and quick proof of this principle for all a.s. and 
purely distributional limit theorems.) Theorem 1 extends a very large class of 
these limit theorems for subsequences, thereby establishing a general version of 
the subsequence principle; this applies also for many limit theorems outside of 
the class considered by Aldous. Examples will be given in Sect. 3. 

The idea to use near exchangeability to derive limit theorems for Sub- 
sequences is due to Aldous. However, he used distributional exchangeability 
properties of subsequences (see Lemma 12 of [1]) and applied a ratifying 
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procedure depending on the particular limit theorem we want to prove. The 
fact that Theorem 1 involves pointwise approximation simplifies the situation 
considerably and leads directly to limit theorems. It also enables one, as we 
shall prove in a subsequent paper, to give converses of Aldous' theorem, in 
particular to characterize domains of attraction for subsequences of r.v.'s. 

In [11 Aldous gave an example of a uniformly bounded sequence {X~} such 
that no subsequence {X,k } and exchangeable sequence {Yk} can satisfy 
X,-YkV--,O. Theorem 1 shows, on the other hand, that given any tight sequence 
{X,} and e>0,  there exists a subsequence {X,k} and an exchangeable sequence 
{Yk} such that 

P{IX~--YkI>=~}<=~ k = l , 2  . . . .  (1.1) 

By Aldous' example, the last relation cannot be replaced by 

P{IX,--Ykl>6k}<CSk k = l ,  2 . . . .  

for any 6k--.0 and thus (1.1) is best possible. Of course, to use the above 
approximation to derive limit theorems for subsequences, we need to know the 
distribution of the exchangeable sequence { Yk} for every e > 0. Our next theo- 
rem provides this information, showing that {Yk} can always be chosen as a 
finite mixture of i.i.d, sequences with explicitly given distribution functions. To 
formulate the result, we introduce some terminology. 

Definition. A sequence {X,} of r.v.'s on (f2, ~-, P) is determining if it has a limit 
distribution on each set A c f2 of positive probability. 

For  a determining sequence {X,} we put 

Fa(t)= lim P(X,<tiA) (1.2) 
n ~ o o  

where the limit exists at continuity points t of F A. It is not difficult to prove 
(see e.g. E4]) that every tight sequence {X,} of r.v.'s contains a determining 
subsequence. Hence we can restrict our attention to determining sequences 
instead of stochastically bounded ones whenever it is convenient. 

We now introduce the notion of "strong exchangeability at infinity", play- 
ing a central role in our paper. 

Definition. Let {e,} be a positive numerical sequence tending to zero. We say 
that the sequence {X,} of r.v.'s is strongly exchangeable at infinity with speed 
% if the sequence {X,} is determining, the r.v.'s X, are all simple (i.e. take only 
finitely many values), a{X1} c o-{X2} c ... and the following is true: 

For  any k > l  the se ts  A={Xk_I=C} (where c runs through the range of 
Xk-1) can be divided into two classes F 1 and F 2 such that 

(i) y~ P(A)<e k. 
A~F1 

(ii) For  any A~F2 there exist PA-independent r.v.'s {Yi ~A), j = k , k + l  .... } 
defined on A with common distribution function F A such that 

PA{IXj--Y)AII>ek) <ek j=k ,k  + l ..... (1.3) 

Here PA denotes conditional probability with respect to A; F A is defined by 
(1.2). 
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Thus, {Xn} is strongly exchangeable at infinity if for every large k, the 
sequence {Xk, Xk+l,. . .} is a small perturbation of an i.i.d, sequence on 'almost 
all' sets A of the form A ={Xk_ 1 =C}. Clearly, this is a rather strong structural 
property; its consequences will be studied in Sect. 3. 

We formulate now the main result of our paper. 

Theorem 2. Let {X,} be a sequence of r.v.'s bounded in probability and let {~,} 
be a positive numerical sequence tending to zero. Then, if the underlying probabil- 
ity space is rich enough, there exists a subsequence {X~k } and a sequence {Yk} of 
r.v.'s such that { Yk} is strongly exchangeable at infinity with speed ~k and 

[X, - Ykl < oe a.s. 
k = l  

If {X,} is strongly exchangeable at infinity with speed e, then the sequence 
{Xk, Xk+l, ...} is obviously 2ek-exchangeable. Hence Theorem 2 implies Theo- 
rem 1, together with a description of the approximating exchangeable se- 
quences. The main advantage of Theorem 2 over Theorem 1 is that it yields an 
approximation of subsequences {X,~} directly by i.i.d, sequences and thus it 
implies limit theorems for {X~k } by using the theory of independent r.v.'s, 
without referring to exchangeability. It is worth mentioning that the i.i.d. 
approximation given by Theorem 2 for lacunary sequences {X~k} on subsets A 
of the probability space is generally optimal for each A in the same sense as 
Theorem 1 is optimal on the whole probability space. By Example2 of [4] 
there exists a tight sequence {X,} on a suitable probability space (f2, ~-, P} 
such that no subsequence {X~}, set AEo ~ with P(A)>0 and i.i.d, sequence 
{Yk (A)} defined on A can satisfy X , ~ - Y k  (A) & 0 on A. See I-4-1 for more infor- 
mation on this point, in particular for a characterization of tight sequences 
{X,} having a subsequence {X,~} allowing the approximation X,~ - Yk ~P 0 with 
an i.i.d, resp. exchangeable {Yk}" 

2. Proof  of  Theorem 2 

In what follows, p stands for the Prohorov distance of probability measures i.e. 
for any two probability measures P and Q on the Borel sets of the real line we 
put 

p(P, Q)=inf{~>0: P(A ) <= Q (A~) + ~ and 

Q(A)<P(A~)+8 for all Borel sets A c R 1 } .  

