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Summary. Necessary and sufficient conditions are given, for a process to be 
the excursion process of some strong Markov  process. These are modifica- 
tions of necessary conditions of It6, which are here shown by example not 
to be sufficient. 

1. Introduction 

In his classic paper  "Poisson Point Processes attached to Markov Processes", 
K. It6 constructs the excursion point process of a given standard process at a 
recurrent point. He shows that the characteristic measure of the excursion 
process satisfies certain conditions, and then indicates how to reverse his 
construction provided those conditions hold. That  is, given a PPP  whose 
characteristic measure obeys these conditions, it should be possible to con- 
struct a process whose excursion process is that PPP. It6 doesn't  state this 
converse result as a formal theorem, and hence doesn't  write out a proof. This 
paper will a t tempt to make his argument  rigorous. 

This is perhaps more interesting in that the converse is not true as stated 
above. In Sect. 4, examples will be given showing that unless we strengthen two 
of his conditions, the process constructed from the PPP may fail to be strong 
Markov  or right continuous. This strengthening gives us necessary and suf- 
ficient conditions for the process obtained to be a right process. 

The argument for sufficiency is presented in Sect. 3, and that for necessity 
in Sect. 5. The following paper  [18] will show how some of these results may 
be simplified and extended, provided the original process is a Ray process or a 
right process. Section 6 is an Appendix, giving some other results that may be 
obtained from the proof  of the main lemma (Lemma 7). 

2. Notation and results 

E will be a separable metric space, and doo the a-field of its Borel subsets, d o 
will be the universal completion of doo. U will be the set of right-continuous E- 
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valued paths, and, for aeE, U a will be the set of all such paths u, satisfying u(0) 
- a .  (Wt)~ 0 will be the coordinate process on U; Wt(u)=u(t). For t>0,  q/o will 
be the smallest a-field such that for every ss[0, t], W~ is a measurable function 
from (U, q/o) to (E, o~~ q/t will be the universal completion of q/o, and q / t h a t  
of ~o .  

(H, P)  will be the measurable space of (U, q/)-valued point functions. That 
is, we adjoin a point b to U, and let H be the set of functions 
p: [0, oo)~ Uw{8} such that p(t)=b except for countably many t. ~ is the a- 
field on H generated by the functions p~-~N(A, p), where N(A, p) is the number 
of times t such that (t, p(t))~A~ [0, oo)• U. Here A belongs to the product 
~ |  the Borel field ~ on [0, oo), and of q/. (Yt),~o will be the coordinate 
process on H; y~(p)=p(t). 

For A e N |  we define the restriction of peH to A to be: 

~p(t), if (t, p(t))~A 
P[A(t) = (8, otherwise. 

Special cases of this will he the killing operators: 

as(P) = Pit0, sl• v, 

k , (p )  = pl[0, s)• v,  

For t > 0, ~t will be the sub a-field a t~(~) ,  of ~. We define the shift operators 
of H to be: 

O~(p)(t)=p(t+s), for t>0 ,  

o ~  (p) = o ~(p)l~o, ~)• ~. 

The same notation will be used for the corresponding shift operators on U. 
For u~U we define the hitting time and d6but of {a} c E  to be 

ao(u) = inf {t > 0; u(t) = a}, 

z~(u) = inf {t > 0; u(t) = a}. 

It is well known that both a ,  and % are (q/t+) stopping times. 
A Poisson point process on a probability space (s ~,  P), with values in 

(U,q/) is a measurable function Y:(Y2, g ) ~ ( / / , N ) ,  together with a filtration 
(~)t~o of (f2, ~ )  ( ~ , ~ t c ~ c ~  for t<s), such that: 

(a) 0q(Y)e~ for t=>0. 
(b) O~ is independent of ~ and has the same law as Y[(o, oo3 • v for t>=0. 
(c) There exist sets Ak~q/, A J U  such that N([O,t]xAk, Y)<c~ a.s. for 

each k, t. 

The special role of time t = 0  in (b) will be useful when we consider the 
point process of excursions away from a point a~E, of a Markov process 
taking values in E. Time t = 0  corresponds to the first excursion, which is 
exceptional in that we will want to allow it to start in any initial distribution. 
In contrast, the other excursions will start in a manner dictated by the 
transition probabilities of the given Markov process. 
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Under conditions (a), (b), (c) above, there exists a a-finite measure n on U 
(the characteristic measure of Y) such that 

E[N((O,t)xA, Y)]=t.n(A) for Aeq/, t>0 .  

This measure determines the law of Yl(o, oo)• v- In fact, if (si, t~)x A~ are 
disjoint and O<=s~< ti, for i=  1, ..., k, then the N((si, ti)x A~, Y) are independent 
Poisson random variables, of means (ti-si). n(Ai). 

In the theory of right processes, it is customary to equip a right continuous, 
E-valued process X based on ((2, ~-), with laws pb on (~2, ~-), one for each beE. 
We will reserve the notation pb for laws on the canonical space (U, ~'). 

In general, on a fixed measurable space (~?,Y), let (Xt)~>=o be a right 
continuous process, based on f2, with values in E. We will say that 
(Xt, ~t, #, pb) has the strong Markov property at T if the following situation 
holds; (~)t-> o is a filtration of ((2, ~ ) ,  X-l(~llt)~ ~ ,  # is a a-finite measure on 
(f2, ~), (Pb)b~ is a family of probability measures on (U, ~ )  such that b~--~pb(A) 
is E-measurable for each Ae~//, T is a stopping time for the filtration (~+) ,  and 

#(XT+ .eA, T< o% B)= ~ Px~'(A) d# for Ae~ll, BC~T+. 
B~{T< oo} 

Except in Lemma 6 below, we will always take # to be a probability measure. 
For  (Xt) right continuous with values in E, we will say that (X t, ~ ,  #, pb) is 

strong Markov if (Xt,~'t,#,P b) h a s  the strong Markov property at each ( ~ + )  
stopping time. For  aeE, (Lt)t>_o is a local time at a, if L is continuous, 
nondecreasing, and adapted to (~),  with set of increase exactly {t; Xt=a }, such 
that for every ( ~ + )  stopping time T with Xr=a, (X.+r,L.+T-Lr) is inde- 
pendent of ~ + ,  with the same law as (X.+~o~x), L.+~a~X) ). 

It6 performed the following construction. (Actually, he considered only the 
case of a standard process, but as pointed out to me by J. Pitman, his 
arguments apply without change. Henceforth similar qualifications will be 
omitted.) Let P be a probability measure on (f2, ~,~) under which ~ is com- 
plete, and suppose the following conditions hold: 

(2.!) (Xt) is right continuous with values in E, (X t, Wt, P, pb) is strong Mar- 
kov, and each ~ contains all the P-null sets of ~.  

(2.2) X is recurrent at a point aeE. (pb(a, < oO)= ! for beE). 

(2.3) If W ( a , = 0 ) = l ,  then there is a local time (Lt) for X at a, which is 
canonical in the sense that it is normalized to make 

E[e-~~ e -t dLt]. 

(Condition (2.3) holds if X is a right process). 
If W ( a , = 0 ) = l ,  let S(s) be the right continuous inverse local time: 

S(s)=inf{t >O; Lt> s}, S ( 0 - ) = 0 .  Let 

~X(S(s -)+t),  if O<t<S(s) -S(s- )  
Ys(t)=(a, if t>=S(s)-S(s-)>O 

Ys=6, if S(s)-S(s-)=O. 
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Then It6 shows that Y is a (U,q/)-valued PPP with respect to P and the 
filtration of Y. 

If, on the contrary, W(aa=0)=0 ,  then X visits a at a discrete set of times. 
In this case, let S(k) be the kth hitting time of a; S(0)= 0, S(k + 1)= inf {t > S(k); 
X t = a}. Let 

yk(t)={Xa(S(k)+t), if O<t<S(k+! ) -S (k )  
if t>S(k+l ) -S (k ) .  

Then It6 shows that under P, the Yk, k > l  are IID, (U, q/)-valued, ~-measur-  
able random variables. 

Let n be the characteristic measure of Y in the first case, and the common 
distribution of the Yk, k>  ! in the second. We call n the excursion measure of X 
from a. 

It6 is concerned with classifying all processes that agree up till the d6but of 
a point acE. Specifically, suppose that 

(2.4) (Po b) is a family of probability measures on (U, ~#) such that for each 
ceE, the coordinate process (Wt, q/t, Po ~, Po b) is strong Markov. (Note that here, c 
is fixed, and b ranges over E.) 

(2.5) P~{u;%(u)<oG and u(t)=a for t=>%(u)}=! for each beE. 

The problem is to classify all families (pb) of probability measures on (U, q/) 
for which there exists (Xt, ~ ,  P, pb) on some probability space, which is a 
recurrent extension of (Po b) in the sense that (2.!), (2.2), (2.3) hold, and 

(2.6) W{u; u(. AG(u))eA } =P0b(A) for each beE, Ae~ .  

It(5 achieves this classification in terms of the excursion measure n of X 
from a. He shows that the P0 b and n determine the W, and then derives the 
following list of conditions that n obeys 

Theorem 1 (It6). Let (X~, ~,~, P, pb) satisfy (2.1), (2.2), (2.3). Let n be the excur- 
sion measure of X from a, and define P0b(A) to be Pb{u; u(" A G(u))eA}. Then the 
following conditions are satisfied: 

(i) n is concentrated on {u; 0<aa(u)<  oo, u(t)=a for t>aa(u)}. 
(ii) n{u; u(0)r < oe for every open neighborhood V of a. 

(iii) S ( 1 - e  ~176 
(iv) n{u;a,(u)>t, ueA, Odu)sM}= ~ P~(~ for t>0 ,  A~q/t, 

M E  d'ff. A~(a~>t} 

(v) n{u;u(O)sB, ueM}= ~ Po"(~ for Me~ and B e g  such 
that a(~B. {.: ,(0),m 

(vi) Either (a) n is a probability measure concentrated on Ua={u; u(O)=a} 
(discrete visiting case); 
or (b) n is finite, n(U~)=O, and ~(1-exp( -a~))dn<l  (exponential holding 
case) ; 
or (c) n is infinite and n(Ua)=O or o9 (instantaneous case). 

The main result of this paper is that if conditions (ii) and (vi) are strength- 
ened, we obtain conditions that are necessary and sufficient for a a-finite 



Excursions 323 

positive measure n to arise as the excursion measure  of a recurrent extension of 
a family (Po b) satisfying (2.4) and (2.5). 

The condit ions are: 

(ii') n{u; u leaves V} < ~ for every open ne ighbourhood  V of a. 
(vi') Either (a) n is a probabil i ty  measure  concentrated on U a. If n>_n'>O 

and n' satisfies (iv), then n' is a multiple of n; 
or (b) as in (vi)(b); 
or (c) n is infinite. If n>_n'>O and n' satisfies (iv), then n ' (Ua)=0  or ~ .  

The statement  of necessity is: 

Proposition 1. Under the conditions of Theorem 1, condition (ii') and (vi') also 
hold. 

A strong form of sufficiency is: 

Theorem 2. Assume that (Y2, if, P) is complete, and that (P~) satisfies (2.4) and 
(2.5). 

(a) I f  (Y~, ~ )  is a PPP with values in (U, ~ll) and with characteristic measure 
n, such that: 

( ~ )  is right continuous, and each ~t  contains all the P-null sets of • ; 

P(YoEM)=SPZ~176 for M e ~ ;  

(i), (ii'), (iii), (iv), (v) and either (b) or (c) of (vi') hold. 
Then there is a right continuous strong Markov process (Xt, Nt, P, pb) such 

that: 
Y is the PPP constructed from X as above, P-a.s.; 
(Xt, Nt, P, pb) is a recurrent extension of (Pob); 

~ s~ + I = ~t  ; 
(~ )  is right continuous, and each (~t contains all the P-null sets of 

(b) I f  (~)k>_o is an increasing family of sub a-fields of if, each containing all 
the P-null sets of ~ ,  and for each k>O, Yk is a measurable function from ((2, ~ )  
to (U, ~') such that: 

For k> 1 the Yk have a common distribution n; 

P(YoeM) = S P~(~ for Ms 'C;  
U \ U  ~ 

a(Y/; i>k)  is independent of ~ f o r  k > 0 ;  
(i), (ii'), (iv) and (a) of (vi') hold. 

Then there is a strong Markov right continuous process (X~, ~t, P, pb) such 
that: 

The Yk are the excursion random variables constructed from X as above 
(discrete visiting case), P-a.s.; 

(Xt, ~t, P, pb) is a recurrent extension of (p~o); 
~S(k+ 1)- c ~ C ~ S ( k +  1), f  ~ k > 0 ;  
(~t) is right continuous, and each ~t contains all the P-null sets of 

This result can be used to give a r igorous construct ion of processes such as 
skew Brownian mot ion  (see [18]). 
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The key to the proof of Theorem 2 is to find an expression for conditioning 
YT on the strict past ~'~T-, for T an (J~) stopping time. This is done in 
Lemma 7; the relationship with similar results of M. Weil is spelled out in 
Sect. 6. 

In the following paper 1-18], we will see how the Ray property or the 'hypotheses 
droites' may be obtained for (pb), assuming they hold for (Pob). In fact, under 
these additional conditions the proofs of Theorem 2 and Proposition 1 may be 
shortened. Since under mild conditions (E locally compact, Borel measurable 
semigroup) every right continuous strong Markov process is a 'right process' 
(see Getoor [6]), this streamlined proof may meet the needs of nonspecialists. 
It will be given in [18]. Nonetheless, the present approach has its own merits. 
First of all, it is elementary, requiring none of the analytical apparatus of 
resolvents, or the deep results of the theory of right processes (for example, it 
applies in a general separable metric space, without assuming completeness or 
Borel embedding in a compact space). Secondly, it is the approach that 
generalizes to considerations of excursions away from a set (rather than a 
single point). 

This generalization will be carried out in [19]; though the same 'elementa- 
ry'  techniques are used, the powerful machinery comes into play as well 
(Maisonneuve's 'Exit systems'; [12]). Needless to say, in the present situation, 
the answers we obtain are simpler and more complete. 

As to related work, the idea of constructing processes via excursions has a 
long history, in the Markov chain setting (e.g., Lamb [11]). (See Rogers [16] 
for other references), for diffusion (Motoo [14], Sato-Ueno [20]) and for 
symmetric processes (Fukushima [5], Silverstein [21], [22]). Closer to the 
present work are Blumenthal [1], and results of S. Watanabe [24] (see also 
[81). 

It has been pointed out to me that, in addition to the above, parts of the 
present work have appeared elsewhere; Rogers [16] obtains results similar to 
some of those of Salisbury [18] ; see the latter for a comparison. 

In his thesis [10], S. Kabbaj obtained a result similar to Theorem 2. He 
shows that under It6's conditions, and with (N ~ the minimal filtration with 
respect to which the reconstructed process (Xt) is adapted, (Xt) is strong 
Markov at all (N ~ stopping times. His proof uses a weaker form of Lemma 7 
and relies heavily on the theory of right processes. The proof presented here 
works for T a (N~ stopping time, is more elementary, and applies in greater 
generality (we assume no compactness conditions on E). 

Finally, when we are given a right process (Xt), and let (Y~) be its excursion 
process, Lemma 7 is still of interest. In this context, it is closely related to 
Getoor and Sharpe's last exit decompositions, and a very similar result has 
appeared in Getoor and Sharpe 1-7] (see also Pitman [15]). In fact, their 
methods will be used in Salisbury [-19] to give a different proof of a generaliza- 
tion of Lemma 7. 

This work forms part of the author's Ph.D. thesis, Salisbury [-17]. I am 
grateful to John Walsh for posing me the problem in the first place, and for his 
support and helpful comments throughout. Also I would like to thank Yves 
LeJan for bringing [10] to my attention. 
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3. Proof of Theorem 2 

The arguments used in parts (a) and (b) are similar. The author feels that it is 
important to give the more complicated arguments of part (a) in detail. Thus 
those of part (b) are only sketched, with a description of the modifications 
needed to obtain them from those of part (a). Thus we deal with part (a) first. 
On a first reading however, the reader is urged to reverse this order, first 
absorbing the simpler, less detailed version. The reader may even wish to first 
look at Sect. 6, in which the arguments of the key lemma are presented in an 
even simpler form (Proposition 3, or the even shorter discrete time version; 
Proposition 4). 

In part (a), conditions (i) and (iii) are used in the construction; the latter so 
that the normalization of local time agrees with (2.3). Condition (ii') appears in 
Lemma 3, in the proof of the right continuity of paths. Condition (vi')(b) also 
appears in this lemma, and is used to make the "inverse local time" strictly 
increasing, so that local time will be continuous. Conditions (iv) and (v) are put 
in a more convenient form in Lemma 6, which, together with Lemma 7, yields 
Corollary 2. Lemma 7 is also used with conditions (vi')(b) and (vi')(c) to give 
Corollary 1. Note that these two corollaries essentially show the strong Markov 
property. In part (b), the conditions are put to the same uses, except that we 
use condition (vi')(a) instead of conditions (vi')(b) and (vi')(c). 

We start the proof of part (a), by constructing X as an explicit measurable 
function of Y. 

Put 
m = l - ~ ( 1 - e  ~~ 

S - ( s , p ) = m s +  ~ o~(p(r)), for s>O, peII  
r < 8  

(with the convention that aa(6 ) =0), and 

S + (s, p) = lim S- (r, p). 
r,Ls 

Then S- ( ' ,  p), S+( ., p) are nondecreasing, and respectively left and right con- 
tinuous, with values in [0, ~ ] .  If S + (s, p) < oo, then S + (s, p) = S-  (s, p) + aa(p(s)). 
S - ( s , ' ) e N  S_ since it is left continuous, and S-(s,p)=S-(s,c%(p)). Thus also 
s + (s, " ) ~ s +  �9 

Put 
It(P)=inf{s>O; oo >S  + (s)>t}, 

with the usual convention that inf(r + oo. Then I t is a (Ns+) stopping time, 
and 

s - ( l~( . ) , - )  < t__<s+ (;~(.), .) 

(with the convention that S + (oo, p)= oo). Put 

~y~t(t-S-(It, .)),  if y;~ ~ c5 
xt = (a, otherwise. 