Here A ~ denotes the ~-neighbourhood of A i.e. A~={x~RI:  I x - y l < 8  for some 
yeA}.  It is known (see [5-1, Appendix III) that p metrizes the weak con- 
vergence of probability measures i.e. p (Pn, P) ~ 0 iff Pn ~ P weakly. 

, . (X1 X ~ -  ~) Lemma 1. Let X 1, X 2 . . . .  be a sequence of simple r.v. s and denote by ~, ' .... 
the conditional distribution of X ,  given XI ,  ..., Xn_ 1. Assume that there exist 
distributions v,, n = 1, 2, ... such that 

p{p(#(x ...... xn-1), v~)__> b~} =<b~ n =1, 2 . . . .  
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for some constants 6 , > 0 .  Then, if the underlying probability space is rich 
enough, there exist independent r.v.'s I11, Y2 . . . .  such that the distribution of I7, is 
v, and 

P(IX,-Y, l>=6g),)<66,  n = 1 , 2  . . . .  

This l emma is implicit in [-3J ; its p roof  is identical with that of  Theorems 1 
and 2 of the just ment ioned  paper. 

L e m m a  2. Given any e >0 ,  a r.v. X and a finite a-field ~ ,  there exists a simple 
r.v. Y such that ~ c a { Y }  and P ( I X - Y I > e ) < e .  

Proof Choose  first a simple r.v. Z such that  P ( [ X - Z I  >e/2)__<e/2. Let zl, ..., z k 
be the values of  Z and A i = { Z  =zi} , 1 <_ i<k. Then if B1, ..., B 1 are the a toms of 
~-, choose numbers  ]c~,jl<~/2, l < i < k ,  l<j<=l such that all the numbers  z i 
+ q , j  are different. Let  V be the r.v. taking c~, i on A~c~Bj. Then obviously Y 
= Z  + V satisfies the requirements.  

L e m m a  3. I f  {X,} is determining with limit distribution function F then the weak 
limit 

t/t = lim z ( X , < t )  1 (2.1) 
n ~ o o  

exists for all continuity points t of F. Here Z {" } denotes the indicator function 
of the set in brackets. 

Proof See [4], Propos i t ion  (2.1). 

L e m m a 4 .  Let # and v be probability measures on the real line, let 
x l < x 2 < . . . < x  k and set I 0 = ( - o o ,  xl), Ia=[Xj, Xa+l) ( l < j = < k - 1 ) ,  Ik=[Xk, 
+ OO). Assume that 

max (x j+l  - x j ) < e  (2.2) 
j = t  . . . . .  k - 1  

p(I o) + P(Ik) < g (2.3) 
k 

[# (Ia) - v (Ij) l < e. (2.4) 
j=o 

Then 
p(~, v) < 2e. 

Proof Let B c R  1 be a Borel set and let H B denote the set of those integers 
0 < j  < k such that  B m lj  is not  empty. Then  using (2.2)-(2.4) we get 

#(B)< ~ #(Ij)<e+ 2 #(Ij) 
j~HB j~HB 

l <=j <=k--1 

< 2 e +  ~ v(Ij) = 2 e +  ~, v(Ijc~B~)<2e+v(B ~ ) 
j eHB jEHB 

l<j<=k--1 l < = j < k - 1  

1 For integrable r.v.'s ~,, r we say ~ , -~  weakly if E(~,tl)-~E(~) for any bounded r.v.q. This 
notion is not to be confused with the weak convergence of probability measures and distributions. 
To avoid ambiguity, in the sequel we keep the term "weak" for convergence of r.v.'s; weak 
convergence of probability measures and distributions will be referred to as distributional con- 
vergence. 
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where the equality in the fourth step follows from the fact that for 1 =<j_<_ k - 1  
the length of Ij is <e  and thus if such an l j  contains a point of B (i.e. j~HB) 
then Ij ~ B ~. 

The following lemma is a trivial consequence of the Markov inequality. 

Lemma 5. Let X>=O be a r.v. with E X  <<_e and let {Ai, i = l  . . . .  ,l} be a partition 
of the probability space with all Ai's having positive probability. Then the total 
probability of those Ai's such that 

EA, (X) <= 

is at least 1 -]//e. Here E a denotes contitional expectation given A. 

Proof of Theorem 2. Step 1. By Lemma 2 there exist simple r.v.'s ~ such that 

P(]Xk--Yk[>Z-k)<2 -k (k=1,2 ,  ...) and o.{Y1}=a(Y2}= .... 

Hence without loss of generality we may assume that the r.v.'s X, themselves 
are all simple and 

a(X1} = o. (Xz} = .... (2.5) 

As any sequence {X,} bounded in probability contains a determining sub- 
sequence (see e.g. [4]) we can also assume without loss of generality that {X,} 
itself is determining. Finally, there is no loss of generality in assuming that the 
sequence {e,} is decreasing. Let P,,A denote the conditional distribution of X, 
given A and let #a = lira #,,A; denote by Fa(x ) the distribution function of #A" 

n ~ c z 3  

As {X,} is determining, these quantities are defined for any A=f2  with 
P(A)>0.  

2. We can choose a subsequence {X,k } such that for any k > 1, 

p ( # n z , A , # A ) ~ g k  for any A~O.{X . . . .  } and l>k  (2.6) 

Indeed, let X,1 = X  1 and assume that X,1, ..., X,~_I are already constructed. Let 
A1,  A z , . . .  , A r be the sets of the finite o.-field o- {X,~_I}. Since p(#,,A~, #A,)~ 0 as 
n ~ oe for every 1 < i N  r, there exists an integer m k > 0 such that 

P (#,, A,, #A) < ek for all n > m k and 1 < i _< r. 