We will show next that x t is measurable from ~;t+ to go. Since (u, r)~--~u(r) is 
measurable from ~ |  to d ~176 and S-(lt(.), . )~;~ since S- is predictable, we 
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need only show that yl e ~ . .  We state this in a more general form, to be useful 
later, as; 

Lemma  1. Let (4)  be a filtration of a measurable space (~,~), and let Y be a 
function which is measurable from (f2, 4 )  to (1-1, Nt), for every t >O. Let R be an 
(~t) stopping time such that for each ~ > O, 

{R < oo} ~ {cra(Yt)> ~ for only finitely many times t in any compact time set}. 

Then YRSYR. 

Remark. In the present situation, we apply the lemma with Y the identity map, 
and with ~ t = ~ t + .  

Proof. Let Asq/ ,  s > 0 .  Then 

{YR~A'R<=s}={YR~A'R<=s'tYa(YR)=O}wU {YR~A'R<=s'aa(YR)>=~} " j > l  

Let Bi, i = 1, 2 . . . .  be an open base in the space [0, s]. We can write 

and 

{YR~A,R<=s, aa(YR)>=~} 

_ x [ A m  a a >  1 , 

Thus {YR~A, R < s } e ~ ,  as required. []  

Put O={p;S-(s,p)<oo for each s > 0 ,  

S-(s,p)-,oo as s - ,  oo, 

S - ( ' ,  p) is strictly increasing, and for each open neighbourhood V 
of a, 

p(s) leaves V for only finitely many times s in any compact  set of 
times}. 

Thus on O, I t < oo for every t, t~--~ I t is continuous, and 

x=~Y~( t -S- (s") )  if S (s,.)<=t<S+(s, .) 
t ( a  if t=S+(s,.). 

Lemma 2. t~--~x t is right continuous on O. 

Proof. Fix some element p of O. By definition of U, x.(p) is right continuous on 
each interval IS (s,p), S+(s,p)). If t lies in no such interval, then it must equal 
S + (s, p) for some s, and hence xt(p)=a. Let V be an open neighbourhood of a. 
Since p~O, there is an s'>s such that Yr(P) remains in V for any re(s,s').  Thus 
xr.(p)eV for any r'~(S+(s, p), S-(s', p)). But by definition of O, S (s', p) is strictly 
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greater than S+(s, p), so that as V was arbitrary, x.(p) must be right continuous 
at t. [] 

(The same argument would show that if we had taken U to be the space of 
c~tdl/tg paths, then on O, x. would be c~dl/tg as well.) 

For  convenience, we separate out the contribution of p(0); we have shown 
that there is a measurable function 

F: ( u  x H, q L |  qz) 

such that x t=F(yo ,  Y[(o, oo))(0 on O. 
Put 

s -  (s) = s -  (s, Y) 

s+(s)=S+(s, Y) 
L t = It(Y ) 
X,=x,(Y). 

Since Y is, by the hypotheses of Theorem 2, a measurable function from (~?, ~ )  
to (/7, ~s+), for each s, the above results imply that S -  and S + are adapted to 
(~) ,  and that for each t >0, L t is an (~s) stopping time and X t is measurable 
from ~Lt to  g (as ~Lt is complete). 

Lemma 3. P(YeO)= 1. 

Proof For f e n  with f (0 )=0 ,  

f(aa(g,) )= ~ f(r) N((O, s) x {a, edr}, Y) 
0 <t < s (0, m) 

is 2-measurable ,  and has expectation 

s ~ f ( r )n (a~edr )=sS foaadn .  
(o, oo) 

In particular, 

O < t < s  {ao_-< l} 
Ga(Yt) <= 1 

s 
< ~ ( 1 - e  ~)dn  
= l _ e - ~  

s 
- l _ e _  1 ( l - m ) <  oo. 

Also, there are only finitely many times te[0,  s] with aa(Yt)> 1, as 

1 
n ( G a >  1 ) < ~  ~ (1 - e - ~ ~  0% 

so that S - ( s )<  oo a.s., for each s. 
If n (U)=0  (so that a is a trap), then m - 1  so that S- (s )=s  a.s. If n(U)~O, 

then by (i) there is an 8>0  such that n ( % > e ) > 0 .  Thus, there are a.s. infinitely 
many times s such that o-a(Ys)>e, so that in either case, S-(s)--* oo as s--, o% a.s. 
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If rn>0, it is clear that S-  is strictly increasing. If rn=0, then by (vi')(b) it 
follows that n(U)= o% and hence that {s; %(Y~)>0} is dense in [0, oo), a.s. 

The last condition is obtained from (ii'), letting V run through a countable 
base of open neighborhoods of a. [] 

Appealing to the completeness of ,~  we will without loss of generality 
assume that YeO surely, hence that X is right continuous and by Lemma 1, 
that YR~,~R for every (gs) stopping time R. 

If we are given a filtration (~)t__>o, a o,-field YFo_c~0, and a random 
variable R with values in [0, oo]i recall that ~ _  is defined to be the filtration 
generated by V 0. and by sets of the form Ac~{R>s},  for A e ~  and s>0.  In 
our case, let g o -  be generated by all the P-null sets of ~.  For R a random 
time, and r > 0, put 

Put 

;Co =--%_ 
.gfR = g R-  v O.( YR(S); 0 <--_S <=r). 

=%_ :go- .  

• 0  ~ L t  
t =~o(t-S-(Lt))-- 

~ t = r o+ 

Lemma 4. (a) (Nt) is right continuous, increasing, and each Nt contains all the P- 
null sets of g .  X t e N  t for each t>=O. 

(b) I f  T is a (Nt) stopping time then L r is an (~'~) stopping time, and 

gL~_ CfqT_ CNTC gL ~. 

(c) S+(s) is a (Nt) stopping time, for s>=O. I f  T is any (Nt) stopping time such 
that S + (LT) = T then NW = gET" 

(d) I f  R is an (gs) stopping time, and T is a (Nt) stopping time such that 
T<S+(LT) on {T< oo}, put 

f T - S - ( R ) ,  /f L r = R <  oo 
V 

= ~ (oo, otherwise. 

Then V is an (~R+) stopping time. 

Proof (a) We know that each L t is an (~ )  stopping time. Thus, if t < t' then 

~~ c~{Lt <Lt,}c~fL*c~{Lt<Lt,} 

C,~LtC3{Lt<Lt,} (as YLtEgLt) 

 gLt, ~ 
and fC~ } is, by monotone class arguments, and Proposition 18 of [3], 
generated by 

34~oL_ ~ C~ {L t = L,,} c JFoL_~' ~ {L t = Lt, } 
=go 
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and by 

~L~r~{t-S-(Lt)>r}c~{Lt=Lc}c~L~'~{t-S-(Lr)>r}c~{Lt=Lc} 
L~, ~ 0 .  

~ ( t  - S - (Lt , ))  -- 
Thus, o o ~ t  C ~ t ' "  

For s>t we can write X t as a measurable function of Ls, kL~(Y ), and 
k~_S (L~)(YL) (let 

^ [kL~(Y)(r ), if r<L~ 

Y,,=Jk~_s_(L~)(YL) , if r=L~ 
1,6, if r>L r 

Then Xt= xt('Y.). ) 
As in [3] Proposition 25, the first two are ~Ls- measurable and the latter 

lies in Ls 
~ ( s - -  S - (Ls)) - " 

(b) For  r > t >_- 0 we have that 

~v cc ~ Lr" 

By definition, Lr,~L t as t~,r, hence 

r > t  

so that ~t c ~~ 
If now T is a (Nt) stopping time, then by the right continuity of L, 

{LT<2}=  U (T<q}r~{Lq<2}. 
qe~  

But {T<q}e~q~.~L~ , SO that since Lq is an ( ~ )  stopping time, 

{ L T < / ] , } r  ~ .  

Further, if Ae(~T, then 
Ac~{ r <q}eN qCYL~ 

so that 
A ~ { r  <q}c~{Lq <2}eJ~. 

Taking the union over qeQ,  we get that Ac~{LT<2}e~z, hence that A e ~ L .  
We will prove (c) before showing the remainder of (b); that @L~ CNT--  
(C) Since S-  and S + are strictly increasing, and S-(Lt)<t<S+(Lt), we see 

that 
(s+(s)< t} = (s < L~}eg~_ ~ ,  

hence S + (s) is a (Nt) stopping time. 
Similarly, if S + (LT)= T then 

{L T <Lt} = {T<  t}, 

and hence if Ae~LT , then by [3] Proposition 16 

A ~ { T  <t}=Ac~{LT <Lt}e~L~_ cNt. 

That is, AeN T. Since ~ L ~ N T  by the part of (b) already shown, we get that 
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To finish the proof of (b), let A ~ = f q s + ( s  ). Then 

Ac~{LT>S}=Ac~{T>S+(s)}E~T_ 

by I-3], Proposition 16 again. 

(d) {V<h} = {T <S-(R)+ h, LT < R < oo}\{LT <R } 

= {T<(S-(R)+h)/x S+(R)}\{Lr<R}, 

as T<S+(LT) on {T< oo}. Because Tis  a (fro+) stopping time, 

=d" 
and 

{ T < ( S - ( R ) + h ) A S  + o ( R ) }  E ~ t < s -  {R~+ h~ A s + ~R~ �9 

We must therefore show that the latter field lies in d R. It is generated by f r o _  

= Y o  - ~ d R, and by 

N~ for t>O. 