Set X,~ =Xm .  Obviously, the sequence {X,~} and all of its subsequences satisfy 
(2.6). 

3. Let F(x)=Fr~(x ) be the limit distribution function of X, relative to f2 and 
let Ce be the set of continuity points of F(x). Choose the number Lk>O so that 
Lk~ CF, --Lk~ C e and 

F(Lk) -F ( - -Lk )  > 1 --ek" (2.7) 

We show that the following statement is true: 
Let {Ar i=1  . . . .  ,I} be any partition of the probability space with all A~'s 

having positive probability. Then the total probability of those A~'s for which 
the inequality 
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I~A,([- 2Lk, 2Lk] ) __--> 1 --]//~ (2.8) 

holds, is at least 1 - } / ~ .  

Proof. By Lemma 3, the weak limits ~/t in (2.1) exist for each teCv, Obviously 
0__<,/t__<l a.s. and t<t' implies rh<r/t, a.s. Further, for any AcF2 with P(A)>0 
(2.1) implies P(X,<tIA)-+EA(~, ) for teC r and thus 

FA(t ) =EA(rlt ) (2.9) 

for any t which is a continuity point of both F and F A. As LkeCF, --LkeCf,  
(2.7) and (2.9) imply E(qLk--t/_Lk)>l--e k and applying Lemma5 for the non- 
negative r.v. 1--t/Lk+t/_Lk we get that the total probability of those Ai's such 
that 

EA, (r/L ~ -- t/_ L~) > 1 -- 1 /~  (2.10) 

is at least 1--1/Tkk. Choose an Ai satisfying (2.10) and let xe(Lk, 2Lk) be such 
that x and - x  are continuity points of both F and FA. Then (2.10) remains 
valid if t/L~ --r/_Lk is replaced by r/x - t /_x and using (2.9) we get 

l~Ai ( [  --  X, x l )  ~ i --  ] ~ k "  

The last relation evidently implies (2.8). 
4. Let F(x) and Cp be as in step 3; by Lemma3 the weak limits t/t in (2.1) 

exist for each teC F. Define t / i=rh2-thl  for any interval I=[ t l ' t 2 )w i th  
tl,t2~C F. We allow here also the values t~= +_oe by setting t /_~=0,  q ~ = l .  
We now construct a subsequence {X,~}, together with a sequence H 1 c H 2 c  ... 
of finite subsets of Cp such that setting 

(k) . (k) Hk = ix,  , . . . ,  ~q~ } 
and 

Uk= {I=[a,b): a<b and a, beHk w{ + oo}vo{-oo}} 

the following properties hold: 

0 < x  (k) --x~k)<~, l<_v<=qk--1 (2.11) 
v + l  ~ k - -  

F, IP(X, EIIX,k 1)-E(rl~IX,~_,)I<e k (l>k) (2.12) 
l e U k  

P{ 2 IE(rhlX,,)-rlll>gkl X . . . .  } <ek (l>__k). (2.13) 
I E U k  + 1 

Moreover, with probability >__ 1 - 2 ] / / ~  we have 

inf P(x(lk)<x,, < Xq~(k)lX,~ _ ~ )>  1 -- 2 ] / ~ .  (2.14) 
l>k 

Construction. Let L k be the numbers defined in step 3 and choose finite sets 

H k = {x(1 k), x<k)l k = 1, 2, 
�9 - . ,  q k /  " ' .  
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such that H, c H 2 c  .... x]k)<-3L k, x~k)~>3Lk and (2.11) holds. Since C F is 
dense, the Hk's can be chosen to be subsets of C v. Now we define a sub- 
sequence {X,k } by induction as follows. Set X,I=X a and assume that 
X . . . . . . .  X,k_l are already constructed. Let c a . . . .  , c~ be the possible values of 
X,~_I and put Ai={X,k_I =ci}, l<_i<_r. By step 3 there is a set F c { A  1 ..... At} 
such that 

~, P(AI)> 1 - ] / ~ k  (2.15) 
AiEF 

and 
~A,([--2Lk,2Lk])>----1--1/~ for Aier. 

As #A is the limit distribution of X,  given A, the last inequality implies 

liminfPA,(lX, l<3Lk)> l--]//~ for Aier 

and thus there exists an integer s k > 0 such that 

PA,(]X,[<3Lk)> I--2I/~k for n>s k and all AieF. (2.16) 

Note  further that by (2.1) 
z(X, eI)~rl~ weakly (2.17) 

for any I=[a,b) where a<b and a, b e C v u { + ~ } w { - ~ } .  Since HkcC v, 
(2.17) implies 

Z [P(X, eI[A)-E(~lx[A)[ ~ 0  as n ~ c ~  
I~Uk 

for any A ~ 2  with P(A)>0.  Choosing A =A1, ..., A~ we get that there exists an 
integer * s k > 0 such that 

~" IP(X,~IIX,~_~)-E(rI~IX .... )[<~k for n=s * (2.18) 
IeUk 

Set ~*--o-{X1,  X 2 . . . .  }, then ~ is ~-* measurable and thus using (2.5) and the 
martingale convergence theorem we get 

E(rhlX,)~E(~zl~*)--~ a.s. as n ~  

for any fixed I~Uk+ 1. This shows that for any fixed l<_i<_r 

PA,{ 2 IE(~lX.)-r t~l=>~k}~O as n - ~  
IeUk + I 

and thus there exists an integer s** > 0  such that 

P{ ~ [E(~l,IX,)--~lil>ek[ X . . . .  }--<ek for , = o  k">o**. (2.19) 
l e U k +  i 