By monotone class arguments, the latter is generated by 

YfoL; C~ {(S- (R) + h)/~ S + (R) > t} 
and by 

~ L ~ { t - S - ( L t ) > r } n { ( S - ( R ) + h ) A S + ( R ) > t } ,  for r>0 .  

aa(YR) is an (gf~+) stopping time, since G is a (q/s+) stopping time, each a-field 
9f~ R is complete, and YR-l(q/s)=~gt~ R. (t--S-(R))vO is also an (d4'~R+) stopping 
time, since S - ( R ) ~  R_ as S-  is predictable. Thus 

{(S- (n) + h) A S + (R) > t} = {a a (YR) A h > (t - S-  (R)) v 0} e or ^ h)- ~ ~h R" 

Also, 
"~Lt- c~{Lt<=R} ~ R -  c~{Lt<=R} 

by [3] Proposition 18. Therefore 

d/loLL C~ {(S- (R) + h) A S + (R) > t} ~ ~R- C~ {(S (R) + h) A S + (R) > t} c d R, 

as {(S-(R)+h)/x S+(R)>t} ~ {LiaR }. 
We argue as in part (a) to see that 

~gt~L'c~{t-S-(Lt)>r}c~{(S-(R)+h)AS+(R)>t}c~{Lt<R} 

~ R -  ~{(S-(R) + h) A S+ (R)> t} ~3fa R, 
and 

Yi~L'c~ {t -- S-  (Lt) > r} c~ {(S- (n) + h) A S + (R) > t} c~ {L t = R} 

c;,vt~Rcv{a,(YR) Ah>t - -S  (R) >r} 
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Lemma 5. Let (f21,~tl), (~'22,-~t 2) be right continuous ~ spaces. Let 
Z: f21 --,f22 be such that Z -1  j~t2 D~t l  for every t. Then for every (~,~1) stopping 
time T> there is an (o~t 2) stopping time T 2 such that T 2 o Z = T 1. 

Proof. For r6Q, let B~= {T 1 <r}, and find A~6o~ 2 such that B~=Z-1A~.  Set 

A =UA,. 
r < t  
r~ff~ 

Thus, putting T2(co)=inf{t; co,At}, we have that 

Also, 
{re < t} - - / i , e <  2. 

z- A,=Uz 1Ar={rl<t}, 
r < t  
re| 

for every t >0, 

so that T 2 o Z = T  1. [] 

The following lemma would be much simplified if instead of the conditions 
of Theorem 2, we had assumed that the coordinate process (Wt) was a right 
process under (Pob). 

Lemma 6. Let (Po b) satisfy (2.4) and (2.5), and suppose that n is a a-finite positive 
measure on (U, q/) satisfying (i), (iv) and (v). Let R be a (q/t+) stopping time such 
that n(U ~, R = 0 ) = 0 .  Then the coordinate process (Wt, q/t, n, pb) is strong Markov 
at R. 

Proof By replacing R by the (q/t+) stopping times 

RB= off B 

for Beq/R+, we see that it suffices to show that for Aeq/, 

Let h > 0. By (iv), 

n(ORI A, R<oo) = ~ P~(R(u))(A)n(du). 
{R< oo) 

(3.1) ~ f(u, Ohu)n(du)= ~ [y f(u, v)p~(h)(dv)] n(du), 
{as > h} {as > h} 

f o r f  of the form 1Bx c where B~q/h, Ceq/. Thus, this holds for every feqlh |  
f > 0 .  

Put ~t  = q/i, | q/t- 

Since n is a-finite, it follows as in Theorem 7.3 of Blumenthal and Getoor 
[2], that there is a (q/o+) stopping time /~ such that n (R#/~)=0 .  Define 

D o . (Note that this might Z: U--+ U x  U by Z(u)=(u, Ohu). Then Z - I ( ~ )  q/(t+h)+ ^ 
fail for the universal completion q/(t+h~+.) Thus by Lemma 5, there is a (q/t+) 
stopping t ime/~ with 

-R(u, Ohu)=I~(u)--h '  ifotherwise./~ (u) > h 
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Let 

f =  l((,, ,); k(u, o < co, ok(u, ~)(.)~A}. 

Since/~ is a (~t+) stopping time, it is immediate that/~(u,-) is a (q/t+) stopping 
time, for each u~U. Since also (Wt, qI~,P~),P~) was assumed to be strong 
Markov for c~E, we can use (3.1) twice to get that 

n(aa>h,h<R<oo, O;1A) = j f(u, Ohu)n(du) 
{aa>h} 

= j [jPo~(R("'v))(A) l{k<•}(u , v)v~(h)(dv)] n(du) 
{aa > h} 

= y PoO~U(R("'~ OhU)n(du ) 
{aa > h} 

= j P~)(R("))(A) l~h<R <~o~(u) n(du). 
{o" a > h} 

Letting h$O, we get that 

n ( O < R <  o9, OF~IA)= j Po ~(a(u)) n(du). 
{O<R< oo} 

From (v), we see that 

(3.2) j f(u(O)) g(u) n(du)= j f(u(O))E~(~ n(du) 
U \ U  a U \ U  ~ 

for nonnegative f e 6  ~, gea#. 
Let the set of branch points be 

Ebb= {bEE; nob(Wo #b)>O}~#. 

The strong Markov property of (W~, ~//t, Po~, Po b) shows that P~)(Wo~Eb,)=O for 
every c~E. Thus, 

n (R=0,  U\ U ~, A) 

= j Po"(~ A) n(du) 
U \ U  ~ 

= S [ S PJ(~176 (SMP) 
U \ U  a {R= O} 

= J P~(~176 
U \ U  ~ 

= j P~(~ I{R =0}(u) n(du) (by (3.2)). 
U \ U  a 

Since n({R=0} ~ Ua)=0 by hypothesis, we are done. [] 

The heart of the proof of Theorem 2 lies in the next result, whose proof we 
defer until later. 

Lemma 7. Let T be a ((~t) stopping time such that LT>O and T<S+(LT) on 
{T<oo}. Let ~tt be the a-field YLT_| on f2x U. Then there is an (~+) 
stopping time R such that 

(3.3) P{co; n{u; R(o, u)< oo} < oo} = 1, 
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(3.4) R(co, YL~.(CO))=(T-S-(LT))(o)), if T(co)< 0% 

(3.5) R(co, u) = oe for every ue U, if T(co) = 0% 

(3.6) P(YL ~A, T-S- (LT)eB,  T< ool~L~: )((2)) 

n {u; u~A, R(co, u)eB, R(co, u)< oo} 
= for P-a.e. co, 

n{u; R(co, u)< oo} 

where A~ql, B ~ ,  and we take the convention that - 0 = 0 = ~  
0 oo" 

Corollary 1. Let T be a (~t) stopping time such that Xw=a. Then T=S+(LT) a.s. 

Proof. By the strong Markov property of (W t, qlt, P~, Po b) for c~E, and the 
hypothesis that Po~(%< oo, Wt=a for every t__>%)=1, we get that P0~(O'a=0)= 1, 
and hence that P~(Wo=a, o-a>0)=0 for every ceE. Since also P(Yo~M) 
=~por~176 it follows that S+(0)=0 a.s. on {Xo=a  }, hence that T 
=S+(LT) a.s. on { L r = 0  }. Thus putting 

B=  {LT>0 and T<S+(LT)}, 

we may replace T by T B, to get that LT>O and T<S+(LT) on {T< oo}. We 
need to show that T= oo a.s. 

Apply Lemma 7 to T, to get an (~t+) stopping time R. For co6s let 

H(co) = {u; u(0)= a, R(CO, u)=0}. 

Since R is an (~t+) stopping time, it is immediate that R(co, .) is a (~t+) 
stopping time, hence that H(co)eqlo+ for each co~s Since also H(co)c U a, we 
have that 

n>nlH(~)>O, 

and that n[H(~ ) satisfies (iv). If n(U)<o% then n(H(co))<n(Ua)=O by (vi')(b). 
If n(U)=oo, then n(H(co))=0 or oo for each co, by (vi')(c) (this is the only 
place we use this condition[). But n(H(co))<n{u; R(co, u)<oo}, which is itself 
finite for P-a.e. co. Thus in either case, n(H)= 0 a.s., so 

P(T < oo)= E[n(R(?oo)] =0 

by (3.6) (recall that 0/0 = 0). [] 

Using these three results, we will show 

Corollary 2. Let T be a (Nt) stopping time, and A~ql. Then 

P[ YL~(" + T-S-(LT))eA,  T< Go] =E[poX~(A), T< oo]. 

Proof. Replacing T by various (Nt) stopping times T B, it suffices to treat several 
distinct cases, namely that X r = a  on {T<oo}, that X T # a  and LT>O on 
{T< r and that X r # a  and LT=O on {T< oo}. 

In the first case, Corollary 1 shows that the conclusion is trivial. 
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In the second case, also T<S+(LT) on {T<oo}, so that we can apply 
Lemma7  to obtain R as in that result. It follows that if f egLT  |  is 
bounded, then 

(3.7) 

[ 1 ~ f(co, u)n(du)]P(dco). Elf(', YLT(')), T < oo] ~ n{u; R(o.), u)< oo} (R(o,,-)<~} 

Take 

to obtain that 

"rn(OR n ( R <  oo) I(A)' R < oo)] P(YL~:(.+T-S-(LT))~A, T <  oo)=z: [ . 