Choose nk=max(sk, s*, s k ). This completes the k-th step of induction and thus 
the construction of the subsequence {X,~} is also completed. Now relations 
(2.12), (2.13) follow evidently from (2.18), (2.19); further, since the r.v. on the left 
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side of (2.14) is identical with inf ~. (k) (k) Pa,(x~ < X ,  <xq~) on each set Ai, l<i<r ,  
I>k 

relation (2.14) follows from (2.15), (2.16) and x(lk)< --3Lk, x~k)>3Lk. 
5. From now on, let {X,~} denote a subsequence of {X,} satisfying the 

properties guaranteed in steps 2 and 4. We show that { X J  satisfies the 
following statement: 

For  every k>  1 the sets A ={X . . . .  =c} can be divided into two classes /'1 
and F 2 such that 

(i) ~ P(A)<=3],/G_,. (2.20) 
AEF1 

(ii) For  each AeF 2 we have 

and 

PA{ ~ IPA(X,,~I[Xnk, ...,Xn,_1)--rlt]~28a} ~gk 
IeUk 

PA{ E ]PA(X.,~I)-~,] >2 G -1 }  < e]/~k-1 
leUk 

(2.21) 

(2.22) 

PA (x] k) < X,, < x~k]) >_ 1 -- 2 ] / G  (2.23) 
for every l > k. 

Proof. Let c be a possible value of X . . . .  . Then setting A = { X  . . . .  =c} and 
using the identity PA(BI C)=P(B[A C) we get for l>k 

PA(X, zEIIXnk=ak .... , X .... =a / -  1) 

=P(X,~elIX . . . .  =c, X, =a k .. . . .  X .... =az_l) 

=P(X,~IIX,~ =a~_ t) 

where in the last step we used (2.5). We thus see that the r.v.'s 
PA(X, s11X,~, ..., X,,_I ) and P(X,~IIX, ,  1) are identical on A and thus on A 
we have, using (2.12), ek+ and UlCU2c. . .  

[Pa(X,,6IIX,~, . . . ,X,,  1)-rlrl 
l~Uk 

= ~ IP(Xn,EIIXm_~)-~III 
I~Uk 

<= ~ IP(X,,~IIX,,_~)-E(rIIIX,,_,)I+ ~ IE(rlzlX, z_l)-rli[ 
leUk I~Uk 

<~k+ ~ IE(~,lS,,_)--",l=~k+'Ck,,, say. (2.24) 
IEUk 

By (2.13), l>k and Uk= Uk+ 1 we have 

PA(IZk,,[ > ek) < ek 

and thus the PA-probability that the first expression of (2.24) exceeds 2e k is at 
most ek, proving (2.2i). (Note that (2.21) holds for all A={X,k_I =c} without 
exception.) To get (2.22) and (2.23) we note that on A we have, using (2.12), 
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~" [PA(X,,eI)--tbI= ~ [P(X, ,6IIX . . . .  )-rl,I 
IEUk IeUk 

< F, IP(X,,elIX,~_l)-E(thlX,~_l)[+ Y', IE(~I,IX . . . .  ) - ~ 1  
l~Uk IeUk 

<gk + ~ [E(rh[X,k_,)--rlil=~k+{k, say. 
IEUk 

Integrating (2.13) and setting l=k  we get 

(2.25) 

P(~k+ 1 >= ek) < ~k" 

Changing k to k - 1  and applying Lemma5 to the indicator function of 
{~k>ek_~} it follows that the total probability of those sets A={X.~_I  =c} for 
which the inequality 

PA(~k >= ek- 1) <=]//~-- , (2.26) 

holds, is at least 1 - ] / /~_1 .  On the other hand, since inequality (2.14) holds 

with probability >_ 1 - 2 ] / / ~ ,  the total probability of those sets A = {Xn~_l =c} 
for which 

infPA(x(k)<x,, <Xq~)=(k) > 1 -- 21/~k (2.27) 
l>k  

holds, is > 1 - 2 } / ~ .  Hence using the monotonicity of ~k it follows that the 
events A =  {X . . . .  =c} can be divided into two classes F 1 and F 2 such that (2.20) 
holds and for A e F  2 we have (2.26) and (2.27). It remains now to notice that 
(2.25) and (2.26) imply (2.22) for A e F  2. 

6. Fix k>  1, A e F  2 and consider the sequence {X,~, X . . . .  , ...} as a sequence 
of r.v.'s on the probability space (A, PA, fflA). We claim that there exist Pa- 

, y(A) y(A) defined on this space, all having distribution #A independentr .v.s  k , k+l . . . .  
such that 

PA(lX, j-- Y)A)l> 541/e~7_~)< 54]//~k_ 1 j = k , k  + l . . . .  (2.28) 

This implies that the sequence {X,k } is strongly exchangeable at infinity with 

speed 541//e~_1 which is only notationally different from our theorem since e, 
can be chosen arbitrarily. 

To prove our claim above we define, for any l>  k, the probability measures 
/~ix, ...... x,,_,) and #l (the first depending on chance) by 

~i,~ ....... x , ,_,)(G)= PA(X,,~Gt X ,  k, ..., X,,_I) 

I~(G) =PA(X,,~G) (G c R  ~ Borel-set) 

To estimate the Prohorov distance of pl x ....... x,,_l) and #~ we note that (2.21), 
(2.22) and e,+ imply 

[PA(X,n EI [ X . . . . . .  , X,,~-l) -- PA(Xm eI)l <= 4ek- a 
IeUk 

with PA-probability > 1 - 2 1 / ~ _  ~ . Also by (2.23), 

PA ( X,, (~ [x (k), x~k]]) <= 2 ]// e~. 
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The last two relations, ek$, (2.11) and Lemma 4 imply 

..... x . ,  #,)__< 

with PA-probability at least 1--2I/~k_ 1. Further, as our set A~F 2 is an atom of 
a{X . . . .  }, (2.6) implies 

p(~,, ~ )  < ~ (l__> k). 