Since R is an (~t+) stopping time, it is immediate that R(co, .) is a (og,§ 
stopping time, for each coeO. Also, since Xr:t=a o n  {T<oo} we get that 
n(U",R(oa, " ) = 0 ) = 0  for P-a.e. co. Thus, by Lemma 6, 

n(O~(~, .)(A), R(co, . )<  oo)= ~ Po "(R(~~ "))(A) n(du) 
{R(o),  . )  < co } 

for P-a.e. e). Therefore by (3.7) again, 

P(YLT(" + T - S -  (LT))~ A, T< c~)= E[PorLr (R('' rLT(')))(A), T <  oo'l 

=E[poXT(A), T< oo]. 

In the third case, that LT=O and XT4:a o n  {T< oo}, then also T<S+(LT) 
on {T< oo}. Thus Lemma 4, part (d) applies, to show that T is an (G~ 
stopping time. Since (G~ is a completion of the natural right continuous 
filtration of the process X.,,~o(x ), it is easy to use the hypotheses that P(Yo~A) 
=SP~(~ for A~q/, and that for c~E the coordinate process 
(Wt, q/t, Po ~, Po b) is strong Markov, to conclude that the process 

( i t  A G ~ P, Po 

is strong Markov. This suffices. []  

The remainder of Theorem 2 part (a) now follows easily. For A e ~  and 
beE put 

pb(A)= S~ 1A(F(u, v))P(Yl(o, ~o)edv)Pob(du). 

Since b~--*Pob(A) is #-measurable for A e ~ ,  the same holds for b~-~Pb(A). If T is 
any (Nt) stopping time, then by the strong Markov property of PPP's  (see It(5 
[9], Theorem 5.1), O~ is independent of ~LT, with the same law as Yl(o, oo). 

By replacing T with the ((qt) stopping times 

T - ~ T  on B 
B -  ~oo off B, 
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where Bff~T, it follows from Corollary 2 that for Aedg, 

P(YL~.(.+T--S-(LT))~AINT)=P~(A) on {T< Go}. 

Since also NTCYL~, YL~(" + T - S  (LT))e~'L~, and 

X.+r=F(YL~.(" + T-S-(Lr)), O ~  Y), 

this yields the strong Markov property of (X t, ~t, P, pb) at T 
By definition of (pb), (Xt, ~t, P, pb) is a recurrent extension of (Pob). The 

remaining points have already been dealt with, except for showing that Y is the 
PPP  constructed from X as in It6 [9J. Since P " ( a , = 0 ) = l ,  this will follow 
provided (Lt) satisfies (2.3). 

The set of increase of (Lt) is exactly {t; Xt----a}, since Xt=a only if t=S+(s) 
for some s. The normalization 

oo 

follows easily from the PPP  nature of Y, and Theorem 4.5 of It6 [9]. Finally, 
we can write 

(X.+T, L.+T--LT)=(F(YLT(" + T-S-(Lr)), O ~  Y), l.(O~ Y)), 

so that by Corollary 1, if T is any (Nt) stopping time with X r = a ,  then 
(X.+T , L.+r-LT) is independent of ~d~ T with a law not depending on the choice 
of T, as required. Thus, except for the proof of Lemma 7, the proof of part (a) 
is complete. 

Proof of Lemma 7. Choose 5k,~0 with n(O'a>C~k)>0 for each k. For q~(l), q=>0, 
let 

S~=inf{s>q; G(Y~) > Ok}. 

The skq are ( 4 )  stopping times. By completeness of ~ ,  we may assume without 
loss of generality that N({aa>fik} x [0, s], Y(CO))< oo for every co, k and s, and 
that N({o-a>fik} x [0, oo), Y(CO))= oo for every co and k. Thus, each S~ is surely 
finite, and (writing [[V~ for the graph {(t, co); 0__<t< oo, t =  V(co)}) 

q ~ + 

Also, for any k, k', q, q' we have that 

Put 

S~<S~, if k>_k' and q=q, {Sq=Sr - if k<_k'. 

G=(T-S-(L~))(~_ s~} 
~ k ,  ~ = Ns~ 

k ( ~ q )  stopping time. Use Lemma 5 with By Lemma 4(d), Rq is an 

a l=e ,  Gl=w,~ q, a2=ax  u , ~ 2 = ~ F ,  z(co)=(co, rsg~)), 
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to obtain an (~t~: q) stopping t i m e / ~  with 

_R~(co, Ys~(Co)) = R~(co) 
Let 

/P,~;(~, .), 

P,~(~, u) = 
/ 

00, 

for each e)e.O. 

/ k k" if k'~k~ q ~ + ,  Sq(o))=Sr 
_ ' s ~ , , ( ~ ) - s ~ , ( o ~ ) ,  and for every k">_k, q"~Q+ such that k'" _ k" 

also/~::(co, u)=/~k~;(C0, U) 

if for every k'>k, q'eQ this fails to hold. 

Thus, for every k, k'EZ+ and q, q 'sQ+ we have that 

^~ ^k" {s~= s~:} x u,  Rq=Rq, on 
and 

Rkq(co, Ys~(Co))=(T-S-(Lr))(o)) for coe{Lr=Skq}. 

We now show that ~kq is an (~k;q) stopping time. Let t>O, and choose an 
open base B 1, B e . . . .  of the space [0, t). Then 

{~q~ < t } :  U (/ [({s~::, s~} • u) 
k,>_k k,,>=k, 

q" e~) + q" er + 

" ~ U (({R~::eBj}c~{S~:;=S~} x U) 
i>=1 j>=i 

c~({/~;eBj} c~ {Skq; =S~} x U))I. 

Since {S~; = S~}eo~s~_ whenever k'>__ k, it will thus suffice to show that 

~ ' ,  ~" ~({s~: = s~} x u)~  ~k,~ 

for every k'> k, q'~Q+. This holds, since by monotone class arguments, 

| %) r - sq}  x (~s~;_ ~'-  ~ u ) = ( ~ ; _  ~{skq;=s~})| 
= (~%~- r {G; = s~}) | ~,  ~ ~ _  | % 

Put 
R = A  _~k ( q){L~=s,~ • v. 

k ,q  

Then R = / ~  on {Lr=S~} x U. We will show that R is an (d~t+) stopping time. 
Let t > 0, k sZ  +. Then 

{R <t}c~{aa(rL~)>bk} X U= U [{Rkq <t}c~{skq=LT} x U]" 
qe~  + 

~ , ~ { S ~ = L ~ }  x U = ~ { S ~ = L ~ }  x V. 

{Skq = LT} = {q < L r -<_ S~} r {a~ (YL~) > Fk}, 

As before, 

Since also 

we get that for each k, 

{R <t}~{aa(YcT)>c~k} x U=Hk~{aa(YLT)>C~k} X U, 
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for some set Hk~-~ t. Using that G(YL~.)>O on {T< oe}, it is easy to see that in 
fact 

{R<t}=[(~ U Hk]\{T=~176 x Ued(~, 
j> l  k>=j 

as required. 
Properties (3.4) and (3.5) are now immediate. (3.3) will follow from (3.5), 

(3.5), and the convention that ~ / ~  = 0. Thus all that remains is to show (3.6). 
Let A e ~ .  By the Markov property of Y at r, and Theorem 4.4A of It6 [9], 

P(Ys~eB, S~ > r, A) = P(A, Skq > r) e( Ys~_~, .o ~B) 

n(B, a.> bk) 
=P(A,S~>r) 

n ( ~ o > G )  ' 

for B ~ .  That is, for f =  1A• A ~ s ~ _ ,  Be~//we have 

1 
El f ( ' ,  Ys~('))]=n(aa>bk) ~( ~ f(og, u)n(du))P(dco). 

Therefore this holds for feJ~s~_ | f >0. Take 

fie), u)= lc(~o ) 1A(U ) 1B(R~(cO, u)) I{R~< oo~(OJ, U), 

where CE~s~ , A ~ ,  B e ~ .  Then 

P(C, YL~SA, T-S-(LT)~B,  LT=S~)=E[f( ' ,  Ys~('))] 

= ~ n(A, R~(co, .)~S, R~(~o, . )<  0% a,>5k) 
c n( G > 5k ) P(dco) 

n(A, nkq(co, " )~B, nkq(co, ")< 0% a,> 6k) P(de)) 
=!  P(LT=SkqI~s~ ) (co)  n(R~(co,.)<~,a~>6k ) 

= ~ n(A, Rkq(c~, ")~B, R~(og, ")< oo, a,>3k) P(dco). 
C~{L~=S~} n(Rkq(~O, ")< o% a~>bk) 

Enumerate Q+ as q~, q2, ..., and let CeffL~ . Then there are C ~ e ~ _  such 
that 

C~{Lr= ~ _  k s~} - G ~ {L~ = G}.  
Thus 

P(C, YLTeA, T-S- (LT)eB,  a,(YL~)>g)k, T< or) 
= ~ P(C~, YLEA, T--S-(Lr)sB,  LT=S k q~, Skq~ #:S~j for i<j) 

J 

= 2 S n(A, R~,(co, .)eB, R~j(co, ")< oo, aa>bk) P(dco), 

c~ {S~i #: S~j for i < j} 

= ~  ~ n(A'R(~176176 P(dco) 
j Cc~{S~j=LT} n(R(og, ")< co, qa>(~k) 

c~{Skj~:S~I for i <j} 

= ~ n(A'R(c~176176 P(dco). 
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If A is chosen so that n(A)< o% then the integrand converges boundedly to 

n(A, R((9, .)eB, R(co, .) < oo) 
n(R(o~, ")< ~ )  

Thus 

P(C, Y L e A ,  T - S - ( L T ) e B ,  T< ~ ) =  ~ n(A, R(o~, ")eB, R(m, . )<  o9) P(do3) 
c n(R(co, ")< o~) 

whenever n(A)< Go. Since n is (r-finite, this holds for every A e ~ ,  which yields 
(3.6). [] 

Part (a) is proven. The proof of part (b) is similar. For  Uo, uz, u 2' ... e U, put 

S~(uo,U~ . . . .  )= Y~ao(u3, k__>0, 
i<k 

fuk( t -Sk(u  o, ul, ...)), if Sk(uo, u 1, . . . )<t< Sk+ l(U o, u 1, ...) 
F(uo, Ul  )(t)= [a, if t>-_So~(Uo, ul, ...). 