By the triangle inequality for p, 

pA{p(#}X,~,...,X,, 1), #A)=>9/ek_l}~Z]/~k_l  l=k, k + l  . . . .  

and our claim above follows from Lemma 1. Hence the proof of Theorem 2 is 
completed. 

3. Applications 

In this section we show that Theorem2 implies a very large class of limit 
theorems for subsequences of r.v.'s. As a first application, we derive one of 
Aldous' general theorems ([1], Theorem6) stating the validity of the sub- 
sequence principle for distributional limit theorems. Then we give examples 
showing that the method applies for a.s. limit theorems and also for many limit 
theorems lying outside Aldous' formalization. 

To derive limit theorems from Theorem2,  we need a few preliminary 
remarks. Let {X,} be a determining sequence of r.v.'s with limit distribution 
function F. By Lemma 3, the weak limits r/t in (2.1) exist for all continuity points 
t of F. Let H be a dense countable set of continuity points of F. The limits t h 
are determined only with probability one and following the method of [14], 
Lemma6.1,4. one can construct versions of t/t, t eH  such that for every fixed 
co~f2, the function rh(m), t~H extends to a distribution function F~o(t ). Let #o~ 
denote the probability measure corresponding to the distribution function Fo~; 
we call /% the limit random distribution of {X,}. This notion is due to Aldous 
and plays an important role in the investigations of [1]. Obviously, #,o(B) is a 
v-measurable r.v. for any Borel set B ~ R 1 where z is the tail field of {X,}. 

For  any A~(2  with P(A)>0,  let #,,a denote the conditional distribution of 
X, given A. Since {Xn} is determining, #,,A converges, as n ~ o o ,  to a distribu- 
tion #A; let F A denote the distribution function of #A" It is easy tO prove the 
following 

Lemma 6. (a) For any A of positive probability and any real t we have 

Fa(t ) =Ea(F~o(t)). (3.1) 

(b) Let tp(x), x ~ ( - o %  + oo) be any nonnegative, piecewise continuously dif- 
+ o O  - t o o  

ferentiable function. I f  ~ O(x)dF(x)< +oo then ~ O(x)dF, o(x)< +co a.s. and 
- o o  - o o  

E 4,(x)dV~(x = ~,(x)dV(x). 
- -  - o o  
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Proof. (3.1) is an easy consequence of (2.9); the equality of part (b) follows from 
(3.1) by integration by parts. 

If the r.v.'s X, are all simple and (2.5) holds, the random measure #o can be 
obtained as a limit of random measures of simple structure. Put 

F~")(t) =E(F.(t) lX,)(co) t~R  1 (3.2) 

where F.(t) denotes the r.v. which takes F~(t) at co. Denote by /~)  the probability 
measure corresponding to the distribution function F~ "). (3.2) and part (a) of 
Lemma 6 imply that if A is an atom of a {X,} then F~ ") is identical with F A for 
co~A. Hence, for any n>_ 1 the range of the random map p~) is finite. 

Lemma 7. For almost all co we have 

#(") ~--% (3.3) co /1~o a s  n --* ~ .  

Proof. For any fixed rational r, F~")(r)~Fo,(r) for almost all co by (3.2) and the 
martingale convergence theorem. (Note that F.(r) is cr{X l, X 2, ...} measurable.) 
Hence, for almost all co, the relation F~")(r)~Fo,(r) holds simultaneously for all 
rational r and thus (3.3) is valid. 

With p denoting the Prohorov distance as in Sect. 2, (3.3) implies 
pt,r ,, ~ 0  a.s. and thus there exists a numerical sequence e,~0 such that 

\ / ~ 0 )  ' W'a)} 

P{co: p(tt~), #o)>G} =<e . n =1, 2, ... (3.4) 

If we replace {X,} by a subsequence {Xm. } then ~t o remains the same a n d / ~ )  
changes to ~t(~ "). Hence for the sequence {X~,}, (3.4) holds with G replaced by 
% .  Thus we have 

Lemma 8. By  passing to a suitable subsequence of  {X,}, the speed of  con- 
vergence to zero of  G in (3.4) can be made as rapid as desired. 

We are now in a position to derive limit theorems from Theorem 2. We 
begin with proving a slightly weakened version of Aldous' general "distri- 
butional" theorem, Theorem6 of [1]. To state this result, we need a few 
definitions from [1]. Let dr denote the set of probability measures on the real 
line, equipped by the topology generated by the Prohorov metric. 

Definition. A weak limit theorem of i.i.d.r.v.'s is a system T= (fl ,  fz  . . . . .  S, {Gu, ~eS}) 
where 

a) S is a Borel subset of JC{, 

b) For each k > l ,  fk=f'k(Xl,X2 . . . .  , p )  is a real function on R ~176 xS, measur- 
able in the product topology (in R we take the usual topology), 

c) For e a c h / ~ S ,  G, is a probability distribution on the real line such that 
the function # ~* G, is measurable (with respect to the Borel fields in S and ~r 

d) If #eS and X~, X 2 . . . .  are independent r.v.'s with common distribution # 
then 

f k (X i ,  X 2 , . . . , I ~ ) ~ , G ,  as k ~ o o  (3.5) 

For example, the central limit theorem corresponds to the case S=class of 
distributions with finite variance, fk(xl ,  x 2 . . . .  , # )= k- t /2  (x~ + . . .  + x k - k . E # ) ,  
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Gu=normal  distribution with mean zero and the same variance as g. In 
general, S describes the class of distributions to which the limit theorem T 
applies (the "condit ion" of the theorem); the limit theorem itself is expressed 
by relation (3.5). 

For  the functions fk Aldous makes some additional assumptions ensuring 
that fk are continuous in the x~'s and also that for large k, fk depends weakly 
on the first few variables x~. In what follows, we give a slightly strengthened 
form of these assumptions. 

Definition. We call the weak limit theorem T=( f~ ,  f2, ..., S; {G u, #~S}) regular 
if there exist sequences Pk, qk of positive integers tending to + ~ such that 
Pk ----< qk and 

(i) fk(Xa, X z . . . .  , #) depends only on Xp~ . . . .  , Xq~, # 

(ii) fk satisfies the Lipschitz condition 
q k  

r X / 
Ifk(xp~ . . . . .  Xq~,#)- fk(xp~, . . .  , q~,#)l < ~ Ixi-x'i[ ~ (3.6) 

i =  P k  

for some 0 < e < 1. 

For regular limit theorems, (3.5) takes on the form 

fk(Xp~, . . . ,Xq~,p)-~  G u as k---,~. (3.7) 

Clearly, the central limit theorem, as given above by the corresponding 
fk, S ,G, ,  is not regular. However, the validity of the relation k-1/z(xl-t-... 
+ X k - k . E # ) N  N(O, Dg) is not affected by deleting the terms X 1 . . . .  ,Xrkl/q_ 1 
from the sum X~ + . . .  + X  k and thus in the central limit theorem we can also 
choose fk = k -  I/2(XEkl/q +. . .  + Xk _ k'Eg).  Obviously, the theorem becomes regu- 
lar with this choice. 

We need one final definition, namely that of the mixture of probability 
distributions. Let (f2, N , P )  be a probability space and for any coeD let a 
distribution v o be given such that the map co ~ vo~ is measurable with respect to 
the Borel field in rid. Then it is easily seen that the set function v* defined by 

v*(B) =Evo(B  ) = ~ vo(B)dP(co ) 
~2 

is a probability measure on the Borel sets of the real line. We call v* the 
mixture of the vo's with weight function P; we use the notation 

v* = ~ Vo dP(co). 

We can now formulate our 

Theorem3. Let  {X,} be a determining sequence of r.v.'s with limit random 
distribution go. Let  T = ( f l ,  f2, . . . ,  S; {G,, #sS} )  be a regular weak limit theorem 
and assume that #o~S for almost all co. Then there exists a subsequence {X,~} 
such that 

fk (X,I (co), X,2 (co) . . . .  , #o) -g v* as k ~ oQ (3.8) 

where v* ~-S Guo~dP(co). 
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Except the slight difference in the technical assumptions made on the 
functions fk, Theorem 3 is identical with Theorem 6 of [-1]. Considering again 
the case of the central limit theorem, the assumption #~eS a.s. reduces in this 
case to the requirement that #,, has a finite variance for almost every ~o; this 
guarantees that the r.v. X(co)=E#~ is a.s. finite. Then (3.8) becomes 

( x . 1  + .. .  + v* 

where v* is the mixed normal distribution whose characteristic function is 

~exp (-c t2/2)dH(c)  where H is the distribution function of the r.v. DZ#,o. 
0 As we shall see below, Theorem 3 is an easy consequence of Theorem 2. To 
simplify the writing, let fk(#) denote, for any #eS, the distribution of the r.v. 
fg(Y1, Y2, ..., #) where Y1, Y2 . . . .  are independent r.v.'s with common distribu- 
tion #. (Clearly, this distribution depends only on fk and #.) Then (3.5) can be 
written as 

fk(#) -~, au for any #~S. (3.9) 

Assume for the sake of simplicity that fk(Xp~, ..., Xq~, #) does not depend on 
#. Let ~, tend to zero monotonically and so rapidly that 

~k_lqk<k  -1 k = l , 2 ,  ... (3.10) 

where Pk, qk, ~ are the quantities appearing in (3.6). From Theorem 2 it follows 
that there exists a subsequence {X,k } and a sequence {Yk} of r.v?s such that 
{Yk} is strongly exchangeable at infinity with speed ek and X,~ = Yk+~k where 

~[Zk[~< +Oe a.s. Hence there is no loss of  generality in assuming that {X,} 
k=l 
itself is strongly exchangeable at infinity with speed e,. Similarly, on the basis 
of Lemma 8 we can assume without loss of generality that (3.4) holds for the 
sequence {X,}. We show that {X~} satisfies the conclusion of Theorem 3 i.e. 

fk(Xp~,... ,Xq~)Ag~G,odP(o) ) as kooo .  (3.11) 

The heuristic reason of (3.11) is the following. Let ~=r  and 
denote F~, F 2 the two classes of atoms of ~ guaranteed by the definition of 
strong exchangeability at infinity for the index Pk" Then for A e F  2 i.e. on 
"almost all" atoms of ~ the sequence Xp~ . . . .  , X~ can be approximated by an 

e v(A) i.i.d, sequenc ~W , " ' ,  Y~) with common distribution #A such that the order of 
magnitude of Xj - y)a) is < ep~ for all j; more precisely, 

PA([Xj--Y)a)l>ep~)<epk J=Pk, pk+l  . . . .  (3.12) 

By (3.10), (3.12) and the Lipschitz condition (3.6), the (conditional) distribution 
of fk(Xvk, ..., Xqk ) on A is almost equal to the distribution of fk(~2 ), ..., Yq(f) 
i.e. to fk(#a) and thus distribution of fk(Xv,~, ..., Xq,) on the whole probability 
space is 

Z fk(#A)P(A) =~ L ( # ~  k- 1))MP(fD) 
A 
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where the last equality follows from the fact that for co~A, U ( p k - 1 )  - - '  (See the r-co - - /ZA"  

remark preceding Lemma 7.) Thus the distribution of fk(X,~, ..., Y~) is close to 
the first of the following three distributions: 

S ( p k -  1) fk(#~o )dP(co), S fk(#o~)dP(co), ' ~ Guo~dP(co)" (3.13) 

On the other hand, the integrals in (3.13) are close to each other for large k. 
For the first two integrals this follows from (3.4) while the closeness of the 
second and third integral follows from the fact that fk(#~o) ~ G,~ for almost all 
co by (3.9) and p~o~S a.s. Hence for large k the distribution of fk(Xp~, ..., Xqk ) is 
also close to the third integral in (3.13) i.e. (3.11) holds. 