Put 
X , = F ( Y  o, Y~ . . . .  )(t), S(k)=Sk(Yo, Y~, ...). 

For A ~ / ,  put 

! ~ 1A(F(u, vl, V2 . . . .  )) 
U x U •  

pb(A)= " P((Y1, Y2 . . . .  )ed(vl, v2, ...))Pob(du), if b # a  

1A(F(u, Vl, V2,...)) 
U x U x , . .  

�9 P((Y1, Y2, " ' )ed(v l ,  v2, ..)) n(du), if b = a. 

We let ~ ~ be the set of P-null sets of ~. For  R a random variable with values 
in { - 1, 0, 1, 2 . . . .  }, ~g  is defined to be the a-field generated by sets in ~ ~ {R 
--r}, for - 1  _<r<_ oo. For  R a non negative integer valued random time, we put 

Ho ~_ =g~_~, ~ = ~ _ 1  va(Y~(s);O<=s<__t). 

For r > 0 ,  let L~=inf{k; S(k+l )>r} .  We put 

t = ~ ( t - S ( L t ) ) - ,  - --1" 

Since n(U\Ua)=O, we have that S(k)-~oo, a.s., and that for each k__>l, 
S(k)< o% S(k-1)<S(k) ,  and Xs(k)=a, a.s. Delete a null set of O to ensure that 
these statements hold surely�9 The discrete-time analogue to Lemma 4 is; 

Lemma 4'. (a) (Nt) is right continuous, increasing, and each Nt contains all the P- 
null sets of ~ XteNt for  each t >O. 

(b) I f  T is a (~)  stopping time, then L r is an ( ~ )  stopping time, and ~LT-1 
c N r c ~ c r .  I f  further X r # a  on {T< oo}, then ~ 1 C 7 - ~ T _ ,  

(c) S(k) is a (Nt) stopping time, for k >__O. I f  T is a (Nt) stopping time such that 
X r = a  on {T<oo},  then ~LT l ~ N r -  �9 
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(d) I f  R is an ( ~ )  stopping time, and T is a (Nt) stopping time, put 

I/ ( T - S ( R )  on { L T = R < c ~  } 
, z  

~. oo otherwise. 

Then V is an (~f+) stopping time. 

Proof The proofs of part (a), and that for T a (~t) stopping time, L r is an ( ~ )  
stopping time and NT c YLT' are as in Lemma 4. Further, 

~L~:_lc~{T<t}=WrT_lc~{gT-- l  <--_Lt--1}c~{r<t} 

c~L~_ l C~{LT-- l < Lt--1}c~{ T<t}  

= ~'~L~ lc~{T<t} cNt ,  

so that ~ T  1 C NT' 
For k > 0 we have that 

{S(k)<t}-= {k G L,}~YL,_ l c ~ t ,  

so that S(k) is a (~t) stopping time. Applying the previous computation, we see 
that 

c (~S(k + 1)" 

Let T be a (Nr stopping time such that Xr=#a on {T<oo}, and let A E ~ .  
Then 

Ac~{L r - 1 >= k} =Ac~{Lr>=k + 1} 

~ - A ~ { r >  S(k + l ) }~s (k+ l~c~{T> S(k + l)}~f~r_.  

Now let T be a (~,) stopping time such that X r = a  on {T< c~}. Then {T>r} 
= {L T > L,.}. By monotone class arguments, NT- is generated by 

and by 
~ , ~ { T > r } c ~ L  C~{LT--I>L,}C~L.~_I, 

for r > 0. Thus part (c) is shown. Part (d) follows as in Lemma 4. [] 

The discrete time version of Lemma 7 is 

Lemma 7'. Let T be a ((~t) stopping time such that X o = a  on {Lr=0,  T<c~}. 
Let ~ t=~LT_  l | Then there is an (3~t+) stopping time R such that 

(3.8) R(co, YLT(co))=(T- S(LT))(og) if T(og)< oo. 

(3.9) R(co, u) = oo for every u~ U if T(co) = oo. 

(3.10) P(YL ~A, T--S(LT)sB , T< oo I~Lr - 1)(o9) 

n {u; u~A, R(og, u)eB, R(co, u)< c~} 
- for P-a.e. co, 

n{u; R(co, u)< co} 

where A~ql, B ~ ,  and we take the convention that 0/0=0. 
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Proof For k => 0, let 
R k = ( T -  S (LT)){LT = k}, 

By Lemma 4'(d), R k is an (~tk+) stopping time. Use Lemma 5 with 

.~-2 _ .~k O1=f2, ~ l = ~ . k  ~?2=~?xU, ~ ,  - ~ , +  and Z(o))=(e3, Yk(o)), t-b-~ 

to obtain an (~k+) stopping time iq k such that for every coes 

t~k(CO, Yk(09)) = Rk(o)). 
Let 

R = / ~  (/~k)~L~ = k}x v" 
k 

Thus for t > 0, 
{ R < t } =  U {Rk <t}r~{Lt =k} x U. 

k 

By monotone class arguments, 

~tk r~{LT=k} X U = ( ~ _  l r~{LT=k} ) |  l |  ]ft, 

sO that R is an ( ~ + )  stopping time. Properties (3.8) and (3.9) are immediate. 
For k => l, Yk is independent of ~ _  ~ with law n, so that 

E [ f ( . ,  Yk ('))] ---- ~ f(m, U) n(d u) P (d o9) 

for f=lA• A e ~ _ l ,  Be~ .  Thus this holds for f e ~ _ l |  f=>0. As in the 
proof of Lemma 7 it follows from this that for k>= l, Ce~.~_~, Ae~r and B e ~ ,  
we have that 

P(C, YL ~A, T-S(LT)~B, LT=k, T< oo) 

= ~ n(A, Rk(o, ")eS, Rk((9, ")< oo) n(dco). 
C~{LT=k} n(Rk(m, ")< o0) 

We will show this for k =0  as well, as then the argument of Lemma 7 will give 
(3.10). Let 

Ebr= {beE: pob(Wo=b)# l }. 

Since (Wt, ~r P~, P~) is strong Markov for each ceE, we get that 

Pd(WoeEbr)=O, for  eve r  ceE. 

By hypothesis, 

P(YoeM) = ~ P~C~ 
U \ U  ~ 

so that as a~Ebr and n(U\U")=O, we see that 

P(Yo(O)eEb~) = O. 
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Thus, 
P(YoeMnU~) = j Pg(~ U")P(YoEdu)+n(M)P(YoeU ~) 

U \ U  ~ 

= n(M) P(Yo e U"). 

Since ~ 1 consists of sets of P-measure 0, it follows that for f ~  1 | q/, f > 0, 

E [ f  (', Yo(')), I1o e Ua] = E [ j f ( ' ,  u) n(du)] P(Yo ~ U"). 

Taking f as before and using the hypothesis that X o = a if L T = 0, we see that 
for C ~  1, Ae~g, BeN, 

P(C, YLT~A, T-S(LT)EB, LT=O , T< oo) 
= E( C, n(A, R~ eB, R ~  oo)] P(Yo e U ~) 

E(C, n(A, R~ R ~ < oo)] 
= E[n(R ~ < oo)] P(L T =0) 

n(A, R~ ")eB, R~ ")< oo) 
= ~ n(R~ oo) P(do~). [] 

CnfLT = 0} 

Once the following result is established, the remainder of part (b) follows 
immediately, as before. 

Corollary 2'. Let T be a (f#t) stopping time, and Ae~g. Then 

P(YLT(" + T -  S(LT))eA, T< oo) 

= E[poXT(A) ,  XT=#  a , T< oo] + n(A) P(XT=a, T< oo). 

Proof. As before, it suffices to treat three cases; that on {T< oo}, respectively 
Xr=a,  X v # a  and LT>O, or X T # a  and LT=O. The second case is handled as 
before, using Lemmas 7' and 6. In the third case, we use Lemma 4'(d) to see 
that T is an ( ~ o )  stopping time. Since (5~t~ is a completion of the natural 
right continuous filtration of the process X. ^:~ix), and 

P(Yo~M) = ~ P~(~ ), for MEql, MnU~=O 
U \ U  ~ 

it is simple to use the strong Markov property of the processes (W~, q/t, P~, Pob), 
for ceE, to conclude that the process 

(X, ̂  ~(x), ~ o  p, pob) 

is strong Markov. This suffices. 
In the third case, we apply Lemma 7' to obtain an R satisfying the 

conclusions of that result. Put H ( o ) =  {u; R(co, u)=0}. Then for Ae~g, 

n(H(co)nA) P(dco), 
P(YLTEA, T< oo)= ~ n(H(r 

as T-S(LT)=O on {T< oo}. Since R is an (5~t+) stopping time, also R(o, .) is a 
(~t+) stopping time for each ~oe~2, so that H(co)E~0+. Thus n}H(,~) satisfies (iv), 
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so that by (vi')(a), it must be a multiple of n. Since 

n (H (o9)) = n In(~)(H (co)), 

we must in fact have n]m~)=n or 0, so that n(H(o9))= 1 or 0 for each o9. Thus 

P(YL~A, T<oo)=n(A)P(T<oo, n(H)=l), for A~q/. 