The above heuristic argument can be made precise without any difficulty, 
we only have to estimate the closeness of the considered distributions. We shall 
do this in the Prohorov metric by using the following simple remarks: 

A) The Prohorov distance of two measures # and v is <e  if and only if on 
some probability space there exist r.v.'s X and Y with distribution # and v such 
that P(IX - YI > 0  <8. 

B) If p(#, v)<e then P(fk(#), fk(V))<=e~qk where ~ and qk are the quantities 
appearing in (3.6). 

C) Let #1 . . . .  ,#r and vl, . . . ,v r be probability distributions, let further 
Pl . . . .  , Pr be nonnegative numbers with ~, Pi = 1. Assume that the sum of those 

pi's such that P(#1, vi)>e is at most e. Then the Prohorov distance of ~ Pi#i 
i = 1  

and Pl vl is < 3 e. 
i = 1  

D) Let #~ and v~o be random measures (i.e. measurable maps from a 
probability space (ELJ~,P) to ~ )  such that P{co: p(#o~,v~o)>e}<=e. Then the 
Prohorov distance of ~ #o~dP(co) and ~ vo~dP(co) is <3e. 

Statement A) is Strassen's theorem (see [-15]); statement B) follows im- 
mediately from statement A) and the Lipschitz condition (3.6). Statements C) 
and D) are almost evident; C) is of course a special case of D). 

Now our heuristic argument can be made precise as follows. By (3.12) and 
the Lipschitz condition on fk we have 

PA{[fk(Xp~ . . . . .  Xq~)-fk(Y(p A) . . . . .  Yq(~A))l>e;~qk} <e,k'qk, A~F 2 

and thus ~ P(A)<ep~, (3.10) and statements A) and C) imply that the 
A~F1 

Prohorov distance of the distributions of fg(Xpk, .... Xq~) and ~fk(pA)P(A) i.e. 
A 

the first integral in (3.13) is <3e;~qg<__3k -~. On the other hand, (3.4), (3.10) and 
statements B) and D) imply that the Prohorov distance of the first two 
integrals in (3.13) is <3~;~_lqk<3k -1. Finally, (3.9) and # ~ S  a.s. imply 
p(fg(#g), G,o~)~0 a.s. and thus there exists a numerical sequence 5k~.0 such that 

P{co: P(fk(#s Gu~)>=CSk} <=Sk k = l ,  2 . . . .  

Then by statement D) the Prohorov distance of the last two integrals in (3.13) 
is < 3 c5 k. Adding up our estimates, it follows that the Prohorov distance of the 
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distribution of fk(Xp . . . . . .  Xqk) and 5 GudP(o)  is < 6 k - * + 3 3 k - - , 0  i.e. (3.11) is 
valid. Thus Theorem 3 is proved. 

We turn now to a,s. limit theorems. Instead of treating this class generally 
as weak limit theorems above, we illustrate the method on the case of the law 
of the iterated logarithm (convered also by Aldous' general theorems in [1]). 
We prove 

Theorem4. Let {X,} be a determining sequence of r.v.'s with limit random 
distribution #o,. Assume that #o, has finite variance for almost all 09 and set 

X((o) =E#o =5 xd#o(x), Y(o) =D#o  ={5 x2 d#o(x) -(5 xd#o(x))2} 1/2" 

Then there exists a subsequence {Xnk } such that 

N 

lira (2NloglogN) -1/2 ~ ( X , k - X ) = Y  a.s. 
N ~ o o  / ; = 1  

A sufficient condition for the a.s. finiteness of D#~ is sup E X 2 <  + oe (cf. 
n 

part b) of Lemma6).  This condition is not necessary: there exists e.g. an 
exchangeable sequence {X,} with EX{ = + oe such that D#~ < + oe a.s. 

Theorem 4 follows from Theorem 2 essentially in the same way as Theo- 
rem3, just we have to reformulate the law of the iterated logarithm in a 
"regular" form. This is given by the following simple lemma where L(n) 
denotes (2n log log n) 1/2. 

Lemma 9. Let Y> Yz,... be a sequence of r.v.'s satisfying sup El I1,1 < + c~; put S, 
n 

=Y, + . . .  + Y,, Sk, l=Yk+l + . . .  + Y~ (k<l). Then lira S,/L(n)=I a.s. if and only if 
n--+ oo 

for any e > 0  there exists an increasing sequence {ink} of integers such that 
m k > 5 k and 

P { max Sk,JL(j ) > I +8} <2  -k (k>ko) (3.14) 
m < " < m  k = J =  k + l  

and 
P{ max Sk,jL(j ) < 1 -~} <2 -k (k> ko). (3.15) 

mk =<j _-< mk + 1 

Proof. Assume first that (3.14) and (3.15) hold for some ink>5 k. By supEIY,[< 
+ oe we have 

e{ISkl>]/mT} <2-(k+l), k>=k o. (3.16) 

Using (3.14), (3.15), (3.16) and the Borel-Cantelli lemma we get 

1 - 2 e < l i m S , / L ( n ) < l + 2 8  a.s. 

proving the "if" part of Lemma9.  To prove the converse part, assume 

lim S,/L(n)= 1 a.s. We construct a sequence {ink} of integers such that m k > 5 k 
n ~ o o  

and P{sup  SJL(j)> 1 +8/2} <2  -(k+l) (3.17) 
j > m k  
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P{ max SjL(j)< 1-a /2}  <2  -(k+l~ (3.18) 
mk<=j<=mk+l 

for all k>=l. Choose m 1 so large that m~>_5 and (3.17) holds for k = l .  Assume 
that ml<m2<...<m N are already constructed such that ink>=5 k (l=<k=<N) 
holds and (3.17) and (3.18) are valid for k<=N and k<=N-1, respectively. Then 
choose raN+ 1 so large that m~+ 1 >max(5  N+I, raN) and (3.17) and (3.18) hold for 
k = N + l  and k=N, respectively. (This is possible since limS,/L(n)=l a.s.) 
Obviously, the so constructed sequence {ink} satisfies (3.17) and (3.18) for all 
k=> 1 and thus, in view of (3.16), relations (3.14) and (3.15) are also valid. Hence 
Lemma 9 is proved. 

Obviously, the r.v. 
max Sk,JL(j ) 

mk~--j~mk+l 

is a function of the r.v.'s Yk+l . . . .  , Y~k+~ and thus (3.14) and (3.15) can be 
written in the form 

P{fk(Yk+ 1 . . . .  , Y,,k+l)> 1 +a} <2  -k (k>ko) (3.19) 

P{fk(Yk+ 1, ..., Ymk+l) < 1 -a}  < 2 - k  (k>ko) (3.20) 

with suitable (smooth) functions fk- Relations (3.19) and (3.20) are very similar 
to (3.7), the only difference is that weak convergence in (3.7) is replaced by a 
sequence of probability inequalities for the same r.v.'s. As one can easily check, 
the argument proving Theorem 3 remains valid in this new situation with 
inessential changes and Theorem 4 follows. 

Closer examination shows that a large class of a.s. limit theorems can be 
reformulated as a sequence of probability inequalities similar to (3.19), (3.20). 
(As a matter of fact, the convergence relation (3.7) can also be written in such 
a form.) Instead of elaborating on this point, however, we show that a similar 
reformulation applies actually to many limit theorems lying outside of the class 
of weak and a.s. limit theorems and thus the subsequence principle holds for 
such limit theorems as well. As an example, we show the reformulation of two 
"refined" distributional limit theorems, namely that of the central limit theo- 
rem with remainder and Cram6r's large deviation theorem. 

Examplel. Let {X,} be a sequence of r.v.'s satisfying supElX,  IP<+oo  for 
n 

some p > 2. Then, as a trivial calculation shows, the relations 

sup IP {(X 1 + . . .  + X,)/lfn < t} - @(t)[ = (9 (n- ~) (3.21) 
t 

and 

sup IP {(X[logn] At . . .  -~- Xn)/r t} - ~(01  = ( 9 ( n  -=) (3.22) 
t 

are equivalent provided 0<  e<p/(2p +2) and thus for such c~ relation (3.21) can 
be reformulated as a sequence of inequalities 

~b(t)-Kn-'<P{(Xr,og,l+ ... +X,)/]f~<t} <~(t)+ Kn -~ (3.23) 

where the n-th inequality contains only the r.v.'s Xf~og,1 . . . .  , X,. 
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Since (3.23) is the  same type  as (3.19), (3.20), o u r - m e t h o d  appl ies  and  yields 
a vers ion of the cent ra l  l imi t  t heo rem with  r e m a i n d e r  for subsequences  of 
n o r m - b o u n d e d  sequences.  N o t e  tha t  there  is a loss of accuracy  caused  by  the 
r egu la r i za t ion  p r o c e d u r e  (i.e. d i sca rd ing  the r.v.'s X 1 . . . . .  Xt~og,l_ 1 f rom (3.21)): 
the  r e m a i n d e r  t e rm o b t a i n e d  in this way canno t  be  be t te r  than  (9(n -1'/(2"+2)) 
for r.v.'s wi th  un i fo rmly  b o u n d e d  p- th  moments .  As  the classical  r ema inde r  
t e rm in the  i.i.d, case is C(n -(p-2)/2) for 2 < p < 3 ,  we do no t  lose any th ing  for p 
lying close to 2 bu t  e.g. for p = 3  we get  on ly  a r e m a i n d e r  te rm (0(n -3/8+e) 
ins tead  of C(n-1/z). F o r  p + o o  the r ema inde r  t e rm a pp roa c he s  the op t ima l  
value  (9(n- 1/2). 

Example 2. Let  {32,} be a sequence of r.v.'s sat isfying sup E(exp  IXnl =) < + oo for 
some c~> 1. Then  the re la t ions  

and  

P {(X 1 + . . .  + X,) / ] /n  > x} ~ 1 - q~ (x) 

P {(Xt,og,j + . . .  + X , ) / V ~  > x} ~ 1 - 4) (x) 

for x = o ( n  1/6) (3.24) 

for x = o ( n  1/6) (3.25) 

are  equiva len t ;  (3.25) can aga in  be wri t ten  as a sequence  of inequal i t ies  anal-  
ogous  to (3.19), (3.20) and  our  m e t h o d  applies.  The  same a rgumen t  holds  for 
the m o r e  genera l  form of the large  dev ia t ion  theo rem val id  for x =o(n 1/2) (see 
e.g. [11],  p. 520). 
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