Putting A = U, we have that n (H)=  1 a.s. on { T <  oo}, so that 

P(YrT~A, T< oc) = n(A) P(T < oo), 
as required. [] 

4. Insufficiency of Conditions (ii) and (vi) 

First, we present some examples to show that the conditions (vi) and (ii) do not 
suffice. 

Example 1. (vi)(a) is not sufficient: 
Let Po correspond to uniform motion as indicated, with absorption at a. 

a 

There are two excursion measures nl, n 2 corresponding to strong Markov  

processes visiting a discretely, h i + n 2  satisfies (vi)(a), and gives a Markov  
2 

process which visits a discretely, but is not strong Markov. 

Example 2. (vi)(c) is not sufficient: 
Consider a Bessel process on (0, ~ )  (so that 0 is an entrance, non-exit 

point), and make the point 1 absorbing. Wrap  (0, 1] around to make a circle E, 
and let Po correspond to the resulting process on E. Let a =  {1}. Po corresponds 
to a continuous process that is absorbed at a, but which approaches a only 
from the counter clockwise direction (say). 

We have strong Markov  continuous recurrent extensions with a instan- 
taneous, corresponding to making the Bessel process (slowly) reflecting at 1, 
with various delay coefficients. Let the excursion measure with delay coefficient 
m be nm, so that 

m = l - S ( 1 - e  ~~ 
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There  are also cont inuous  ' recurrent  extensions '  which are not  strong Markov,  
corresponding to s topping the original process at a, holding it there an expo- 
nential time, and then making it enter E\{a} in the counterclockwise direction 
(this is possible, as 0 is an entrance point  for the Bessel process). For  me(0, 1), 
this gives an 'excurs ion measure '  n~, such that 

m =  1 - S (1 - e  -~~ dn~. 

(m determines the mean of the holding t ime at a). 
t Though  condi t ion (vi)(c) fails for the n~, it will hold for any measure n m + nq 

for which re+q> 1 and m, qe(0, 1). These measures are ruled out  by (vi')(c). 

Example 3. (ii) does not  suffice: 
Let  E be the subset of N 2 described in polar  coordinates  as 

~j {(r cos 0, r sin 0} ; r = R cos 0 > 0}. 
R E ( l ,  2] 

Let  a be the origin, and let (Po b) correspond to uniform clockwise mot ion  
a round  the circles r = R  cos0,  at speed f o R ( R -  1) -1,  with absorpt ion  at a. Fo r  
# any a-finite measure on E\{a}, n=P~ satisfies (i), (iv), (v), and (vi')(c). Let  n o 
be the excursion measure of one dimensional  Brownian motion,  from 0, and let 
M(u) = max {lu(t)l; 0__< t < oo}, ue  u.  Let  f :  E\{a} --. (0, 1] x (0, n) be given by 

f(rcosO, rsinO)=(c@so-l, 2 -O  ). 

Then for /~(A)= no((a ., M)~f(A)), we get propert ies (ii) and (iii) for free, but  (ii') 
fails, so that  the resulting process is not  right continuous.  

We can replace (ii') by the more  appealing condi t ion (ii), provided we 
assume some regulari ty of (pob); 

Proposition 2. (a) Suppose that (Po b) satisfies (2.4) and (2.5), and that n satisfies (i), 
(iii), (iv) and (v). Suppose also that 

(4.1) for every open neighbourhood V of a, there is an open neighborhood V' of 
a, V' ~ V, such that 

Pob((Wt) leaves V) 
sup Eb(1 -- e-~a) < oO 
b~V" 
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(b) Conversely, suppose that for every initial measure # with #{a}=0  and 
E ~ [ 1 - e x p ( - a a )  ] < 1, the measure P~ is the excursion measure of a right con- 
tinuous process. Then (4.1) holds. 

Proof. (a) Let V, V' be as above, and assume that (ii) holds. Then 

n ((Wt) leaves V) < n (W o r V') + n ( W o r V', (Wt) leaves V). 

The first term is finite by (ii), and the second term is 

n(Wo~V'\{a}, (Wt)leaves V) 

+limn(Wo=a,  Wt~V' for tel0,  6], aa>6,  (Wt) leaves V) 
0+0 

= ~ Po"(~ leaves V) n(du) 
(WoeV'\{a)) 

+l im ~ Po"(a)((Wt) leaves V) n(du) 
610 {Wo=a, WtEV" fortE[0, 5], aa>5) 

pob ((W~)leaves V) 
<sup Eb(l_e_~o) [ ~ E"o(~176176 

b~V" {WoeV'\{a}} 
b~=a 

+ lim inf ~ E~ (~) (1 - e -  ~) n(d u)] 
h$O {Wo=a, Wt~V" fort~[O,h],aa>6} 

pob ((W~) leaves V) 
=sup  Ebo(l_ e_ ~o ) [ ~ (1 - e -~~  

beY" {WoeV'\{a}} 
b t a  

+ lim inf ~ (1 - e-  ~176 dn] 
650 {Wo=a, WteV" forte[O,6],a~>6} 

Pob ((W~) leaves V) 
<supb~v. Eb(1--e -~~ ) ~(1--e- '~)dn<~176 

b~:a 

(b) Assume (4.1) fails for some open neighborhood V of a. Then there are 
bk~E\{a }, bk ~ a  such that 

Pb~((Wt) leaves V) 
ak= Ebb(1-e-"~) , o0. 

By passing to a subsequence, we may assume that a k > k for each k. Let 

2 k = (k 2 Ebb(1 --e-~~ 

t~ = ~ 2k eb~ 
k = 2  

(where e b is the point mass concentrated at b). Then 

E~(1--e-'~~ = ~ k - 2 < l ,  
k = 2  

while 

Po"((Wt) leaves V)= ~ b~ 2 k a k E o (1 -- e-  ~") 
k = 2  

_-> ~ k - l = o o .  [] 
k = 2  
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The corresponding condition on (P0 b) under which (vi') may be replaced by 
(vi) is that the class of positive measures n satisfying (i), (iii), (iv) and n(U\U ~) 
=0,  consists of either multiples of a single probability measure, or consists 
completely of infinite measures. It is perhaps worth mentioning that though 
this condition fails for Example 3, (4.1) is not in general a consequence of this 
condition. As example we can replace the space E of Example 3 by 

E'= y); 

In this case there are no measures satisfying (i) and (iv), and concentrated on 
U", since no path r = R c o s 0 ,  RE(l ,2]  lies entirely within E', whereas by 
Proposition 2(b), there do exist n satisfying (i), (ii), (iii), (iv), (v), (vi') but not (ii'). 

5. Proof of Proposition 1 

Condition (ii') is clearly necessary. Assume that a is instantaneous (n(U)= ~),  
but (vi')(c) fails. We will find a set H ~ ' o +  such that 0<n(H)<oo ,  and H 
c Uaca{aa>0}. Let H~176 satisfy H ~  and n(H\H~ By completeness 
of each Ytt, we obtain easily that for h>0 ,  the (U, agh~ process (Xt+.) is 
progressively measurable, for the filtration (~+h)t__>0" Thus, 

T= in f  {t >0;  Xt+.~H ~ 

is an (~+h+)t>__0 stopping time, for every h>0,  so that it is in fact an (~t+) 
stopping time. T is finite ahnost surely since n(H~ and X r + . ~ H  ~ a.s., since 
n(H~ oo. This contradicts the strong Markov property of (X t, 4 ,  P, pb), as a 
is instantaneous, yet X T = a and aa(YLT ) > 0. 

Similarly, in the case that X visits a discretely, but (vi')(a) fails, we will 
obtain a contradiction to the strong Markov property of X by finding a set 
H ~ o +  such that H ~  U~c~{a~>O} and 0 < n ( H ) <  1. 

In both cases, the argument would be simplified if we had assumed that X 
was a right process, and we had the Ray-Knight compactification at our 
disposal. 

In the first case, let D be the set of dyadic rational numbers. For e, v > 0 let 

B~, v= {beE; Pb(a~>v)> e}eg 

H~,~= ~) {W0=a, WteB~, ~ for t~Dc~(O, tl), aa>0}. 
r/>0 

We will show that for some e, v > 0 we have 

0 < n(H~, ~)< o% 

so that H~, ~ satisfies the above conditions. 
For e and v fixed, let 

r (u)=inf{ t>O;  teD and u( t)(~ B~, v}. 
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Then z is a (~//~+) stopping time. For  p~Dr oo), we have {z>p}e~'p+,  so 
that by Lemma 6, 

n ( a ~  v)>n(~ > p, cr~> p + v) 

= ~ P~)(~ 
{~>p} 

> ~n('c > p). 

Letting p+O, p~D we obtain that n(a,>v)>en(H~,~). Thus n(H~,~)<oo for 
every e, v > 0. 

Conversely, since (vi')(c) fails, there is some measure n' satisfying (iv) and (v) 
such that n>n'>_O, and 0<n ' (U")<oo .  Fix e,v>O such that n(H~,~)=0. Then 
also n'(H~,~)=0. Thus, for r/>0, 

n'(Wo=a, W~B~,~ for every t~(O, ~) such that t=j2 -k for some j)~O as k ~ o e .  

That is, 

[2t~q - 1] 

n'(Wo=a, gl/j2 ~r .... Wiz_~EB~,~ for l <i<j)'fn'(U" ) as k ~ o o .  
j=l 

Thus, for r/e(O, v) 

n'(Wo=a, a , > 2 v )  
[2kr/-- 1] 

= l i m  ~, n'(Wo=a,~r,>2v, VV~z_~(~B .... Wi2 ~B~,~ for l < i < j )  
k~o~ j = l  

[2k r l -  1] 

= lira ~ ~ Po "(jz ~)(aa>2v-j2-k)n'(du) 
k ~  j = l  { W o = a , ~ a > j 2 - k ,  Wj2-kCB~,v,  

Wi2-k~B~, v fo r l  <=i < j} 

<=~n'(Ua). 

Since n'(U'~)e(O, ~),  this cannot happen for every e,v>O, so that indeed 
n(H~, ~)>0 for some s, v. 

In the second case, suppose that n is a probability measure concentrated on 
U a, yet (vi')(a) fails. Then we may find 71, 72e( 0, 1) and probability measures n 1 
and n2, each concentrated on U ~ and satisfying (i), (iv) and (v), such that 
n 1 + n  2 and n=y~ n 1 +yen2.  Since n~ 4:n z, we obtain from Lemma 6 that there 
is an open neighbourhood V of a, a set A e #  with A ~EkV; and numbers 2~, 22 
such that 

n~ (W~eA) > ,~ > ~2 > n2 (W~e A), 

where z (u )= in f{ t>0 ;  u(t)r Let V' be an open neighborhood of a, with 17' 
= V. Let 

B= {b~ V' ; Pob(W~A)>=)ol}. 

Let D be the dyadic rationals, and put 

H =  0 { W o = a , a , > 0 ,  W~B for every t~Dn(0,~/)}. 
q > 0  
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Then as before we obtain that 

22 > n~_ (W~A)  > 21 nz(H ), 

so that nz(H)<)~2/)~ 1 <1, and hence 

n(H)=Tx nl (H)+ 72 n2(H) < ?~ + 72 = 1. 

Conversely, if n (H)=0  then also n l (H)=0 ,  so that as before, 

21 <nl(W~eA)=<21 nl(U~)=21, 

which is impossible. [] 
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6. Variations on Lemma 7 

We turn to the variations of Lemma 7 alluded to in Sect. 2. Let E be a 
topological space and ~ its Borel field. Recall that a function K(x, dy) is called 
a kernel, if for each xeE,  K(x, . )  is a probability measure on (E,C), and if 
K(. ,  A)~g whenever AEg. 

Proposition 3. Let (f2, ~,  P) be a probability space. Let (Y,) be a cfidIfig process 
with values in E and suppose it is adapted to a filtration (~ )  of ((2, J~). Let 
K(x, dy) be a kernel on E. Let Q be a countable ordered set, and for each q~Q, 
let Sq be an (~)  stopping time. Suppose that the following conditions hold: 

I f  q<=q' then Sq<=Sq, and { S q ~ S q , } ~ s q  . 

P(Ys~eAI~q_)=K(Ys~ ,A) a.s., for q~Q, A ~ .  

Let T be an (~t) stopping time such that 

[[T~cqUo, l[Sq]], {T=Sq}e~,~s,_ v a(Ys, ), for qEQ. 

Then there is an Y T -  measurable random subset H of E (that is, {(co, x); 
x e H ( c o ) } ~  T_ | such that 

p ( y T e A l ~  T )= K(YT- 'Hc~A)  
_ K(YT_,H) a.s. 

for any A~g.  

Note. If (Y,) is a standard process, (~,~) is its natural (right continuous) fil- 
tration, Q c [ 0 ,  oo), and Sq=q-}-SooOq, where S o is a terminal time, then the 
results of Weft [25], and Walsh and Weil [23] show that such a kernel K exists, 
and may be expressed in terms of a L6vy system for (Y,). 

Proof Since 
{ T=Sq}egsq - v a(u 

there is a function fq: ~2 x E--+ {0, 1}, measurable with respect to ~s,  |  with 

{T=Sq} = {(o; f~(o), Ys,(Co)) = 1}. 
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Put 
fq= V [f~A l{s~=s.}• ~]. 

r 

Then fqeo~s~_ |  since 

{dr/x l{s,=s.}x~= 1} = {dr= 1}c~{Sq=Sr} X Ee(~s, | x E) 
=(~s._ a{S q= Sr})| 

as {Sq=Sr}e~s,_. Also, f q = s  on {Sq=Sr} xE, and 

{T=Sq} = {co;fq(co, Ysq(Co)) = 1}. 
Put 

f =  V [fq A l{s ~ = r} • E]. 
q 

Because fq=s on {Sq=Sr} x E, it follows that f = f q  on {Sq= T} x E. We will 
show that f~Wr_ |  This follows as above, once we show that {Sq= T}E~r  . 
To show this, let r < q. Since 

{S~=Sq= T}~s ._ ,  
in fact 

{S,= Sq = T} e~s._ ~{S ,<  T} c ~  T_ c~ {S,-<_ T}. 

Thus there is a set A r in ~ r -  such that 

Set 
{Sr=Sq= T} =A,.~{Sr<= T}. 

A = ~ [{S r < T} w ({S r < T} c~ At)]. 
r < q  

Since A and {Sq > T} both lie in ~'r , we need only show that A = {Sq < T}. 
We obtain the inclusion " ~ "  since if r<q and Sq(o,))<=r(o.)), but St(co)> r(o)), 
we must have that Sr(co)=Sq(CO)=T(m), and hence coeA,.. Conversely, if 
Sq(og)>r(o)), then there is an r < q  with Sr(co)=T(co ). We cannot have co,At, 
hence coCA as required. 

Let 
Hq(CO) = {y; fq((O, y ) :  1}, 

H(co) = {y; f(o), y)= 1}. 
We have assumed that 

E [g(-, Ysq('))] = ~ [-~ g(eo, y) K(Ysq (co), dy)] P(dco) 

for g of the form 1A• AeJ~s,_, Beg.  This therefore extends to general 
ge~s~ - |  g>0 .  Take 

g=lA• 
where Ae~s ,  , Beg.  Then 
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P(A, YTeB, Sq = T ) = E ( g ( . ,  Ys~('))J 

= ~ [~ fq(co, y) K(Ys~ - (co), dy)] P(dco) 
A B 

K(Ysq - (e)), BC~Hq(CO)) f(dco) 
= A ~ P(Sq = T l~s~ )(co) K(Ys~- (co), Hq(CO)) 

= I K(Ys._ , BC~Hq) dP. 
A~{S~= T} K ( Ys~ , H q) 

Enumerate  Q as ql, q2 . . . .  , and let A e ~ r _ .  Then there are Aqe~,~s~ - 

A ~ { T = S q }  =AqCV{T=Sq}. 
Thus 

such that 

P(A, YTeB)= ~ P(Aq,, YTaB, Sq, = T, Sq, 4= Sq, for i< j) 
J 

= ~, 5 K(Ys~ , ,  Bc~Hq)/K(Ys~ ' , Hq,) dP 
J Aqjc~{Sqj=T, Sqi#-Sqjfori<j} 

= ~ S K(YT_,  Bc~H)/K(YT_ , H)dP 
j An{Sqj -T ,  Sqi~=Sqj; fori<j} 

=E [A, K ( Y T - , H  c~B)] 

A similar result holds in discrete time. For  clarity, the proof  will be given 
with a discrete state space, but the general version can easily be obtained by 
modifying the preceding proof. 

Proposition 4. Let E be a countable set, and (Yn)n>_l an E-valued Markov chain 
with transition probabilities P(x; dy). Let T be a stopping time with respect to 
the natural fihration of  (Y"). Then there is an Y r - 1  measurable random subset H 
of E such that 

P(YT_ I; B ~ H )  
P ( Y r a B ] Y r _ I )  p ( y r _ ~ ; H  ) , for B e E .  

Proof. Atoms of ~ r -  1 are of the form 

A = { T = n ,  Y~=y~ . . . .  , Y._~=y._~}.  

Since T is a stopping time with respect to the natural filtration, it follows that 
for y~E, 

{T--n ,  l q - - y l  ... r ,  1 - - Y , _ l } ~ { r , - - y }  

= 0  or {Y l=y l  . . . . .  Y , - I = Y . - t ,  Y,=Y}. 
Put 

H(~o) = {y; A ~ {7~ = y) + 0 ] ,  

where A is the a tom of ~ r -  1 containing co. Thus, for every a tom A of ~ r -  1, 

P(A, Y T = y ) = P ( Y a = y l . . . Y , _ I = y n  1)P(YT_I;I-I~{y}) , on A 
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so that 

P(A, Yr=y) P(YT-1;H~{Y}) 
P(A) P(YT- ~ ; H) ' 

on A. [ ]  
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